
Julio Mariño (Ed).

Functional and (Constraint)
Logic Programming

19th International Workshop, WFLP 2010
Madrid, Spain, January 17th, 2010.
Informal Proceedings



Preface

This report contains preliminary versions of the papers presented at the 19th
International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2010), held at Madrid, Spain, on January 17th, 2010 as part of the ACM-
SIGPLAN Principles of Programming Languages event, (POPL 2010). Final
versions of a selection of these papers will appear as a forthcoming volume in the
Lecture Notes in Computer Science, Springer. The aim of the WFLP workshop is
to bring together researchers interested in functional programming, (constraint)
logic programming, as well as the integration of the two paradigms. It promotes
the cross-fertilizing exchange of ideas and experiences among researchers and
students from the different communities interested in the foundations, applica-
tions and combinations of high-level, declarative programming languages and
related areas. Previous meetings were: WFLP 2009 (Brasilia, Brazil), WFLP
2008 (Siena, Italy), WFLP 2007 (Paris, France), WFLP 2006 (Madrid, Spain),
WCFLP 2005 (Tallinn, Estonia), WFLP 2004 (Aachen, Germany), WFLP 2003
(Valencia, Spain), WFLP 2002 (Grado, Italy), WFLP 2001 (Kiel, Germany),
WFLP 2000 (Benicassim, Spain), WFLP’99 (Grenoble, France), WFLP’98 (Bad
Honnef, Germany), WFLP’97 (Schwarzenberg, Germany), WFLP’96 (Marburg,
Germany), WFLP’95 (Schwarzenberg, Germany), WFLP’94 (Schwarzenberg, Ger-
many), WFLP’93 (Rattenberg, Germany), and WFLP’92 (Karlsruhe, Germany).
The Program Committee of WFLP 2010 selected 12 papers for presentation
at the workshop out of 15 submissions, after a process in which most papers
received four reviews and the subsequent discussion. In addition to the reviewed
papers, the scientific program includes an invited lecture by Mariangiola Dezani-
Ciancaglini, from the Universitá di Torino. I would like to thank her specially
for having accepted our invitation. I would also like to thank all the members of
the Program Committee and the external referees for their careful work in the
reviewing process. Last, but not least, we want to express our gratitude to the
Facultad de Informática of Universidad Politécnica de Madrid for printing these
proceedings and all the people involved in the local organization of the POPL
2010 week.

Madrid, January 2010 Julio Mariño Carballo
Program Chair

WFLP 2010



Organization

WFLP 2010 was organized by the Babel research group at Universidad Politécnica
de Madrid, in close collaboration with the organizers of the POPL 2010 week.
Ana Maŕıa Fernández Soriano was in charge of the administrative duties. Emilio
Jesús Gallego Arias maintained the web page and composed these preliminary
proceedings.

Program Chair

Julio Mariño Carballo Universidad Politécnica de Madrid, Spain

Program Committee

Maŕıa Alpuente Universidad Politécnica de Valencia, Spain
Sergio Antoy Portland State University, USA
Bernd Brassel Christian-Albrechts-Universität zu Kiel, Ger-

many
Olaf Chitil University of Kent, UK
Rachid Echahed Institut IMAG – Laboratoire Leibniz, Grenoble,

France
Santiago Escobar Universidad Politécnica de Valencia, Spain
Moreno Falaschi University of Siena, Italy
Murdoch James Gabbay Heriot-Watt University, UK
Maŕıa Garćıa de la Banda Monash University, Australia
Vı́ctor Gulias LambdaStream S.L., Corunna, Spain
Michael Hanus Christian-Albrechts-Universität zu Kiel, Ger-

many
Herbert Kuchen Westfälische Wilhelms-Universität Münster,

Germany
Francisco José López Fraguas Universidad Complutense de Madrid, Spain
James B. Lipton Wesleyan University, USA
Juan José Moreno Navarro Ministry of Science & Innovation, Spain
Mircea Marin University of Tsukuba, Japan
Brigitte Pientka McGill University, Canada

Referees

In addition to the members of the Program Committee, the following external
referees contributed to the paper reviewing process:



V

Andreas Abel
Javier Álvez
David Basin
Clara Benac Earle
Stefan Bolus
David Castro
Jan Christiansen
Norman Danner

Rafael del Vado Vı́rseda
Joshua Dunfield
Sebastian Fischer
Emilio J. Gallego Arias
Álvaro Garćıa Pérez
Christian Hermanns
Ángel Herranz
Douglas Howe

José Iborra
Hugo Andrés Lopez
Tim A. Majchrzak
Rubén Monjaraz
Carlos Olarte
Fabian Reck
Fernando Sáenz Pérez
Alicia Villanueva

Sponsoring Institutions

Universidad Politécnica de Madrid, Spain.
IMDEA SW, Madrid, Spain.



Table of Contents

19th Workshop on Functional and (Constraint) Logic
Programming

Invited Talk: Sessions and Session Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Mariangiola Dezani-Ciancaglini

Transforming Functional Logic Programs into Monadic Functional Programs 2
Bernd Braßel, Sebastian Fischer, Michael Hanus, Fabian Reck

Mixed-level Embedding and JIT Compilation for an Iteratively Staged DSL 19
George Giorgidze, Henrik Nilsson

An Access Control Language based on Term Rewriting and Description
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Michele Baggi, Demis Ballis, and Moreno Falaschi

Lazy and Faithful Assertions for Functional Logic Programs . . . . . . . . . . . . 50
Michael Hanus

Parameterized Models for On-line and Off-line Use . . . . . . . . . . . . . . . . . . . . 65
Pieter Wuille, Tom Schrijvers

A Denotational Semantics for Curry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Jan Christiansen, Daniel Seidel, Janis Voigtländer

A Declarative Debugger of Missing Answers for FLP . . . . . . . . . . . . . . . . . . 91
Fernando Pérez Morente, Rafael del Vado Vı́rseda

Efficient and Compositional Higher-Order Streams . . . . . . . . . . . . . . . . . . . . 100
Gergely Patai

Bridging the Gap between Two Concurrent Constraint Languages . . . . . . . 115
Alexei Lescaylle, Alicia Villanueva

Large Scale Random Testing with QuickCheck on MapReduce Framework 131
Shigeru Kusakabe, Yuuki Ikuta

Automated Verification of Security Protocols in tccp . . . . . . . . . . . . . . . . . . . 140
Alexei Lescaylle, Alicia Villanueva

Implementation and Evaluation of a Declarative Debugger for Java . . . . . . 157
Herbert Kuchen, Christian Hermanns

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



Invited Talk: Sessions and Session Types

Mariangiola Dezani-Ciancaglini

Universitá di Torino
dezani@di.unito.it

Abstract. Sessions are a common and widespread mechanism of in-
teraction in distributed architectures. The processes willing to interact
establish a connection on a shared public channel. In this connection they
agree on some private channel on which to have a conversation, dubbed
session. The conversation follows a given protocol which describes the
kind and order of the messages exchanged on the private channel. The
messages exchanged during a session may be synchronisation signals,
basic values (e.g., integers, booleans, strings), names of public channels
(those used to start sessions), or even names of private channels of al-
ready started sessions. In the last case one speaks of delegation since
by sending to some other process the private channel of a session, the
process delegates the receiver to continue that session.
Session types describe the sequences of messages exchanged on a private
session channel and their possible branching based on labels: they prevent
communication mismatches and session deadlocks. The aim of this talk
is to give an overview of sessions/session types and some hints on new
proposals for incorporating secure information flow requirements within
session types.



Transforming Functional Logic Programs
into Monadic Functional Programs

Bernd Braßel, Sebastian Fischer, Michael Hanus, Fabian Reck

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
{bbr|sebf|mh|fre}@informatik.uni-kiel.de

Abstract. We present a high-level transformation scheme to translate
lazy functional logic programs into pure Haskell programs. This trans-
formation is based on a recent proposal to efficiently implement lazy
non-deterministic computations in Haskell into monadic style. We build
on this work and define a systematic method to transform lazy functional
logic programs into monadic programs with explicit sharing. This results
in a transformation scheme which produces high-level and flexible tar-
get code. For instance, the target code is parametric w.r.t. the concrete
evaluation monad. Thus, different monad instances could, for example,
define different search strategies (e.g., depth-first, breadth-first, paral-
lel). We formally describe the basic compilation scheme and some useful
extensions.

1 Introduction

Functional logic languages (see [10] for a recent survey) integrate the most
important features of functional and logic languages to provide a variety of
programming concepts to the programmer. In particular, modern languages of
this kind, such as Curry [13] or T OY [16], amalgamate the concepts of demand-
driven evaluation from functional programming with non-deterministic evaluation
from logic programming. This combination is not only desirable to obtain efficient
evaluation but it has also a positive effect on the search space, i.e., lazy evaluation
on non-deterministic programs yields smaller search spaces due to its demand-
driven exploration of the search space (compare [10]).

Although the combination of such features is quite useful for high-level appli-
cation programming, their implementation is challenging. Many older implemen-
tations (e.g., [11,16,18]) are based on Prolog’s depth-first backtracking strategy to
explore the search space. Since this strategy leads to operational incompleteness
and reduces the potential of modern architectures for parallelism, more recent
implementations of functional logic languages offer more flexible search strategies
(e.g., [5,7]). In order to avoid separate implementations for different strategies, it
would be desirable to specify the search strategy (e.g., depth-first, breadth-first,
parallel) as a parameter of the implementation. A first step towards such an
implementation has been done in [8] where a Haskell library for non-deterministic
programming w.r.t. different strategies is proposed. In this paper, we use this
idea to compile functional logic programs into pure Haskell programs that are



Transforming Functional Logic Programs into Monadic Functional Programs 3

parameterized such that the generated code works with different run-time systems
(various search strategies, call-time/run-time choice, etc).

Before presenting our compilation scheme, we review the features of functional
logic programming that we are going to implement as well as the language Curry
that we use for concrete examples. From a syntactic point of view, a Curry
program is a functional program (with a Haskell-like syntax [19]) extended by
non-deterministic rules and free (logic) variables in defining rules. For the sake
of simplicity, we do not consider free variables, since it has been shown that they
can be replaced by non-deterministic rules [4]. Actually, we use a kernel language,
also called overlapping inductively sequential programs [2], which are functional
programs extended by a (don’t know) non-deterministic choice operator “?”.
This is not a loss of generality, since (1) any functional logic program (with
extra variables and conditional, overlapping rules) can be transformed into an
overlapping inductively sequential program [1], and (2) narrowing computations in
inductively sequential programs with free variables are equivalent to computations
in overlapping inductively sequential programs without free variables [4, Th. 2].

A functional logic program consists of the definition of functions and data
types on which the functions operate. For instance, the data types of Booleans
and polymorphic lists are defined as
data Bool = True | False
data List a = Nil | Cons a (List a)

Concatenation of lists and an operation that duplicates a list can be defined as:
append :: List a → List a → List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

dup :: List a → List a
dup xs = append xs xs

Note that functional logic programs require a strict separation between constructor
symbols (like True, False, Nil, or Cons) and defined functions or operations (like
append or dup). In contrast to general term rewriting, the formal parameters in
a rule defining a function contain only variables and constructor symbols. This
restriction also holds for pure functional or logic programs and is important to
provide efficient evaluation strategies (see [10] for more details).

Logic programming aspects become relevant when considering non-determi-
nistic operations, i.e., operations that yield more than one result. For this purpose,
there is a distinguished choice operator “?” which returns non-deterministically
one of its arguments. For instance, the following operation returns a one-element
list containing either True or False:
oneBool :: List Bool
oneBool = Cons (True ? False) Nil

Now, consider an expression that duplicates the result of the previous operation:
main = dup oneBool

What are possible values of main? One could argue (in pure term rewrit-
ing) that “Cons True (Cons False Nil)” is a value of main by deriving it



4 Bernd Braßel, Sebastian Fischer, Michael Hanus, Fabian Reck

to “append oneBool oneBool”, and then the first argument to “Cons True Nil”
and the second to “Cons False Nil” (this semantics is called run-time choice
[14]). But this result is not desired as the operation dup is intended to duplicate a
given list (rather than return the concatenation of two different lists). In order to
obtain this behavior, González-Moreno et al. [9] proposed a rewriting logic as a
logical (execution- and strategy-independent) foundation for declarative program-
ming with non-strict and non-deterministic operations. This logic specifies the
call-time choice semantics [14] where values of the arguments of an operation are
determined before the operation is evaluated. Note that this does not necessarily
mean that operations are evaluated eagerly. One can still evaluate operations
lazily provided that actual arguments passed to operations are shared. For in-
stance, the two occurrences of argument “xs” of operation dup are shared, i.e., the
actual argument oneBool is evaluated to the same value on both positions. Thus,
“Cons True (Cons True Nil)” and “Cons False (Cons False Nil)” are the
only values of main, as intended. Detailed descriptions of this operational seman-
tics can be found in [9,10].

In functional logic programs, non-deterministic operations can occur in any
level of the program, in particular, inside nested structures, as shown in opera-
tion oneBool above. This makes the transformation of such programs into pure
functional programs non-trivial. For instance, the traditional functional represen-
tation of non-deterministic computations as “lists of successes” [20] is not easily
applicable, as one might expect, due to the arbitrary nesting of non-deterministic
operations. In the following section we review a recent solution to this problem
[8].

2 Lazy, Monadic Non-determinism

In the previous section, we have introduced Curry which combines demand driven
with non-deterministic evaluation. While both features can be easily expressed
separately in a functional language, their combination is non-trivial. In this
section we summarize previous work [8] that shows why.

Demand-driven evaluation is built into lazy execution mechanisms of the
functional language Haskell. Laziness combines non-strict execution (expressions
are evaluated only if needed) with sharing (expressions are evaluated at most
once). Non-deterministic evaluation can be simulated in Haskell via lists or, more
generally, non-determinism monads, i.e., instances of the MonadPlus type class.
The MonadPlus type class specifies the following overloaded operations to express
non-deterministic computations.1

mzero :: MonadPlus m ⇒ m a
return :: MonadPlus m ⇒ a → m a
mplus :: MonadPlus m ⇒ m a → m a → m a
( >>= ) :: MonadPlus m ⇒ m a → (a → m b) → m b

1 In fact, return and “>>=” have more general types because they are not only available
in non-determinism monads but in arbitrary instances of the Monad type class.



Transforming Functional Logic Programs into Monadic Functional Programs 5

mzero denotes a failing computation, i.e., one without results, return creates
a deterministic computation, i.e., one with a single result, mplus creates a non-
deterministic choice between the results of the two argument computations, and
“>>=” applies a non-deterministic function to every result of a non-deterministic
computation. For lists, mzero is the empty list, return creates a singleton list,
mplus is list concatenation, and >>= (pronounced ’bind’) can be implemented
by mapping the given function over the given list and concatenating the results.

The Curry expression (True ? False) can be expressed monadically:
trueOrFalse :: MonadPlus ⇒ m Bool
trueOrFalse = mplus (return True) (return False)

The constructors True and False are wrapped with return and the resulting
computations are combined with mplus which replaces Curry’s non-deterministic
choice operator “?”. When evaluated in the list monad, trueOrFalse yields
[True,False] which can be verified in a Haskell environment:
ghci> trueOrFalse :: [Bool]
[True,False]

However, different implementations of the MonadPlus interface can be used, e.g.,
to influence the search strategy. If we use the Maybe monad rather than the list
monad, we just get one result in depth-first order:
ghci> trueOrFalse :: Maybe Bool
Just True

The overloading of trueOrFalse allows us to execute it using different types.
Programs that are compiled with our transformation scheme are also overloaded
and can be executed by different monad instances.

We motivate the monadic implementation that we use in our transformation
by a sequence of ideas that leads to the final design. A simple idea to translate
the Curry operation oneBool into monadic Haskell is to reuse the existing Curry
data types and bind non-deterministic arguments of their constructors:
oneBoolM1 :: MonadPlus m ⇒ m (List Bool)
oneBoolM1 = trueOrFalse >>= λb → return (Cons b Nil)

We feed the result of function trueOrFalse above into a singleton list using
the “>>=” operator. Like the corresponding Curry operation, oneBoolM1 yields a
singleton list that contains either True or False non-deterministically:
ghci> oneBoolM1 :: [List Bool]
[Cons True Nil, Cons False Nil]

However, there is a subtle difference w.r.t. laziness. In Curry, oneBool yields the
head-normal form of its result without executing the non-deterministic choice
inside the list, whereas oneBoolM1 first executes the non-deterministic choice
between True and False and yields a list with a deterministic first element in each
non-deterministic branch of the computation. Whereas in Curry, non-determinism
can be nested inside data structures, the monadic non-determinism presented so
far cannot.

To overcome this limitation, we can use data types with nested non-
deterministic components. Nested monadic lists can be defined by wrapping



6 Bernd Braßel, Sebastian Fischer, Michael Hanus, Fabian Reck

each constructor argument with an additional type parameter “m” that represents
a non-determinism monad:
data MList m a = MNil | MCons (m a) (m (MList m a))

The additional “m”s around the arguments of MCons allow to wrap non-
deterministic computations inside lists. Here is a different translation of the
Curry operation oneBool into monadic Haskell:
oneBoolM :: MonadPlus m ⇒ m (MList m Bool)
oneBoolM = return (MCons trueOrFalse (return MNil))

This function deterministically yields a singleton list with an element that is a
non-deterministic choice:
ghci> oneBoolM :: [MList [] Bool]
[MCons [True,False] [MNil]]

This translation of the Curry operation is more accurate w.r.t. laziness because
the MCons constructor can be matched without distributing the non-determinism
in its first argument. In order to print such nested non-deterministic data in the
usual way, we need to distribute non-determinism to the top level [8].

Now that we have changed the list data type in order to support nested
non-determinism, we need to re-implement the list functions defined in Section 1.
The monadic variant of the dup function takes a monadic list as argument and
yields a monadic list as result:
dupM1 :: MonadPlus m ⇒ m (MList m a) → m (MList m a)
dupM1 xs = appendM xs xs

Similarly, the monadic variant of append takes two monadic lists and yields one.
appendM :: MonadPlus m ⇒ m (MList m a) → m (MList m a)

→ m (MList m a)
appendM l ys =
l >>= λl’ → case l’ of

MNil → ys
MCons x xs → return (MCons x (appendM xs ys))

This definition resembles the Curry definition of append but additionally handles
the monadic parts inside and around lists. In order to match on the first argument
“l” of appendM, we bind one of its non-deterministic head-normal forms to the
variable “l’”. Depending on the value of “l’”, appendM yields either the second
argument “ys” or a list that contains the first element “x” of “l’” and the result
of a recursive call (which can both be non-deterministic).

Although such a translation with nested monadic data accurately models
non-strictness, it does not ensure sharing of deterministic results. The definition
of dupM1 given above uses the argument list “xs” twice and hence, the value
of “xs” is shared via Haskell’s built-in laziness. However, in dupM1 the variable
“xs” denotes a non-deterministic computation that yields a list and the built-in
sharing does not ensure that both occurrences of “xs” in dupM1 denote the same
deterministic result of this computation. Hence, the presented encoding of nested
monadic data implements run-time choice instead of call-time choice:
ghci> dupM1 oneBoolM :: [MList [] Bool]



Transforming Functional Logic Programs into Monadic Functional Programs 7

[MCons [True,False] [MCons [True,False] [MNil]]]

When distributed to the top-level, the non-determinism in the list elements
leads to lists with different elements because the information that both elements
originate from the same expression is lost.

The conflict between non-strictness and sharing in presence of monadic non-
determinism has been resolved recently using an additional monadic combinator
for explicit sharing [8]:
share :: (Sharing m, Shareable m a) ⇒ m a → m (m a)

The type class context of share specifies that “m” (referring to a non-determinism
monad throughout this paper) and the type denoted by “a” support explicit
sharing. Using share, the Curry function dup can be translated as follows:
dupM :: (MonadPlus m, Sharing m, Shareable m a) ⇒

m (MList m a) → m (MList m a)
dupM xs = share xs >>= λxs → appendM xs xs

The result of share xs is a monadic computation that yields itself a monadic
computation which is similar to “xs” but denotes the same deterministic result
when used repeatedly. Hence, the argument “xs” to appendM (which intentionally
shadows the original argument “xs” of dupM) denotes the same deterministic list
in both argument positions of appendM which ensures call-time choice. When
executing “dupM oneBoolM” in a non-determinism monad with explicit sharing,
the resulting lists do not contain different elements.

The library that implements share, and that we use to execute transformed
functional logic programs, is available online2. The implementation ideas, the
operation that allows to observe results of computations with explicit sharing, as
well as equational laws that allow to reason about such computations are not in
the scope of this paper but described elsewhere [8].

3 Transforming Functional Logic Programs

In this section we formally define the transformation of functional logic programs
into monadic functional programs, i.e., pure Haskell programs. In order to simplify
the transformation scheme, we consider functional logic programs in flat form as a
starting point of our transformation. Flat programs are a standard representation
for functional logic programs where the strategy of pattern matching is explicitly
represented by case expressions. Since source programs can be easily translated
into the flat form [12], we omit further details about the transformation of source
programs into flat programs but define the syntax of flat programs before we
present our transformation scheme.

3.1 Syntax of Flat Functional Logic Programs

As a first step we fix the language of polymorphic type expressions. We denote
by on the sequence of objects o1, . . . , on.
2 http://sebfisch.github.com/explicit-sharing



8 Bernd Braßel, Sebastian Fischer, Michael Hanus, Fabian Reck

Definition 1 (Syntax of Type Expressions). Type expressions are either
type variables α or type constructors T applied to type expressions:

τ ::= α | T (τn)

Function types are of the form τn → τ where τn, τ are type expressions. We
denote by T the set of all function types.

As discussed in Section 1, functional logic programs contain program rules as
well as declarations of data types. We summarize type declarations in the notion
of a program signature.

Definition 2 (Program signature). A program signature is a pair (Σ, ty)
where Σ = F ] C is the disjoint union of a set F of function symbols and a set C
of constructor symbols. The mapping ty : Σ → T maps each symbol in Σ to a
function type such that, for all C ∈ C, ty(C) = τ → T (α) for a type constructor
T . If ty(s) = τn → τ , then n is called the arity of symbol s, denoted by ar(s).

The signature for the program of Section 1 contains the following symbols

C = {True, False,Nil, Cons} F = {append, dup, oneBool,main}

as well as the following mapping of types:

ty(Nil) =→ List a
ty(Cons) = a, List a→ List a

...
ty(append) = List a, List a→ List a

ty(dup) = List a→ List a
...

Next we fix the syntax of programs w.r.t. a given program signature. We consider
flat programs where pattern matching is represented by case expressions.

Definition 3 (Syntax of Programs). Let (Σ, ty) be a program signature spec-
ifying the types of all constructor and functions symbols occurring in a program
and X be a set of variables disjoint from the symbols occurring in Σ. A pattern is
a constructor C ∈ C applied to pairwise different variables xn where n = ar(C):

p ::= C(xn)

Expressions over (Σ, ty) are variables, constructor or function applications, case
expressions, or non-deterministic choices:

e ::= x x ∈ X is a variable
| C(en) C ∈ C is an n-ary constructor symbol
| f(en) f ∈ F is an n-ary function symbol
| case e of {pn → en} pi have pairwise different constructors
| e1 ? e2



Transforming Functional Logic Programs into Monadic Functional Programs 9

Programs over (Σ, ty) contain for each n-ary function symbol f ∈ F one rule
of the form f(xn) → e where xn are pairwise different variables and e is an
expression.

The rules corresponding to the functions append and oneBool of Section 1 are:

append(xs, ys)→ case xs of { Nil→ ys,
Cons(z, zs)→ Cons(z, append(zs, ys)) }

oneBool→ Cons(True ?False,Nil)

For simplicity, we assume that expressions and programs are well typed w.r.t.
the standard Hindley/Milner type system. Furthermore, we assume that there is
no shadowing of pattern variables, i.e., the variables occurring in the patterns of
a case expression are fresh in the scope of the case expression.

Note that all constructor and function symbols are fully applied. The extension
to higher-order functions is discussed separately in Section 4.

3.2 Transforming Data Types

In the following transformations, we assume that m is a new type variable that
does not occur in the program to be transformed. This type variable will denote
the monad that implements non-deterministic evaluations in the target program.
Since evaluations can be non-deterministic in all levels of functional logic programs,
we have to insert m as a new argument in all data types. Thus, we start the
definition of our transformation by stating how type expressions of functional
logic programs are mapped to Haskell type expressions, adding m to all argument
types.

Definition 4 (Transforming Types). The transformation tr(τ) on type ex-
pressions τ is defined as follows:

tr(τn → τ) = m tr(τ1) → . . . →m tr(τn) →m tr(τ)
tr(α) = α

tr(T (τn)) = (T m tr(τ1) . . . tr(τn))

The transformation of data type declarations adds m to all constructors:

Definition 5 (Transforming Data Declarations). For each type constructor
T of arity n, let {Ck} = { C ∈ C | ty(C) = · · · → T (αn) } be the set of
constructor symbols for this type constructor. Then we transform the definition
of type constructor T into the following Haskell data type declaration:
data T (m :: ∗ → ∗) α1 . . . αn = C1 (m tr(τ11)) . . . (m tr(τ1n1))

| . . .
| Ck (m tr(τk1)) . . . (m tr(τknk))

where ty(Cj) = τjnj → T (αn).



10 Bernd Braßel, Sebastian Fischer, Michael Hanus, Fabian Reck

The kind annotation (m :: ∗ → ∗) in the previous definition is necessary for
data types which have 0-ary data constructors only (i.e., enumeration types).
Without this annotation, a wrong kind for m would be deduced in this case due to
default assumptions in the Haskell type inferencer. Hence, for data types with at
least one non-constant data constructor, the kind annotation can be omitted. For
instance, the data types presented in the example of Section 1 are transformed
into the following Haskell data type declarations:
data Bool (m :: ∗ → ∗) = True | False
data List m a = Nil | Cons (m a) (m (List m a))

3.3 Transforming Functions

As discussed in Section 2, variables that have multiple occurrences in the body of
a program rule have to be shared in order to conform to the intended call-time
choice semantics of functional logic programs. In order to introduce sharing for
such variables in our transformation, we need the notion of the number of free
occurrences of a variable in an expression:

Definition 6 (Free Occurrences of a Variable). The number of free occur-
rences of variable x in expression e, denoted by occx(e), is defined as:

occx(y) =
{

1, if x = y
0, otherwise

occx(s(en)) =
∑n
i=1 occx(ei)

occx(e1 ? e2) = max{occx(e1), occx(e2)}

occx(case e of {pn → en}) =
{

0, if x occurs in some pi (1 ≤ i ≤ n)
occx(e) + max{occx(ei) | 1 ≤ i ≤ n}, otherwise

By varsn(e) we denote the set of variables occurring at least n times in e:

varsn(e) = {x ∈ X | occx(e) ≥ n}

Note that we count multiple occurrences for each possible computation path.
Thus, the variable occurrences in the two branches of a non-deterministic choice
expression are not added but only the maximum is considered, i.e., if a variable
occurs only once in each alternative of a choice, it is not necessary to share it.
The same is true for the branches of a case expression.

In order to translate functional logic expressions into Haskell, we have to
apply two basic transformations: (1) Introduce sharing for all variables with
multiple occurrences (defined by the transformation sh below) and (2) Translate
non-deterministic into monadic computations (defined by the transformation tr
below). Note that these transformations are mutually recursive.



Transforming Functional Logic Programs into Monadic Functional Programs 11

Definition 7 (Transforming Expressions). The transformation sh(e) intro-
duces sharing for all variables with multiple occurrences in the expression e:

sh(e) = share(vars2(e), tr(e))

share({xk}, e) =


share x1 >>= λx1 →
...

share xk >>= λxk →
e

For the sake of simplicity, we do not rename the variables when introducing
sharing but exploit the scoping of Haskell, i.e., the argument xi of share is
different from the argument xi in the corresponding lambda abstraction.

Transformation tr replaces non-deterministic choices by monadic operations
and introduces sharing for the pattern variables of case expressions, if necessary:

tr(x) = x
tr(f(en)) = (f tr(e1) . . . tr(en))
tr(C(en)) = (return (C tr(e1) . . . tr(en)))
tr(e1 ? e2) = (mplus tr(e1) tr(e2))

tr(case e of {pn → en}) =



(tr(e) >>= λx →
case x of

p1 → sh(e1)
...

pn → sh(en)
_ → mzero)

where x fresh

Note that patterns of case expressions pi must also be translated into their
curried form in Haskell, i.e., each pattern pi = C(xk) is translated into C x1 . . . xk,
but we omit this detail in the definition of tr for the sake of simplicity.

Now we are ready to describe the transformation of program rules by transform-
ing the rule’s right-hand side. In addition, we have to add the necessary class
dependencies in the type of the defined function as discussed in Section 2.

Definition 8 (Transforming Program Rules). Let (Σ, ty) be a program sig-
nature and f(xn)→ e a rule of a functional logic program. We transform this
rule into the following Haskell definition, where α1, . . . , αk are all type variables
occurring in ty(f):
f :: (MonadPlus m, Sharing m,

Shareable m α1, . . ., Shareable m αk) ⇒ tr(ty(f))
f x1 . . . xn = sh(e)

According to the transformation scheme, the rules corresponding to operations
append, dup, and oneBool (cf. Section 1) are translated to the Haskell definitions:



12 Bernd Braßel, Sebastian Fischer, Michael Hanus, Fabian Reck

append :: (MonadPlus m, Sharing m, Shareable m a) ⇒
m (List m a) → m (List m a) → m (List m a)

append xs ys = xs >>= λ l →
case l of Nil → ys

Cons z zs → return (Cons z (append zs ys))

dup :: (MonadPlus m, Sharing m, Shareable m a) ⇒
m (List m a) → m (List m a)

dup xs = share xs >>= λ xs → append xs xs

oneBool :: (MonadPlus m, Sharing m) ⇒ m (List m (Bool m))
oneBool = return (Cons (mplus (return True) (return False))

(return Nil))

4 Extensions

Up to now, we have described a basic transformation of a first-order kernel
language. In this section, we discuss extensions of this transformation scheme.

4.1 Higher-Order Programs

Higher-order programs can be translated with an extension of our transformation
scheme. We omit some details like the transformation of higher-order function
and data types due to lack of space.

In functional (logic) languages, functions are first class citizens which means
that functions can have other functions both as argument and as result. In order
to add higher-order features to our source language, we extend it with lambda
abstractions and higher-order applications:

e ::= · · · | λx→ e | apply(e1, e2)

We still require applications of function and constructor symbols to respect the
arity of the corresponding symbol. Over-applications can be expressed using
apply and partial applications can be transformed into applications of lambda
abstractions. For example, the partial application “append oneBool” in Curry
would be expressed as

apply(λxs→ λys→ append(xs, ys), oneBool)

in our source language. Note that we do not use the simpler representation

λys→ append(oneBool, ys)

which has a different semantics in Curry because oneBool would not be shared if
this lambda abstraction is duplicated.

We use the function iterate as an example for a higher-order function:
iterate :: (a → a) → a → List a
iterate f x = Cons x (iterate f (f x))



Transforming Functional Logic Programs into Monadic Functional Programs 13

The function iterate yields a list of iterated applications of a given function to
a value. In the definition, both arguments of iterate are shared. Therefore, the
transformation scheme of Section 3.3 would introduce sharing as follows:
iterate :: (MonadPlus m, Sharing m, Shareable m a) ⇒

m (m a → m a) → m a → m (List m a)
iterate f x = share f >>= λ f →

share x >>= λ x →
return (Cons x (iterate f (apply f x)))

The apply function is used to transform the higher-order application of the
variable “f” to “x” and is implemented as follows:
apply :: MonadPlus m ⇒ m (m a → m b) → m a → m b
apply f x = f >>= λf → f x

In order to translate the Curry expression “iterate (append oneBool) Nil”,
we transform the partial application of append as illustrated above and then
apply the following rule to transform lambda abstractions:

tr(λx→ e) = return (λ x → share x >>= λx → tr(e))
Note, that we precautionary share every argument of a lambda abstraction
regardless of whether it is shared in the body or not. This is necessary because
the lambda abstraction itself could be duplicated and the argument must be shared
also if only duplicated indirectly along with the lambda abstraction. We cannot
share already supplied arguments when partial applications are duplicated because
we reuse Haskell’s higher-order features and, hence, partial Curry applications
are represented as Haskell functions that we cannot inspect.

Here is the transformed version of the above call to iterate:
iterate (apply (return (λ xs → share xs >>= λ xs →

return (λ ys → share ys >>= λ ys →
append xs ys)))
oneBool)

(return Nil)

This translation shares the result of oneBool just like the original Curry expression
when the argument “f” of iterate is duplicated. Therefore, the result of this
call is an infinite list of boolean lists of increasing length where all elements are
either True or False but no list contains both True and False.

4.2 An Optimized Transformation Scheme

In this section we present a technique to optimize the programs obtained from the
transformation in Section 3.3. The basic idea is that the original transformation
scheme may introduce sharing too early. To keep things simple, Definitions 7 and
8 introduce sharing at the beginning of a rule or the case branches, respectively.
This scheme is straightforward and a similar scheme is used in PAKCS [11].
When implementing the transformation presented here, we observed that sharing
could also be introduced individually for each variable as “late” as possible.
Consequently, the ideas presented in this section could also be employed to
improve existing compilers like that of PAKCS.



14 Bernd Braßel, Sebastian Fischer, Michael Hanus, Fabian Reck

What does “late sharing” mean? Reconsider the transformed iterate function
given in Section 4.1. Due to the nature of iterate, the result is a potentially
infinite list. Therefore, in any terminating program the context of a call to
iterate will only demand the x of the result but not the value of the expression
iterate f (f x). It is clear that for yielding x in this case there is no need to
share f (again). Thus, sharing f later will improve the resulting code:
iterate f x = share x >>= λ x →

return (Cons x (share f >>= λ f →
iterate f (apply f x)))

The example also shows that the optimization requires to introduce sharing
individually for each variable.

How can we obtain this optimization in general? The idea is that the transfor-
mation of expressions needs some information about which variables occur in its
context. Whenever the situation arises that for a term s(en) a variable occurs in
more than one of the en but not in the context, we have to introduce sharing for
x right around the result of transforming s(en). Therefore, the transformation tr
is extended by an additional argument indicating the set of variables occurring
in the context. These ideas are formalized in the following definitions.

First we formalize the idea that variables “occur in more than one” of a
sequence of given expressions.

Definition 9. multocc(en) = {x | ∃i 6= j : x ∈ vars1(ei) ∩ vars1(ej)}

The optimizing transformation scheme for expressions is then expressed in the
following definition. There, the transformation gets as an additional argument the
set of variables for which sharing was already introduced. For a variable that does
not occur in that set, sharing will be introduced in two situations: (a) before an
application if it occurs in more than one argument, or (b) before a case expression
“case e of {pn → en}” if it occurs in e and in at least one of the branches en.

Definition 10 (Optimized Transformation of Expressions). The opti-
mized transformation of an expression e w.r.t. a set of variables V , denoted
tr(V, e), is defined as follows (the transformation share is as in Definition 7):



Transforming Functional Logic Programs into Monadic Functional Programs 15

tr(V, x) = x
tr(V, s(en)) = share(S, s′(tr(V ∪ S, e1), . . . , tr(V ∪ S, en)))

where S = multocc(en) \ V

s′(tn) =
{
(s t1 . . . tn) , if s ∈ F
(return (s t1 . . . tn)) , if s ∈ C

tr(V, e1 ? e2) = (mplus tr(V, e1) tr(V, e2))

tr(V, case e of {pn → en}) = share(S,



(tr(V ∪ S, e) >>= λx →
case x of

p1 → tr(V ∪ S, e1)
. . .
pn → tr(V ∪ S, en)
_ → mzero)


)

where x fresh
S = (

⋃n
i=1 multocc(e, ei)) \ V

According to the idea that the additional argument of the transformation repre-
sents the set of variables for which sharing was already introduced, the initial
value of the argument should be the empty set as expressed in the next definition.

Definition 11 (Optimized Transformation of Functions). The optimized
transformation of a function defined by a rule f(xn)→ e is similar to Definition 8
but uses the transformation from Definition 10.
f x1 . . . xn = tr(∅, e)

5 Conclusions and Related Work

In this paper we presented a scheme to translate functional logic programs
into pure Haskell programs. The difficulty of such a translation is the fact
that non-deterministic results can occur in any level of a computation, i.e.,
arbitrarily deep inside data structures. This problem is solved by transforming all
computations into monadic ones, i.e., all argument and result values of functions
and data constructors have monadic types w.r.t. a “non-determinism monad”, i.e.
a MonadPlus instance. Furthermore, the monad must support explicit sharing
in order to implement the sharing of potentially non-deterministic arguments,
which is necessary for a non-strict functional logic language with call-time choice.
As a result, we obtain target programs which are parametric w.r.t. the concrete
evaluation monad, i.e., one can execute the same target code with different search
strategies, choose between call-time choice or run-time choice for parameter
passing, or add additional run-time information to implement specific tools.

Considering related work, many schemes to compile lazy functional logic
programs into various target languages have been introduced. Due to the nature
of these languages, former approaches can be categorized with respect to the target



16 Bernd Braßel, Sebastian Fischer, Michael Hanus, Fabian Reck

language: (a) schemes targeting a logic programming language (b) compiling to
a lazy functional language (c) generating code for a especially devised abstract
machine (implemented in an imperative language, typically). Considering (a)
there have been several attempts to target Prolog and make use of the logic
features of that host language, e.g., the T OY system [16], and PAKCS [11].
With respect to the implementation presented here, a system based on Prolog
can not easily support different search strategies simply because Prolog does
not support them. On the other hand, Prolog implementations normally offer
various constraint solvers, which can therefore be easily integrated in a functional
logic system. Typically, however, these integrations suffer from the fact that
constraint solvers for Prolog are implemented with respect to a strict semantics.
The resulting issues with a lazy semantics make such an integration not as
seamless as possible. With respect to (b) there have been various proposals to
implement logic programming in a functional language. As discussed in detail in
[8], most of these proposals do not adequately represent laziness. The exception to
this is KiCS [7], which employs a different translation scheme to compile Curry to
Haskell. In contrast to the scheme presented here, the current implementation of
KiCS employs side effects for the implementation of logic features. Consequently,
the resulting programs can not be optimized by standard Haskell compilers. In
addition, the attempt to introduce a parallel search strategy to KiCS has failed
due to the side effects. In contrast to our approach, however, KiCS provides
sharing of deterministic expressions across non-deterministic computations [7].
Regarding (c), sharing across non-determinism is also provided by FLVM, the
abstract machine described in [5], which is implemented in Java. The FLVM has
undergone substantial changes from the implementation described in [5], and can
still be considered to be in an experimental state. Finally, the MCC [18] is based
on an abstract machine implemented in C. The MCC provides a programatic
approach to support different search strategies, i.e., the Curry programmer can
influence the search strategy by calling primitive operators provided in this
system.

Bundles [15] improve laziness in purely functional non-deterministic com-
putations similar to our translation of data types. The type for bundles is a
transformed list data type restricted to the list monad without non-deterministic
list elements. Nesting non-determinism inside constructors plays an essential
role in achieving full abstraction in a semantics for constructor systems under
run-time choice [17].

By representing non-determinism explicitly using monads, we can collect re-
sults of non-deterministic computations in a deterministic data structure which is
called encapsulated search [6,3]. The monadic formulation of lazy non-determinism
provides a new perspective on the problems described in previous work on encap-
sulated search and possibilities for future work.

In a next step, we will implement the transformation scheme into a complete
compiler for Curry in order to test it on a number of benchmarks. Although it is
clear that one has to pay a price (in terms of execution efficiency) for the high-level
parametric target code, initial benchmarks, presented in [8], demonstrate that



Transforming Functional Logic Programs into Monadic Functional Programs 17

the clean target code supports optimizations of the Haskell compiler so that the
monadic functional code can compete with other more low level implementations.
Based on such an implementation, it would be interesting to test it with various
monad instances in order to try different search strategies, in particular, parallel
strategies, or to implement support for run-time tools, like observation tools,
debuggers etc. Furthermore, one could also use the monad laws of [8] together
with our transformation scheme in order to obtain a verified implementation of
Curry.

References

1. S. Antoy. Constructor-based conditional narrowing. In Proc. of PPDP 2001, pages
199–206. ACM Press, 2001.

2. S. Antoy. Evaluation strategies for functional logic programming. Journal of
Symbolic Computation, 40(1):875–903, 2005.

3. S. Antoy and B. Braßel. Computing with subspaces. In M. Leuschel and A. Podelski,
editors, Proc. of PPDP 2007, pages 121–30. ACM, 2007.

4. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic
programs. In Proc. of the 22nd Int. Conference on Logic Programming (ICLP
2006), pages 87–101. Springer LNCS 4079, 2006.

5. S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine for functional
logic computations. In Proc. of the 16th Int. Workshop on Implementation and
Application of Functional Languages (IFL 2004), pages 108–125. Springer LNCS
3474, 2005.

6. B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional
logic computations. Journal of Functional and Logic Programming, 2004(6), 2004.

7. B. Braßel and F. Huch. The Kiel Curry system KiCS. In Applications of Declarative
Programming and Knowledge Management, pages 195–205. Springer LNAI 5437,
2009.

8. S. Fischer, O. Kiselyov, and C. Shan. Purely functional lazy non-deterministic
programming. In Proc. of ICFP 2009, pages 11–22. ACM, 2009.

9. J. González-Moreno, M. Hortalá-González, F. López-Fraguas, and M. Rodŕıguez-
Artalejo. An approach to declarative programming based on a rewriting logic.
Journal of Logic Programming, 40:47–87, 1999.

10. M. Hanus. Multi-paradigm declarative languages. In Proc. of the Int. Conference
on Logic Programming (ICLP 2007), pages 45–75. Springer LNCS 4670, 2007.

11. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs/, 2008.

12. M. Hanus and C. Prehofer. Higher-order narrowing with definitional trees. Journal
of Functional Programming, 9(1):33–75, 1999.

13. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2).
Available at http://www.curry-language.org, 2006.

14. H. Hussmann. Nondeterministic algebraic specifications and nonconfluent term
rewriting. Journal of Logic Programming, 12:237–255, 1992.

15. F. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández. Bundles pack
tighter than lists. In Draft Proc. of Trends in Functional Programming 2007, pages
XXIV–1–XXIV–16, 2007.



18 Bernd Braßel, Sebastian Fischer, Michael Hanus, Fabian Reck

16. F. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm declarative
system. In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.

17. F. J. López-Fraguas, J. Rodŕıguez-Hortalá, and J. Sánchez-Hernández. A fully
abstract semantics for constructor systems. In RTA ’09: Proc. of the 20th Int.
Conference on Rewriting Techniques and Applications, pages 320–334. Springer,
2009.

18. W. Lux and H. Kuchen. An efficient abstract machine for Curry. In K. Beiersdörfer,
G. Engels, and W. Schäfer, editors, Informatik ’99 — Annual meeting of the German
Computer Science Society (GI), pages 390–399. Springer, 1999.

19. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

20. P. Wadler. How to replace failure by a list of successes. In Functional Programming
and Computer Architecture, pages 113–128. Springer LNCS 201, 1985.



Mixed-level Embedding and JIT Compilation for
an Iteratively Staged DSL

George Giorgidze, Henrik Nilsson

Functional Programming Laboratory
University of Nottingham

United Kingdom
{ggg,nhn}@cs.nott.ac.uk

Abstract. This paper explores how to implement an iteratively staged
domain-specific language (DSL) by embedding into a functional language.
The domain is modelling and simulation of physical systems where models
are expressed in terms of non-causal differential-algebraic equations; i.e.,
sets of constraints solved through numerical simulation. What sets our
language apart is that the equational constraints are first class entities
allowing for an evolving model structure characterised by repeated gener-
ation of updated constraints. Hence iteratively staged. Our DSL can thus
be seen as a combined functional and constraint programming language,
albeit a two-level one, with the functional language chiefly serving as
a meta language. However, the two levels do interact throughout the
simulation. The embedding strategy we pursue is a mixture of deep and
shallow, with the deep embedding enabling just-in-time (JIT) compilation
of the constraints as they are generated for efficiency, while the shallow
embedding is used for the remainder for maximum leverage of the host
language. The paper is organised around a specific DSL, but our imple-
mentation strategy should be applicable for iteratively staged languages
in general. Our DSL itself is further a novel variation of a declarative
constraint programming language.

1 Introduction

Embedding is a powerful and popular way to implement domain-specific languages
(DSLs) [1]. Compared with implementing a language from scratch, extending a
suitable general-purpose programming language, the host language, with notions
and vocabulary addressing a particular application or problem domain tends to
save a lot of design and implementation effort.

There are two basic approaches to language embeddings: shallow and deep.
In a shallow embedding, domain-specific notions are expressed directly in host-
language terms, typically through a higher-order combinator library. This is a
light-weight approach that makes it easy to leverage the facilities of the host
language. However, the syntactic freedom is limited, and the static semantics of
the embedded language must be relatively close to that of the host language for
an embedding to be successful. In contrast, a deep embedding is centred around



20 George Giorgidze, Henrik Nilsson

a representation of embedded language terms that then are given meaning by
interpretation or compilation. This is a more heavy-weight approach, but also
more flexible. In particular, for optimisation or compilation, it is often necessary to
inspect terms, suggesting a deep embedding. The two approaches can be combined
to draw on the advantages of each. This leads to mixed-level embedding.

In this paper, we explore how to embed a language, Hydra [2], for non-causal
modelling and simulation of physical systems into a functional programming
language. In this application domain, systems are modelled by constraints ex-
pressed as undirected Differential Algebraic Equations (DAEs). These equations
are solved by specialised combined symbolic and numerical simulation methods.
A defining aspect of Hydra is that the equations are first-class entities in a
functional language layer, providing very flexible means for expressing model
composition and evolving model structure. Specifically, in response to events,
which occur at discrete points in time, the simulation is stopped and, depending
on results thus far, (partly) new equations are generated describing a (partly)
new problem to be solved. We refer to this kind of DSL as iteratively staged
to emphasise that the domain is characterised by repeated program generation
and execution. Iterative staging makes it possible to model classes of systems in
Hydra that current main-stream non-causal modelling and simulation languages
cannot handle [3]. Section 2 exemplifies one such system.

Hydra can be seen as a functional and constraint or logical programming
language in that it combines a functional and relational approach to programming.
However, the integration of the two approaches is less profound than in, say,
functional logic languages based on residuation or narrowing [4]. Hydra is a
two-level language, where the functional part to a large extent serves as a meta
language. However, the two layers do interact throughout the simulation.

We have chosen Haskell as the host language, or, more precisely, Haskell with
Glasgow Haskell Compiler (GHC) extensions, GHC’s quasiquoting facility [5,6]
being one reason for this choice. Because performance is a primary concern in the
domain, the simulation code corresponding to the current equations has to be
compiled. As this code is determined dynamically, this necessitates just-in-time
(JIT) compilation. We use a deep embedding for this part of the language along
with the Low-Level Virtual Machine (LLVM)1: a language-independent, portable,
optimising, compiler back-end with JIT support. In contrast, we retain a shallow
embedding for the parts of the embedded language concerned with high-level,
symbolic computations to get maximum leverage from the host language. Note
that we are not concerned with (hard) real-time performance here: we are prepared
to pay the price of brief “pauses” for symbolic processing and compilation in
the interest of minimising the computational cost of the actual simulation that
typically dominates the overall costs by a wide margin.

An alternative might have been to use a multi-staged host language like
MetaOCaml [7]. The built-in run-time code generation capabilities of the host
language would then have been used instead of relying on an external code
generation framework. We have so far not explored this approach as we wanted to

1 http://llvm.org/



Mixed-level Embedding and JIT Compilation for an Iteratively Staged DSL 21

have tight control over the generated code. Also, not predicating our approach on
a multi-staged host language means that some of our ideas and implementation
techniques can be more readily deployed in other contexts, for example to enhance
the capabilities of existing implementations of non-causal languages.

Compilation of Embedded DSLs (EDSLs) is today a standard tool in the
DSL-implementer’s tool chest. The seminal example is the work by Elliott et al. on
compiling embedded languages, specifically the image synthesis and manipulation
language Pan [8]. Pan, like our language, provides for program generation by
leveraging the host language combined with compilation to speed up the resulting
performance-critical computations. However, the program to be compiled is
generated once and for all, meaning the host language acts as a powerful but
fundamentally conventional macro language: program generation, compilation,
and execution is a process with a fixed number of stages.

As Hydra is iteratively staged, the problems we are facing are in many ways
different. Also, rather than acting merely as a powerful meta language that is
out of the picture once the generated program is ready for execution, the host
language is in our case part of the dynamic semantics of the embedded language
through the shallow parts of the embedding. With this paper, we thus add further
tools to the DSL tool chest for embedding a class of languages that hitherto has
not been studied much. Specifically, our contributions are:

– a case study of mixed-level embedding of iteratively staged DSLs;
– using JIT compilation to implement an iteratively staged EDSL efficiently.

Additionally, we consider static type checking in the context of iterative staging
and quasiquoting-based embedding. While Hydra is specialised, we believe the
ideas underlying the implementation are of general interest, and that Hydra
itself should be of interest to programming language researchers interested in
languages that combine functional and relational approaches to programming.
The implementation is available on-line2 under the open source BSD license.

The rest of the paper is organised as follows. In Section 2, we introduce
non-causal modelling and our language Hydra in more detail. Section 3 explains
the Haskell embedding of Hydra and Section 4 then describes how iteratively
staged programs are executed. Related work is discussed in Section 5. Finally,
Section 6 gives conclusions.

2 Background

This section provides an introduction to Functional Hybrid Modelling (FHM) [2]
and to our specific instance Hydra [9,3]. We focus on aspects that are particularly
pertinent to the present setting. The reader is referred to the earlier papers on
FHM and Hydra for a more general treatment.

2 http://cs.nott.ac.uk/~ggg/



22 George Giorgidze, Henrik Nilsson

2.1 Functional Hybrid Modelling

Functional Hybrid Modelling (FHM) [2] is a new approach to designing non-causal
modelling languages [10] supporting hybrid systems: systems that exhibit both
continuous and discrete dynamic semantics. This class of languages is intended
for modelling and simulation of systems that can be described by Differential
Algebraic Equations (DAEs). Examples include electrical, mechanical, hydraulic,
and other physical systems, as well as their combinations. Non-causal3 in this
context refers to treating the equations as being undirected : an equation can be
used to solve any of the variables occurring in it. This is in contrast to causal
modelling languages where equations are restricted to be directed : only “known”
variables on one side of the equal sign, and only “unknown” variables on the
other. Note that the domain of the variables are time-varying values or signals:
functions of continuous time.

The advantages of non-causal languages over causal ones include that models
are more reusable (the equations can be used in many ways) and more declarative
(the modeller can focus on what to model, worrying less about how to model it to
enable simulation) [10]. These are crucial advantages in many modelling domains.
As a result, a number of successful non-causal modelling languages have been
developed. Modelica4 is a prominent, state-of-the-art example.

However, one well-known weakness of current non-causal languages is that
their support for modelling structurally dynamic systems, systems where the
equations that describe the dynamic behaviour change at discrete points in time,
usually is limited. There are a number of reasons for this. A fundamental one is
that languages like Modelica, to facilitate efficient simulation, are designed on
the assumption that the model is translated into simulation code once and for
all, before simulation starts.

The idea of FHM is to enrich a purely functional language with a few key
abstractions for supporting hybrid, non-causal modelling. In particular, first-
class signal relations, relations on signals described by undirected DAEs, provide
support for non-causal modelling, and dynamic switching among signal relations
that are computed at the point when they are being “switched in” provides
support for describing highly structurally dynamic systems [2].

Our hypothesis is that the FHM approach will result in non-causal modelling
languages that are more expressive than the current ones, yet have relatively
simple, declarative semantics. Results so far have been promising. The capability
to compute and use new signal relations during simulation has already allowed us
to non-causally model and simulate some systems that e.g. Modelica cannot handle
[3]. We present one such example in the following. The dynamic computation
of and switching among signal relations is, of course, also what makes FHM
iteratively staged.

3 Do not confuse this with temporal causality. A system is temporally causal if its
output only depends on present and past input, and temporally non-causal if the
output depends on future input.

4 http://www.modelica.org/



Mixed-level Embedding and JIT Compilation for an Iteratively Staged DSL 23

m

m~g

ϕ

l

Fig. 1. A pendulum subject to gravity.

2.2 Hydra by Example: The Breaking Pendulum

To introduce Hydra, let us model a physical system whose structural configuration
changes abruptly during simulation: a simple pendulum that can break at a
specified point in time; see Figure 1. The pendulum is modelled as a point mass
m at the end of a rigid, mass-less rod, subject to gravity m~g. If the rod breaks, the
mass will fall freely. This makes the differences between the two configurations
sufficiently large that e.g. Modelica does not support non-causal modelling of this
system. Instead, if simulation across the breaking point is desired, the modeller
is forced to model the system in a causal, less declarative way.

There are two levels to Hydra: the functional level and the signal level. The
functional level is concerned with the definition of ordinary functions operating
on time-invariant values. The signal level is concerned with the definition of
relations between signals, the signal relations, and, indirectly, the definition of
the signals themselves as solutions satisfying these relations.

Signal relations are first-class entities at the functional level. The type of a
signal relation is parametrised on a descriptor of the types of the signals it relates:
essentially a tuple of the types carried by the signals. For example, the type of a
signal relation relating three real-valued signals is SR (Real ,Real ,Real).

Signals, in contrast to signal relations, are not first-class entities at the func-
tional level. However, crucially, instantaneous values of signals can be propagated
back to the functional level, allowing the future system structure to depend on
signal values at discrete points in time.

The definitions at the signal level may freely refer to entities defined at the
functional level as the latter are time-invariant, known parameters as far as solving
the equations are concerned. However, the opposite is not allowed: time-varying
entities are confined to the signal level. The only signal-level notion that exists
at the functional level is the time-invariant signal relation.

Hydra is currently implemented as an embedding in Haskell using quasiquoting
[5,6]. This means Haskell provides the functional level almost for free through
shallow embedding. In contrast, the signal level is realised through deep embedding:
signal relations expressed in terms of Hydra-specific syntax are, through the



24 George Giorgidze, Henrik Nilsson

type Coordinate = (Double,Double)
type Velocity = (Double,Double)
type Body = (Coordinate,Velocity)

g :: Double
g = 9.81

freeFall :: Body → SR Body
freeFall ((x0 , y0 ), (vx0 , vy0 )) = [$hydra|

sigrel ((x , y), (vx , vy)) where
init (x , y) = ($x0$, $y0$)
init (vx , vy) = ($vx0$, $vy0$)
(der x , der y) = (vx , vy)
(der vx , der vy) = (0,−$g$)

|]

pendulum :: Double → Double
→ SR Body

pendulum l phi0 = [$hydra|
sigrel ((x , y), (vx , vy)) where

init phi = $ phi0 $
init der phi = 0
init vx = 0
init vy = 0
x = $ l $ ∗ sin phi
y = − $ l $ ∗ cos phi
(vx , vy) = (der x , der y)
der (der phi)

+ ($g / l$) ∗ sin phi = 0
|]

Fig. 2. Models of the two modes of the pendulum.

quasiquoting machinery, turned into an internal representation that then is
compiled into simulation code. This, along with the reasons for using quasiquoting,
is discussed in more detail in an earlier paper [9]. However, that paper only treated
structurally static systems.

Figure 2 shows how to model the two modes of the pendulum in Hydra. The
type Body denotes the position and velocity of an object, where position and
velocity both are 2-dimensional vectors represented by pairs of doubles. Each
model is represented by a function that maps the parameters of the model to a
relation on signals; i.e., an instance of the defining system of DAEs for specific
values of the parameters. In the unbroken mode, the parameters are the length of
the rod l and the initial angle of deviation phi0 . In the broken mode, the signal
relation is parametrised on the initial state of the body.

[$hydra| and |] are the open and close quasiquotes. Between them, we have
signal-level definitions expressed in our custom syntax. The keyword sigrel starts
the definition of a signal relation. It is followed by a pattern that introduces signal
variables giving local names to the signals that are going to be constrained by
the signal relation. This pattern thus specifies the interface of a signal relation.

Note the two kinds of variables: the functional level ones representing time-
invariant parameters, and the signal-level ones, representing time-varying entities,
the signals. Functional-level fragments, such as variable references, are spliced
into the signal level by enclosing them between antiquotes, $. On the other hand
time-varying entities are not allowed to escape to the functional level (meaning
signal-variables are not in scope between antiquotes).

After the keyword where follow the equations that define the relation. These
equations may introduce additional signal variables as needed. Equations marked
by the keyword init are initialisation equations used to specify initial conditions.
The operator der indicates differentiation with respect to time of the signal-valued
expression to which it is applied.



Mixed-level Embedding and JIT Compilation for an Iteratively Staged DSL 25

pendulumBE :: Double → Double → Double
→ SR (Body ,E Body)

pendulumBE t l phi0 = [$hydra|
sigrel (((x , y), (vx , vy)), event e) where

$ pendulum l phi0 $ � ((x , y), (vx , vy))
event e = ((x , y), (vx , vy))

when time = $t $
|]

(a) Pendulum extended with a breaking event

breakingPendulum :: SR Body
breakingPendulum =

switch
(pendulumBE 10 1 (pi / 4))
freeFall

(b) Composition using switch

Fig. 3. The breaking pendulum

The non-causal nature of Hydra can be seen particularly clearly in the last
equation of the unbroken mode that simply states a constraint on the angle of
deviation and its second derivative, without making any assumption regarding
which of the two time-varying entities is going to be used to solve for the other
(both g and l are time-invariant functional-level variables).

To model a pendulum that breaks at some point, we need to create a composite
model where the model that describes the dynamic behaviour of the unbroken
pendulum is replaced, at the point of breaking, by the model describing a free
falling body. These two submodels must be suitably joined to ensure the continuity
of both the position and velocity of the body of the pendulum.

To this end, the switch-combinator, which forms signal relations by temporal
composition, is used:

switch :: SR (a,E b)→ (b → SR a)→ SR a

The composite behaviour is governed by the first signal relation until an event
of type b occurs (E b in the type signature above). At this point, the second
argument to switch is applied to the value carried by the event to compute the
signal relation that is going to govern the composite behaviour from then on.
Event signals are discrete-time signals, signals that are only defined at (countably
many) discrete points in time, as opposed to the continuous-time signals that
(conceptually) are defined everywhere on a continuous interval of time. Each
point of definition of an event signal is known as an event occurrence. Unlike
continuous-time signals, the causality of event signals is always fixed.

Figure 3 shows how switch is used to construct a model of a breaking pendulum.
The pendulum model is first extended into a signal relation pendulumBE that
also provides the event signal that defines when the pendulum is to break: see
figure 3(a). In our case, an event is simply generated at an a priori specified
point in time, but the condition could be an arbitrary time-varying entity. The
value of the event signal is the state (position and velocity) of the pendulum at
that point, allowing the succeeding model to be initialised so as to ensure the
continuity of the position and velocity as discussed above.



26 George Giorgidze, Henrik Nilsson

To bring the equations of pendulum into the definition of pendulumBE ,
pendulum is first applied to the length of the pendulum and the initial an-
gle of deviation at the functional level (within antiquotes), thus computing a
signal relation. This relation is then applied, at the signal level, using the signal
relation application operator �. This instantiates the equations of pendulum in
the context of pendulumBE . Unfolding signal relation application in Hydra is
straightforward: the actual arguments (signal-valued expressions) to the right of
the signal relation application operator � are simply substituted for the corre-
sponding formal arguments (signal variables) in the body of the signal relation
to the left of �. See [9] for further details.

Finally, a model of the breaking pendulum can be composed by switching
form pendulumBE to freeFall : see figure 3(b). Note that the switching event
carries the state of the pendulum at the breaking point as a value of type Body .
This value is passed to freeFall , resulting in a model of the pendulum body in
free fall initialised so as to ensure the continuity of its position and velocity.

In our particular example, the pendulum is only going to break once. In other
words, there is not much iteration going on, and it would in principle (with a
suitable language design) be straightforward to generate code for both modes
of operation prior to simulation. However, this is not the case in general. For
example, given a parametrised signal relation:

sr1 :: Double → SR ((Double,Double),E Double)

we can recursively define a signal relation sr that describes an overall behaviour
by “stringing together” the behaviours described by sr1 :

sr :: Double → SR (Double,Double)
sr x = switch (sr1 x ) sr

In this case, because the number of instantiations of sr1 in general cannot
be determined statically (and because each instantiation can depend on the
parameter in arbitrarily complex ways), there is no way to generate all code
prior to simulation. However, the pendulum example is simple and suffice for
illustrative purposes. Moreover, despite its simplicity, it is already an example
with which present non-causal languages struggle, as mentioned above.

In practical terms, the switch-combinator is a somewhat primitive way of
describing variable model structure. Our aim is to enrich Hydra with higher-level
constructs as descried in the original FHM paper [2]. The basic aspects of the
implementation should, however, not change much.

3 Embedding

In this section, we describe the Haskell embedding of Hydra in further detail.
First, we introduce a Haskell data type that represents an embedded signal
relation. This representation is untyped. We then introduce typed combinators
that ensures that only well-typed signal relations can be constructed.



Mixed-level Embedding and JIT Compilation for an Iteratively Staged DSL 27

The following data type is the central, untyped representation of signal
relations. There are two ways to form a signal relation: either from a set of
defining equations, or by composing signal relations temporally:

data SigRel =
SigRel Pattern [Equation ]
| SigRelSwitch SigRel (Expr → SigRel)

The constructor SigRel forms a signal relation from equations. Such a relation
is represented by a pattern and the list of defining equations. The pattern serves
the dual purpose of describing the interface of the signal relation in terms of the
types of values carried by the signals it relates and their time domains (continuous
time or discrete time/events), and of introducing names for these signals for use
in the equations. Patterns are just nested tuples of signal variable names along
with indications of which ones are event signals: we omit the details. The list
of equations constitute a system of Differential Algebraic Equations (DAEs)5

that defines the signal relation by expressing constraints on the (signal) variables
introduced by the pattern and any additional local variables.

The switch-combinator forms a signal relation by temporal composition of
two signal relations. Internally, such a temporal composition is represented by
a signal relation constructed by SigRelSwitch. The first argument is the signal
relation that is initially active. The second argument is the function that, in the
case of an event occurrence from the initially active signal relation, is used to
compute a new signal relation from the value of that occurrence. This new signal
relation then becomes the active one, replacing the initial signal relation.

Note the use of a mixture of shallow and deep techniques of embedding. The
embedded function in a signal relation constructed by SigRelSwitch corresponds
to the shallow part of the embedding. The rest of the data types constitute a deep
embedding, providing an explicit representation of language terms for further
symbolic processing and ultimately compilation, as we will see in more detail
below. The following data type represents equations. There are four different
kinds:

data Equation =
EquationInit Expr Expr | EquationEq Expr Expr |
EquationEvent String Expr Expr | EquationSigRelApp SigRel Expr

Initialisation equations, constructed by EquationInit , provide initial conditions.
They are thus only in force when a signal relation instance first becomes active.

Equations constructed by EquationEq are basic equations imposing the con-
straint that the valuations of the two expressions have to be equal for as long as the
containing signal relation instance is active (e.g., equations like der (der x ) = 0).
Equations constructed by EquationEvent define event signals; i.e., they represent
equations like event e = (x , y) when time = 3. These equations are directed.

5 Although not necessarily a fixed such system as these equations may refer to signal
relations that contain switches.



28 George Giorgidze, Henrik Nilsson

The string is the name of the defined event signal. The first expression gives the
value of the event signal at event occurrences. The second expression defines these
occurrences. An event occurs whenever the signal represented by this expression
crosses 0. For the above example, the expression defining the event occurrences
would thus be time − 3 .

The fourth kind of equation is signal relation application, EquationSigRelApp,
i.e. equations like sr � (x , y + 2). This brings all equations of a signal relation into
scope by instantiating them for the expressions to which the relation is applied.

Finally, the representation of expressions is a standard first-order term repre-
sentation making it easy to manipulate expressions symbolically (e.g. computing
symbolic derivatives) and compiling expressions to simulation code:

data Expr = ExprUnit | ExprReal Double | ExprVar String | ExprTime |
ExprTuple Expr Expr [Expr ] | ExprApp Function [Expr ]

data Function = FuncDer | FuncNeg | FuncAdd | FuncnSub | FuncMul | . . .

We use quasiquoting, a recent Haskell extension implemented in Glasgow
Haskell Compiler (GHC), to provide a convenient surface syntax for signal relations.
We have implemented a quasiquoter that takes a string in the concrete syntax of
Hydra and generates Haskell code that builds the signal relation in the mixed-level
representation described above. GHC executes the quasiquoter for each string
between the quasiquotes before type checking.

While the internal representation of a signal relation is untyped, Hydra itself
is typed, and we thus have to make sure that only type-correct Hydra programs
are accepted. As Hydra fragments are generated dynamically, during simulation,
we cannot postpone the type checking to after program generation. Nor can we
do it early, at quasiquoting time, at least not completely, as no type information
from the context around quasiquoted program fragments are available (e.g., types
of antiquoted Haskell expressions). In the current version of Hydra, only domain
specific scoping rules (e.g., all constrained signal variables must be declared) are
checked at the stage of quasiquoting. Fortunately, the type system of the present
version of Hydra is fairly simple; in particular, Hydra is simply typed, so by
using the standard technique of phantom types, the part of the type checking
that requires type information outside the quasiquotes is delegated to the host
language type checker [11].

A phantom type is a type whose type constructor has a parameter that is
not used in its definition. We define phantom type wrappers for the untyped
representation as follows:

data SR a = SR SigRel
data PatternT a = PatternT Pattern
data ExprT a = ExprT Expr
data E a

Phantom types can be used to restrict a function to building only type-correct
domain-specific terms. For example, a typed combinator sigrel can be defined in
the following way:



Mixed-level Embedding and JIT Compilation for an Iteratively Staged DSL 29

sigrel :: PatternT a → [Equation ]→ SR a
sigrel (PatternT p) eqs = SR (SigRel p eqs)

As can be seen, the type of the pattern that defines the interface of the signal
relation is what determines its type.

Similarly, we define a typed combinator switch:

switch :: SR (a,E b)→ (b → SR a)→ SR a

E is a type constructor with no constituent data constructors. It is used to
type patterns that introduce event signals. The data for the event signals are
constructed using event equations.

A signal relation that is defined using the switch combinator is structurally
dynamic. However, the type of the switch combinator statically guarantees that
its type (i.e., its interface) remains unchanged. Thus, a structurally dynamic
signal relation can be used in a signal relation application just like any other
signal relation.

Well-typed equations are constructed using combinators in a similar way:

equationEq :: ExprT a → ExprT a → Equation
equationSigRelApp :: SR a → ExprT a → Equation

Typed combinators for the remaining parts of the language, including Pattern
and Expr , are defined using the same technique.

Under the hood the representation is still untyped. However, if only the typed
combinators are exposed for building of signal relations, it is guaranteed that
only well-typed terms can be constructed. The quasiquoter of Hydra has only
access to typed combinators for building signal relations.

Symbolic transformations (e.g., symbolic differentiation and flattening) on
embedded language terms work with the untyped representation. These transfor-
mations need to be programmed with care as the Haskell type checker cannot
verify that the transformations are type preserving.

Several type system extensions of Haskell (e.g., generalised algebraic data
types, existential types, and type families) make alternative techniques for typing
EDSLs possible. One alternative would be to directly construct signal relations
in typed representation and implement the symbolic transformations on the
typed representation. While this approach requires more work from the EDSL
implementer, it provides additional correctness guarantees (e.g., the Haskell type
checker could be used to verify that transformations are type preserving). We
have not yet evaluated suitability of Haskell type system for such undertaking
and opted for simpler, untyped representation.

4 Simulation

In this section we describe how an iteratively staged Hydra program is run. The
process is illustrated in Figure 4 and is conceptually divided into four stages. In



30 George Giorgidze, Henrik Nilsson

e(d~x
dt , ~x, ~y, t)

f(d~x
dt , ~x, ~y, t)

i(d~x
dt , ~x, ~y, t)

Signal
Relation

LLVM
Code

LLVM
Code

LLVM
Code

Machine
Code

Machine
Code

Machine
Code

KINSOL

d ~x0
dt ~x0 ~y0

IDA Event

Simulation
Result

Symbolic
Processing

Just-In-Time
Compilation

Numerical
Simulation

Event
Handling

Fig. 4. Execution model of Hydra

the first stage, a signal relation is flattened and subsequently transformed into
a mathematical representation suitable for numerical simulation. In the second
stage, this representation is JIT compiled into efficient machine code. In the
third stage, the compiled code is passed to a numerical solver that simulates the
system until the end of simulation or an event occurrence. In the fourth stage,
in the case of an event occurrence, the event is analysed, a corresponding new
signal relation is computed and the process is repeated from the first stage. In
the following, each stage is described in more detail.

As a first step, all signal variables are renamed to give them distinct names.
This helps avoiding name clashes during flattening, signal relation application
unfolding, and thus simplifies this process. Having carried out this preparatory
renaming step, all signal relation applications are unfolded until the signal relation
is completely flattened.

Further symbolic processing is then performed to transform the flattened
signal relation into a form that is suitable for numerical simulation. In particular,
derivatives of compound signal expressions are computed symbolically. In the
case of higher-order derivatives, extra variables and equations are introduced to
ensure that all derivatives in the flattened system are first order.

Finally, the following equations are generated at the end of the stage of
symbolic processing: i(d~xdt , ~x, ~y, t) = 0, t = t0 (1), f(d~xdt , ~x, ~y, t) = 0 (2), and
e(d~xdt , ~x, ~y, t) = 0 (3). Here, ~x is a vector of differential variables, ~y is a vector of
algebraic variables, t is time, and t0 is the starting time for the current set of
equations. Equation 1 determines the initial conditions for Equation 2 (i.e., the
values of d~x

dt ,~x and ~y at time t0). Equation 2 is the main DAE of the system that
needs to be integrated in time starting from the initial conditions. Equation 3
specifies the event conditions (signals crossing 0).

As the functions i, f , and e are invoked from within inner loops of the solver,
they have to be compiled into machine code for efficiency: any interpretive over-



Mixed-level Embedding and JIT Compilation for an Iteratively Staged DSL 31

head here would be considered intolerable by practitioners for most applications.
However, as Hydra allows the equations to be changed in arbitrary ways during
simulation, the equations have to be compiled whenever they change, as opposed
to only prior to simulation. Our Hydra implementation employs JIT machine code
generation using the compiler infrastructure provided by LLVM. The functions i,
f and e are compiled into LLVM instructions that in turn are compiled by the
LLVM JIT compiler into native machine code. Function pointers to the generated
machine code are then passed to the numerical solver.

The numerical suite used in the current implementation of Hydra is called
SUNDIALS6. The components we use are KINSOL, a nonlinear algebraic equation
systems solver, and IDA, a differential algebraic equation systems solver. The
code for the function i is passed to KINSOL that numerically solves the system
and returns initial values (at time t0) of d~x

dt ,~x and ~y. These vectors together with
the code for the functions f and e are passed to IDA that proceeds to solve
the DAE by numerical integration. This continues until either the simulation
is complete or until one of the events defined by the function e occurs. Event
detection facilities are provided by IDA.

At the moment of an event occurrence (one of the signals monitored by
e crossing 0), the numerical simulator terminates and presents the following
information to an event handler: Name of the event variable for which an event
occurrence has been detected, time te of the event occurrence and instantaneous
values of the signal variables (i.e., values of d~x

dt , ~x and ~y at time te).
The event handler traverses the original unflattened signal relation and finds

the event value expression (a signal-level expression) that is associated with the
named event variable. In the case of the breaking pendulum model, the expression
is ((x , y), (vx , vy)). This expression is evaluated by substituting the instantaneous
values of the corresponding signals for the variables. The event handler applies
the second argument of the switch combinator (i.e., the function to compute
the new signal relation to switch into) to the functional-level event value. In
the case of the breaking pendulum model, the function freeFall is applied to the
instantaneous value of ((x , y), (vx , vy)). The result of this application is a new
signal relation. The part of the original unflattened signal relation is updated by
replacing the old signal relation with the new one. The flat system of equations
for the previous mode and the machine code that was generated for it by the
LLVM JIT compiler are discarded. The simulation process for the updated model
continues from the first stage and onwards.

In previous work [3], we conducted benchmarks to evaluate the performance
of the proposed execution model. The initial results are encouraging. For a small
system with handful of equations (e.g., the breaking pendulum) the total time
spent on run-time symbolic processing and code generation is only a couple of
hundredth of a second. To get an initial assessment of how well our approach
scales, we also conducted a few large scale benchmarks (thousands of equations).
These demonstrated that the overall performance of the execution model seems
to scale well. In particular, time spent on run-time symbolic processing and JIT

6 http://www.llnl.gov/casc/sundials/



32 George Giorgidze, Henrik Nilsson

compilation increased roughly linearly in the number of equations for these tests.
The results also demonstrate that the time spent on JIT compilation dominates
over the time spent on run-time symbolic processing. Above all, our benchmarks
indicated that the time for symbolical processing and compilation remained
modest in absolute terms, and thus should be relatively insignificant compared
with the time for simulation in typical applications.

In the current implementation of Hydra, a new flat system of equations is
generated at each mode switch without reusing the equations of the previous
mode. It may be useful to identify exactly what has changed at each mode switch,
thus enabling the reuse of unchanged equations and associated code from the
previous mode. In particular, this could reduce the burden placed on the JIT
compiler, which in our benchmarks accounted for most of the switching overheads.
Using such techniques, it may even be feasible to consider our kind of approach
for structurally dynamic (soft) real-time applications.

Our approach offers new functionality in that it allows non-causal modelling
and simulation of structurally dynamic systems that simply cannot be handled
by static approaches. Thus, when evaluating the feasibility of our approach, one
should weigh the overheads against the limitation and inconvenience of not being
able to model and simulate such systems non-causally.

5 Related Work

The deep embedding techniques used in the Hydra implementation for domain-
specific optimisations and efficient code generation draws from the extensive
work on compiling staged domain-specific embedded languages. Examples include
Elliott et al. [8] and Mainland et al. [6]. However, these works are concerned
with compiling programs all at once, meaning the host language is used only for
meta-programming, not for running the actual programs.

The use of quasiquoting in the implementation of Hydra was inspired by
Flask, a domain-specific embedded language for programming sensor networks [6].
However, we had to use a different approach to type checking. A Flask program is
type checked by a domain-specific type checker after being generated, just before
the subsequent compilation into the code to be deployed on the sensor network
nodes. This happens at host language run-time. Because Hydra is iteratively
staged, we cannot use this approach: we need to move type checking back to host
language compile-time. The Hydra implementation thus translates embedded
programs into typed combinators at the stage of quasiquoting, charging the host
language type checker with checking the embedded terms. This ensures only
well-typed programs are generated at run-time.

Lee et al. are developing a DSL embedded in Haskell for data-parallel array
computations on a graphics processing unit (GPU) [12]. GPU programs are
first-class entities. The embedded language is being designed for run-time code
generation, compilation and execution, with results being fed back for use in
further host language computations. Thus, this is another example of what we



Mixed-level Embedding and JIT Compilation for an Iteratively Staged DSL 33

term iterative staging. At the time of writing, the implementation is interpreted.
However, a JIT compiler for a GPU architecture is currently being developed.

The FHM design was originally inspired by Functional Reactive Programming
(FRP) [13], particularly Yampa [14]. A key difference is that FRP provides
functions on signals whereas FHM generalises this to relations on signals. FRP
can thus be seen as a framework for causal simulation, while FHM supports
non-causal simulation. Signal functions are first class entities in most incarnations
of FRP, and new ones can be computed and integrated into a running system
dynamically. This means that these FRP versions, including Yampa, also are
examples of iteratively staged languages. However, as all FRP versions supporting
highly dynamic system structure so far have been interpreted, the program
generation aspect is much less pronounced than what is the case for FHM.

In the area of non-causal modelling, Broman’s work on the Modelling Kernel
Language (MKL) has a number of similarities to FHM [15]. MKL provides a λ-
abstraction for defining functions and an abstraction similar to sigrel for defining
non-causal models. Both functions and non-causal models are first-class entities
in MKL, enabling higher-order, non-causal modelling like in FHM. However,
support for structural dynamism has not yet been considered.

Non-causal languages that do support more general forms of structural dy-
namism than the current mainstream ones include MOSILAB7, a Modelica
extension, and Sol [16], a Modelica-like language. MOSILAB has a compiled
implementation, but insists all structural configurations are predetermined to
enable compilation once and for all, prior to simulation. Sol is less restrictive,
but currently only has an interpreted implementation. Both MOSILAB and Sol
could thus benefit from the implementation techniques described in this paper.

6 Conclusions

In this paper we presented a novel implementation approach for non-causal mod-
elling and simulation languages supporting structural dynamism. Our approach
was to embed an iteratively staged DSL in Haskell, using a mixed-level embedding
to capitalise maximally on the host language while simultaneously enabling an
efficient implementation through JIT compilation. The iterative staging allows
us to model systems that current, main-stream, non-causal languages cannot
handle without resorting to causal modelling. As far as we are aware, this is the
first compiled implementation of a non-causal modelling language that supports
highly structurally dynamic systems, demonstrating the practical feasibility of
such a language as compilation of simulation code is considered essential for most
practical applications for reasons of performance.

The use of the EDSL approach was instrumental to achieve the above. By
reusing the features of the host language and its tool chain, we could focus our
efforts on the problems that are specific to non-causal modelling and simulation.
We also note that LLVM has worked really well for our purposes. Compilation

7 http://www.mosilab.de/



34 George Giorgidze, Henrik Nilsson

of iteratively staged embedded languages does not seem to have attracted much
attention thus far. We hope the implementation techniques we have developed
will be useful to others who are faced with implementing such languages.

Acknowledgements. This work was supported by EPSRC grant EP/D064554/1.
We would like to thank Neil Sculthorpe and the anonymous reviewers for their
thorough and constructive feedback that helped to improve the paper.

References

1. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of Fifth
International Conference on Software Reuse. (1998)

2. Nilsson, H., Peterson, J., Hudak, P.: Functional hybrid modeling. In: Proceedings of
5th International Workshop on Practical Aspects of Declarative Languages. (2003)

3. Giorgidze, G., Nilsson, H.: Higher-order non-causal modelling and simulation of
structurally dynamic systems. In: Proceedings of the 7th International Modelica
Conference. (2009)

4. Hanus, M., Kuchen, H., Moreno-Navarro, J.J.: Curry: A truly functional logic
language. In: Proceedings Workshop on Visions for the Future of Logic Programming.
(1995)

5. Mainland, G.: Why it’s nice to be quoted: quasiquoting for Haskell. In: Proceedings
of the ACM SIGPLAN workshop on Haskell workshop. (2007)

6. Mainland, G., Morrisett, G., Welsh, M.: Flask: Staged functional programming for
sensor networks. In: Proceedings of the Thirteenth ACM SIGPLAN International
Conference on Functional Programming. (2008)

7. Taha, W.: A gentle introduction to multi-stage programming. In: Domain-Specific
Program Generation. (2004)

8. Elliott, C., Finne, S., de Moor, O.: Compiling embedded languages. In: Semantics,
Applications, and Implementation of Program Generation. (2000)

9. Giorgidze, G., Nilsson, H.: Embedding a functional hybrid modelling language in
Haskell. In: Proceedings of the 20th International Symposium on the Implementation
and Application of Functional Languages. (2008)

10. Cellier, F.E.: Object-oriented modelling: Means for dealing with system complexity.
In: Proceedings of the 15th Benelux Meeting on Systems and Control. (1996)

11. Rhiger, M.: A foundation for embedded languages. ACM Trans. Program. Lang.
Syst. (2003)

12. Lee, S., Chakravarty, M., Grover, V., Keller, G.: GPU kernels as data-parallel array
computations in Haskell. In: Workshop on Exploiting Parallelism using GPUs and
other Hardware-Assisted Methods. (2009)

13. Elliott, C., Hudak, P.: Functional reactive animation. In: Proceedings of Interna-
tional Conference on Functional Programming. (1997)

14. Nilsson, H., Courtney, A., Peterson, J.: Functional reactive programming, continued.
In: Proceedings of the 2002 ACM SIGPLAN Haskell Workshop. (2002)

15. Broman, D., Fritzson, P.: Higher-order acausal models. In: Proceedings of the 2nd
International Workshop on Equation-Based Object-Oriented Languages and Tools.
(2008)

16. Zimmer, D.: Introducing Sol: A general methodology for equation-based modeling
of variable-structure systems. In: Proceedings of the 6th International Modelica
Conference. (2008)



An Access Control Language based on Term
Rewriting and Description Logic?

Michele Baggi1, Demis Ballis2, and Moreno Falaschi1

1 Dip. di Scienze Matematiche e Informatiche
Pian dei Mantellini 44, 53100 Siena, Italy.

{baggi,moreno.falaschi}@unisi.it
2 Dip. Matematica e Informatica

Via delle Scienze 206, 33100 Udine, Italy.
demis@dimi.uniud.it

Abstract. This paper presents a rule-based, domain specific language
for modeling access control policies which is particularly suitable for
managing security in the semantic web, since (i) it allows one to evaluate
authorization requests according to semantic information retrieved from
remote knowledge bases; (ii) it supports semantic-based policy composi-
tion, delegation and closure via flexible operators which can be defined
by security administrators in a pure declarative way with little effort.
The operational engine of the language smoothly integrates description
logic into standard term rewriting giving support to reasoning capabilities
which are particularly useful in this context, since they allow one to nat-
urally combine and reuse data extracted from multiple knowledge bases.
Such a rewrite engine can be used to evaluate authorization requests
w.r.t. a policy specification as well as to formally check properties regard-
ing the security domain to be protected. The language we propose has
been implemented in a prototypical system, which is written in Haskell.
Some case studies have been analyzed to highlight the potentiality of our
approach.

1 Introduction

The widespread use of web-based applications provides an easy way to share and
exchange data as well as resources over the Internet. In this context, controlling
the user’s ability to exercise access privileges on distributed information is a
crucial issue, which requires adequate security and privacy support. In recent
years, there has been a considerable attention to distributed access control, which
has rapidly led to the development of several domain specific languages for the
specification of access control policies in such heterogeneous environments: among
those, it is worth mentioning the standard XML frameworks XACML [20] and
WS-Policy [24]. Nevertheless, the proposed approaches offer a limited support
to the emerging semantic web technologies which are very often embedded into
? This work has been partially supported by the Italian MUR under grant RBIN04M8S8,

FIRB project, Internationalization 2004.



36 Michele Baggi, Demis Ballis, and Moreno Falaschi

modern web applications. More generally, we can affirm that the security impact
of such semantic-aware applications have been not sufficiently investigated to
date.

In the semantic web, resources are annotated with machine-understandable
metadata which can be exploited by intelligent agents to infer semantic infor-
mation regarding the resources under examination. Therefore, in this context,
application’s security aspects should depend on the semantic nature of the entities
into play (e.g. resources, subjects). In particular, it would be desirable to be able
to specify access control requirements about resources and subjects in terms of
the rich metadata describing them.

In this paper, we present a rule-based, domain specific language well-suited
to manage security of semantic web applications. As a matter of fact, it allows
security administrators to tightly couple access control rules with knowledge
bases (modeled using Description Logic (DL) [1]) that provide semantic-aware
descriptions of subjects and resources.

The operational mechanism of our language is based on a rewriting-like
mechanism integrating DL into term rewriting [2]. Specifically, the standard
rewrite relation is equipped with reasoning capabilities which allow us to extract
semantic information from (possibly remote) knowledge bases in order to evaluate
authorization requests. In this setting, access control policies are modeled as sets
of rewrite rules, called policy rules, which may contain queries expressed in an
appropriate DL language. Hence, evaluating an authorization request —specifying
the intention of a subject to gain access to a given resource— boils down to
rewriting the initial request using the policy rules until a decision is reached (e.g.
permit, deny, notApplicable).

Since policy composition is an essential aspect of access control in collaborative
and distribute environments ([6,12,18,7]), our language is also endowed with policy
assembly facilities which allow us to glue together several simpler access control
policies into a more complex one. To this respect, our language is expressive
enough to model all the XACML[20] composition algorithms as well as other
conflict-resolution, closure and delegation criteria.

Finally, it is worth noting that our formal framework is particularly suitable
for the analysis of policy’s domain properties such as cardinality constraints and
separation of duty. As our rewriting mechanism combines term rewriting with
description logic, the analysis of policy specifications can fruitfully exploit both
rewriting techniques and DL reasoning capabilities.
Related work. Term rewriting has been proven successful in formalizing ac-
cess control of systems. For instance, [4] demonstrates that term rewriting is
an adequate formalism to model Access Control Lists as well as Role-based
Access Control (RBAC) policies. Moreover, it shows how properties of the rewrite
relation can enforce policy correctness properties. Also issues regarding policy
composition have been investigated within the term rewriting setting. For exam-
ple, [6] formalizes a higher-order rewrite theory in which access control policies
are combined together by means of higher-order operators; then, modularity
properties of the theory are used to derive the correctness of the global policy.



An Access Control Language based on Term Rewriting and DL 37

An alternative methodology for policy composition is presented in [12]: in this
approach, composition is achieved by using rewriting strategies that combine
rewrite rules specifying individual policies in a consistent, global policy specifi-
cation. Unfortunately, all the presented rewriting-like approaches —albeit very
useful in several contexts— do not offer any semantic web support. In particular,
the specification and analysis of access control policies cannot take advantage of
any semantic information (e.g. RDFs, OWL descriptions, etc.).

In recent years, some efforts have been made towards the integration of
semantic-aware data into access control languages. For instance, [8] presents an
extension of XACML supporting semantic metadata modeled as RDF statements.
In [13,10,15] security ontologies are employed to allow parties to share a common
vocabulary for exchanging security-related information. In particular, [15] de-
scribes a decentralized framework which allows one to reuse and combine distinct
policy languages by means of semantic web technologies. As opposed to our
approach, [15] does not define an access control language for policy specification,
rather it supports the integration and management of existing policy languages.
PeerTrust [14] provides a sophisticated mechanism for gaining access to secure in-
formation on the web by using semantic annotations, policies and automated trust
negotiation. Basically, trust is established incrementally by gradually disclosing
credentials and requests for credentials. For the time being our framework does
not include a protocol for trust negotiation, however we would like to implement
an iterative disclosure approach à la PeerTrust in the future.

Description logic (specifically, ALQ logic) has been used in [26] to represent
and reason about the RBAC model: basically, this approach encodes the RBAC
model into a knowledge base expressed by means of DL axioms, then DL formulae
are checked within the knowledge base to verify policy properties (e.g. separation
of duty). Ontologies modeled by means of DL statements have been used in [18] in
order to specify and check a very expressive subset of the XACML language. In this
approach, (a part of) XACML is first mapped to a suitable description logic, then
a DL reasoner is employed for analysis tasks such as policy comparison, verification
and querying. DL ontologies have also been used in [23] and [16] to describe
policy languages for the specification of access restrictions and obligations.

To the best of our knowledge, our work is the first attempt to develop an
integrated framework combining term rewriting and semantic assertions (modeled
as DL knowledge bases) for access control purposes. We do believe that such an
integration allows one to fully take advantage of rewriting and DL techniques to
ease specification, composition, and analysis of access control policies.

2 Preliminaries

By V we denote a countably infinite set of variables and Σ denotes a signature,
that is, a set of operators each of which has a fixed associated arity. In this
paper, we assume that variables and symbols are typed following the standard
many-sorted discipline [21]. As usual, given a set of sorts S, and τ1, . . . , τn, τ ∈ S,
a variable x ∈ V of type τ is denoted by x :: τ , while by f :: τ1 . . . τn → τ we



38 Michele Baggi, Demis Ballis, and Moreno Falaschi

represent the type of the operator f ∈ Σ of arity n. τ(Σ,V) and τ(Σ) denote the
non-ground term algebra and the term algebra built on Σ ∪V and Σ, respectively.

Terms are viewed as labelled trees in the usual way. Positions are represented
by sequences of natural numbers denoting an access path in a term. The empty
sequence Λ denotes the root position. Given S ⊆ Σ ∪ V, OS(t) denotes the set
of positions of a term t that are rooted by symbols in S. t|u is the subterm at
the position u of t. t[r]u is the term t with the subterm rooted at the position u
replaced by r. A term t is ground, if no variable occurs in t. A term t is linear, if
no variable appears more than once in t. Let Σ ∪ {◦} be a signature such that
◦ 6∈ Σ. The symbol ◦ is called a hole. A context is a term γ ∈ τ(Σ ∪ {◦},V) with
zero or more holes ◦. We write γ[ ]u to denote that there is a hole at position u
of γ. By notation γ[ ], we define an arbitrary context (where the number and the
positions of the holes are clarified in situ), while we write γ[t1, . . . tn] to denote
the term obtained by filling the holes appearing in γ[ ] with terms t1, . . . , tn.
Syntactic equality is represented by ≡.

A substitution σ ≡ {x1/t1, x2/t2, . . .} is a sort-preserving mapping from the
set of variables V into the set of terms τ(Σ,V) satisfying the following conditions:
(i) xi 6= xj , whenever i 6= j, (ii) xiσ = ti, i = 1, . . . , n and (iii) xσ = x, for all
x ∈ V \ {x1, . . . , xn}. By ε we denote the empty substitution. An instance of a
term t is defined as tσ, where σ is a substitution. By Var(s) we denote the set of
variables occurring in the syntactic object s.
Description logic. Description Logics (DLs) are decidable logic formalisms for
representing knowledge of application domains and reasoning about it. In DL,
domains of interest are modeled as knowledge bases (i.e. ontologies) by means of
concepts (classes), individuals (instances of classes) and roles (binary predicates).

In this section, we present (a subset of) the decidable description logic
SHOIQD−n underlying the OWL-DL [25] framework. Due to lack of space,
here we only describe the syntax of those DL constructors which are relevant
to this work. An explanation of the semantics of the considered DL constructs
and the main DL reasoning services (e.g. satisfiability and subsumption) can be
found in the technical report available at [3]. For a full discussion about OWL
and DL formalisms, please respectively refer to [9] and [1].

Let ΣD be a signature containing all the symbols of the considered DL
language. A concept C is defined using the following constructors of ΣD.

C ::=A | ¬C1 | C1 u C2 | C1 t C2 | ∃R.C1 | ∀R.C1 |>n R | 6n S | {a}

where A represents an atomic concept, C1 and C2 are concepts, R is a role, n is
a natural number, and a is an individual. We use ⊥ (resp., >) to abbreviate the
concept C u ¬C (resp., C t ¬C). Besides, we make use of the role constructor
(·)− to define the inverse of a role R. The inverse of a role R is still a role and is
denoted by R−. Concepts are related to each other using terminological axioms
of the form C1 v C2. A TBox is a finite set of terminological axioms. Given
a concept C, a role R, and two individuals a and b, a concept assertion is an
expression of the form C(a), while the expression R(a, b) denotes a role assertion.
An ABox is a finite set of concept and role assertions. A knowledge base K is a
pair (TB,AB), where TB is a TBox and AB is an ABox.



An Access Control Language based on Term Rewriting and DL 39

We consider the basic reasoning services satisfiable(C) and subsume(C1, C2),
which can be executed against a knowledge base by a DL reasoner. The former
checks concept satisfiability for a given concept C, while the latter checks whether
concept C1 subsumes concept C2. We also consider the additional reasoning
services instances(C) and instance(a,C)3. The former retrieves all individuals
belonging to the concept C from a knowledge base, while the latter checks whether
the individual a belongs to the concept C. A DL query is an expression DL(K, r)
where K is a knowledge base and r is a reasoning service. Basically, a DL query,
when evaluated, executes a given reasoning service against a knowledge base and
returns a result, which can be either a boolean constant or a list of values. We
call boolean (respectively, non-boolean) DL query any DL query whose executions
return a boolean value (respectively, a list of values).

Example 1. Let H be a knowledge base modeling a healthcare domain. Assume
that H includes the atomic concepts: patient, physician, guardian, admin; and
the role assignedTo, which establishes who are the people designated to take
care of a given patient. Moreover, the ABox of H is populated by the following
concept and role assertions:

patient(charlie), patient(laura), physician(alice), physician(bob), guardian(frank),

admin(john), assignedTo(alice, charlie), assignedTo(frank, charlie).

Now, consider the following DL queries Q1, Q2 and Q3:

DL(H, instance(bob, physician u ∃assignedTo.{charlie})),
DL(H, subsumes(¬physician, admin)),DL(H, instances(guardian t physician)

Q1 and Q2 are boolean DL queries, while Q3 is a non-boolean DL query. More
specifically, Q1 asks H whether bob is the designated physician of patient charlie,
in this case the execution of Q1 returns false, since charlie’s designated physician
is alice. Q2 checks whether concept admin is subsumed by concept ¬physician,
that amounts to saying there are no administrators who are also physicians.
Finally, the evaluation of Q3 computes the list [frank , alice, bob] representing all
the individuals belonging to the union of concepts guardian and physician.

Description logics are ground formalisms, that is, logic formulae do not contain
variables. In particular, variables cannot appear in DL queries. As we will see in
the following sections, sometimes it might be convenient to generalize the notion
of DL query by admitting the use of variables. In this way, DL queries may be (i)
easily reused, and (ii) ground values associated with the considered variables may
be computed at run-time. In light of these considerations, we define the notion
of DL query template as follows. A reasoning service template is defined as a
reasoning service that may contain variables playing the role of placeholders for
concepts, roles, and individuals. A DL query template is an expression DL(K, r)
where K is a knowledge base, and r is a reasoning service template. It is worth
noting that a DL query template cannot be executed by a DL reasoner, since
3 The Pellet DL reasoner [22], which we used in our experiments, supports all the

mentioned reasoning and additional services.



40 Michele Baggi, Demis Ballis, and Moreno Falaschi

only ground formulae can be evaluated by the reasoner. Therefore, in order to
make a DL query template executable, it is necessary to make it ground by
instantiating all its variables with ground values. Later on, we will show that such
an instantiation process is inherently supported by our rewriting-like mechanism
(see Section 3.1).

Example 2. Consider the knowledge base H of Example 1. The following expres-
sion is a DL query template: DL(H, instances(physician u ∃assignedTo.{X}))
where X is a variable representing a generic individual. Note that the evaluation
of the template depends on the concrete individual assigned to X. For instance,
if X was bound to the individual charlie, the result of the evaluation would be
{alice}, while we would obtain the empty set in the case when X was associated
with the individual laura.

3 Policy Specification Language

Let ΣD be the signature defining all the symbols of the Description Logic language
of Section 2, that is, DL operators, constants, reasoning service constructs, etc. A
policy signature ΣP is a signature such that ΣD ⊆ ΣP and ΣP is equipped with
the following types: Subject ,Action,Object , and Decision. A term t ∈ τ(ΣP ) is
pure if no DL query appears in t.

Our specification language considers a very general access control model, in
which policies authorize or prohibit subjects to perform actions over objects. We
formalize subjects, actions and objects as terms of a given term algebra which
is built out of a policy signature. More formally, given a policy signature ΣP , a
subject (resp. action, object, decision) is any pure term in τ(ΣP ) whose type is
Subject (resp. Action,Object , and Decision).

The policy behavior is specified by means of rules which are basically rewrite
rules whose right-hand sides may contain DL query templates used to extract
information from the knowledge bases of interest. Roughly speaking, a policy rule
allows one to define what is permitted and what is forbidden using a rewriting-like
formalism. Moreover, policy rules can also encode conflict-resolution as well as
rule composition operators which can implicitly enforce a given policy behavior
(see Section 4).

Definition 1. Let ΣP be a policy signature. A policy rule is a rule of the form
λ 7→ γ[q1, . . . , qn] where λ ∈ τ(ΣP ,V), γ[ ] is a context in τ(ΣP∪{◦},V), and each
qi ∈ τ(ΣD,V), i = 0, . . . , n is a DL query template such that V ar(γ[q1, . . . , qn]) ⊆
V ar(λ).

Given a policy rule r ≡ f(t1, . . . , tn) 7→ γ[q1, . . . , qn], f is called defined symbol
for r. Policies are specified by means of sets of policy rules which act over subjects,
actions and objects as formally stated in Definition 2.

Definition 2. Let ΣP be a policy signature. An access control policy (or simply
policy) is a triple (ΣP , P, auth), where (i) P is a set of policy rules;



An Access Control Language based on Term Rewriting and DL 41

(ii) auth ∈ ΣP is a defined symbol for some policy rule in P such that
auth :: Subject Action Object → Decision. The symbol auth is called policy
evaluator.

In general, de-
auth(p(n(X), age(Z)), read, rec(n(Y ))) 7→ (1)

case(DL(H, instance(X, patient)) and Z > 16 and X = Y )⇒ permit

case(DL(H, instance(X, (∃assignedTo.{Y } u guardian) t physician))⇒ permit

case(DL(H, instance(X, admin))⇒ deny

auth(p(n(X), age(Z)), write, rec(n(Y ))) 7→ (2)
case(DL(K, instance(X, admin))⇒ deny

case(DL(H, instance(X, physician u ∃assignedTo.{Y })))⇒ permit

case(true : Condlist,D : Dlist) 7→ D (3)
case(false : Condlist,D : Dlist) 7→ case(Condlist,Dlist) (4)

Fig. 1. An access control policy for medical record protection

cisions are mod-
eled by means
of the constants
permit and deny
which respectively
express acces-
sibility and de-
nial of a given
resource. Some-
times, it is also
useful to include a constant notApp to formalize policies which do not allow to
derive an explicit decision (that is, policies which are not applicable). This is
particularly convenient when composing policies (see [6,12]). Moreover, thanks
to term representation, we can formulate decisions which convey much more
information than a simple authorization or prohibition constant. For instance,
the starting time and the duration of a given authorization can be easily encoded
into a term (e.g. permit(Starting-time,Duration)) [12].

The following example, which is inspired by the XACML specification in [20],
shows how to model a policy for the protection of medical records.

Example 3. Consider the knowledge base H of Example 1 and assume that and,
=, > are built-in, infix boolean operators provided with their usual meanings.
Let PH be the set of policy rules of Figure 1. Then, PH ≡ (ΣH , PH , auth), where
ΣH is a policy signature containing all the symbols occurring in PH , is an access
control policy formalizing the following plain English security constraints:

– A person, identified by her name, may read any medical record for which she
is the designated patient provided that she is over 16 years of age.

– A person may read any medical record for which she is the designated guardian
or if she is a physician.

– A physician may write any medical record for which she is the designated
physician.

– An administrator shall not be permitted to read or write medical records.

For the sake of readability, we added some syntactic sugar to rules (1) and (2) of
PH in Figure 1. Specifically, the function call case(cond1 : . . . :condn, decision1 : . . .
decisionn) has been expanded as follows: case cond1 ⇒ decision1 . . . case condn ⇒
decisionn. Note that policy rules (3) and (4) of PH defining the case function
enforce a conflict resolution operator which simulates the XACML first-applicable
criterion; that is, only the first condition which is fulfilled derives a decision.
Therefore, in this scenario, a 20 year old administrator who is also a patient
would be authorized to read her medical record, although administrators are in
general not allowed to read any record.



42 Michele Baggi, Demis Ballis, and Moreno Falaschi

3.1 Policy Evaluation Mechanism

A query evaluation function is a mapping eval which takes a DL query as input
and returns a data term (typically a boolean value or a list of values belonging to
the knowledge base of interest). Thus, by eval(DL(K, r)), we denote the evaluation
of the DL query DL(K, r), that is, the result of the execution of the reasoning
service r against the knowledge base K.

Example 4. Consider the DL queries Q1, Q2 and Q3 of Example 1. Then,
eval(Q1) = false, eval(Q2) = true, eval(Q3) = [frank , alice, bob].

Definition 3. Let (ΣP , P, auth) be an access control policy and t, t′ ∈ τ(ΣP ) be
two pure terms. Then, t d-rewrites to t′ w.r.t. P (in symbols, t 7→P t

′) iff there
exist a rule λ 7→ γ[q1, . . . , qn] ∈ P , a position u ∈ OΣP (t), and a substitution σ
such that t|u ≡ λσ and t′ ≡ t[γσ[eval(q1σ), . . . , eval(qnσ)]]u.

When P is clear from the context, we simply write 7→ instead of 7→P . Transitive
( 7→+), and transitive and reflexive (7→∗) closures of relation 7→, as well as the
notions of termination and confluence of 7→ are defined in the usual way.

Definition 4. Let (ΣP , P, auth) be an access control policy. Let s be a subject,
a be an action, o be an object, and d be a decision in τ(ΣP ). We say that
(ΣP , P, auth) derives the decision d w.r.t. (s, a, o) iff there exists a finite d-rewrite
sequence auth(s, a, o) 7→+

P d.

Example 5. Consider the access control policy PH of Example 3. Then PH de-
rives the decision permit w.r.t. (p(n(alice), age(35)), write, rec(charlie)), since
auth(p(n(alice), age(35)), write, rec(charlie)) 7→case(false : true, deny : permit)
7→+ permit

The specification language of Section 3 allows one to formalize arbitrary access
control policies which may be ambiguous or not completely defined, since the
rewrite relation 7→ might be non-terminating or non-confluent. To avoid such
problems, we assume the access control policies meet the following properties:
Totality. Let P be a policy. P is total iff P derives a decision d for any triple
(s, a, o), where s is a subject, a is an action, and o is an object (that is, there
exists a finite d-rewrite sequence auth(s, a, o) 7→+ d, for any (s, a, o)).
Consistency. Let P be a policy. P is consistent iff P derives only one decision
d for any triple (s, a, o), where s is a subject, a is an action, and o is an object
(that is, if auth(s, a, o) 7→+ d1 and auth(s, a, o) 7→+ d2, then d1 ≡ d2).

It is worth noting that, in rewrite-based access control, it is common practice
to require policies to be total and consistent. Typically, such constraints are
enforced by imposing termination, confluence and sufficient completeness of the
rewrite systems underlying the access control requirements (e.g. [4,6,12]).



An Access Control Language based on Term Rewriting and DL 43

4 Policy operators: Composition, Delegation, and Closure

Policy Composition. In distributed environments (e.g. collaborating organiza-
tions, large companies made up of several departments, etc.) it is crucial to be
able to combine policies in order to protect resources from unauthorized access.
Besides, policy composition makes it possible the reuse of security components,
which are known to be well specified, to build more complex (and still safe)
policies.

In our framework, policy assembling is achieved through policy rules that
compose access control policies via policy combiners. Basically, policy combiners
collect all the decisions taken by local policies and then yield a global decision
following the conflict-resolution criterion they encode.

Definition 5. A policy combiner is a triple (ΣC , C, comb), where ΣC is a policy
signature, C is a set of policy rules, and comb ∈ ΣC is a defined symbol for some
policy rules in C such that comb :: [Decision]→ Decision. The symbol comb is
called combination operator.

Roughly speaking, combination operators are applied to lists of decisions which
derive from the evaluations of local access control policies. The result of such an
application is a single decision corresponding to the evaluation of the composition
of the considered policies.

This notion of policy combiner is rather powerful, since it allows security
administrators to freely define combination criteria according to their needs.
Moreover, it is not difficult to see that policy rules can capture the semantics of
all the well known combiners of the action control language XACML[20], namely,
permit-overrides, deny-overrides, first-applicable, and only-one-applicable. To this
respect, Example 6 shows how to formalize the permit-overrides operator within
our setting. For the specification of the other combiners, please refer to [3].

Example 6. The XACML permit-overrides combiner is defined as follows. Let
d1, . . . , dn be a list of decisions which corresponds to the evaluation of n access
control policies. If there exists di, for some i = 1, . . . , n, equals to permit, then,
regardless of the other decisions, the combiner returns permit.

Let PO be the set of policy rules
po(d : dList) 7→ if d = permit then permit

else po aux(d, dList)
po aux(x, [ ]) 7→ x

po aux(x, permit : xs) 7→ permit

po aux(x, deny : xs) 7→ po aux(deny, xs)
po aux(x, notApp : xs) 7→ po aux(x, xs)

Fig. 2. Permit-overrides combiner

of Figure 2, where if cond then exp1

else exp2 is assumed to be a built-in
conditional construct, and symbols [ ],
: are the usual list constructors.

Let ΣPO be a policy signature con-
taining all the symbols occurring in
PO. Then, PO ≡ (ΣPO, PO, po) is
a policy combiner with combing operator po that models the behavior of the
XACML permit-overrides combination criterion.

Starting from (atomic) access control policies, we can assemble more complex
policies by applying several policy combiners in a hierarchical way. In other
words, access control policies play the roles of basic building blocks which are



44 Michele Baggi, Demis Ballis, and Moreno Falaschi

glued together by means of policy combiners. Composition of policies is formally
defined below.

Definition 6. Let (ΣC , C, comb) be a policy combiner, s be a subject, a be an
action, and o be an object. Then a composition of policies for (s, a, o) is a term
comb(t1, . . . , tn) where each ti, i = 1, . . . , n, is either auth(s, a, o), where auth is
the policy evaluator of an access control policy (ΣP , P, auth), or a composition of
policies for (s, a, o).

Basically, evaluating a composition of policies c for a triple (s, a, o) amounts
to executing the access control policies and the policy combiners involved in the
composition for (s, a, o) by means of the d-rewriting mechanism; that is, we
d-rewrite c until we reach a decision. It is worth noting that we cannot simply d-
rewrite c w.r.t. the union of all the policy rules involved in the composition, since
termination and confluence of the d-rewrite relation are not modular properties.
This specifically implies that the termination (resp. confluence) of local policies
and combiners does not guarantee the termination (resp. confluence) of the global
composition. For instance, it could happen that policy rules defined in distinct
local policies P1 and P2 interfere in the evaluation of the global composition
producing a non-terminating or non-confluent behavior, even if P1 and P2 are
total and consistent policies. To solve this problem, we follow a bottom-up
approach which restricts the application of policy rules in the following way: (i)
any authorization request auth(s, a, o) referring to a local policy P is evaluated
using only the policy rules in P; (ii) a combination of policies comb(t1, . . . , tm)
referring to a policy combiner C is evaluated using the policy rules in C only
after the evaluation of terms t1, . . . , tm. Such restricted evaluation is formalized
in Definition 7 using the following auxiliary functions. Let P ≡ (ΣP , P, auth) be
an access control policy, and C ≡ (ΣC , C, comb) be a policy combiner, then

reduce(auth(s, a, o), P ) = d iff auth(s, a, o) 7→+
P d

reduce(comb(d1, . . . , dn), C) = d iff comb(d1, . . . , dn) 7→+
C d.

where d, d1, . . . , dn are decisions.

Definition 7. Let (ΣC , C, comb) be a policy combiner, s be a subject, a be an
action, and o be an object. Then, a composition of policies comb(t1, . . . , tn) for
(s, a, o) derives the decision d by evaluating the following function

compute(comb(t1, . . . , tn), C) = reduce(comb(d1, . . . , dn), C)
where

di =


reduce(ti, P ) if ti ≡ auth(s, a, o)

w.r.t. some (ΣP , P, auth)
compute(ti, C ′) if ti ≡ comb′(t′1, . . . , t′m)

w.r.t. some (ΣC′ , C ′, comb′)



An Access Control Language based on Term Rewriting and DL 45

(r1) authD1(p(n(X)), read, rec(n(Z))) 7→
case(DL(K1, instance(X,nurseD1)) and DL(K2, instance(Z, patientD1))⇒ permit

case(true)⇒ deny

(r2) authD2(p(n(X)), read, rec(n(Z)))) 7→
case(DL(K1, instance(X,nurseD2)) and DL(K2, instance(Z, patientD2)))⇒ permit

case(true)⇒ deny

(r3) authA(p(n(X)), Y, rec(n(Y )))) 7→
case(DL(K3, instance(X, employeeA)) and Y = read and

DL(K2, instance(Z, patientD1 t patientD2)))⇒ permit

case(X = deptChief(depA) and Y = write and

DL(K2, instance(Z, patientD1 t patientD2)))⇒ permit

case(true)⇒ deny

(r4) deptChief(Dep) 7→ head(DL(K3, ∃isChief.{Dep}))

Fig. 3. Policy rules of Example 7

Example 7. Consider a healthcare domain consisting of an administrative de-
partment A, and two surgery departments D1 and D2. Each department X is
modeled as an individual depX . Suppose that nurses working in D1 (resp. D2) are
only allowed to read medical data of patients in D1 (resp. D2). Administrative
employees of A are allowed to read medical data of any patient, and the chief of
A is allowed to write medical data of any patient. Access control policies for D1,
D2 and A might be specified by using policy rules of Figure 34; specifically, they
can be formalized by D1 ≡ (ΣD1 , {r1}, authD1), D2 ≡ (ΣD2 , {r2}, authD2), and
A ≡ (ΣA, {r3, r4}, authA), respectively.

Now, suppose that jane is a nurse working in D1 with some administrative
duties in A. If jane wants to read some medical data about patient charlie
belonging to D2, policy A will permit it, while policy D2 will not. Since jane needs
to read such medical data to perform her administrative duties, the permit-override
policy combiner can be used to solve the conflict. In particular, the composition of
policies po(authA(p(n(jane)), read, rec(n(charlie))), authD2(p(n(jane)), read,
rec(n(charlie)))) derives the decision permit.

Policy Delegation. Authorization systems quite commonly support permission
delegation (see [19,11]), that is, an identified subject in the authorization system
provided with some permissions can delegate (a subset of) its permissions to
another identifiable subject (or group of subjects). In our framework, such feature
can be implemented as follows. Suppose that the subject s1, whose permissions
are defined by the access control policy P1 ≡ (Σ1, P1, auth1), wants to delegate
subjects in the set Sd to perform actions in the set Ad over objects in the set
Od. Permission delegation can be formalized by a policy P containing rules of
the form authP (s, a, o) 7→ case(〈delegation constraint〉)⇒ auth1(s1, a, o), where
delegation constraint is a condition that allows us to check whether s,a, and o
belongs to the delegation sets Sd, Ad, and Od. To avoid interferences between

4 We assume that K1, K2, and K3 are knowledge bases modeling our distributed
healthcare domain.



46 Michele Baggi, Demis Ballis, and Moreno Falaschi

(r∗1) authD1(p(n(X)), Y, rec(n(Z))) 7→
case(DL(K1, instance(X,nurseD1)) and Y = read and

DL(K2, instance(Z, patientD1))⇒ permit

case(X = patty and Y = write and DL(K2, instance(Z, patientD1))⇒
authA(p(n(deptChief(depA))), write, rec(n(Z)))

case(true)⇒ deny

Fig. 4. The new authorization policy for D1 implementing a delegation.

applications of rules of P and P1, we assume that every authorization request
auth1(s, a, o) is evaluated using only the policy rules in P1.

Example 8. Consider the healthcare domain of Example 7. Suppose that the
chief of department A wants to delegate patty, a nurse working in D1, to write
medical data of patients in D1. We can formalize such a delegation by replacing
rule r1 by the new rule r∗1 shown in Figure 4. Roughly speaking, rule r∗1 extends
rule r1 by specifying that patty will inherit the chief authorization whenever she
wants to write medical data of patients in department D1.

Policy Closure. Pol-
clo(s, a, o) 7→ if (DL(K,∃R.{s})) = [ ] then NotApp

else combC(applyPol(triples(a, o,DL(K,∃R.{s}))))
applyPol([ ]) 7→ [ ]

applyPol((s, a, o) : ts) 7→ authP (s, a, o) : applyPol(ts)
triples(a, o, [ ]) 7→ [ ]

triples(a, o, x : xs) 7→ (x, a, o) : triples(a, o, xs)

Fig. 5. Policy closure rules of Definition 8

icy closure operators al-
low one to infer deci-
sions for a subject s by
analyzing decisions for
subjects that are seman-
tically related to s, (e.g.
if an employee can read
a document, then her boss will). In our framework, such operators can be natu-
rally encoded by exploiting semantic relations conveyed by DL roles. The basic
idea is as follows. Consider a role R connecting two subjects s, s′ by means of
the role assertion R(s, s′), and an access control policy P modeling the access
privileges for s′ w.r.t. an action a and an object o. If P derives the decision d
w.r.t. (s′, a, o), then we infer the same decision d for the subject s. This inference
scheme works fine whenever the role R models a one-to-one semantic relations (i.e.
an injective function). Indeed, when R specifies a one-to-many relation between
subjects decision conflicts may arise, since several distinct decisions might be
computed for distinct subjects s′ which are semantically related to s. In this case,
a conflict-resolution criterion is needed to infer a decision for subject s. More
formally, policy closures are defined as follows.

Definition 8. Let K be a knowledge base and R be a role in K,P≡(ΣP , P, authP )
be a policy and C ≡ (ΣC , C, combC) be a policy combiner. A closure of P w.r.t.
R and C, is a policy PC ≡ (ΣPC , PC, clo), where ΣPC is the policy signature,
PC is the set of policy rules of Figure 5, and clo ∈ PC is the policy evaluator.

Basically, evaluating clo on a triple (s, a, o) amounts to applying the policy
evaluator authP on the triples in the set {(s1, a, o), . . . , (sn, a, o)}, where R(s, si)



An Access Control Language based on Term Rewriting and DL 47

holds in K for all i ∈ {1, . . . , n}. This operation leads to a set of decisions
{d1, . . . , dn}, which are combined together according to the chosen combination
operator combC . The final result of this process is a single decision correspond-
ing to the evaluation of the closure of the policy P w.r.t. R and C. To avoid
interferences between applications of rules of P and C, we assume that every
authorization request authP (si, a, o) is evaluated using only the rules in P , while
the combination combC(d1, . . . , dn) is evaluated using the policy rules in C.

Example 9. Consider the access control policy PH specified in Example 3 where
only designated physicians may write patient medical records. Assume that the
knowledge base H also contains the role supervises, which intuitively specifies
that fact that some physician may supervise multiple (junior) physicians. Now, we
would like to formalize that physicians supervising at least one junior physician
can write patient medical records, even if they are not designated. To this end, it
suffices to construct the closure of policy PH w.r.t. the role supervises and the
policy combiner po specified in Example 6.

5 Checking Domain Properties of Access Control Policies

In our framework, Description Logic is employed to model the domains to which a
given access control policy is applied: subjects, actions, objects, as well as relations
connecting such entities can be specified via DL knowledge bases. Therefore,
the structure of the policy domains can be naturally analyzed by means of DL
reasoning services. More specifically, the idea is to formalize properties over the
domains of interest by means of policy rules. Then, the d-rewriting mechanism
can be applied to verify the specified properties.

Definition 9. Let ΣS be a policy signature. A domain property specification of
properties p1, . . . , pn is a triple (ΣS , S, {p1, . . . , pn}), where S is a set of policy
rules, and p1, . . . , pn are terms in τ(ΣS) such that each pi is an instance of a lhs
of some policy rule in S.

Example 10 below shows that domain property specifications are expressive
enough to formulate several well known policy constraints such as separation of
duty, cardinality constraints, etc.

Example 10. Let H be the knowledge base of Example 1 modeling the policy
domain of the policy specified in Example 3. The following properties
– sep of duty. No guardian can be a physician.
– at most 4. A physician can be assigned at most to four patients.
can be specified by the domain property specification
(ΣH , SH , {sep of duty(physician, guardian), at most(4)})
such that SH contains
– sep of duty(X,Y ) 7→ DL(H, subsumes(¬X,Y ))
– at most(X) 7→ DL(H, subsumes(⊥, (>X+1 assignedTo

−) u physician)))
and ΣH is a policy signature including all the symbols occurring in SH .



48 Michele Baggi, Demis Ballis, and Moreno Falaschi

In this context, verifying a domain property p amounts to finding a finite
d-rewrite sequence which reduces p to the boolean value true.

Definition 10. Let S ≡ (ΣS , S, {p1, . . . , pn}) be a domain property specification
of properties p1, . . . , pn . Then, pi holds in S iff pi 7→+

S true.

6 Conclusions

Domain specific languages play a key role in access control; since, on the one hand,
they allow security administrators to formally specify precise policy behaviors;
and on the other hand, formal methods can be applied giving support to both
analysis and verification of access control policies. In this paper, we proposed a
novel rule-based language which is particularly suitable for managing security in
the semantic web, where access control information may be shared across multiple
sites and depends on the semantic descriptions of the resources to be protected.
We have also shown that semantic metadata can be exploited to specify and
check properties related to the considered policy domain.

The proposed action control language has been implemented in the prototype
system Paul, which is written in the functional language Haskell, and whose
source code is freely available at [3]. The d-rewriting evaluation mechanism is
built around the Haskell’s lazy evaluation mechanism. Basically, we integrated
DL reasoning capabilities into such an engine by using the DIG interface [5],
which is an XML standard for connecting applications to remote DL reasoners5.
The DIG interface is capable of expressing the description logic formalized
within the OWL-DL [25] framework (namely, SHOIQD−n logic). Therefore, our
system fully exploits both the efficiency of Haskell and the reasoning power
of SHOIQD−n logic, providing fast evaluations of authorization requests. To
evaluate the expressiveness and efficiency of our language, we tested some access
control policy specifications, which are available at Paul’s web site [3]. As future
work, we intend to potentiate the verification capabilities of our framework by
developing narrowing-based analyses in the style of [17]. Hopefully, this will give
support to policy repair and optimization techniques.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Scheider, editors.
The Description Logic Handbook. Cambridge University Press, 2003.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. M. Baggi, D. Ballis, and M. Falaschi. Paul - the Policy Specification and Analysis
Language, 2009. URL: http://sole.dimi.uniud.it/~michele.baggi/paul.

4. S. Barker and M. Fernández. Term Rewriting for Access Control. In Proc. of DBSec
’06, pp. 179–193. Springer LNCS 4127, 2006.

5. S. Bechhofer. The DIG Description Logic Interface: DIG/1.1. Technical report,
University of Manchester, 2003.

5 In our experiments, we have used Pellet [22], an efficient, open-source DL reasoner
for the OWL-DL framework.



An Access Control Language based on Term Rewriting and DL 49

6. C. Bertolissi and M. Fernández. A Rewriting Framework for the Composition of
Access Control Policies. In Proc. of PPDP ’08, pages 217–225. ACM, 2008.

7. P. Bonatti, S. De Capitani di Vimercati, and P. Samarati. An Algebra for Composing
Access Control Policies. ACM TISS, 5(1):1–35, 2002.

8. E. Damiani, S. D. C. di Vimercati, C. Fugazza, and P. Samarati. Extending Policy
Languages to the Semantic Web. In Proc. of ICWE’04, pp. 330–343. Springer
LNCS 3140, 2004.

9. M. Dean and G. Schreiber. OWL Web Ontology Language Reference — W3C
recommendation, 2004. URL: http://www.w3.org/TR/owl-ref/.

10. G. Denker, L. Kagal, T. W. Finin, M. Paolucci, and K. P. Sycara. Security for
DAML Web Services: Annotation and Matchmaking. In Proc. of ISWC’03, pp.
335–350. Springer LNCS 2870, 2003.

11. J. DeTreville. Binder, a Logic-Based Security Language. In Proc. of IEEE SSP’02,
pages 105–113. IEEE Computer Society, 2002.

12. D. J. Dougherty, C. Kirchner, H. Kirchner, and A. S. de Oliveira. Modular Access
Control Via Strategic Rewriting. In Proc. of ESORICS ’07, pp. 578–593. Springer
LNCS 4734, 2007.

13. T. W. Finin and A. Joshi. Agents, Trust, and Information Access on the Semantic
Web. SIGMOD Record, 31(4):30–35, 2002.

14. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and M. Winslett. No
Registration Needed: How to Use Declarative Policies and Negotiation to Access
Sensitive Resources on the Semantic Web. In Proc. of ESWS’04, pp. 342–356.
Springer LNCS 3053, 2004.

15. L. Kagal, T. Berners-Lee, D. Connolly, and D. J. Weitzner. Using Semantic Web
Technologies for Policy Management on the Web. In Proc. of AAAI’06. AAAI
Press, 2006.

16. L. Kagal, T. W. Finin, and A. Joshi. A Policy Based Approach to Security for the
Semantic Web. In Proc. of ISWC’03, pp. 402–418. Springer LNCS 2870, 2003.

17. C. Kirchner, H. Kirchner, and A. S. de Oliveira. Analysis of Rewrite-Based Access
Control Policies. ENTCS, 234:55–75, 2009.

18. V. Kolovski, J. Hendler, and B. Parsia. Analyzing Web Access Control Policies. In
Proc. of WWW ’07, pp. 677–686. ACM, 2007.

19. N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic: A Logic-based Approach
to Distributed Authorization. ACM TISS, 6(1):128–171, 2003.

20. T. Moses. eXtensible Access Control Markup Language (XACML) v2.0. Technical
report, OASIS, 2005.

21. P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs
on Theoretical Computer Science. Springer, 1988.

22. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: a Practical
OWL-DL Reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

23. A. Uszok, J. M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and J. S.
Aitken. Kaos Policy Management for Semantic Web Services. IEEE Intelligent
Systems, 19(4):32–41, 2004.

24. World Wide Web Consortium (W3C). Web Services Policy 1.2 - framework (WS-
Policy), 2006. URL: http://www.w3.org/Submission/WS-Policy/.

25. World Wide Web Consortium (W3C). OWL Web Ontology Language Guide, 2004.
URL: http://www.w3.org/TR/owl-guide/.

26. C. Zhao, S. L. N. Heilili, and Z. Lin. Representation and Reasoning on RBAC: A
Description Logic Approach. In Proc. of ICTAC ’05, pp. 381–393. Springer LNCS
3722, 2005.



Lazy and Faithful Assertions for
Functional Logic Programs

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Assertions or contracts are an important technique to improve
the quality of software. Thus, assertions are also desirable for functional
logic programming. Unfortunately, there is no established meaning of
assertions in languages with a demand-driven evaluation strategy. Strict
assertions are immediately checked but may influence the behavior of
programs. Lazy assertions do not modify the behavior but may not be
faithful since some assertions might not be checked at all. This paper
proposes an intermediate approach where the user can choose between
lazy or faithful assertions. In order to avoid disadvantages of faithful
assertions, we propose to delay them until an explicit point where faith is
required, e.g., at the end of the program execution or before I/O actions.
We describe a prototypical implementation of this idea in the functional
logic language Curry.

1 Motivation

The use of assertions or contracts is an important technique to improve the quality
of software [20]. Assertions make certain assumptions in the code explicit, e.g.,
requirements on argument values to ensure the correct execution of a function’s
code. In principle, assertions can be implemented in the program’s code by
including code to check them. For instance, one can raise an exception if the
factorial function is called with a negative argument or the head function is
applied to an empty list. In order to keep the application code comprehensible
and maintainable, it is preferable to have a clear distinction between application
code and assertions so that one can later decide how to treat assertions. For
instance, they can be always checked, checked only during the development and
test of the application program, or removed after proving that they hold in the
application program.

Design by contract has been introduced in the context of object-oriented pro-
gramming [20] but their use in other programming paradigms is also reasonable.
In this paper we consider the inclusion of assertions1 in functional logic programs.
Thus, we assume familiarity with basic concepts of functional logic programming

1 We use the term “assertions” for properties of values, whereas “contracts” are used
for properties of operations consisting of assertions for arguments as well as assertions
for result values.



Lazy and Faithful Assertions for Functional Logic Programs 51

(details can be found in a recent survey [14]). For our examples and implementa-
tion, we use the declarative multi-paradigm language Curry [11,16] that combines
functional programming features (demand-driven evaluation, higher-order func-
tions) with logic programming features (computing with partial information,
unification, non-deterministic search for solutions) and concurrent evaluation.
The syntax of Curry is almost identical to Haskell [21]. In addition to Haskell,
Curry allows the declaration of free (logic) variables by the keyword “free”.

The intuitive meaning of assertions is as follows. If we decorate an expression
in a program with an assertion, e.g., a predicate, then an assertion violation should
be reported whenever, during the program’s execution, the expression has some
value that does not satisfy the assertion. Unfortunately, a precise definition and
implementation of assertions is not straightforward in the context of functional
logic programming due to the demand-driven evaluation strategy. This problem
is already present in non-strict functional languages where various proposals have
been made to tackle it (e.g., [5,6,7]). In order to discuss the difficulties in more
detail, consider a simple approach to introduce assertions in a functional (logic)
language by defining a combinator that attaches an assertion to an expression:

assert :: (a -> Bool) -> a -> a
assert p x = if p x then x

else error "Assertion failed"

Here, the assertion is a predicate on the values of the expression. If the predicate
applied to the expression evaluates to True, the expression is returned, otherwise
an exception is raised. Since this definition has the effect that the assertion is
immediately checked, we call such an assertion also strict assertion.

A disadvantage of strict assertions is the fact that they are not meaning
preserving, i.e., they might influence the behavior of application code, even if all
assertions are satisfied. For instance, consider an assertion that states that a list
is ordered:

ordered [] = True
ordered [_] = True
ordered (x:y:ys) = x<=y && ordered (y:ys)

Then the evaluation of “head (assert ordered [1,2..])” does not terminate
due to the evaluation of the infinite list argument caused by the assertion.

To avoid this influence of assertions to the application program, Chitil et al. [7]
proposed lazy assertions that do not enforce argument evaluation but are checked
when the argument expression has been evaluated by the application program so
far that the assertion can be evaluated without further evaluation of its argument.
Thus, as long as all assertions are satisfied, program executions with or without lazy
assertion checking deliver the same results. A disadvantage of lazy assertions is the
fact that some obviously violated assertions are not reported when the arguments
are not sufficiently evaluated. For instance, “head (assert ordered [2,1])”
returns 2 without any assertion violation if the assertion is lazily checked, although



52 Michael Hanus

the programmer assumes, due to the intuitive meaning of assertions, that the
result is the minimal element of the list.

Chitil and Huch [5,6] improved the situation by introducing a specific assertion
language that supports the “prompt” evaluation of assertions. Nevertheless, the
basic problem remains: it is possible that the violation of assertions might be
undetected or detected too late if all assertions are lazily checked. One can argue
that this behavior is fine since the possibly unchecked parts of an expression
are not necessary for computing the result. However, this view changes when
I/O actions are taken into account. For instance, if we pass a data structure
through a sequence of I/O actions where a first action needs only some part of
the structure (similarly to the call to head above) and the other parts are needed
by subsequent actions, then a violation of an assertion for the data structure
might be detected too late, e.g., after some rocket has been launched. Thus, there
are situations where one wants to ensure that the assertions hold. Degen et al.
[8] put this into the slogan “faithfulness is better than laziness.”

Altogether, there is no silver bullet for assertions in non-strict languages since
lazy assertions might not be faithful, and strict assertions cannot be applied to
algorithms exploiting infinite data structures. Thus, we propose an intermediate
approach where the user can choose between lazy and faithful assertions. In
contrast to purely functional languages, we propose to evaluate even faithful
assertions in a lazy manner but enforce their evaluation at particular program
points, e.g., before I/O actions where faith is important or at the end of the
program execution.

One might wonder why it is useful to evaluate faithful assertions not simply
as strict assertions but treat them in a lazy manner. The reason is that this
strategy can reduce the possibility to report false violations of assertions, i.e.,
violations that do not occur during the execution of the application program. Note
that lazy evaluation in functional logic programs is not only desirable to obtain
optimal evaluation [2] but also to reduce the search space, i.e., lazy evaluation
on non-deterministic programs yields a demand-driven exploration of the search
space (compare [1,14]). As a consequence, it is reasonable to evaluate expressions
lazily even if we know that we want to evaluate them completely. For instance,
consider the program

f 0 = 0
f 1 = 1

g x = [f x]

h False 1 = 2
h True 0 = 3

together with the expression “let x free in h (null (g x)) x” (where the
predefined operation null checks whether its argument is the empty list). Func-
tional logic languages with a lazy evaluation strategy, like Curry [11,16] and
T OY [18], evaluate this expression to 2 by instantiating x to 1 (after evaluating
(null (g x)) to False). Now consider that we put a post-condition on g ensur-



Lazy and Faithful Assertions for Functional Logic Programs 53

ing that all values in the result list are positive whenever we apply g to some
argument during the program execution, i.e., we modify the definition of g to

g x = assert (all (>0)) [f x]

If the assertion is eagerly evaluated when the evaluation of g is demanded, f x is
evaluated to 0 by instantiating x to 0 so that an exception is raised due to the
violated assertion. However, if we delay the assertion checking until the end of
the regular program execution (which instantiates x to 1), no exception will be
raised since the assertion is satisfied.

Thus, we propose in this paper an assertion framework for functional logic
programs with the following characteristics:

– The programmer can put lazy or faithful assertions on expressions in the
application program.

– Lazy assertions are checked when the arguments of the assertions are evaluated
by the application program so that the assertions can be reduced to a Boolean
value without any further evaluation of the arguments. Thus, lazy assertions
do not initiate any argument evaluation by themselves.

– Faithful assertions are also lazily checked, i.e., when the values of their
arguments are available, they are reduced to a Boolean value. In addition,
the programmer can specify execution points (I/O actions) where all faithful
assertions are eagerly checked if they have not been already checked.

– We describe a prototypical implementation of the framework in Curry. The
implementation is defined as a library implemented in Curry based on a few
extensions available in the Curry implementation PAKCS [15].

The next section defines the kind of assertions which we propose in this paper.
Section 3 describes an implementation of our assertion concept in Curry. Section 4
discusses some related work before we conclude in Section 5.

2 Assertions

As discussed in Section 1, assertions can be considered as predicates on expressions,
i.e., they are of type “a -> Bool” where a is the type of the considered expression.
Of course, one can deal with richer and more specialized assertion languages, like
[5,6,17], but this is outside the scope of this paper. Therefore, we simply consider
assertions as standard predicates. As shown in the previous section, one could
attach an assertion to an expression by a combinator

assert :: (a -> Bool) -> a -> a

However, this is not sufficient for an implementation of lazy assertions since
they need to inspect the data on which they operate. Therefore, they are not
parametrically polymorphic but their behavior depends on the structure of the
concrete type. Hence, we adopt a technique used in observation debugging tools for
functional (logic) languages [4,10] and put some information about the considered



54 Michael Hanus

types as an additional argument of type “Assert a”.2 Furthermore, we also add a
string argument that is used to identify the violated assertion when an exception
is raised.3 Altogether, the assertion combinator has the following type:

assert :: Assert a -> String -> (a -> Bool) -> a -> a

In order to attach concrete assertions to a program, our assertion library defines
constants and functions returning assertion information for particular types, like

aInt :: Assert Int
aFloat :: Assert Float
aChar :: Assert Char
...
aList :: Assert a -> Assert [a]
aPair :: Assert a -> Assert b -> Assert (a,b)
...

A concrete assertion is defined by combining these operations in a type correct
way. For instance, the post-condition on the operation g as shown in Section 1
can now be defined by

g x = assert (aList aInt) "AllPositive" (all (>0)) [f x] (1)

These assertions are faithful, i.e., they are lazily evaluated with the same demand
as the application program but they can also be strictly checked at particular
program points. For the latter purpose, the library defines an I/O action

checkAssertions :: IO ()

that forces the evaluating of all pending assertions. Thus, one can check all
assertions at the end of the user program (main) by executing

main >> checkAssertions

Of course, checkAssertions can be also used any number of times during the
regular program execution, e.g., before “important” I/O actions of the user
program.

If the programmer wants to define assertions that should be only lazily
evaluated (i.e., they might not be faithful but could be desirable for assertions
on infinite data structures), our library also provides an operator to attach such
lazy assertions to expressions:

assertLazy :: Assert a -> String -> (a -> Bool) -> a -> a

2 In Haskell one could add the Assert information via type classes, but type classes
are not yet included in Curry.

3 Of course, it would be better to show the position of the violated assertion in the
exception. Since this information cannot be obtained by a library but require specific
compiler support, we omit it here. In a future version, the compiler might introduce
the position information in the string argument.



Lazy and Faithful Assertions for Functional Logic Programs 55

In order to test and compare the various assertion methods, our library also
defines a strict assertion, which is immediately checked, by

assertStrict :: Assert a -> String -> (a -> Bool) -> a -> a
assertStrict _ id p x =

if p x then x
else error ("Strict assertion ’"++id++"’ failed!")

Consider again the example given in Section 1 where the function g is defined
with a post-condition as shown in program rule (1) above. Our implementation,
described in detail below, evaluates the expression “h (null (g x)) x” without
reporting an assertion violation, as intended. However, if we replace in rule (1)
“assert” by “assertStrict”, the evaluation of the same expression yields an
exception reporting that the assertion AllPositive is violated, which is not true
in the program executed without assertions. This example shows the usefulness
to evaluate faithful assertions in a lazy manner. The next section shows an
implementation of this concept in Curry.

3 Implementation

In this section, we first describe an implementation of purely lazy assertions in
Curry. Based on this, we develop an implementation of faithful assertions.

3.1 Lazy Assertions

An implementation of lazy assertions in Haskell has been proposed in [7]. Our
implementation4 uses similar ideas but is based on functional logic programming
features. Lazy assertions should only be checked when the application program
demands and evaluates the arguments of the assertions. In order to avoid the
evaluation of arguments by assertion checking, we wrap these arguments by a
function wait that is evaluable only if the original argument has been evaluated
by the application program. In [7] this is implemented via concurrent threads
which synchronize on IORefs. Since Curry subsumes the concept of concurrent
logic programming, we use these features to implement the concurrent evaluation
of lazy assertions.

To implement lazy assertions, we need for each concrete type “a” two opera-
tions:

wait :: a -> a
ddunify :: a -> a -> a

wait is the identity function on values of type a but suspends as long as the
value is not provided.5 For instance, consider the type Nat of natural numbers in
Peano’s notation defined by
4 This implementation is partially based on code developed with Bernd Braßel and

Olaf Chitil.
5 The suspension is important to ensure the principle that lazy assertions should not

change the evaluation behavior of the application program.



56 Michael Hanus

data Nat = Z | S Nat

The corresponding operation waitNat can be defined as follows:

waitNat :: Nat -> Nat
waitNat x = case x of Z -> Z

S y -> S (waitNat y)

Clearly, waitNat is the identity on Nat values but suspends when it is applied to
a free variable (due to the case construct which suspends on free variables, see
[16]).

The second important operation, ddunify, implements a demand-driven unifi-
cation of its arguments. Conceptually, a call “ddunify x e” evaluates e (demand-
driven, i.e., to head-normal form), returns the result, and unifies x (which is usually
a free variable) with the result’s top-level constructor and recurs on the arguments.
For instance, the corresponding operation for the type Nat is defined as follows:

ddunifyNat :: Nat -> Nat
ddunifyNat x e =
if isVar e then (x=:=e) &> e

else case e of
Z -> (x =:= Z) &> Z
S y -> let z free

in (x =:= S z) &> S (ddunifyNat z y)

The test function isVar checks whether the current argument evaluates to a free
variable (note that free variables are also head-normal forms in functional logic
programs). Although this test function is non-declarative (it has been introduced
in [4] for a similar purpose), it is necessary to check the state of the argument in
order to avoid its unintended instantiation. If the argument e evaluates to a free
variable, it is unified (by the equational constraint “=:=”) with the argument x
and returned.6 Otherwise, the possible constructor-rooted values are examined. In
case of the constructor Z, this constructor is unified with argument x and returned.
If the argument’s value is rooted by the constructor S, x is instantiated to the
constructor S with a fresh variable argument and the corresponding arguments
are further unified by ddunifyNat.

As we will see below, the operations wait and ddunify are sufficient to
implement lazy assertions. Thus, the type Assert to encapsulate type-specific
assertion information is defined as

data Assert a = Assert (a -> a) (a -> a -> a)

where the first and second component are the type-specific wait and ddunify
operations, respectively. Thus, an instance of Assert for the concrete type Nat
can be defined by

aNat :: Assert Nat

6 “c &> e” denotes a guarded expression where the infix operator is predefined by the
conditional rule “c &> e | c = e”.



Lazy and Faithful Assertions for Functional Logic Programs 57

aNat = Assert waitNat ddunifyNat

Based on this structure of the type Assert, we can implement the combinator
assertLazy by applying the operations passed with the Assert argument:

assertLazy :: Assert a -> String -> (a -> Bool) -> a -> a
assertLazy (Assert wait ddunify) label p e =
spawnConstraint (check label (p (wait x))) (ddunify x e)

where x free

The operation spawnConstraint (first introduced in [4]) is identical to the
guarded expression operator “&>” from a declarative point of view. In contrast
to “&>”, spawnConstraint proceeds with the evaluation of the second argument
even if the evaluation of the guard (first argument) suspends (i.e., the guard is
concurrently evaluated). Thus, assertLazy evaluates its expression argument
e and unifies its value with the free variable x in a demand-driven manner (by
“ddunify x e”). Concurrently, the assertion p is applied to x wrapped by the
operation wait in order to delay the evaluation until the required argument value
is available. The operation check simply examines the result of assertion checking
and raises an exception, if necessary:

check :: String -> Bool -> Success
check label result =
case result of
True -> success
False -> error ("Lazy assertion ’"++label++"’ violated!")

Due to the use of the operations wait and ddunify, the behavior of the compu-
tation of the application program is not changed by attaching lazy assertions
to expressions. Since spawned constraints are evaluated with a high priority, a
violated assertion is reported as soon as it can be decided by the availability of
the argument values.

Before we discuss the implementation of faithful assertions, we discuss further
instances of Assert for some concrete types. One can define an instance for the
primitive type of integers (and similarly for other non-structured types) by

aInt :: Assert Int
aInt = Assert waitInt ddunifyInt
where waitInt = ensureNotFree

ddunifyInt x i | x =:= i = i

The predefined operation ensureNotFree returns its argument evaluated to head
normal form but suspends as long as the result is a free variable. The application
of ensureNotFree avoids an unintended instantiation of free variable arguments
during the evaluation of an assertion.

Instances of Assert for polymorphic type constructors take assertion infor-
mation related to their argument types. For instance, the combinator aList is
defined as follows:



58 Michael Hanus

aList :: Assert a -> Assert [a]
aList (Assert waita ddunifya) = Assert waitList ddunifyList

where

waitList l = case l of
[] -> []
(x:xs) -> waita x : waitList xs

ddunifyList x e =
if isVar e
then (x=:=e) &> e
else
case e of
[] -> (x=:=[]) &> []
y:ys -> let z,zs free

in (x=:=z:zs) &> (ddunifya z y : ddunifyList zs ys)

We have shown the implementation of Assert instances for a few types. Note,
however, that the code structure of these instances follows a scheme which depends
on the structure of the type definitions. Thus, it is easy to provide an automatic
tool to generate these instances for any user-defined data type.

3.2 Faithful Assertions

As mentioned above, faithful assertions are evaluated like lazy assertions during
standard execution of the application program. In addition, they are eagerly
evaluated when it is requested by the I/O action checkAssertions. This demands
for two execution modes of faithful assertions:

1. demand-driven evaluation like lazy assertions, and
2. eager evaluation like strict assertions.

The implementation of lazy assertion wraps the arguments via wait operations
as shown above, i.e., their values are not available to the assertion as long as
they are not demanded by the application program. Thus, there seems to be
no way to enforce the evaluation of a lazy assertion outside the application
program. Due to this consideration, we implement the eager evaluation mode of a
faithful assertion by creating a further application of the assertion to its original
arguments. The evaluation of this application is delayed until it is requested
by checkAssertions. Obviously, this scheme could cause some re-evaluation
of the assertion when the evaluation of the lazy assertion has already started
before checkAssertions occurs. However, this is not a serious problem since
the evaluation of the arguments are shared (due to the lazy strategy of the host
language) and under the assumption that assertion evaluation has not a high
complexity (which should be satisfied in order to execute programs with assertion
checking in a reasonable amount of time).

At least, we can avoid the re-evaluation of an already evaluated assertion by
passing a free variable as an “evaluation flag.” Thus, we extend the implementation
of lazy assertions shown in Section 3.1 to faithful assertions as follows:



Lazy and Faithful Assertions for Functional Logic Programs 59

assert :: Assert a -> String -> (a -> Bool) -> a -> a
assert (Assert wait ddunify) label p e
| registerAssertion eflag label (p e)
= spawnConstraint (check label eflag (p (wait x))) (ddunify x e)

where eflag,x free

The operation registerAssertion suspends the evaluation of its last argument
until it is requested by checkAssertions. The free variable eflag is the flag to
avoid a complete re-evaluation of the assertion. For this purpose, we redefine the
function check presented above so that the variable eflag is instantiated when
the assertion is fully evaluated (the instantiation in the False case is reasonable
if the exception is caught):

check label eflag result = case result of
True -> eflag =:= ()
False -> eflag =:= () &>

error ("Lazy assertion ’"++label++"’ violated!")

Next we discuss the implementation of registerAssertion. Suspended compu-
tations can be easily obtained in Curry by waiting on the instantiation of a free
variable. Since all faithful assertions should be evaluated if checkAssertions oc-
curs, these suspended computations must share the same free variable. Therefore,
we use the Curry library GlobVar that supports the definition of typed “global
variables.” A global variable is a top-level entity that has an associated term.
Furthermore, the association can be changed by I/O actions. A global variable g
having associated terms of type t is defined in a Curry program by

g :: GlobVar t
g = globVar v

where v is the initially associated term (of type t). Furthermore, there are two
operations

getGlobVar :: GlobVar a -> IO a
setGlobVar :: GlobVar a -> a -> IO ()

to get and set the term associated to a global variable. Note that the associated
term can also contain free variables.

We define a global variable that is associated to a free variable used to
synchronize all faithful assertions:7

assertionControl :: GlobVar ()
assertionControl = globVar unknown

Using this global variable, we can define the operation to register a faithful
assertion for later evaluation as follows:

registerAssertion eflag label asrt =

7 The operation unknown is defined by “unknown = x where x free” in the Curry
prelude, i.e., it returns a free variable.



60 Michael Hanus

spawnConstraint (delayedAssertion eflag label asrt =:= ())
success

delayedAssertion eflag label asrt = unsafePerformIO $ do
v <- getGlobVar assertionControl
ensureNotFree v =:= () &> done
if isVar eflag && not asrt
then error ("Faithful assertion ’"++label++"’ violated!")
else done

Since global variables are handled by I/O actions, we have to use the operation
unsafePerformIO to put the execution of an I/O action into a non-I/O value.
Hence, registerAssertion spawns a constraint which waits on the instantiation
of the variable that controls faithful assertions. If this variable is instantiated, it is
checked whether the evaluation flag is instantiated, i.e., whether the corresponding
lazy assertion was already evaluated. If this is not the case, the assertion asrt is
evaluated and an exception is raised in case of a violation.

Now it is easy to request that the evaluation of faithful assertions by instanti-
ating the global control variable:

checkAssertions = do
v <- getGlobVar assertionControl
v=:=() &> done -- instantiate control variable
setGlobVar assertionControl unknown

After the instantiation, a new free variable is associated to the global control
variable in order to have it ready for subsequent occurrences of faithful assertions.

Note that we used a few non-declarative features to implement lazy and faithful
assertions. This is not a problem for the application programmer since their use is
completely hidden in the library implementing this assertion framework. The use
of the non-declarative constructs is quite helpful to obtain a maintainable high-
level implementation without extending the run-time system of the underlying
Curry implementation.

3.3 More Assertions

We can use the assertion implementation to provide some other useful asser-
tions. For instance, an assertion for a function could check whether all pairs of
argument/result values satisfy a given predicate:

assertFun :: Assert a -> Assert b -> String -> (a->b->Bool)
-> (a->b) -> a -> b

assertFun (Assert waita ddunifya) (Assert waitb ddunifyb)
label p f x

| registerAssertion eflag label (p x (f x))
= spawnConstraint (check label eflag (p (waita wx) (waitb wfx)))

(ddunifyb wfx (f (ddunifya wx x)))
where eflag,wx,wfx free



Lazy and Faithful Assertions for Functional Logic Programs 61

For instance, in order to check whether a function f of type Int -> Int behaves
monotonically for all calls, we wrap it with the assertion

assertFun aInt aInt "monotonic" (<) f

The notion of contracts is usually stronger [20] since it consists of a precondition
(on the argument) and a postcondition (relating the argument and the result)
for an operation. Thus, we can define a contract as an assertion on the argument
and an assertion between argument and result values as follows:

contract :: Assert a -> Assert b -> String
-> (a->Bool) -> (a->b->Bool) -> (a->b) -> a -> b

contract asrta asrtb label argp funp f x =
assertFun asrta asrtb ("Result of "++label) funp f

(assert asrta ("Argument of "++label) argp x)

For instance, if we want to turn a function fac into a function cfac containing
the contract ensuring that fac is always called with a non-negative argument
and returns a positive argument, we define it as follows:

cfac = contract aInt aInt "fac" (>=0) (\_ r->r>0) fac

Sometimes one is interested to ensure that specific arguments are free variables
when they occur for the first time. For instance, there are high-level libraries
for GUI or HTML programming that use free variables as logical references
between widgets and event handlers [12,13]. Although these libraries use abstract
data types in order to ensure this property, it might be also useful to check this
property by an assertion, in particular, during the development of such libraries.
This can be done by an assertion that raises an exception when the argument is
not a free variable. The implementation is quite easy (note that faithful assertions
are not necessary here since this assertion is immediately checked when it occurs):

assertLogVar :: String -> a -> a
assertLogVar label x = (check label () (isVar x)) &> x

4 Related Work

Assertions or contracts have been introduced in the context of imperative object-
oriented programming languages [20], but it is obvious that assertions are also
useful for declarative programming. Although powerful type systems can express
assertions on operations that can be checked at compile time, more complex
properties, like orderings on lists or trees, non-negative values etc, cannot be ex-
pressed by standard type systems. If application programs become more complex,
it is important to state and check such properties, e.g., to improve debugging or
reliability.

Since the demand-driven evaluation model of functional languages causes
additional difficulties when considering assertions, there are a number of different
proposals in this area. Chitil et al. [7] proposed lazy assertions for non-strict



62 Michael Hanus

functional languages. They suggested that assertions should not influence the
normal behavior of programs (apart from space and time needed for assertion
checking). For this purpose, they discussed different implementations. To ensure
early detection of assertion violations, they implemented assertions by concurrent
threads. Although we used the concurrent logic programming features of Curry
to implement assertions, both implementations of lazy assertions have many
similarities, in particular, both are based on some non-declarative constructs like
unsafePerformIO.

Since lazy assertions might not detect assertion violations if parts of the
considered data structures are not demanded by the application program, Chitil
and Huch [5,6] improved the situation by introducing a specific pattern logic to
express assertions that allow an earlier detection of violated assertions. In partic-
ular, they proposed to replace sequential Boolean operators, like “&&” or “||”,
by corresponding operators that evaluate their arguments in parallel. Although
such an extended assertion language is interesting in our framework, this does
not make our proposal for faithful assertions superfluous: even in the extended
assertion language of Chitil and Huch, it might be the case that some violated
assertions remain undetected in a program execution.

Degen et al. [8] discussed the various requirements and possibilities of assertion
checking in lazy languages and came to the conclusion that there is no method
satisfying all desirable requirements. Thus, one has to choose between meaning
preserving (i.e., lazy) or faithful (i.e., strict) assertions. We have shown that in
functional logic programming, there is a further interesting approach: faithful
assertions that are not immediately checked but delayed to a point where faith is
strictly required.

Hinze et al. [17] introduced a domain-specific language for defining contracts
in Haskell. Contracts are mainly evaluated in an eager manner. Nevertheless,
it would be interesting to use their ideas to develop a set of more expressive
contract combinators for our framework.

Findler and Felleisen [9] defined a contract system for higher-order functions.
In particular, they tackled the problem of correct blame assignment, i.e., to provide
precise information about the source position of violated contracts. Although this
is orthogonal to the problems addressed in this paper, a correct blame assignment
is also relevant in our context and an interesting topic for future work.

Assertions have been also considered in (constraint) logic programming. For
instance, [22] proposes a rich assertion language which also includes type and
mode information for predicates. [19] combines assertion checking with compile-
time verification so that only assertions which cannot be statically verified are
dynamically checked. Due to the eager evaluation strategy of Prolog, the difficulties
which we address in this paper do not occur there. Nevertheless, it would be
interesting to combine our framework with compile-time verification methods.

The demand-driven unification of arguments in our implementation of lazy
assertions seems similar to function patterns introduced to obtain more expres-
sive patterns in functional logic programs [3]. In contrast to function patterns,
which are completely evaluated to data terms for successful pattern matching,



Lazy and Faithful Assertions for Functional Logic Programs 63

the demand-driven unification introduced in this paper does not evaluate the
expressions completely but is driven by the demand of the evaluation context.

5 Conclusions

We have presented a framework to add lazy and faithful assertions to functional
logic programs. Since it is not obvious for any program which properties assertions
should satisfy, i.e., whether they should be meaning preserving or faithful, we
propose to have both possibilities available in a non-strict language. However,
in a functional logic language with a demand-driven evaluation strategy, it is
reasonable to delay even faithful assertions as long as possible in order to avoid
unintended computation branches. We have shown an implementation of this
framework in the functional logic language Curry, where we used a few non-
declarative constructs to implement the assertion framework as a library without
modifying the run-time system. It should be noted that assertions cause some
overhead only if they occur in a program. Since we have not modified the run-time
system to implement assertions, programs without assertions do not have any
overhead due to the availability of assertion checking.

For future work, it would be interesting to consider a more expressive as-
sertion language, like the contract language of [17] or the pattern logic of [5,6].
Furthermore, more work has to be done in order to get a practical tool that
automatically provides the source code positions of violated assertions.

Acknowledgements. The author is grateful to the anonymous referees for helpful
comments and suggestions to improve this paper.

References

1. S. Antoy. Optimal Non-Deterministic Functional Logic Computations. In Proc.
International Conference on Algebraic and Logic Programming (ALP’97), pp. 16–30.
Springer LNCS 1298, 1997.

2. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

3. S. Antoy and M. Hanus. Declarative Programming with Function Patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pp. 6–22. Springer LNCS 3901, 2005.

4. B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing Functional Logic Com-
putations. In Proc. of the Sixth International Symposium on Practical Aspects of
Declarative Languages (PADL’04), pp. 193–208. Springer LNCS 3057, 2004.

5. O. Chitil and F. Huch. Monadic, Prompt Lazy Assertions in Haskell. In Proc.
APLAS 2007, pp. 38–53. Springer LNCS 4807, 2007.

6. O. Chitil and F. Huch. A Pattern Logic for Prompt Lazy Assertions in Haskell. In
Proc. of the 18th International Symposium on Application and Implementation of
Functional Languages (IFL 2006), pp. 126–144. Springer LNCS 4449, 2007.

7. O. Chitil, D. McNeill, and C. Runciman. Lazy Assertions. In Proceedings of the
15th International Workshop on Implementation of Functional Languages (IFL
2003), pp. 1–19. Springer LNCS 3145, 2004.



64 Michael Hanus

8. M. Degen, P. Thiemann, and S. Wehr. True Lies: Lazy Contracts for Lazy Languages
(Faithfulness is Better than Laziness). In 4. Arbeitstagung Programmiersprachen
(ATPS’09), pp. 370; 2946–59. Springer LNI 154, 2009.

9. R.B. Findler and M. Felleisen. Contracts for Higher-Order Functions. In Proceedings
of the 7th ACM SIGPLAN international conference on Functional programming
(ICFP’02), pp. 48–59. ACM Press, 2002.

10. A. Gill. Debugging Haskell by Observing Intermediate Data Structures. Electr.
Notes Theor. Comput. Sci., Vol. 41, No. 1, 2000.

11. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93, 1997.

12. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pp. 47–62. Springer LNCS 1753, 2000.

13. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third
International Symposium on Practical Aspects of Declarative Languages (PADL’01),
pp. 76–92. Springer LNCS 1990, 2001.

14. M. Hanus. Multi-paradigm Declarative Languages. In Proceedings of the Interna-
tional Conference on Logic Programming (ICLP 2007), pp. 45–75. Springer LNCS
4670, 2007.

15. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs/, 2008.

16. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.2).
Available at http://www.curry-language.org, 2006.

17. R. Hinze, J. Jeuring, and A. Löh. Typed Contracts for Functional Programming.
In Proc. Eight International Symposium on Functional and Logic Programming
(FLOPS 2006), pp. 208–225. Springer LNCS 3945, 2006.

18. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

19. E. Mera, P. López-Garćıa, and M. Hermenegildo. Integrating Software Testing and
Run-Time Checking in an Assertion Verification Framework. In 25th International
Conference on Logic Programming (ICLP 2009), pp. 281–295. Springer LNCS 5649,
2009.

20. B. Meyer. Object-oriented Software Construction. Prentice Hall, second edition,
1997.

21. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

22. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
pp. 23–62. Springer LNCS 1870, 2000.



Parameterized Models
for On-line and Off-line Use

Pieter Wuille, Tom Schrijvers?

Department of Computer Science, K.U.Leuven, Belgium
FirstName.LastName @cs.kuleuven.be

Abstract. The Monadic Constraint Programming framework leverages
Haskell’s rich static type system and powerful abstraction mechanisms to
implement an embedded domain specific language (EDSL) for constraint
programming.
In this paper we show how the same constraint model expressed in the
EDSL can be processed in various modes by external constraint solvers.
We distinguish between on-line and off-line use of solvers. In off-line
mode, the model is not solved; instead it is compiled to lower-level code
that will search for solutions when compiled and run. For on-line use, the
search can be handled by either the framework or in the external solver.
Off-line mode requires recompilation after each change to the model. To
avoid repeated recompilation, we separate model from data by means of
parameters that need not be known at compile time. Parametrization
poses several challenges, which we resolve by embedding the EDSL more
deeply.

1 Introduction

The Monadic Constraint Programming framework integrates constraint program-
ming in the functional programming language Haskell [1] as a deeply embedded
domain specific language (EDSL). This has a considerable advantage compared
to special-purpose Functional Constraint (Logic) Programming (FCP) languages
such as Curry [2] or TOY [3]. We directly obtain state-of-the-art functional
programming support with zero effort, allowing us to focus on constraint pro-
gramming itself.

While the integration is not as tight, Haskell does offer good EDSL support
to make the embedding quite convenient. Moreover, being less tight does provide
for greater flexibility. Aspects that are baked into some FCP languages, such as
search strategies or the particular solver used, are much more easily interchanged
from within the program. In addition, the deep embedding of the EDSL allows us
to use the constraint model for more than straight (on-line) solving. For instance,
transformations can be applied to the model for optimization purposes or to
better target a particular constraint solver. Alternatively, the model does not have
to be solved on-line, but can drive a code generator that produces an executable
for off-line solving.
? Post-Doctoral Researcher of the Research Foundation– Flanders (FWO-Vlaanderen).



66 Pieter Wuille, Tom Schrijvers

This paper reports on the FD-MCP module of the framework, specific to
finite domain (FD) solvers. We show how the framework supports different modes
of processing an FD model, by both on-line and off-line solvers. Then we identify
the need for parametrized models to make the off-line solver approach both more
useful and more efficient. We show how the framework is adjusted to support
parametrized models, including deeply embedded iteration constructs and indexed
collections of constraint variables.

2 Monadic Constraint Programming

The MCP [4] framework is a highly generic constraint programming framework
for Haskell. It provides abstractions for writing constraint models, constraint
solvers and search strategies. This paper focuses on the solving and modeling
parts.

2.1 Generic Constraint Programming Infrastructure

MCP defines type classes, Haskell’s form of interfaces, for Solvers and Terms:

class Monad s => Solver s where

type Constraint s :: *

type Label s :: *

add :: Constraint s -> s Bool

run :: s a -> a

mark :: s (Label s)

goto :: Label s -> s ()

class Solver s => Term s t where

newvar :: s t

A type that implements the Solver type class must provide a type1 to
represent its constraints and labels, an add function for adding constraints, a run
function to extract the results, a tt mark function to create a label of its current
state, and a goto function to return to a previous state.

A solver type smust also be a monad [5]. A monadic value s a is an abstraction
of a form of computation s that yields a result a. Constraint solvers are typically
computations that thread an implicit state: the constraint store.

A solver also provides one or more types of terms: Term s t expresses that
t is a term type of solver type s. Each term type provides a method newvar to
generate new constraint variables of that type.

MCP also defines a data type Model, representing a model tree:

data Model s a

= Return a -- return a value

| Add (Constraint s) (Model s a) -- add a constraint

1 Implemented using associated types in Haskell



Parameterized Models for On-line and Off-line Use 67

| Try (Model s a) (Model s a) -- disjunction

...

The model tree is parametrized in the constraint solver s and returned result
type a. This provides a type-safe way for representing constraint problem models
for arbitrary solvers and result types.

On top of the model data type, MCP provides syntactic sugar (functions that
construct model trees), such as exists (create a variable), exist n (create a list
of n variables), addC (add a constraint), /\ (conjunction), \/ (disjunction), conj
(conjunction of list of models), . . . Finally, Model s is also a monad.

2.2 The FD-MCP Module

The FD-MCP framework introduces an extra layer of abstraction between the
more generic Solver interface of the MCP framework and the concrete solver
implementations.

In contrast to MCP’s generic Solver interface, which is parametric in the
constraint domain, the FDSolver interface of FD-MCP is fully aware of the finite
domain (FD) constraint domain: both its syntax (terms and constraints) and
meaning (constraint theory). It does however make abstraction of the particular
FD solver and e.g., propagation techniques used. Hence, it provides a uniform
modeling language that abstracts from the syntactic differences between different
FD solvers.

On the one hand, this allows the development of solver-independent models,
model transformations (e.g., for optimization) and model abstractions (capturing
frequently used patterns). On the other hand, specific solvers may focus on the
efficient processing of their constraint primitives without worrying about modeling
infrastructure.

FD-MCP Modeling Primitives The FD-MCP modeling language is built as
a wrapper on top of the MCP solver interface. This way, the domain-independent
combinators of the MCP framework, such as conjunction (/\) and existential
quantification exist are available for FD models. The FD-MCP modeling lan-
guage adds FD-specific constructs to that. Advanced FD constructs are defined
in terms of a small set of core primitives, resulting in a layered structure.

The core constraints and terms are defined by the FDConstraint and FDExpr
types respectively:

data FDConstraint s

= Less (FDExpr s) (FDExpr s) -- JLess x yK ≡ JxK < JyK
| Diff (FDExpr s) (FDExpr s) -- JDiff x yK ≡ JxK 6= JyK
| Same (FDExpr s) (FDExpr s) -- JSame x yK ≡ JxK = JyK
| Dom (FDExpr s) Int Int -- JDom x y zK ≡ JxK ∈ {y, . . . , z}
| AllDiff [FDExpr s] -- JAllDiff [x1, . . . ,xn]K ≡

V
i 6=j xi 6= xj

| . . .



68 Pieter Wuille, Tom Schrijvers

data FDExpr s

= Var (FDTerm s) -- JVar vK ≡ JvK
| Const Int -- JConst nK ≡ n
| Plus (FDExpr s) (FDExpr s) -- JPlus x yK ≡ JxK + JyK
| Minus (FDExpr s) (FDExpr s) -- JMinus x yK ≡ JxK − JyK
| Mult (FDExpr s) (FDExpr s) -- JMult x yK ≡ JxK ∗ JyK
| . . .

where the comment after each constructor shows its denotation, and FDTerm s
refers to the type of the terms used to represent FD variables.

On top of the core primitives, a number of convenient abstractions and
syntactic sugar exist. Firstly, standard arithmetic operators and integer literals
can be used for FDExpr s thanks to an implementation of Haskell’s Num type
class. Thus Plus x (Mult (Const 2) y) can be written succinctly as x + 2 *
y. More syntactic sugar exists for writing constraints:

x @< y = Add (Less x y) true

x @> y = y @< x

x @>= y = x + 1 @> y

x @: (l,u) = Dom x l u

xs ‘allin‘ d = conj [ x @: d | x <- xs ]

. . .

Mapping to the solver backend The backend takes care of compiling an
FD-MCP model to a particular FD solver. To enable this compilation, the solver
must implement the following FDSolver type class (in addition to implementing
the Solver type class of the MCP framework):

class Term s (FDTerm s) => FDSolver s where

type FDTerm s :: *

compile_constraint :: FDConstraint s -> Model s Bool

The FDSolver type class makes two demands of a solver s:
– It must provide an (associated) type FDTerm s for its terms.
– The function compile constraint must take care of converting from an

individual FD-MCP constraint to a model for the solver. Note that, to allow
mapping a single FD-MCP constraint to a conjunction of solver constraints
involving auxiliary variables, this function returns a model rather than a
single constraint. This model is not allowed to contain any disjunctions.

The following law specifies the compile constraint function:
Definition 1 (Denotation Preservation). The compile constraint func-
tion preserves denotation iff

J·K ◦ compile constraint ≡ J·K

where J·K maps a model or constraint onto its denotation, i.e., its logical meaning,
and ≡ denotes extensional function equality. Two denotations are equal iff they
are logically equivalent.



Parameterized Models for On-line and Off-line Use 69

Integration with MCP The FDSolver type class allows us to define a generic
solver FDWrapper s that encapsulates the mapping from the generic model to
the solver-specific model.

The FDWrapper s is an MCP Solver which uses FDConstraints as con-
straints and FDExprs as terms.2

newtype FDWrapper s a = FDWrapper { unwrapFD :: s a }

instance FDSolver s => Solver (FDWrapper s) where

type Constraint (FDWrapper s) = FDConstraint s

add c = FDWrapper $ untree $ compile_constraint c

...

run = run . unwrapFD

instance Term (FDWrapper s) (FDTerm t) where

newvar = FDWrapper $ newvar >>= \x -> return $ Var x

...

untree :: Solver s => Model s a -> s a

untree ... = ...

The add function first converts one FDConstraint s to a model tree for the
underlying solver s with the compile constraint function. Then, it turns this
tree into a single (wrapped) monad action for the underlying solver s using
untree. While untree is a generic function that works on any Model, instances
of FDSolver provide their own compile constraint to do the translation to their
internal constraints. A similar approach is used for the other solver methods. The
newvar method of the wrapper requests a new variable from the underlying solver,
and returns it wrapped in a Var constructor. This is why the FDConstraint and
FDExpr structures, as well as FDWrapper itself, are parametrized in the underlying
MCP solver s. Finally, run unwraps the encapsulated monad action and runs it.

3 Solver Backends and Modes

The initial release of the MCP framework featured only one solver, a simple
FD solver implemented in Haskell. However, rather than implement a solver in
Haskell, it is much more attractive to interface external state-of-the-art solvers
implemented in lower-level languages. That is why we have recently provided an
interface to the Gecode FD solver in C++ [6]. In this work we expand considerably
upon this initial interface and show how the same external solver can be interfaced
in different modes.

2 The instance requires s to belong to the FDSolver class, which requires a type t to
belong to class Term s, which requires s to belong to class Solver itself.



70 Pieter Wuille, Tom Schrijvers

3.1 On-line and Off-line Modes

Firstly, we distinguish between on-line and off-line use. The former means that
the constraint model is processed by the MCP framework, in collaboration with
the solver, to produce solutions. This mode is used for the original Haskell-based
FD solver. The latter concerns staged compilation: in the first stage, the FD
model is processed by the MCP framework that produces code for the second
stage in the solver’s programming language; the stage-2 code produces solutions.
This mode was used in the original Gecode backend of [6]. The off-line mode
comes with a compilation function 〈〈·〉〉 :: Model OfflineSolver a→ C++ instead
of the usual run function for solvers.

The off-line mode has a clear appeal for performance reasons: it avoids the
interpretative overhead when solving the constraint model in the second stage.
Of course, there is the compilation overhead of the first stage. We come back to
this issue in the next section, where we considerably improve the usefulness of
the off-line mode.

The on-line mode is very convenient for programming the search: all the high-
level search features of the MCP framework are available. In contrast, our off-line
Gecode solver provides a fixed search strategy. A considerable disadvantage of
the on-line mode is the interpretative overhead of Haskell, which is confounded
by the fact that the FD solver is implemented in Haskell itself.

New on-line Gecode solver In this paper we present a new on-line mode for
the external Gecode solver. This combines the performance of Gecode with the
high-level search features of the MCP framework. The solver type is defined as:

newtype OnlineSolver a

= OnlineSolver { runOnline :: StateT GecodeState IO a }

The OnlineSolver is a monad composition of:

the IO monad: to access the Gecode library through the Haskell Foreign Func-
tion Interface (FFI), and

the StateT GecodeState monad transformer: to maintain the solver state:
data GecodeState = GecodeState { space :: Space

, cexpr :: Map FDExpr IntTerm }

which consists of a reference to the current Gecode space, and a map to
translate FD expressions in the constraint model to constraint variables in
the Gecode solver.

The OnlineSolver is recognized as an actual solver by the framework with the
following instance:

instance Solver OnlineSolver where

type Constraint OnlineSolver = GecodeConstraint

add c = addOnlineGecode c

run m = unsafePerformIO $ do state <- newState



Parameterized Models for On-line and Off-line Use 71

evalStateT state (runOnline m)

type Label OnlineSolver = GecodeState

mark = get

goto s = copyState s >>= put

The supported constraints of this solver are of type GecodeConstraint. The
addOnlineGecode function adds a contraint to the current Gecode space, through
the FFI. This involves constructing the constraint arguments, the FD expressions,
in the Gecode solver. The cexpr helps out here, capturing earlier mappings of
constraint variables and other FD expressions already have a representation in
the Gecode solver. This results in dynamic common subexpression elimination.
Running the solver means running the underlying IO monad and the state
transformer, with appropriate initial state.

Finally, for disjunctive models and branches in the search tree, we use the
copying technique in Gecode. Thus for the label of a solver state, we simply use
the solver state, i.e. the Gecode space, itself. Whenever creating a branch starting
form a given space, we install a copy of that space as the current space so as not
to affect other branches.

Thanks to this relatively simple instance, we can now use the MCP infrastruc-
ture (e.g., a search queue, compositional search transformers and enumeration)
for the on-line Gecode solver.

3.2 Programmed versus Fixed Search Modes

The new on-line Gecode backend of the framework offloads constraint propagation
on the Gecode solver, but still allows the programmer to program and specify
the search heuristics through the high-level interface. We call this approach the
programmed search mode. It has clear advantages in terms of expressivity, but
it does incur an interpretative penalty for search, which for many constraint
problems has a considerable impact on the overall solving time.

In order to avoid the interpretative overhead for search, we provide a second
mode of on-line use, the fixed search mode. Just like the off-line Gecode solver,
this mode provides a fixed search strategy implemented in C++ for the on-line
Gecode solver. In this mode, labelling the model does not produce a whole subtree
that is affected by the framework’s search heuristics. Instead, a single node is
generated on the MCP side that corresponds to many nodes in the Gecode solver
which are processed by a fixed search strategy.

4 Parameterized Models

Many FD models are naturally parameterized in a problem size and/or other
instance-specific integer values. For instance, the n-queens problem is parameter-
ized in the board size, the Golomb ruler problem is parameterized in the ruler
size, . . .

Such parameterization does not pose any problem for the on-line solvers. The
parameterized model is simply written as a model function from one (or more)



72 Pieter Wuille, Tom Schrijvers

integer value to an FD model. An FDModel is simply a Model for an FDSolver,
that returns a list of solutions.

pmodel :: Int -> FDModel s
pmodel = \n -> ...

In order to solve the model, the model function is applied to the appropriate
values, and the resulting model is handed to the on-line solver. No surprises.

For off-line solvers, we could follow the same technique. However, then we
would obtain a non-parameterized off-line executable. Each time we would like
to change the parameters, we would have to generate a new off-line executable!
That is very costly in terms of compilation times, compared to the on-line solvers.
The latter require only one invocation of the Haskell compiler for a parameterized
model, while the former requires one invocation of the Haskell compiler and
subsequently, for each instantiation of the parameters, an invocation of the C++

compiler. Moreover, the size of the off-line code is dependent on the problem size,
because the framework fully flattens the model before generating code. Hence,
the larger the problem size, the bigger the generated C++ code, and the longer
the C++ compilation times. In summary, a new approach is necessary to make
parameterized models practical for off-line solving.

The remainder of this section shows our approach for representing and compil-
ing parameterized models. It has the two desirable properties: 1) a parameterized
model requires only a single invocation of the C++ compiler, and 2) the generated
code is independent of the parameter value.

4.1 Parameters

We still represent parameterized models by model functions, but the functions
take FD expression terms rather than integers as arguments.

pmodel :: FDExpr s -> FDModel s
pmodel = \n -> ...

For brevity, we will omit the type parameters s in further signatures mentioning
FD expressions and models.

We still retain the above functionality for off-line solvers, as integer values can
be lifted to FD expressions using the Const :: Integer -> FDExpr constructor.
Moreover, FDExpr is also an instance of the Num type class, so integer literals can
be supplied directly as arguments: pmodel 1425.

Of more interest is of course the treatment of model functions for off-line
solving. A model function is compiled by applying it to special FDExpr values
that represent deferred values . These deferred values will not be known until
the C++ stage. We denote a deferred value in the first stage as `p, where p is the
corresponding representation, a C++ int variable, in the second stage.

So using these deferred variables, we again obtain an FDModel that can be
compiled much as before. Only the deferred values require special care. They are
mapped to int instance variables of the generated C++ class that represents the
Gecode constraint model. A new instance of the problem is created by instantiating
an object of that class with the desired integer values for the parameters.



Parameterized Models for On-line and Off-line Use 73

4.2 Indexed Constraint Variable Collections

Unfortunately, this is not the end of the story. Parameters of type FDExpr have
fewer uses than values of type Integer. Indeed, the former can be used as
arguments to constraints, but the latter can appear in many useful Haskell
library functions as well as several functions of the MCP framework. Perhaps the
most essential such function is exist :: Integer -> ([Term] -> FDModel)
-> FDModel, which creates the specified number of constraint variables. In many
parametric models, the number of constraint variables depends on the parameter
value.

However, for the off-line solver, the integer value of the parameter is not
available. Thus the actual creation of the list must be deferred from the on-line
Haskell phase to the off-line phase. Moreover, we may wish to use a different
data structure than a linked list in the off-line phase, such as an array in C++.

Hence, to allow writing models that can be used with both on-line and off-line
solvers, we introduce a type FDCollection s indexed by the solver type s. For
on-line solvers like OvertonFD, it is defined as an on-line Haskell list:

type instance FDCollection OvertonFD = [FDTerm OvertonFD]

For off-line solvers like OfflineGecode, a deferred collection `c is used that only
records an identifier c of the particular collection:

type instance FDCollection OfflineGecode = OfflineCollection Int

However, when writing a constraint model that is polymorphic in the solver
type, FDCollection s acts as an abstract data type that only allows a limited
number of operations, supported by both on-line and off-line solvers. The foremost
of these operations are:

– fdexist :: FDExpr -> (FDCollection -> FDModel) -> FDModel
creates a new collection of specified size, and acts as a generalization of
exist. This function is implemented in terms of exist for on-line solvers,
but creates a new deferred collection for off-line solvers. Note that the size
of generated code for the latter is constant (a single array declaration) as
opposed to linear like exist.

– (!) :: FDCollection -> FDExpr -> FDExpr returns an element at a given
index in the collection. For on-line solvers it is implemented in terms of list
indexation (!!), but for off-line solvers a term denoting deferred indexation
is returned. Then we have that 〈〈`c ! i〉〉 = c[〈〈i〉〉] .

– collect :: [FDExpr] -> FDCollection turns a list of variables into a col-
lection.

Global constraints form another class of functions that involve collections.
These have been modified to support collections instead of Haskell lists:

– allDiff :: FDCollection -> FDModel all variables in the given collection
are mutually distinct.



74 Pieter Wuille, Tom Schrijvers

– sorted :: FDCollection -> FDModel the given collection is sorted.
– allin :: FDCollection -> (FDExpr,FDExpr) -> FDModel

all variables in the given collection have a value between the given lower and
upper bounds.

4.3 Iteration

Often the above operations for collections are not expressive enough. Instead
of imposing global constraints on a collection or indexing specific entries, many
models process all elements of a collection one at a time. For this purpose an
iteration construct is necessary.

Iteration Primitives We introduce in our framework the iteration primitive
foreach :: (FDExpr,FDExpr) -> (FDExpr -> FDModel) -> FDModel, whose
denotation is:

Jforeach (l, u) fK ≡
u∧
i=l

Jf iK

For instance, we write
∧n
i=1(ci > i) as:

foreach (1,n) $ \i -> (c ! i) @> i

For on-line solvers, foreach is expanded literally according to its semantics:

foreach (l,u) f = conj [ f i | i <- [l..u] ]

However, for off-line solvers, we may not know the range of the loop, if it depends
on a model parameter. Even if we do know the range, we may choose not to
flatten the loop if the range is too large. In these cases, foreach is compiled to a
C++ for-loop:

〈〈foreach (l, u) f〉〉 = for (int i = 〈〈l〉〉; i =< 〈〈u〉〉; i++) { 〈〈f `i〉〉 }

So the size of the generated code is independent of the size of the iteration range.
Because iteration over the whole range, rather than a subrange, of a collection

occurs quite frequently, we introduce a second iteration construct forall ::
FDCollection -> (FDTerm -> FDModel) -> FDModel, whose denotation is:

Jforall c fK ≡
∧
v∈c

Jf cK

For instance, we write
∧
v∈c(v > i) as:

forall c $ \v -> v @> i

Again the on-line solvers’ implementation of forall is a direct transliteration of
the denotation:



Parameterized Models for On-line and Off-line Use 75

forall c f = conj [f v | v <- c]

For the off-line solver, we can define forall in terms of foreach, if we provide
access to a collection’s size with size :: FDCollection -> FDExpr:

forall c f = foreach (1, size c) $ \i -> f (c ! i)

which means that we get the following C++ code:

〈〈forall `c f〉〉 = for (int i = 0; i < 〈〈size `c〉〉; i++) { 〈〈f `c[i]〉〉 }

Example The following program is a parameterized model of the n-queens
problem:

nqueens n = -- define model function ’nqueens’

fdexist n $ \q -> do -- new collection ’q’ of size n

q ‘allin‘ (1,n) -- all variables in range [1..n]

foreach (1,n) $ \i -> -- for i in [1..n]

foreach (1,i) $ \j -> do -- for j in [1..i]

q!i @/= q!j -- \

q!i + i @/= q!j + j -- | constraints

q!i - i @/= q!j - j -- /

return q -- return result collection

Except for import statements and a main function that inputs the parameter
value, calls the solver and outputs results, this is a fully working Haskell program.

Derived Iteration Constructs Finally, collections need a range of utility
functions like those supported on Haskell lists:

– fdmap :: (FDExpr -> FDExpr) -> FDCollection ->
Model s FDCollection transforms each element of a collection using a spec-
ified function, similar to the standard Haskell function map.

– fdfold :: (FDExpr -> FDExpr -> Model s FDExpr) -> FDExpr ->
FDCollection -> Model s FDExpr folds a collection to a single expression,
similar to the standard Haskell function foldl.

– fdappend :: FDCollection -> FDCollection -> Model s FDCollection
concatenates two collections, similar to the standard Haskell operator (++).

Currently, we implement such utility functions on top of fdexist and foreach.
For example, fdmap is implemented as follows:

fdmap f c =

fdexist (size c) $ \result -> do

foreach (1,size c) $ \i ->

result!i @= f (c!i)

return result



76 Pieter Wuille, Tom Schrijvers

While this generic implementation is easy to define and works for both on-line
and off-line solvers, it does introduces (size c) superfluous constraint variables.
We will see in the evaluation section that this leads to performance degradation.
Hence, we will add these functions as additional primitives in the framework, so
solvers can provide their own optimized implementations.

5 Evaluation

In order to evalute the two new extensions, the on-line Gecode solver support
and the support for parameterized models, existing benchmarks for Gecode have
been ported to FD-MCP. Tables 1 and 2 show the results. Lines of code (LoC)
are measured using SLOCcount3, the timings in seconds are average CPU times
over multiple runs.4

5.1 Solving Results

The first table lists the absolute timings for the original C++ benchmark, and the
runtimes of the MCP versions relative to original benchmark. The columns show
respectively: 1) the name of the benchmark and the parameter value (if any),
2) the runtime (in seconds) for the Gecode benchmark in C++, and the relative
runtimes of 3) the C++ code generated in off-line mode, 4) the parametrized C++

code in off-line mode, 5) the on-line Gecode solver in programmed search mode,
6) the on-line Gecode solver in fixed search mode, and 7) the on-line Haskell-only
solver. All of columns 3)-7) are based on the same MCP model. The − entries
denote out of space, while + entries denote a time out (no result after 5 minutes).

Any relative timings close to 100% indicate that the corresponding MCP
mode is a valid alternative for direct Gecode implementation in terms of effi-
ciency. Clearly, the pure Haskell solver cannot compete with a native Gecode
implementation. Hence, it has been worthwhile to invest in Gecode backends for
MCP.

A few times we observe that the compiled code generated in MCP off-line
mode is slightly faster than the original Gecode benchmark. This is likely due to
start-up overhead where the absolute runtime is only a few milliseconds.

Finally, the MCP versions of the partition and magicsquare benchmarks depend
heavily on fdmap, fdfold and fdappend, which introduce auxiliary constraint
variables responsible for the dramatic runtime increase. magicsquare introduces
4n2 +4n superfluous variables, partition 8n. This suggests that optimized versions
for these functions are essential to be competitive.

3 http://www.dwheeler.com/sloccount/
4 Benchmarks have been performed on a 64-bit Ubuntu 9.04 system using a 1.67GHz

Intel R© CoreTM2 Duo T5500 processor, with 1GiB RAM. Software versions: GHC
6.10.3, GNU G++ 4.3.3, Gecode 3.1.0.

http://www.dwheeler.com/sloccount/


Parameterized Models for On-line and Off-line Use 77

Benchmark
Gecode (s) MCP (%)

Off-line On-line
C++ C++ param C++ Gecode pure Haskell

- +srch.

allinterval

4 0.006s 85.4% 85.4% 113% 112% 122%
8 0.006s 91.5% 92.0% 223% 125% 964%

13 3.52s 108% 108% 462% 94.0% 5640%
15 120s 107% 108% - 94.7% +

queens

5 0.006s 83.6% 84.0% 131% 127% 180%
13 0.007s 89.3% 89.6% 249% 222% 1870%
27 0.008s 80.0% 80.7% 65000% 806% +

100 0.057s 45.2% 44.9% + 2400% +

partition

4 0.006s 87.1% 87.3% 181% 169% 212%
8 0.007s 118% 118% 294% 216% 995%

16 0.047s 6500% 6500% 31000% 8200% 210000%
20 0.15s 49000% 48000% - 140000% -

magicsquare

3 0.006s 87.8% 88.1% 211% 203% 267%
4 0.019s 34.2% 34.2% 104% 91.6% 288%
5 0.83s 8.9% 9.0% 64.5% 7.3% 1300%
6 0.007s 64000% 64000% - 35000% +

Table 1. Timings

5.2 Compilation Results

The columns of Table 2 show the name and parameter value of benchmarks,
and the number of lines of code and their compilation times for the original
C++ benchmark, the benchmark implemented in Haskell using MCP, and the
generated C++ code both with and without parameters (unfolded).

These results clearly suport two conclusions:

1. Models written in MCP are more concise than in Gecode, and
2. Parametrized generated code avoids parameter-dependant code sizes.

6 Related and Future Work

There is wide range of CP systems and languages. For lack of space we only
mention a few. We classify them according to the distinction made in Section 1.
A more extensive overview of related work can be found in [4].

Stand-alone modeling languages Zinc [7] is a stand-alone modeling language.
Model transformations and compilation processes to different constraint solver
backends are implemented in a second language, Cadmium, which is based on
ACD term rewriting [8].

Rules2CP [9] is another stand-alone modeling language. The compilation of
Rules2CP to SICStus Prolog is also specified by rewrite rules.



78 Pieter Wuille, Tom Schrijvers

Benchmark
Lines of code Compilation time(s)

C++ MCP C++ MCP
C++ unfold. C++ C++ unfold. C++

allinterval
3

52 19 61
71

3.3 0.22 2.7
2.0

15 179 2.7

queens
4

80 14 53
79

3.4 0.21 2.5
2.1

100 534 >20

partition
4

74 34 103
103

3.3 0.21 3.1
2.2

20 295 4.5

magicsquare
3

62 35 94
92

3.4 0.22 2.9
2.8

6 206 3.1

Table 2. Lines of code and compilation times

Constraint Programming API’s Two other functional programming languages
which provide CP support are Alice ML5 and FaCiLe [10]. While Alice ML
provides a run-time interface to Gecode [11], FaCiLe uses its own constraint
solver in OCaml. Both provide a rather low-level and imperative API, which
corresponds to the C++ API of Gecode in the case of Alice ML, and relies on side
effects. Neither supports alternative backends or model transformations.

Integrations Cipriano et al. [12] translate constraint models written in both Prolog
CLP(FD) and (Mini)Zinc to Gecode via an intermediate language called CNT
without loop constructs. The transformation from CNT to Gecode is implemented
in Haskell. In order to avoid the Gecode code blow-up, it attempts to identify
loops in the unrolled CNT model. It also performs a number of simplifications
in the model. Our approach is much more convenient and efficient, providing
explicit looping constructs and compiling these directly without intermediate
loop unrolling, and with strong guarantees that loops remain loops.

Future work The benchmarks clearly indicate that additional iteration primitives
must be added to the framework, in order to be competitive with Gecode. The
support for collections should also be further extended to multi-dimensional
indexing, which is quite convenient for modelling grid-based problems like sudoku,
and collection parameters for providing a variable number of deferred data such
as supply and demand quantities in a transportation problem.

7 Conclusions

We have shown how to link the FD-MCP framework with Gecode to allow efficient
on-line solving of constraint problems modeled using it. Furthermore, we added
deferred parameters and indexable collections to the provided abstractions, allow-
ing shorter and more useful off-line code to be generated. These extensions were
5 http://www.ps.uni-sb.de/alice

http://www.ps.uni-sb.de/alice


Parameterized Models for On-line and Off-line Use 79

implemented6 and benchmarks show that there is often only a small performance
penalty compared to native C++ implementations.

Acknowledgments We are grateful to Peter Stuckey for his helpful comments.

References

1. Peyton Jones, S., et al.: The Haskell 98 language and libraries: The revised report.
Journal of Functional Programming 13(1) (Jan 2003) 0–255

2. Hanus (ed.), M.: Curry: An integrated functional logic language (vers. 0.8.2).
Available at http://www.curry-language.org (2006)

3. Fernandez, A.J., Hortala-Gonzalez, T., Saenz-Perez, F., Del Vado-Virseda, R.: Con-
straint functional logic programming over finite domains. Theory Pract. Log.
Program. 7(5) (2007) 537–582

4. Schrijvers, T., Stuckey, P., Wadler, P.: Monadic Constraint Programming. J. Func.
Prog. 19(6) (2009) 663–697

5. Wadler, P.: Monads for functional programming. In: Advanced Functional Pro-
gramming, London, UK (1995) 24–52

6. Wuille, P., Schrijvers, T.: Monadic Constraint Programming with Gecode. In:
Proceedings of the 8th International Workshop on Constraint Modelling and Refor-
mulation. (2009) 171–185

7. Marriott, K., et al.: The design of the Zinc modelling language. Constraints 13(3)
(2008) 229–267

8. Duck, G.J., Stuckey, P.J., Brand, S.: ACD term rewriting. In Etalle, S., Truszczynski,
M., eds.: ICLP. Volume 4079 of LNCS. (2006) 117–131

9. Fages, F., Martin, J.: From Rules to Constraint Programs with the Rules2CP
Modelling Language. In: Recent Advances in Constraints. LNAI (2009)

10. Barnier, N.: Application de la programmation par contraintes à des problèmes de
gestion du trafic aérien. PhD thesis, Institut National Polytechnique de Toulouse
(December 2002) http://www.recherche.enac.fr/opti/papers/thesis/.

11. Gecode Team: Gecode: Generic constraint development environment (2006) Avail-
able from http://www.gecode.org.

12. Cipriano, R., Dovier, A., Mauro, J.: Compiling and executing declarative modeling
languages to Gecode. In de la Banda, M.G., Pontelli, E., eds.: ICLP. Volume 5366
of LNCS. (2008) 744–748

6 Available at http://www.cs.kuleuven.be/~toms/MCP/

http://www.recherche.enac.fr/opti/papers/thesis/
http://www.gecode.org
http://www.cs.kuleuven.be/~toms/MCP/


A Denotational Semantics for Curry

(progress report)

Jan Christiansen1, Daniel Seidel2?, Janis Voigtländer2

1 Christian-Albrechts-Universität Kiel
jac@informatik.uni-kiel.de

2 Rheinische Friedrich-Wilhelms-Universität Bonn
{ds,jv}@informatik.uni-bonn.de

Abstract. We aim to build a denotational semantics for the functional
logic programming language Curry, to be used for parametricity and
logical relation arguments. First, we investigate only a subset of Curry,
but include the important features that separate Curry from a just
functional language. We compare a poweralgebraic and a multialgebraic
semantic approach and motivate our decision for the multialgebraic one.
Afterwards, we describe how general recursion and lists, as an example
for algebraic data types, can be added.

1 Introduction

In functional languages, reasoning about program transformations and code
verification only dependent on type information is a common technique. An
underlying theoretical foundation are parametricity and free theorems [1,2]. In
[3] we present in an example-driven way how free theorems adapt to functional
logic languages, in particular to Curry. But a formalization and generalization of
these results is still missing.

The natural way to formally investigate free theorems is to define a logical
relation over the type system of the programming language. To allow for such an
investigation, a completely compositional semantics is desirable. From experience,
we would prefer a denotational semantics. The nearly standard semantics for
functional logic programming is CRWL [4]. CRWL is a constructor based rewrite
logic. That is, it consists of a set of (conditional) rewrite rules by which a program
is rewritten to a set of constructor terms. Originally, CRWL does not consider type
restrictions, does not support higher-order functions, and is not compositional
in the sense a denotational semantics is. Even if known extensions for each of
these aspects are considered, the style of a denotational semantics seems more
valuable for our purpose. Hence, the first step in a formal investigation into free
theorems for Curry is to develop an appropriate denotational semantics for at
least a subset of the language reflecting the main functional logic features.

A functional logic language can be seen as a functional language extended
by non-determinism and free variables. In general, adding non-determinism can
? This author was supported by the DFG under grant VO 1512/1-1.



A Denotational Semantics for Curry 81

be modeled by switching from a single value semantics to a set value semantics
for terms. To set up a denotational semantics, a number of choices have to be
made. In fact, [5] presents twelve possible points in the design space that span
over three independent issues. One can decide about strict/non-strict functions,
call-time/run-time choice, and angelic/demonic/erratic view of non-deterministic
choice. Curry implements non-strict functions and call-time choice, and concep-
tually aims for the angelic view. Call-time choice means that a non-deterministic
choice is made only once when a non-deterministic value is shared. It is best
explained by the double coin example, where coin is non-deterministically 0 or
1 and double adds a number to itself. Since the choice for coin is shared in the
application of double, the result of double coin is either 0 or 2, but never 1.3

2 A Simple Subset of Curry

We start by investigating a calculus modeling only a subset of Curry. It is a
polymorphically typed lambda calculus with added base type Int, addition “+” on
it, a primitive “?” that models non-deterministic choice, and constants unknownτ
and failedτ modeling free variables and failure, respectively. The type and term
syntax are given by

τ ::= α | Int | τ → τ

t ::= x | n | t+ t | λx :: τ.t | t t | t ? t | unknownτ | failedτ ,

where α ranges over type variables, x over term variables, and n over the integers.
The typing rules are as follows:

Γ, x :: τ ` x :: τ Γ ` n :: Int Γ ` failedτ :: τ Γ ` unknownτ :: τ

Γ ` t1 :: τ Γ ` t2 :: τ
Γ ` (t1 ? t2) :: τ

Γ ` t1 :: Int Γ ` t2 :: Int

Γ ` (t1 + t2) :: Int

Γ, x :: τ1 ` t :: τ2
Γ ` (λx :: τ1.t) :: τ1 → τ2

Γ ` t1 :: τ1 → τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

Standard conventions apply here. In particular, typing environments Γ are taken
as sets of the form α1, . . . , αk, x1 :: τ1, . . . , xl :: τl, where all free term variables
in the right-hand side term of the typing judgment have to appear in Γ , and
all type variables in the right-hand side term and type and in τ1, . . . , τl have to
appear among the α1, . . . , αk.

The presented language is intended as a core language. Curry programs can
be transformed into this core language (with the extensions from Section 4) by
standard transformations. For example, the Curry function fresh :: Int→ Int de-
fined by fresh = x where x free is desugared to λy :: Int.unknownInt. On
a related note, identity of free variables can be expressed by appropriately
using (or not using) several occurrences of unknownτ . For example, if f is a

3 A full calculation for this example using our semantics is given at the end of Section 3.



82 Jan Christiansen, Daniel Seidel, Janis Voigtländer

function of type τ → τ → τ , then the difference between f x y and f x x,
with both x and y declared as free, is captured as f unknownτ unknownτ vs.
(λx :: τ.f x x) unknownτ , where for the latter we could also have introduced the
syntactic sugar let x = unknownτ in f x x.

3 Design of a Denotational Semantics

3.1 The Angelic View

As already mentioned, to model non-determinism, we interpret terms as sets and
not as single values. The semantics of a term is the set of all its possible values.
The view of non-deterministic choice determines how failure is handled. In the
angelic view, an “angel” collects all non-deterministic choices that do not fail
and simply ignores failure as long as there is at least one different result. Thus,
for example the semantics of 3 and 3 ? failedInt cannot be distinguished.

The appropriate way to model that kind of non-determinism is the Hoare
powerdomain. If we restrict ourselves to directed-complete partial orders (dcpos)
as domains, an adaption of Theorem 6.2.13 from [6] allows us to define the Hoare
powerdomain in terms of Scott-closed subsets. A subset A of a dcpo (D,v) is
called Scott-closed if it is a lower set that is closed under the suprema of directed
subsets. For a dcpo (D,v), a lower set A is a subset of D where x ∈ A implies
that all y ∈ D with y v x are in A, too. A directed subset A is a non-empty
subset where each two elements in A have a supremum in A.

Definition 1. Let D = (D,v) be a dcpo. The Hoare powerdomain PH(D) =
(P,v↑) of D is the complete lattice of all Scott-closed subsets of D. Union and
intersection are interpreted as the actual set operations and v↑ is the order
induced by ∪, i.e., it is set inclusion.

Infimum and supremum of M ⊆ PH(D) are defined by⋂
M = {x ∈ D | ∀m ∈M. x ∈ m}⋃
M =

⋂
{m ∈ PH(D) | ∀n ∈M. n v↑ m}

With the just given definition of the Hoare powerdomain we have fixed the
domain structure to dcpos. Results from [6] guarantee that domain constructions
preserve that structure.

An unsatisfying aspect of the above for a semantics to calculate with is the
size of elements of the powerdomain. The use of lower sets means also the use of
“big” sets because besides the maximal values a term evaluates to, all their partial
approximations would be included as well. For example, the semantics of the
identity function on the integers would not only contain the semantic function
idZ, but also all partial identities, and, therefore, infinitely many elements. Hence,
we are intending to define the Hoare powerdomain in an equivalent way, but
with smaller elements. The basic idea is the following definition with m-subsets
of a dcpo. If (D,v) is a dcpo, we say that a subset A of D is a maxima subset
(m-subset) if for each element x ∈ A there is no element y ∈ A with x < y.



A Denotational Semantics for Curry 83

Definition 2. Let D = (D,v) be a dcpo. Then P∗H(D) = (P,v↑) is the complete
lattice of all m-subsets of D. Intersection is interpreted by m ∩−− n = {x ∈ D |
∃y1 ∈ m.∃y2 ∈ n. x v y1 ∧ x v y2}↑ and union by m ∪−− n = (m ∪ n)↑ for every
m,n ∈ P∗H(D), where M↑ = {x ∈ M | ∀y ∈ M. x v y ⇒ x = y}. Moreover, v↑
is induced by ∪−− via n v↑ m iff m ∪−− n = m.

Infimum and supremum of M ⊆ P∗H(D) are defined by⋂−−M = {x ∈ D | ∀m ∈M.∃y ∈ m. x v y}↑⋃
−−M =

⋂−−{m ∈ P∗H(D) | ∀n ∈M. n v↑ m}

Note that choosing identical names for the orders in Definitions 1 and 2, namely
v↑, was not by accident. For each dcpo D = (D,v) both can be characterized as
restrictions of the Hoare-lifting v↑, defined on the power set of D by A v↑ B ⇔
∀a ∈ A.∃b ∈ B. a v b, to PH(D) and P∗H(D), respectively. The following claim
sets up an order isomorphism between PH(D) and P∗H(D) for every dcpo D.

Claim. Let D = (D,v) be a dcpo. Then PH(D) and P∗H(D) are order isomorphic.
The functions (·)↑ : PH(D) → P∗H(D) with M↑ = {x ∈ M | ∀y ∈ M. x v y ⇒
x = y} and (·)↓ : P∗H(D) → PH(D) with M↓ = {x ∈ D | ∃y ∈ M. x v y} form
an order isomorphism.

The claim enables us to work with P∗H(·) instead of PH(·) as powerdomain
constructor. Without the claim, the semantics defined below could easily be
adapted to use PH(·), but actual calculating then becomes less practical.

3.2 The Function Model

A last choice to be made is the model of non-deterministic functions. In [7]
an overview over a range of approaches is given. The essential criterion for
choosing a suitable function model is the decision about call-time vs. run-time
choice. As mentioned in the introduction, Curry implements call-time choice.
That restricts the suitable function models to either the poweralgebraic model
with the restriction to additive functions or the multialgebraic model.

The poweralgebraic model interprets functions as maps from sets to sets. It can
originally capture both, run-time and call-time choice. The additivity restriction
fixes it as a model for call-time choice. It says that for every (semantic) function
f and input sets X, Y we have f(X ∪−− Y ) = f(X) ∪−− f(Y ). This in particular
means that (at least on finite sets) every function is completely determined by
its behavior on the empty set and all singleton sets. To satisfy additivity when
evaluating terms, we have to ensure that shared variables embody the same
non-deterministic choice. Let us consider the semantics of (λx :: Int.x+x) (0 ? 1),
which is double coin from the introduction. Clearly, the semantics of 0 ? 1
should be {0, 1}. But, maybe not so obviously, by additivity/call-time choice the
semantics of the whole term should be only the sum of two zeros or two ones, and,
therefore, the set {0, 2}. Thus, for a term semantics that guarantees additivity
of functions we could either define function application by providing an input



84 Jan Christiansen, Daniel Seidel, Janis Voigtländer

set, to a function, piecewise as singleton sets (and maybe only pass through the
empty set, with some extra care to guarantee laziness) or we could carefully have
an eye on the function input whenever it is used more than once in the function
body. The latter approach is preferable in an implementation as in [8]. But it is
rather unwieldy in the design of a denotational semantics, because we would have
to either deeply investigate the syntax of terms or suspect a necessity for sharing
whenever evaluation of a term splits into the evaluation of several subterms.
Thus, the first alternative mentioned above seems more adequate. Nevertheless,
we abstain from providing a poweralgebraic semantics based on it. The reason
is simple. It turns out that such a semantics would be nearly identical to the
multialgebraic semantics we are going to provide, and which provides a better
overall intuition about the actual behavior of functions, as explained next.

A function taking only singleton sets or the empty set can also be seen as
a function taking single elements, where the empty set has to be modeled as
a special element. Mapping elements to sets (instead of sets to sets) is exactly
the multialgebraic approach. As a consequence, we consider the multialgebraic
approach as more natural than the poweralgebraic approach in the context of
call-time choice.

Type and term semantics for the multialgebraic approach are given in Fig. 1.
Types are interpreted as the domains of individual semantic objects, not as the
corresponding powerdomains. Therefore, the semantics of a term of type τ is
in the powerdomain of τ ’s semantics. The type Int is interpreted as the set of
integers with the discrete order, without a least element. The type semantics for
a polymorphic type is fixed by a type environment θ that maps type variables to
dcpos.

Regarding the function space, functions take exactly one element of the
input type to a set of elements of the output type, i.e. are maps from a domain
to a powerdomain. This is what makes the model multialgebraic [7]. Failure
(essentially, the empty set) as input to a function needs extra handling, as already
mentioned. It is not present in any type’s domain, but can conceptually be a valid
input to a function, hence we add it as a special element ⊥ to the possible inputs
of a function. This is realized by the lifting operation (·)⊥ that adds ⊥ as least
element to a dcpo. Continuity4 of functions is enforced explicitly to guarantee
that the function space itself is a dcpo. The order on the function space is defined
point-wise. Furthermore, the least defined function Ω = λa.∅ is excluded from the
function space, since we identify it with failure, which is not represented in the
domains and instead comes in as the empty set in the respective powerdomain.5

For the term semantics the term environment σ maps from term variables to
single elements of a domain lifted by (·)⊥. This reflects that semantic functions
take single elements as input. For function application, the function argument,
which is a set, has to be provided to a function element by element. Special care
is needed for the empty set as argument. In that case we instead feed the value

4 Continuity is understood as Scott-continuity, i.e. monotonicity and preservation of
suprema of directed sets.

5 We cannot distinguish λ → failed and failed in the absence of strict evaluation.



A Denotational Semantics for Curry 85

type semantics

JαKθ = θ(α)

JIntKθ = Z
Jτ1 → τ2Kθ = {f : (Jτ1Kθ)⊥ → P∗H(Jτ2Kθ) | f continuous} \ {Ω}

term semantics

JxKθ,σ =

(
∅ if σ(x) = ⊥
{σ(x)} otherwise

JnKθ,σ = {n} ∀n ∈ Z
Jt1 + t2Kθ,σ =

S
a∈Jt1Kθ,σ

S
b∈Jt2Kθ,σ

{a+ b}

Jλx :: τ.tKθ,σ = {λa.JtKθ,σ[x 7→a]} \ {Ω}
Jt1 t2Kθ,σ =

S
−−f∈Jt1Kθ,σ

U
−−a∈Jt2Kθ,σ

(f a)

Jt1 ? t2Kθ,σ = Jt1Kθ,σ ∪−− Jt2Kθ,σ
Junknownτ Kθ,σ = (JτKθ)↑

Jfailedτ Kθ,σ = ∅

Fig. 1. Type and Term Semantics for the Multialgebraic Model

⊥ to the function under consideration. This is reflected in the definition of the
lazy union operator: ⊎

−−
a∈A

=

{⋃
−−a∈{⊥} if A = ∅⋃
−−a∈A otherwise .

We can state type correctness of the semantics as follows.

Lemma 1. Let Γ ` t :: τ . Then for every θ that maps each type variable in Γ to
a dcpo and every σ such that for each term variable x :: τ ′ in Γ , σ(x) ∈ (Jτ ′Kθ)⊥,
we have JtKθ,σ ∈ P∗H(JτKθ).

We conclude the section by a formal calculation of the semantics of (λ x ::
Int.x + x) (0 ? 1). Since our semantics is completely compositional, we can
precompute the semantics of the function and of the argument before we calculate
the semantics of the whole term. We have:

Jλx :: Int.x + xK∅,∅ = {λa.Jx + xK∅,[x→a]} \ {Ω}
= {λa.

⋃
b∈JxK∅,[x→a]

⋃
c∈JxK∅,[x→a]{b + c}} \ {Ω}

= {λa.
⋃
b∈{a}

⋃
c∈{a}{b + c}} \ {Ω} = {λa.{a + a}}

And:

J0 ? 1K∅,∅ = J0K∅,∅ ∪−− J1K∅,∅ = {0} ∪−− {1} = {0, 1}



86 Jan Christiansen, Daniel Seidel, Janis Voigtländer

And finally:

J(λx :: Int.x + x) (0 ? 1)K∅,∅ =
⋃
−−f∈Jλx::Int.x+xK∅,∅

⊎
−−a∈J0?1K∅,∅

(f a)

=
⋃
−−f∈{λa.{a+a}}

⊎
−−a∈{0,1}(f a)

= ((λa.{a + a}) 0) ∪−− ((λa.{a + a}) 1)
= {0 + 0} ∪−− {1 + 1} = {0, 2}

As was our intention, we get only 0 and 2 as results.

4 General Recursion and Algebraic Data Types

The subset of Curry that we handled so far includes the logical features of
non-determinism and free variables, but not the functional features of general
recursion and algebraic data types.

To add general recursion, we extend the term syntax by a primitive fix and
add an appropriate typing rule. The semantics of fix t is, as usual, the least
fixpoint of the semantics of (the function) t. The definition is shown in the last
row of Fig. 2. That the definition characterizes the least fixpoint is a standard
theorem for dcpos with least element (see [6]). Lemma 1 remains valid for the
extension. Hence, general recursion integrates smoothly.

type semantics

J[τ ]Kθ = lfp(λS.{[ ]} ∪ {a : b | a ∈ (JτKθ)⊥, b ∈ S⊥})

term semantics

J[ ]τ Kθ,σ = {[ ]}

Jt1 : t2Kθ,σ =
U
−−h∈Jt1Kθ,σ

U
−−t∈Jt2Kθ,σ

{h : t}

Jcase t of {[ ]→ t1; x : xs → t2}Kθ,σ =S
−−l∈JtKθ,σ

(
Jt1Kθ,σ if l = [ ]

Jt2Kθ,σ[x 7→h,xs 7→t] if l = h : t

Jfix tKθ,σ =
F
n>0(λA.

S
−−f∈JtKθ,σ

U
−−a∈A(f a))n ∅

Fig. 2. Extensions of Type and Term Semantics

To show how algebraic data types can be added to the semantics, we investigate
lists. Therefore, we extend the type syntax by a list type [τ ] and the term syntax
by the list constructors [ ]τ and (:), as well as a case-statement for list destruction.
Furthermore, we add the appropriate typing rules (not shown here).

Semantically, all non-determinism in lists can be flattened out, in the sense
that there is only a top-level choice between different list structures, each of



A Denotational Semantics for Curry 87

which is completely deterministic (including having completely deterministic
elements). This perspective is similar to the perspective on functions, and indeed
we can regard the constructors [ ]τ and (:) as a nullary and a binary function,
respectively. This also explains that the arguments to (:) can be ⊥. Concrete
semantic definitions are given in Fig. 2. The dcpo order on the interpretation of
list types is by element-wise comparison. Again, Lemma 1 remains valid for the
extension.

In a call-time choice setting with set semantics it does not matter where
non-determinism is “hidden” in an algebraic data type. For example, the terms
[1 ? 2] and [1] ? [2] are to be considered semantically equivalent. That is why we
“flatten out” all non-determinism. This way we guarantee that we have only one
semantic representation for each conceptual value of list type. We calculate the
semantics of [1 ? 2] and [1] ? [2] to show that they are indeed the same.

J(1 ? 2) : [ ]IntK∅,∅ =
⊎
−−h∈J1?2K∅,∅

⊎
−−t∈J[ ]IntK∅,∅

{h : t}

=
⊎
−−h∈(J1K∅,∅∪−J2K∅,∅)

⊎
−−t∈J[ ]IntK∅,∅

{h : t}

=
⊎
−−h∈{1,2}

⊎
−−t∈{[ ]}{h : t} = {1 : [ ], 2 : [ ]}

J(1 : [ ]Int) ? (2 : [ ]Int)K∅,∅ = J1 : [ ]IntK∅,∅ ∪−− J2 : [ ]IntK∅,∅
= (
⊎
−−h∈J1K∅,∅

⊎
−−t∈J[ ]IntK∅,∅

{h : t})

∪−− (
⊎
−−h∈J2K∅,∅

⊎
−−t∈J[ ]IntK∅,∅

{h : t})

= (
⊎
−−h∈{1}

⊎
−−t∈{[ ]}{h : t}) ∪−− (

⊎
−−h∈{2}

⊎
−−t∈{[ ]}{h : t})

= {1 : [ ]} ∪−− {2 : [ ]} = {1 : [ ], 2 : [ ]}

In contrast, in a poweralgebraic model the natural intuition would seem
to be to see non-empty lists as non-deterministic heads followed by a non-
deterministic choice of tails. In particular, of the latter some could be non-empty
lists themselves, others empty lists or failures. This kind of nested non-determinism
essentially prevents a unique representation for each conceptual value of list type.
In particular, a seemingly straightforward poweralgebraic semantics for lists would
falsely attribute more “definedness” to [1 ? 2] than to [1] ? [2].

The extended calculus is comprehensive enough to consider the examples
from [3]. Calculations for a specific example are given in the next section.

5 An Example from [3]

We consider Example 3 from [3]. There, we found that in Curry free variables
distort the standard (Haskell) free theorem for the type [α]→ [α] in a particular
way. While our measure of correctness there was running the Curry interpreter,
we can now instead formally calculate using our semantics.

Translated into the syntax of our calculus (which is extended, along with
the semantics, in the obvious way to deal with Booleans), we need the following



88 Jan Christiansen, Daniel Seidel, Janis Voigtländer

function definitions (where we have specialized map to a monomorphic type):

map = λh :: Int→ Bool.fix (λrec :: [Int]→ [Bool].λl :: [Int].
case l of {[ ]→ [ ]Bool; x : xs → (h x) : (rec xs)})

f = λxs :: [α].[unknownα]
h = λx :: Int.True

After some unfolding and massage, their semantics is obtained as follows:

JmapK∅,∅ = {λh.{
⊔
n>0

(λrec.λl.

{
{[ ]} if l = [ ]⊎
−−y∈(h x)

⊎
−−ys∈(rec xs){y : ys} if l = x : xs

)n Ω}}

JfK[α→D],∅ = {λxs.
⊎
−−d∈(D↑){[d]}}

JhK∅,∅ = {λx.{True}}

Now we can calculate the semantics for parts of the expressions in Example 3
from [3]. For the sake of brevity, we omit type and term environments unless
they are necessary for the calculation.

We start with the semantics of map h:

Jmap hK
=
⋃
−−k∈JmapK

⊎
−−l∈JhK(k l)

= (λh.{
⊔
n>0(λrec.λl.

{
{[ ]} if l = [ ]⊎
−−y∈(h x)

⊎
−−ys∈(rec xs){y : ys} if l = x : xs

)n Ω})

(λx.{True})

= {
⊔
n>0

(λrec.λl.

{
{[ ]} if l = [ ]⊎
−−y∈((λx.{True}) x)

⊎
−−ys∈(rec xs){y : ys} if l = x : xs

)n Ω}

= {
⊔
n>0

(λrec.λl.

{
{[ ]} if l = [ ]⊎
−−ys∈(rec xs){True : ys} if l = x : xs

)n Ω}



A Denotational Semantics for Curry 89

= {(λrec.λl.

{
{[ ]} if l = [ ]⊎
−−ys∈(rec xs){True : ys} if l = x : xs

)

((λrec.λl.

{
{[ ]} if l = [ ]⊎
−−ys∈(rec xs){True : ys} if l = x : xs

)(⊔
n>0(λrec.λl.

{
{[ ]} if l = [ ]⊎
−−ys∈(rec xs){True : ys} if l = x : xs

)n Ω

)
)}

= {(λl.


{[ ]} if l = [ ]⊎
−−
ys∈

8><>:
{[ ]} if xs = [ ]⊎
−−ys∈((··· ) xs′){True : ys} if xs = x′ : xs ′

{True : ys} if l = x : xs )}

Using this partial unrolling, we can calculate as follows:

Jmap h [0]K =
⋃
−−m∈Jmap hK

⊎
−−l∈J[0]K(m l)

=
⋃
−−m∈Jmap hK(m [0]) = {[True]}

and thus:

Jf (map h [0])K[α→{True,False}],∅ =
⋃
−−a∈JfK[α→{True,False}],∅

⊎
−−b∈Jmap h [0]K(a b)

= (λxs.{[True], [False]}) [True] = {[True], [False]}

On the other hand:

Jf [0]K[α→Z],∅ =
⋃
−−a∈JfK[α→Z],∅

⊎
−−b∈J[0]K(a b)

= (λxs.{[z] | z ∈ Z}) [0] = {[z] | z ∈ Z}

and thus:

Jmap h (f [0])K[α→Z],∅ =
⋃
−−c∈Jmap hK

⊎
−−d∈Jf [0]K[α→Z],∅

(c d)

=
⋃
−−z∈Z

⋃
−−c∈Jmap hK(c [z])

=
⋃
−−z∈Z{[True]} = {[True]}

This makes evident the failure of the standard free theorem, as observed in
Example 3 from [3].

6 Conclusion

As we model most interesting functional logic features, we think that we have
now a good base to formally investigate free theorems in a lazy functional logic



90 Jan Christiansen, Daniel Seidel, Janis Voigtländer

language, moving beyond examples as in [3] and the previous section. We also
think that the denotational semantics will be of help for reasoning about functional
logic programs in general.

We are aware that there is a wealth of existing work on the semantics of
functional logic languages [9,4,10,11,12,13], but have not been able to make
extensive comparisons here. In order to establish connections, we intend to prove
our semantics equivalent to CRWL (or a corresponding extension of it).

Acknowledgment. We would like to thank Rudolf Berghammer and Achim
Jung for discussions about (power)domain theoretic issues.

References

1. Reynolds, J.: Types, abstraction and parametric polymorphism. In: Information
Processing, Proceedings, Elsevier (1983) 513–523

2. Wadler, P.: Theorems for free! In: Functional Programming Languages and
Computer Architecture, Proceedings, ACM Press (1989) 347–359

3. Christiansen, J., Seidel, D., Voigtländer, J.: Free theorems for functional logic
programs. In: Programming Languages meets Program Verification, Proceedings,
ACM Press (2010)

4. González-Moreno, J., Hortalá-González, M., López-Fraguas, F., Rodŕıguez-Artalejo,
M.: An approach to declarative programming based on a rewriting logic. Journal
of Logic Programming 40(1) (1999) 47–87

5. Søndergaard, H., Sestoft, P.: Non-determinism in functional languages. The Com-
puter Journal 35(5) (1992) 514–523

6. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer
Science. Oxford University Press (1994) 1–168

7. Walicki, M., Meldal, S.: Algebraic approaches to nondeterminism: An overview.
ACM Computing Surveys 29(1) (1997) 30–81

8. Braßel, B., Fischer, S., Hanus, M., Reck, F.: Transforming functional logic programs
into monadic functional programs. In: Workshop on Functional and (Constraint)
Logic Programming, Draft Proceedings. (2010)

9. Hanus, M., Lucas, S.: A denotational semantics for needed narrowing. In: Joint
Conference on Declarative Programming, APPIA-GULP-PRODE’96, Proceedings.
(1996) 259–270

10. Molina-Bravo, J., Pimentel, E.: Composing programs in a rewriting logic for
declarative programming. Journal of Theory and Practice of Logic Programming
3(2) (2003) 189–221

11. Tolmach, A., Antoy, S.: A monadic semantics for core Curry. In: Workshop on
Functional and (Constraint) Logic Programming, Proceedings. Volume 86(3) of
ENTCS., Elsevier (2003)

12. López-Fraguas, F., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: Equivalence of
two formal semantics for functional logic programs. In: Spanish Conference on
Programming and Languages, PROLE’06, Proceedings. Volume 188 of ENTCS.,
Elsevier (2007) 117–142

13. Braßel, B., Berghammer, R.: Functional (logic) programs as equations over order-
sorted algebras. In: Logic-Based Program Synthesis and Transformation, Pre-
Proceedings. (2009)



A Declarative Debugger of Missing Answers for
Functional and Logic Programming

On-going work on the system description ?

Fernando Pérez Morente, Rafael del Vado Vı́rseda

Dpto. de Sistemas Informáticos y Computación
Universidad Complutense de Madrid

fperezmo@fdi.ucm.es rdelvado@sip.ucm.es

Abstract. Declarative debugging has many advantages over conventional
approaches to debugging for functional and (constraint) logic programs.
This paper presents a graphical declarative debugger of missing computed
answers for the constraint lazy functional-logic programming system T OY.
Our debugger starts whenever a user finds that the set of computed answers
for a given goal with finite search space misses some expected solution.
Then, the system proceeds by exploring a computation tree that provides
a declarative view of the answer-collection process performed by the
computation, and it ends up with the detection of some function definition
in the program that is incomplete. We provide the implementation of
our debugging system, which analyzes a declarative view of the trace
of the computation in order to simplify the process of reconstructing
the computation tree. We have shown experimentally on a wide set of
examples integrated in the T OY system that we are able to find some
common errors in functional and logic programs.

1 Introduction

Debugging is one of the essentials parts of the software development cycle and
a practical need for helping programmers to understand why their programs
do not work as intended. For the purposes of this paper, debugging can be
described as diagnosing the causes of unexpected results observed after the
completion of some computation. Declarative (functional and logic) programming
languages are intentionally designed to separate the logic of programs (what
should be computed) from the operational behavior (how it should be computed),
where features like higher-order, polymorphism or lazy evaluation make the
computation more difficult to observe and understand. For this reason, the
design of usable debugging tools becomes a difficult task because the traditional
debugging techniques used in imperative languages, such as the step-by-step
execution of the program, are not enough in declarative languages and users
? This work has been partially supported by the Spanish projects TIN2005-09207-C03-

03, TIN2008-06622-C03-01, S-0505/TIC/0407, S2009/TIC-1465, and UCM-BSCH-
GR58/08-910502.



92 Fernando Pérez Morente, Rafael del Vado Vı́rseda

can hardly follow computation traces mainly due to lazy evaluation. Following a
seminal idea from Shapiro [1], declarative diagnosis (a.k.a. declarative debugging
or algorithmic debugging) proposes to replace computation traces by Computation
Trees (briefly CT s) with results attached to their nodes, such that the result at
any internal node follows from the results at the child nodes, using a program
fragment also attached to the node. A CT whose root exhibits an unexpected
result must include at least one so-called buggy node, whose result is unexpected
but whose children’s results are all expected. Buggy nodes can be located by
navigating the CT with the help of an external oracle (usually the user) and
point to program fragments responsible for the unexpected behavior.

Significant research on declarative diagnosis exists both for (lazy) functional
programming (FP) and (constraint) logic programming (CLP) languages (see
e.g., [2,3,4,5,6]). Unexpected results in FP are mainly incorrect values, while
in CLP an unexpected result can be either a single computed answer regarded
as incorrect, or a set of computed answers (for one and the same goal with a
finite search space) regarded as incomplete. These two possibilities give rise
to the declarative diagnosis of wrong and missing computed answers in CLP ,
respectively. In this paper we present the ongoing work describing a graphical
declarative debugger of missing answers for the constraint lazy functional-logic
programming system T OY [7]. The debugger implements the theoretical results
presented in [8] for the declarative diagnosis of missing computed answers of
lazy FP and LP languages, although the same principles can be applied to CLP
languages. The system is available at http://gpd.sip.ucm.es/rafav/.

The rest of this paper is organized as follows: Section 2 presents informally
the computation trees used in the rest of the paper. Section 3 shows a debugging
session, which also introduces some of the features of the graphical interface.
Section 4 provides some details about the implementation of the diagnosis method
employed by the tool. The paper ends in Section 5 with some conclusions and
some proposals for future work. For the convenience of reviewers, more additional
examples and technical details can be found in the integrated version of the T OY
system for missing answers provided in the Web page.

2 Declarative Debugging of Missing Answers

While methods and tools for the declarative diagnosis of wrong answers are
known for constraint functional-logic programming languages [9,10,11,12,6], we
are not aware of any practical tool or system in CFLP concerning the declarative
diagnosis of missing answers, except our previous theoretical work [8]. However,
missing answers, obtained when the set of computed answers for a given goal
does not cover some expected answer, are a common problem which can arise
even in the absence of wrong answers. A particular and important case of missing
answers is manifested by a finitely failing goal for which solutions were expected.
We provide a debugger of missing answers for the CFLP system T OY [7].

A T OY program P can include declarations of data, function types, type
alias, infix operator declarations, and defining rules for function symbols. Two
important syntactic categories in this setting are expressions and patterns. The



A Declarative Debugger of Missing Answers for FLP 93

possible forms of an expression are e ::= ⊥ | X | h | (e e′), where X is a variable, h
is either a function symbol or a data constructor, and ⊥ is a symbol representing
an undefined value. The symbol ⊥ cannot be written directly in the programs, but
it is important for representing correctly the lazy semantics of the language, and
will be used by the debugger to indicate that a function call was not demanded
during the analyzed computation. The expression (e e′) stands for the application
of expression e to expression e′. Similarly, the possible forms of a pattern are
t ::= ⊥ | X | c tn | f tm, where c represents a data constructor of arity greater
or equal to n, and f a function symbol of arity greater than m. The defining
rules for a function f have the form f tn = e ⇐ C, where the ti are patterns, e
is an expression, and C is a conjunction of strict equalities e1 == e2, evaluated
to true if e1 and e2 can be reduced to some common total (i.e., without any
occurrence of ⊥) pattern. A goal G has the same form as the conditional part C.
The computed answer for a goal G must be a substitution σ from variables to
expressions (in particular patterns to represent values).

A declarative debugger for algorithmic diagnosis should look for a buggy node
in a suitable CT in order to detect some incomplete function definition to be
blamed for the missing answers. The approach in this paper uses CT s whose
nodes have attached so-called answer collection assertions, briefly acas. The aca
at the root node has the form G⇒

∨
i∈ I σi, asserting that all the solutions of the

initial goal G are covered by the finite disjunction of computed answers
∨
i∈ I σi

(empty in the case of a finitely failing goal). The acas at internal nodes have
the form f en ⇒

∨
i∈ I σi, asserting that

∨
i∈ I σi covers all the solutions for an

intermediate step f en intended to compute results of the function call f en. In
such function calls, the parameters en don’t have to be totally evaluated; instead,
they will be evaluated to the extent needed to solve the topmost expression under
a lazy evaluation strategy. Moreover, the whole CT must be such that the validity
of the aca at each node follows from the validity of the acas at their children,
under the assumption that the function definition relating the parent node to
the children nodes is complete w.r.t. the intended program semantics. We satisfy
this requirement building the CT as an abbreviated proof tree from a logically
sound inference system for deriving acas given in [8].

Once a CT has been constructed, the search for a buggy node can be imple-
mented with the help of an external oracle (usually the programmer) who has a
reliable declarative knowledge of the valid acas, based on a so-called intended
interpretation of the program. Any CT with an invalid aca at the root has surely
at least one buggy node labeled with an invalid aca whose children are all labeled
with valid acas. Each buggy node N is related to some particular function fN
whose program rules are responsible for the computation of the aca at N from
the acas at N ’s children. Therefore, the program rules for fN can be diagnosed
as incomplete. The detection of buggy nodes depends on the oracle’s judgements
on the validity of acas w.r.t. the intended meaning of the program. Since the
oracle is usually the programmer, we can even experiment with different choices
of the intended interpretation in order to obtain different diagnosis of possibly
incomplete functions.



94 Fernando Pérez Morente, Rafael del Vado Vı́rseda

Fig. 1. CT displayed by the system, with missing answers (left) and complete
(right).

3 A Debugging Session of Missing Answers in T OY

In this section we show how our declarative debugger of missing answers works
by means of a concrete example of its execution. The system can be downloaded
from http://gpd.sip.ucm.es/rafav/. Assuming a correct implementation of
the T OY system [7], if the computation of answers for a goal finishes after
having collected finitely many answers, the user may decide that there are missing
answers and type the command /missing at the system prompt in order to
initiate a debugging session. The declarative debugger will graphically show the
CT to help the user to find any function that is not computing all its values. We
illustrate this process by means of the following program:

take :: int -> [A] -> [A] evensOrOdds :: [int]

take N [] = [] evensOrOdds = evens

take 0 L = [] % evensOrOdds = odds

take (N + 1) [X | Xs] = [X | take N Xs]

evens :: [int] evens1 :: int -> [int]

evens = [2 | evens1 4] evens1 N = [N | evens1 (N + 2)]

odds :: [int] odds1 :: int -> [int]

odds = [1 | odds1 3] odds1 N = [N | odds1 (N + 2)]

The right version of this program is the one including the commented (%) program
rule evensOrOdds = odds. We suppose that the user tries to execute the goal
take 3 evenOrOdds == L in order to obtain in L the list of the first three even
numbers and the list of the first three odd numbers in a non-deterministic way.
The user executes it but finds that the system gives only one answer: the list of
the first three even numbers {L -> [2,4,6]}. After running the missing answers
debugging tool, a new window with the graphical representation of the CT pops



A Declarative Debugger of Missing Answers for FLP 95

Fig. 2. Debugging session guided by the top-down strategy.

up (see Fig. 1). The graphical interface has been implemented in Java following
the line of previous works [9,10,11].

At this point an incomplete function evensOrOdds can be found by inspecting
the CT and noticing that the aca corresponding to the function call take 3
evensOrOdds ==> [2:4:6:[]] has only one of the two expected lists as com-
puted answers, so that the other one is missing and then there exists a mistake in
the definition of the function evensOrOdds. This process is easily performed in
this situation because the set of nodes to be inspected is relatively small. However,
inspecting bigger sets might be a time consuming and difficult task. In these
cases, the debugging system provides several implemented algorithmic debugging
strategies (see [13] for more details) to guide the diagnosis session until a buggy
node is found. For example, Fig. 2 illustrates the interactive application of the
so-called top-down strategy to identify a buggy node.



96 Fernando Pérez Morente, Rafael del Vado Vı́rseda

Fig. 3. The missing answers debugger implementation schema.

4 Implementation of the Declarative Debugger

In this section we give technical details of the implementation of our declarative
debugger for missing answers in the T OY system. The current implementation
of the debugger is also available at the Web page. The compiler of T OY is
written in Prolog and converts a source program P .toy into an equivalent Prolog
program P .pl which will be executed by the underlying Prolog system. The main
novelty of our work has been the integration of the debugger as a stand-alone
module, without modifying the rest of the system. To perform this task, we use a
declarative view of the trace of the computation to generate the CT , rather than
only a more classical program transformation approach implemented in previous
works on wrong answers in lazy CFLP systems (see, [9,11]). More precisely,
according to Fig. 3, the debugging process is performed in four steps:

(1) The intermediate file P.pl modifies each user defined function. This modifi-
cation doesn’t change the semantic of the function, but after any successful
function call the trace now displays the values of the arguments and re-
sult. The execution of this modified program PT .pl will generate a text file
containing the trace of the computation.

(2) The goal G is evaluated again but now w.r.t. the modified program, retrieving
all the answers until the computation ends. This evaluation generates a file
with the trace of the computation described before. In the next steps the
debugger works with this trace file, and it is independent of how the actual
trace was generated. This makes our method easy to port to other functional-
logic languages like Curry (see [14]), because just a little modification on the
way that this trace file is generated should be needed.

(3) The trace file is processed, removing unnecessary information and preparing it
for the generation of the CT by the CT Builder module of the T OY system.

(4) The CT is reconstructed processing all the facts contained in the simplified
trace file. This stage is performed interpreting the trace w.r.t. the declara-
tive model of evaluation of T OY. This stage should also be modified when
implementing this method for another similar FLP system.



A Declarative Debugger of Missing Answers for FLP 97

Once the CT is reconstructed, it is ready to be printed in a text file and ready
to be connected to the graphical module that will show it to the user.
Using a declarative and simplified version of the trace of the computation to
generate the CT has allowed us to reach our goal of developing a debugger
without modifying the core modules of the T OY system. Also, we have been
able to develop a debugger that would be relatively easy to translate to other
functional and logic systems. However, the main problem with this approach
is the lack of efficiency and scalability. The process of reconstructing the CT
from a suitable view of the trace of the program is expensive both in terms of
memory and time. In the second phase of the process described above, a trace
file with a Prolog fact corresponding to each input and output for every function
call is generated. During the evaluation of even small test programs, hundreds
of function calls are performed, mainly due to backtracking and because of that
hundreds of Prolog facts are generated. The real problem is that, in the fourth
step, this text file is analyzed and the whole CT is stored in memory while this
process occurs. This huge trace would also lead to a CT with a lot of nodes, and
so that the memory space required and the time consumed to perform all the
tasks involving that computation tree would be excessive for “real life” programs.
Currently, it is not possible to build a small portion of the computation tree
using a selected fragment of the trace because the tree is correctly built only
when all the trace facts have been sequentially processed. We are working on
improvements of the system trying to reduce this memory and time cost. Our
main goal is to keep dinamically in memory only the portion of the computation
tree displayed at each moment from the corresponding declarative view of the
simplified trace.

In spite of this computational overhead, our current system can cope with CT s
containing thousands of nodes, which is enough for medium size computations.
Moreover, the system works reasonably well in cases where the goal’s search space
is relatively small, and we believe that working with such goals can be useful
for detecting many programming bugs in practice. We believe that our debugger
offers better facilities for CT simplification and navigation, which means a crucial
advantage in CT s with a large number of nodes, where top-down navigation
produces too many (maybe complex) questions to the user (as explained in [13]).
We are improving the implementation of the system, integrating techniques for
simplifying large and intricate acas, asking the user for a concrete missing instance
of the initial goal and starting a diagnosis session for the instantiated goal.

5 Conclusions, Related and Future Work

In this short paper we have described on-going work on the system description
of a graphical environment for finding missing answers and incomplete program
rules in lazy functional-logic programs. The debugger is equipped with a graphical
user interface and has been implemented for the FLP system T OY, although
the same approaches and ideas can be used for debugging similar languages such
as Curry or CiaoPP [15]. In comparison to the traditional top-down declarative
debuggers, we give more support for avoiding the complexity of oracle questions.



98 Fernando Pérez Morente, Rafael del Vado Vı́rseda

In contrast to other debugging tools (as e.g. the visual debugger for Mercury
[16]), our debugger is an off-line tool: the CT must be completely generated
before it can be displayed and navigated.

As future work we plan an extension of our current debugger supporting the
declarative diagnosis of both wrong and missing answers. Moreover, we plan
to investigate and implement extensions of the debugger to support constraint-
based computations in constraint functional and logic programming following
the line of [8]. Hopefully, this eventually helps us to evaluate the debugger on
practical applications. We also plan to implement and evaluate alternative search
strategies for the navigation phase. Other extensions can be done by studying
the integration of assertion based methods for declarative debugging [17].

References

1. Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press, USA (1983)
2. Ferrand, G., Lesaint, W., Tessier, A.: Towards declarative diagnosis of constraint

programs over finite domains. ArXiv Computer Science e-prints (2003)
3. Nilsson, H.: How to look busy while being as lazy as ever: the implementation of a

lazy functional debugger. J. Funct. Program. 11(6) (2001) 629–671
4. Nilsson, H., Sparud, J.: The evaluation dependence tree as a basis for lazy functional

debugging. Autom. Softw. Eng. 4(2) (1997) 121–150
5. Pope, B., Naish, L.: Practical aspects of declarative debugging in haskell 98. In:

PPDP’03, ACM (2003) 230–240
6. Tessier, A., Ferrand, G.: Declarative diagnosis in the CLP scheme. In: Analysis and

Visualization Tools for Constraint Programming. Volume 1870 of LNCS., Springer
(2000) 151–174

7. López-Fraguas, F.J., Sánchez-Hernández, J.: T OY: A multiparadigm declarative
system. In: RTA’99. Volume 1631 of LNCS., Springer (1999) 244–247

8. Caballero, R., Rodŕıguez-Artalejo, M., del Vado-V́ırseda, R.: Declarative diagnosis
of missing answers in constraint functional-logic programming. In: FLOPS’08.
Volume 4989 of LNCS., Springer (2008) 305–321

9. Caballero, R.: A declarative debugger of incorrect answers for constraint functional-
logic programs. In: WCFLP’05, ACM (2005) 8–13

10. Caballero, R., Rodŕıguez-Artalejo, M.: DDT : A declarative debugging tool for
functional-logic languages. In: FLOPS. Volume 2998 of LNCS. (2004) 70–84

11. del Vado-Vı́rseda, R.: A logical framework for debugging in declarative constraint
programming. Electr. Notes Theor. Comput. Sci. 256 (2009) 119–135

12. Naish, L., Barbour, T.: A declarative debugger for a logical-functional language.
DSTO General Document 5(2) (1995) 91–99

13. Silva, J.: A comparative study of algorithmic debugging strategies. In: LOPSTR’06.
Volume 4407 of LNCS., Springer (2006) 143–159

14. Hanus, M.: Curry: An integrated functional logic language (version 0.8.2 of march
28, 2006). Available at: http://www.informatik.uni-kiel.de/~curry (2006)

15. Hermenegildo, M., Puebla, G., Bueno, F., López-Garćıa, P.: Abstract verification
and debugging of constraint logic programs. In: IWCSCLP’02. Volume 2627 of
LNCS., Springer (2002) 1–14

16. Cameron, M., de la Banda, M.G., Marriott, K., Moulder, P.: Vimer: A visual
debugger for mercury. (2003) 56–66



A Declarative Debugger of Missing Answers for FLP 99

17. Drabent, W., Nadjim-Tehrani, S., Maluszynski, J.: The use of assertions in algo-
rithmic debugging. (1988) 573–581



Efficient and Compositional Higher-Order
Streams

Gergely Patai

Budapest University of Technology and Economics, Budapest, Hungary
patai@iit.bme.hu

Abstract. Stream-based programming has been around for a long time,
but it is typically restricted to static data-flow networks. By introducing
first-class streams that implement the monad interface, we can describe
arbitrary dynamic networks in an elegant and consistent way using only
two extra primitives besides the monadic operations. This paper presents
an efficient stream implementation and demonstrates the compositionality
of the constructs by mapping them to functions over natural numbers.

1 Introduction

One of the major advantages offered by pure functional programming is the
possibility of equational reasoning in software development. This is achieved by
enforcing referential transparency, which precludes the use of observable mutable
state. However, while pure functions can easily describe the transformation of
one data structure into another, interactive and embedded applications have to
deal with input and output living in a time domain and describe temporal as
well as functional dependencies. In practice, this means that the state of the
computation has to be maintained and regularly projected on the output, be it a
user interface, an actuator or a consumer process.

Stream-based programming is an approach that avoids the introduction of
a monolithic world state. The basic idea is that every variable in the program
represents the whole lifetime of a time-varying value. For instance, an expression
like x+ y might describe a combinational network that takes two input streams
and outputs a stream defined by their point-wise sum. On the implementation
level, x and y can be represented with mutable variables, but the stream concept
allows us to compose them as pure values.

Traditional stream-based languages like Lustre [8] allow us to describe static
data-flow networks and compile them into efficient loops. In many cases this is
not enough. As soon as we want to describe dynamically reconfigurable systems
or a collection of entities that changes over time – and such a need can come up
even in a relatively simple system like a sensor network node –, we need more
expressive power.

Functional reactive programming is essentially an extension of the stream-
based approach that adds higher-order constructs in some form. Its first incar-
nation, Fran [6], introduced time-varying values as first-class entities. Probably



Efficient and Compositional Higher-Order Streams 101

the most important lesson of Fran was the realisation that the start times of
streams must be treated with care. We can either decide to work with global
time (fix the start time of every stream to the beginning of execution) or local
time (have every stream count time from its own creation). Global-time streams
are naturally composable, but it is easy to create space and time leaks with them.
For instance, if we are allowed to synthesise the integral of an input in the middle
of the execution, we have to keep all the past input in the memory (space leak),
and the freshly created integrator has to catch up immediately by summing over
all that past (time leak). Local-time semantics is arguably more intuitive and
does not suffer from this problem, but it can easily break referential transparency
if introduced naively: the meaning of x+ y can change if x or y is translated in
time.

This paper presents an approach that unites the advantages of the two worlds:
referentially transparent (‘compositional’) higher-order streams without space
or time leaks (‘efficient’). First we will discuss the original problem in more
detail (Section 2), then we will derive a minimal set of combinators to describe
a wide range of dynamic networks that can be potentially realised without
a major performance hit (Section 3). The power of the resulting interface is
illustrated through a longer example (Section 4). Afterwards, we can move to the
implementation side; we will see the difficulties of a pure approach (Section 5), and
outline an impure runnable implementation of the idea, making some practical
adjustments to the interface on the way (Section 6). We conclude the discussion
with a short evaluation (Section 7) and comparison to related work (Section 8).

2 Problems with Higher-Order Streams

For our purposes, a stream is an object that can be observed through two functions,
head and tail , which extract its first element and its immediate continuation,
respectively. If the type of the elements is a, the type of the stream is referred to
as Stream a.

Streams are applicative functors [11], i.e. we can define two constructors, pure
and ~, to describe the stateless combination of streams. In order to construct
arbitrary causal static networks, we need only one more building block: a unit
delay with initialisation. We will refer to it as cons, since cons streams are
the trivial implementation of this interface. Feedback can be directly expressed
through value recursion, so we do not need a specific fixed-point operator.

The exact meaning of the constructors can be defined coinductively through
their interaction with the destructors, which is shown on Figure 1; we denote a
stream s as 〈s0 s1 s2 s3 . . . 〉. If s is of type Stream a, then si is of type a.

Things get more interesting if we want to add dynamism to the network
structure. If we can define an operation to flatten higher-order streams, we can
model the changing topology by a stream that delivers a potentially changing
part of the network at every point of time. The flattening operation turns the
higher-order stream into the actual dynamic network. Not surprisingly, in order
to end up with intuitive behaviour, the combinator we are looking for should



102 Gergely Patai

〈x s0 s1 s2 s3 . . . 〉 〈x x x x x . . . 〉 〈(f0 x0) (f1 x1) (f2 x2) (f3 x3) . . . 〉

cons x s pure x f ~ x

head (cons x s) ≡ x
tail (cons x s) ≡ s

head (pure x ) ≡ x
tail (pure x ) ≡ pure x

head (f ~ x ) ≡ (head f ) (head x )
tail (f ~ x ) ≡ tail f ~ tail x

Fig. 1. First-order stream constructors

obey the laws of the monadic join operation. The laws basically state that
in case we have several layers, it does not matter which order we break them
down in, and join commutes with point-wise function application (fmap, where
fmap f s ≡ pure f ~ s), so it does not matter either whether we apply a stateless
transformation before or after collapsing the layers.

Finding the appropriate join operation is straightforward if we build on the
isomorphism between the types Stream a and N→ a. All we need to do is adapt
the monad instance of functions with a fixed input type (aka the reader monad)
to streams, where head corresponds to applying the function to zero, while tail
means composing it with succ. Just as the other constructors, join can be defined
through its observed behaviour:

head (join s) ≡ head (head s)
tail (join s) ≡ join (fmap tail (tail s))

In other words, join s = 〈s00 s11 s22 s33 . . . 〉, the main diagonal of the stream
of streams s.

This is all fine, except for the sad fact that the above definition, while techni-
cally correct, is completely impractical due to efficiency reasons: the nth sample
takes n2 steps to evaluate, since every time we advance in the stream, we prepend
a call to tail for every future sample.

The problem is that each sample can potentially depend on all earlier samples
(cf. recursive functions over N), so there are no shortcuts to take advantage of
in general. The only optimisation that can help is special-casing for constant
streams. However, it would only make join efficient in trivial cases that do not
use the expressive power of the monadic interface, hence it is no real solution.
Instead, we have to find a different set of constructors, which can only generate
structures where the aforementioned shortcut is always possible.

3 Doing without Cons

First of all, we will assume that streams are accessed sequentially. The key to
finding a leak-free constructor base is realising that we do not need to sample
the past of the newly created streams. We want to ensure that whenever a new
stream is synthesised, its origin is defined to be the point of creation. However, in
order to maintain referential transparency, we will have to work with global time.



Efficient and Compositional Higher-Order Streams 103

The basic idea is to map local-time components on the global timeline, effectively
keeping track of their start times.

The monadic operations are all safe, because they are stateless, hence time
invariant. The cause of our problems is cons , which has no slot to encode its start
time, which is therefore implicitly understood to be zero. But this means that
there is nothing to stop us from defining a stateful stream that starts in the past,
so we will have to disallow cons altogether and look for a suitable alternative.

Let us first think about how starting time affects streams. For simplicity, we
will step back and represent streams as functions of time, i.e. N→ a, and try to
derive a sensible interface using denotational design [4].

By choosing a representation we also inherit its class instances, so the monadic
operations are readily available. Let us introduce a local-time memory element
called delay . In order to express its dependence on the start time, we can simply
pass that time as an extra argument:

delay x s tstart tsample

| tstart ≡ tsample = x
| tstart < tsample = s (tsample − 1)
| otherwise = error "Premature sample!"

There is a fundamental change here: delay x s – unlike cons x s – is not a
stream, but a stream generator . In this model, stream generators are of type
N → a, functions that take a starting time and return a data structure that
might hold freshly created streams as well as old ones. Why not limit them to
N→ Stream a? Because that would limit us to generate one stream at each step.
A stream that carries a list of values is not equivalent to a list that contains
independent streams, since the former solution does not allow us to manage the
lifetimes of streams separately. There is no way to tell if no-one ever wants to
read the first value of the list, therefore we would not be able to get rid of it,
while independent streams could be garbage collected as soon as all references to
them are lost.

Since the types of streams and stream generators coincide while the argu-
ments of the functions have different meanings (sampling time and starting time,
respectively), let us introduce type synonyms to prevent confusion:

type Stream a = N→ a
type StreamGen a = N→ a

Using the new names, the type of delay can be specified the following way:

delay :: a → Stream a → StreamGen (Stream a)

It is clear from the above definition that a delay is not safe to use if its start
time is in the future, therefore we should not allow generators to be used in
arbitrary ways. The only safe starting time is the smallest possible value, which
will lead us to the sole way of directly executing a stream generator: passing it
zero as the start time.



104 Gergely Patai

start :: StreamGen (Stream a)→ Stream a
start g = g 0

While there is no immediate need to restrict its output type, we basically
want a function that is used only once at the beginning to extract the top-level
stream. This makes our interface as tight as possible.

Of course, start is not sufficient by itself, since it does not give us any means
to create streams at any point later than the very first sampling point. We need
another combinator that can extract generators in a disciplined way, ensuring
that no unsafe starting times can be specified. The most basic choice is simply
extracting a stream of generators by passing each the current sampling time:

generator :: Stream (StreamGen a)→ Stream a
generator g tsample = g tsample tsample

As it turns out, in our model generator happens to coincide with join for
functions. However, this does not hold if Stream and StreamGen are different
structures, so generator remains an essential combinator.

Of course, if we look at it from a different direction, we can say that stream
generators can also be considered streams. In this case, start is simply equivalent
to head (which also hints at the fact that start is not a constructor), generator is
the same as join, and delay constructs a stream of streams. We also inherit the
fixed-point combinator mfix [7] from the reader monad, which will be necessary to
define feedback loops. In the end, we can reduce the combinator base required to
work with higher-order dataflow networks to the one on Figure 2; we use return
and >>= in the minimal base, since they can express the applicative combinators
as well as join.

Even though the four-combinator base is quite elegant, the distinction between
streams and stream generators is still useful. The main difference between join
(on streams) and generator is that the latter is used to create new streams, while
the former can only sample existing streams. Also, we will see that mfix for
stream generators allows us to define streams in terms of each other (e.g. express
the circular dependency between position, velocity and acceleration in the context
of spring motion), while mfix for streams has no obvious practical application.

4 A Motivating Example

Let us now forget about the representations we chose and keep only the inter-
faces. These are quite small: both streams and stream generators are MonadFix
instances, and we have delay , generator and start to work with.

We saw that delay is the only operation that lives in the StreamGen monad,
and it allows us to create a new stateful stream every time the monad is extracted.
As a simple example, we can start by defining a generic stateful stream (#$ stands
for infix fmap).

stateful :: a → (a → a)→ StreamGen (Stream a)
stateful x0 f = mfix $ λstr → delay x0 (f #$ str)



Efficient and Compositional Higher-Order Streams 105

〈〈 x s0 s1 s2 s3 . . . 〉
〈 ⊥ x s1 s2 s3 . . . 〉
〈 ⊥ ⊥ x s2 s3 . . . 〉
〈 ⊥ ⊥ ⊥ x s3 . . . 〉
. . . 〉

〈x x x x x . . . 〉 〈y00 y11 y22 y33 y44 . . . 〉
where yi = f si

delay x s return x s >>= f

〈(fix (nth 0 ◦ f )) (fix (nth 1 ◦ f )) (fix (nth 2 ◦ f )) (fix (nth 3 ◦ f )) . . . 〉
where nth 0 s = head s

nth n s = nth (n − 1) (tail s)

mfix f

head (delay x s) ≡ cons x s head (return x ) ≡ x
tail (delay x s) ≡ fmap (cons ⊥) (delay x (tail s)) tail (return x ) ≡ return x

head (s >>= f ) ≡ head (f (head s)) head (mfix f ) ≡ fix (head ◦ f )
tail (s >>= f ) ≡ tail s >>= (tail ◦ f ) tail (mfix f ) ≡ mfix (tail ◦ f )

Fig. 2. Higher-order stream constructors

Simply put, a stream generated by stateful x0 f starts out as x0, and each of
its subsequent outputs equals f applied to the previous one. Note that we could
not define stateful using direct recursion, since delay adds an extra monadic layer,
so we had to rely on StreamGen being MonadFix .

Let us run a little test. This is the only place where we rely on functions
being our representation, since we pass the generated stream to map.

strtest :: StreamGen (Stream a)→ [a ]
strtest g = map (start g) [0 . . 15]
> strtest $ stateful 2 (+3)
[2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47]

This looks promising, but a more complex example involving higher-order
streams would be more motivating. Let us create a dynamic collection of count-
down timers, where each expired timer is removed from the collection. First we
will define named timers:

countdown :: String → Int → StreamGen (Stream (String ,Maybe Int))
countdown name t = do

let tick prev = do {t ← prev ; guard (t > 0); return (t − 1)}
timer ← stateful (Just t) tick
return ((, ) name #$ timer)

> strtest $ countdown "foo" 4
[("foo", Just 4), ("foo", Just 3), ("foo", Just 2), ("foo", Just 1),
("foo", Just 0), ("foo",Nothing), ("foo",Nothing), . . .]



106 Gergely Patai

Next, we will define a timer source that takes a list of timer names, starting
values and start times and creates a stream that delivers the list of new timers
at every point. Naturally, it would be more efficient to consume the original list
as we advance in the stream, but mapping over a simple counter will do for now.

timerSource :: [(String , Int , Int)]→
StreamGen (Stream [Stream (String ,Maybe Int)])

timerSource ts = do
let gen t = mapM (uncurry countdown) newTimers

where newTimers = [(n, v) | (n, v , st)← ts, st ≡ t ]
cnt ← stateful 0 (+1)
return $ generator (gen #$ cnt)

Now we need to encapsulate the timer source stream in another stream
expression that takes care of maintaining the list of live timers. Since working
with dynamic collections is a recurring task, let us define a generic combinator
that maintains a dynamic list of streams given a source and a test that tells from
the output of each stream whether it should be kept. We can use µdo expressions
(a variant of do expressions allowing forward references) as syntactic sugar for
mfix to make life easier.

collection :: Stream [Stream a ]→ (a → Bool)→ StreamGen (Stream [a ])
collection source isAlive = µdo

coll ← liftA2 (++) source #$ delay [ ] coll ′

let collWithVals = zip #$ (sequence =<< coll) ~ coll
collWithVals ′ = filter (isAlive ◦ fst) #$ collWithVals
coll ′ = map snd #$ collWithVals ′

return $ map fst #$ collWithVals ′

We need recursion to define the coll stream as a delayed version of coll ′, which
represents its continuation. At every point of time its output is concatenated
with that of the source (we need to lift the (++) operator twice in order to
get behind both the StreamGen and the Stream abstraction). Then we define
collWithVals, which simply pairs up every stream with its current output. The
output is obtained by extracting the current value of the stream container and
sampling each element with sequence. We can then derive collWithVals ′, which
contains only the streams that must be kept for the next round along with their
output. By throwing out the respective parts, we can get both the final output
and the collection for the next step (coll ′).

Now we can easily finish our task:

timers :: [(String , Int , Int)]→ StreamGen (Stream [(String , Int)])
timers timerData = do

src ← timerSource timerData
getOutput #$ collection src (isJust ◦ snd)

where getOutput = fmap (map (λ(name, Just val)→ (name, val)))



Efficient and Compositional Higher-Order Streams 107

Let us start four timers as a test: ‘a’ at t = 0 with value 3, ‘b’ and ‘c’ at t = 1
with values 5 and 3, and ‘d’ at t = 3 with value 4:

> strtest $ timers [("a", 3, 0), ("b", 5, 1), ("c", 3, 1), ("d", 4, 3)]
[[("a", 3)], [("b", 5), ("c", 3), ("a", 2)], [("b", 4), ("c", 2), ("a", 1)],
[("d", 4), ("b", 3), ("c", 1), ("a", 0)], [("d", 3), ("b", 2), ("c", 0)],
[("d", 2), ("b", 1)], [("d", 1), ("b", 0)], [("d", 0)], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ]]

While it might look like a lot of trouble to create such a simple stream, it is
worth noting that timers is defined in a modular way: the countdown mechanism
that drives each timer is completely separated, and we do not even need to worry
about explicitly updating the state of the timers. Similarly, the timer source is
also independent of the dynamic list, and we even defined a generic combinator
that turns a source of streams into a dynamic collection of streams.

A valid concern about the interface could be the ubiquitous use of lifting.
There are basically two ways to deal with this problem. First of all, since streams
are monads, we could simply use do notation to extract the current samples
of streams we need and refer to those samples directly afterwards. However,
this would no doubt make the code less succinct. The other option is using
syntactic support for applicative functors, e.g. idiom brackets [11]. For instance,
the Strathclyde Haskell Enhancement [10] allows us to rewrite collection with a
somewhat lighter applicative notation:

collection :: Stream [Stream a ]→ (a → Bool)→ StreamGen (Stream [a ])
collection source isAlive = µdo

dcoll ′ ← delay [ ] coll ′

let coll = L source ++ dcoll ′ M
collWithVals = L zip (sequence =<< coll) coll M
collWithVals ′ = L filter (̃isAlive ◦ fst) collWithVals M
coll ′ = L map s̃nd collWithVals ′ M

return L map f̃st collWithVals ′ M

5 Problems with Purity

Our goal is to come up with a way to execute any higher-order stream representable
by our constructors in a way that the computational effort required for a sample
is at worst proportional to the size of the network. In terms of equations, this
means that applying tail to a stream several times results in an expression that
is roughly the same size as the original. This clearly does not hold according to
the rules given on Figure 2, since most streams keep growing without bounds.

Thanks to the way the delay combinator is designed, all higher-order streams
have a main diagonal that does not depend on any element on its left – that
is what makes the shortcut possible in theory. This observation points into the
direction of a solution where we skew every higher-order stream in a way that its
main diagonal becomes its first column, as illustrated on Figure 3. However, if
we want to implement this idea directly, we will quickly run into roadblocks.



108 Gergely Patai

〈〈 s00 s01 s02 s03 s04 . . . 〉
〈 s10 s11 s12 s13 s14 . . . 〉
〈 s20 s21 s22 s23 s24 . . . 〉
〈 s30 s31 s32 s33 s34 . . . 〉
. . . 〉

⇒

〈〈 s00 s01 s02 s03 s04 . . . 〉
〈 s11 s12 s13 s14 s15 . . . 〉
〈 s22 s23 s24 s25 s26 . . . 〉
〈 s33 s34 s35 s36 s37 . . . 〉
. . . 〉

Fig. 3. Skewing higher-order streams to get an efficient join

The new definition of delay is straightforward: we simply do not add the
triangular ⊥ padding, which can be achieved by rewriting the second rule in its
definition to tail (delay x s) ≡ delay x (tail s). If we use fmap, return and join
for our monadic combinator base, we will find that join is also easy to adapt
to the skewed version: tail (join s) ≡ join (tail s), since join now extracts the
first column, shown in bold on Figure 3. This definition of join obeys the law of
associativity, which is promising.

Somewhat surprisingly, the first bump comes when we want to describe the
behaviour of return, which was trivial in the original model. In order to respect
the monad laws, we have to ensure that if return is applied to a stream, then the
resulting higher-order stream must contain the aged versions of the original, so
the first column (which could be extracted by a subsequent join) is the same as
the stream passed to return. In fact, the situation is even more complicated: the
argument of return can be an arbitrary structure, and we have to make sure that
all streams referenced in this structure are properly aged. Given a sufficiently
flexible type system, the problem of return can be solved at a price of some extra
administrative burden on the programmer. For instance, type families in Haskell
can be used to define head and tail operations that traverse any structure and
project every stream in the structure to its head or tail.

Unfortunately, we have two combinators, fmap and mfix , which require us
to skew a higher-order stream that is produced by a function. This appears in
the original rules as a composition with tail . The net effect of the composition is
that every stream referenced in the closure is aged in each step, so in order to
have a pure implementation, we would have to open up the closure, store all the
streams in question alongside the function, age all these streams by applying tail
to them in each step, and reconstruct the closure by applying the function to the
aged streams.

While it is possible to go down the road outlined above, it would essentially
amount to adding a layer of interpretation. However, what we are trying to
do here is basically emulating mutable references, so we could as well pick the
straightforward solution and use mutable variables to represent streams. The
following section presents a solution in non-portable (GHC specific) Haskell.



Efficient and Compositional Higher-Order Streams 109

6 Making It Run

We used the type N → a to model streams. Since in the case of sequential
sampling the index is implicit, we can drop the argument of the function and
substitute it with side effects. This will give us the actual type:

newtype Stream a = S (IO a) deriving (Functor ,Applicative,Monad)

Every stream is represented by an action that returns its current sample. Just
as it was the case in our model above, this operation has to be idempotent within
each sample, and the Stream monad has to be commutative, i.e. it should not
matter which order we sample different streams in. Both criteria are trivially
fulfilled if the action has no other side effects than caching the sample after the
first reading.

To be able to fill this action with meaning, we have to think about building
and executing the stream network. Since delay is a stateful combinator, it has
to be associated with a mutable variable. Delay elements are created in the
StreamGen monad, which is therefore a natural source for these variables. But
what should the internal structure of StreamGen look like?

When we execute the network, we have to update it in each sampling step in a
way that preserves consistency. In effect, this means that no sampling action can
change its output until the whole network is stepped, since streams can depend
on each other in arbitrary ways. The solution is a two-phase superstep: first we
go through all the variables and update them for the next round while preserving
their current sample, and we discard these samples in a second sweep. We should
sample the output of the whole network before the two sweeps. This means that
each delay element requires the following components:

1. a mutable variable
2. a sampling action that produces its current value
3. an updating action that does not change the output of the sampling action,

but creates all the data needed for the next step
4. a finalising action that concludes the update and advances the stream for

the next superstep, discarding the old sample on the way

As we have seen, the sampling action is stored in the stream structure, and it
obviously has to contain a reference to the variable, so the first two items are
catered for. The updating and finalising actions have to be stored separately,
because they have to be executed regardless of whether the stream was sampled
in the current superstep or not – we certainly do not want the behaviour of any
stream to be affected by how we observe it.

In short, we need to maintain a pool for these update actions. We have to make
sure that whenever all references to a stream are lost, its update actions are also
thrown away. This is easy to achieve using weak references to the actions, where
the key is the corresponding stream. It should be noted that weak references
constitute the non-portable bit, and they also force us into the IO monad even if
our stream network has no external input. Summing up, our update pool is a list



110 Gergely Patai

of weak references that point us to the updating and finalising actions required
for the superstep.

type UpdatePool = [Weak (IO (), IO ())]

The next step is to integrate the update pool with the sampling actions. One
might first think that StreamGen should be a state monad stacked on top of IO,
with the pool stored in the state. However, after creating the executable stream
structure, it does not live in the StreamGen monad any more, therefore there
is no way to thread this state through the monads extracted by generator . We
have no other choice but to provide a mutable reference to the pool associated
with the network the generator lives in.

newtype StreamGen a = SG{unSG :: IORef UpdatePool → IO a }

This is in fact a reader monad stacked on top of IO, but we will just use a ‘raw’
function for simplicity; we can easily define the equivalent Monad and MonadFix
instances by emulating the behaviour of the reader monad transformer.

In order to be able to embed the stream framework in our applications, we
need a function to turn a StreamGen-supplied stream into an IO computation
that returns the next sample upon each invocation. All we need to do is create a
variable for the update pool (initialised with an empty list), extract the top-level
signal from its generator and assemble an IO action that performs the superstep
as described above. The type of start is changed to reflect its new meaning.

start :: StreamGen (Stream a)→ IO (IO a)
start (SG gen) = do

pool ← newIORef [ ]
S sample ← gen pool
return $ do

let deref ptr = (fmap ◦ fmap) ((, ) ptr) (deRefWeak ptr)
‡ Extracting the top-level output
res ← sample
‡ Extracting the live references and throwing out the dead ones
(ptrs, acts)← unzip ◦ catMaybes #$ (mapM deref =<< readIORef pool)
writeIORef pool ptrs
‡ Updating variables
mapM fst acts
‡ Finalising variables
mapM snd acts
return res

The deRefWeak function returns Nothing when its key is unreachable, so we
have to pair up every reference with the data it points to in order to be able
to tell which ones we need to keep. The rest is straightforward: we extract the
current output then perform the two sweeps. But how do the updating actions
look like inside?



Efficient and Compositional Higher-Order Streams 111

First of all, the mutable variable has to hold a data structure capable of
encoding the phases. Since simple delays are the only stateful entities we have to
worry about, the structure is straightforward.

data Phase a = Ready{state :: a } | Updated{state :: a, cache :: a }

A stream is either Ready , waiting to be sampled, or Updated , holding its next
state and remembering its current sample. It is definitely Updated after executing
the first sweep action, and definitely Ready after finalisation. In the case of delay
we also have to make sure that the delayed signal is not sampled before the
update phase, otherwise we would introduce an unnecessary dependency into the
network that would cause even well-formed loops to be impossible to evaluate.

While the full implementation cannot fit in the paper, it is worth looking at
the internals of at least one of the primitives. The simpler one is delay , where
sampling is trivial and updating triggers a sampling on the delayed stream. It is
advisable to force the evaluation of this sample, otherwise huge thunks might
build up if a stateful stream is not read by anyone for a long time.

delay :: a → Stream a → StreamGen (Stream a)
delay x0 (S s) = SG $ λpool → do

ref ← newIORef (Ready x0)
let upd = readIORef ref >>= λv → case v of

Ready x → s >>= λx ′ → x ′ ‘seq ‘ writeIORef ref (Updated x ′ x )
→ return ()

fin = readIORef ref >>= λ(Updated x )→ writeIORef ref $! Ready x
str = S $ readIORef ref >>= λv → case v of

Ready x → return x
Updated x → return x

updateActions ← mkWeak str (upd ,fin) Nothing
modifyIORef pool (updateActions:)
return str

As for generator , even though it is stateless, it has to know about the update
pool, since its job is to populate it from time to time. Consequently, it has to
live in StreamGen, just like delay . Also, it is a good idea to cache the result of
its first sampling, otherwise it would create the same streams over and over, as
many times as it is referenced. While this would not affect the output, it would
certainly harm performance. In terms of the implementation this means that
generator requires a variable just like delay . Its final type is the following:

generator :: Stream (StreamGen a)→ StreamGen (Stream a)

Upon the first sampling it executes the current snapshot of the monad in its
associated stream by passing it the reference to the update pool, and stores the
result by flipping the state to Updated , keeping the state ⊥ all the time.

There are two problems left. First of all, since we have not considered efficiency
issues during the design phase, we left a source of redundant computations in the



112 Gergely Patai

system. If the result of an applicative operation is used in more than one place,
it will be recalculated each time it is requested (e.g. the collWithVals ′ stream
in the collection function, Section 4), because functions are not memoised by
default. We can overcome this problem by introducing a third primitive called
memo, which is observationally equivalent to return within StreamGen, but it
adds a cache to any stream we pass to it.

memo :: Stream a → StreamGen (Stream a)

The last issue is embedding streams in the real world. While we already
have a way to read the output of a data-flow network, we cannot feed values
into it. Fortunately, there is a simple standard solution in reactive programming
frameworks: we can define a stream whose current reading can be explicitly set
from outside using an associated sink action:

external :: a → IO (Stream a, a → IO ())
external x = do

ref ← newIORef x
return (S (readIORef ref ),writeIORef ref )

An external stream is basically equivalent to a constant if we look at it from
inside the network, therefore it does not have to be connected to the update
mechanism in any way.

7 Closing Thoughts

A major advantage of using self-contained actions for sampling and updating the
individual network nodes is that part of the evaluator is trivial to parallelise. We
could introduce an update pool for each core, and execute actions in parallel, only
synchronising at the end of each update sweep. The only change needed to make
the code thread safe is to introduce an MVar (a variable protected with a mutex)
to store actions generated during the update, and distribute these actions among
the pools. As for the sampling phase, we would need to track the dependencies
of the streams and possibly work in a bottom-up fashion as much as possible.

The biggest problem with the system is that it keeps updating streams even
if they are not referenced any more until the garbage collector physically gets rid
of them. The solution is not clear yet, and it might require more direct runtime
support than general weak references.

The code is available in executable form in the experimental branch of the
Elerea library1 [12], which is available through cabal-install. For historical reasons,
the library uses the name Signal instead of Stream, but the code is otherwise
identical.

1 see the FRP.Elerea.Experimental.Simple module



Efficient and Compositional Higher-Order Streams 113

8 Related Work

While first-order stream-based languages are well understood, there has been
comparatively little effort going into introducing first-class streams. Functional
reactive programming, pioneered by Fran [6], brought a change in this regard,
but the question of start times was ignored first, leading to great confusion
about the interface. Also, FRP systems never had a focus on providing general
higher-order constructs, and efficiency issues with Fran-like systems (besides the
above mentioned confusion) led to Yampa [3], which is essentially a first-order
stream library amended with switching combinators to describe dynamic networks.
However, fitting the switching combinators into the arrow framework used by
Yampa is not without problems, e.g. they have no place in the causal commutative
normal form [9] of a signal function. Reactive [5] is a recent reformulation of
Fran that fixes the starting time of all varying quantities to zero, therefore its
general higher-order capabilities (i.e. monad instances of behaviours) are of little
use in practice. FrTime [2] relies on a specialised evaluator to be able to use
signals inside expressions, and it uses lexical scope to determine starting time.
Unfortunately, this approach cannot be used in the presence of optimisations
like let-floating. The previous version of the Elerea library supports higher-order
streams by maintaining the original call graph of the program and adding a
layer of interpretation. It differs from the system discussed in this paper in only
updating streams that are sampled during a superstep, therefore its flattening
combinator (sampler) breaks compositionality and does not obey the laws of
join. In short, the present work inherited the concept of stream generator from
the old Elerea, but the evaluation mechanism is completely reworked.

Looking at the well-known stream-based languages, Lucid Synchrone has re-
cently been extended with some higher-order capabilities [1]. Its every combinator
is very similar to generator, but it is guarded by a boolean stream that dictates
when to instantiate the stateful stream function, and stores it in a memory
element. In essence, it creates a piecewise function. The question of free variables
in stateful definitions is solved by simply disallowing them due to the lack of clear
semantics according to the authors. This restriction results in more tractable
time and space behaviour, and it can be implemented without a global update
pool. In particular, it does not suffer from the problem of updating lost streams,
because references to generated stream functions cannot be passed around freely,
so we can maintain an explicit update tree that tells us precisely which streams
are still alive.

An alternative way to look at streams is modelling them as comonads [13].
However, comonads need extra machinery to be able to express applicative
combinators, which come for free given the monadic interface. Also, the authors
say nothing about higher-order streams, and they provide no guidance to arrive
at an efficient implementation.

Finally, it is worth noting that there are several other Haskell libraries that
focus on streams, but none of them support higher-order streams to the degree
presented in this paper. The Stream library contains the ‘leaky’ Monad instance
for cons streams that corresponds to the discussion in Section 2.



114 Gergely Patai

9 Future Work

Designing and structuring systems with higher-order streams is mostly uncharted
land with vast areas to explore. The next step is to create a non-trivial interactive
application using the library, which will give us a clearer picture of the strengths
and weaknesses of this approach. Also, equational reasoning might be used to
optimise stream networks at compile time, which is another interesting line of
research to pursue.

References

1. Jean-Louis Colaço, Alain Girault, Grégoire Hamon, and Marc Pouzet. Towards a
Higher-Order Synchronous Data-Flow Language. In Proceedings of the 4th ACM
International Conference on Embedded Software, Pisa, Italy, 2004, pages 230–239,
ACM, New York, NY, USA.

2. Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic dataflow in
a call-by-value language. In European Symposium on Programming, 2006, pages
294–308.

3. Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa Arcade. In
Proceedings of the 2003 ACM SIGPLAN Haskell Workshop (Haskell’03), pages
7–18. ACM Press, 2003, Uppsala, Sweden.

4. Conal Elliott. Denotational design with type class morphisms (extended version)
2009. http://conal.net/papers/type-class-morphisms/

5. Conal Elliott. Push-pull functional reactive programming In Haskell ’09: Proceedings
of the 2nd ACM SIGPLAN symposium on Haskell, Edinburgh, Scotland, 2009, pages
25–36, ACM, New York, NY, USA, 2009.

6. Conal Elliott and Paul Hudak. Functional reactive animation. In International
Conference on Functional Programming, June 1997, pages 263–273.

7. Levent Erkök. Value Recursion in Monadic Computations. PhD Dissertation,
Oregon Graduate Institute School of Science Engineering, OHSU, October 2002.

8. Nicolas Halbwachs, Paul Caspi, Pascal Raymond, Daniel Pilaud. The Synchronous
Data-Flow Programming Language LUSTRE. In Proceedings of the IEEE, Vol. 79,
No. 9, September 1991, pages 1305–1320.

9. Hai Liu, Eric Cheng, and Paul Hudak. Causal Commutative Arrows and Their
Optimization. In Proceedings of the 14th ACM SIGPLAN international conference
on Functional programming, 2009, Edinburgh, Scotland, pages 35–46, ACM, New
York, NY, USA, 2009.

10. Conor Mcbride. The Strathclyde Haskell Enhancement. 2009.
http://personal.cis.strath.ac.uk/~conor/pub/she/

11. Conor Mcbride and Ross Paterson. Applicative programming with effects. Journal
of Functional Programming, 18(1), pages 1–13, 2008.

12. Gergely Patai. Eventless Reactivity from Scratch. In Draft Proceedings of the
21st International Symposium on Implementation and Application of Functional
Languages, 2009, South Orange, NJ, USA, pages 126–140, Marco T. Morazán (ed),
Seton Hall University, 2009.

13. Tarmo Uustalu and Varmo Vene. The Essence of Dataflow Programming. In
Central European Functional Programming School, 2006, pages 135–167, Lecture
Notes in Computer Science, Springer, Berlin.



Bridging the Gap between Two Concurrent
Constraint Languages ?

Alexei Lescaylle, Alicia Villanueva

DSIC, Universidad Politécnica de Valencia,
Camino de Vera s/n, 46022 Valencia (Spain),

alescaylle@dsic.upv.es, villanue@dsic.upv.es

Abstract. The Concurrent Constraint Paradigm (cc in short) is a simple
and highly expressive formalism for modeling concurrent systems where
agents execute asynchronously, interacting among them by adding and
consulting constraints in a global store. The cc model replaces the notion
of store-as-valuation with the notion of store-as-constraint. There exist
several programming languages that extend the cc model by introducing
a notion of time. The notion of time allows us to represent concurrent and
reactive systems. The different definitions for time make each language
better suited for modeling a specific kind of application (deterministic
embedded systems, non-deterministic reactive systems, etc.). This paper
studies the relation between the universal timed concurrent constraint
language (utcc in short) and the timed concurrent constraint language
(tccp). We show how utcc can be mapped into tccp by means of a transfor-
mation that preserves the original behavior. We also prove the correctness
of the transformation.

1 Introduction

The Concurrent Constraint paradigm (cc in short) [17,18] is a simple but powerful
model able to represent concurrent systems. The model is based on a partial
representation of information. Differently from the classical approach where a
value is assigned to each system variable (store-as-valuation), in cc a store (i.e., a
conjunction of constraints) defines the (partial) information regarding the values
of the system variables. The store is also the way in which agents representing
the behavior of the system interact. In brief, the cc model is based on agents
that update and consult some information to the store by using the tell and ask
operations. The tell operation adds a given constraint to the store, whereas ask
checks whether or not a given constraint is entailed by the store.

The original cc model has been extended with a notion of time in several ways
in order to be able to specify systems where it is necessary to model the time,
such as reactive systems [7] and, in general, applications with timing constraints.

? This work has been supported by the Spanish MEC/MICINN under grant TIN2007-

68093-C02-02, by the Generalitat Valenciana under grant Emergentes GV/2009/024, and
by the Universidad Politécnica de Valencia, program PAID-06-07 (TACPAS).



116 Alexei Lescaylle, Alicia Villanueva

In the literature there exist several programming languages resulting from the
temporal extension of cc. In this work we deal with two of them: the Timed
Concurrent Constraint (tccp) of F. de Boer et al. [3], and the more recent Universal
timed concurrent constraint (utcc) of C. Olarte and F. Valencia [16]. Although
both languages are defined under the same cc paradigm, they differ both in the
operators they consider and in the defined notion of time.

There are many differences between the two considered languages. We remark
the most important ones which are, first, that utcc is a deterministic language
whereas tccp preserves the non-determinism of cc. Second, the concurrent model
used in tccp is maximal paralellism whereas utcc preserves the interleaving model
for concurrency of cc. Finally, in utcc a new temporal operator is defined in order
to make time pass, whereas in tccp the notion of time is implicit. This means
that there is no operator for controlling when a time instant passes, but each
time a consult or update of the store is executed, time passes.

The expressive power of temporal concurrent constraint languages has been
previously studied [3,13,14,15,19]. In [19] it is proven that the temporal language
defined in [6] embeds the synchronous data flow language Lustre [4] (restricted
to finite value types) and also the asynchronous state oriented language Argos
[12]. Moreover, the strong abortion mechanism of Esterel can also be encoded in
this language. In [3] it is shown that the notion of maximal parallelism of tccp is
more expressive than the notion of interleaving parallelism of other concurrent
constraint languages. Regarding the utcc language, it is shown Turing complete
in [15].

In this paper, we define a transformation from utcc programs into tccp
programs that preserves the semantics of the original program. The two main
challenges we had to overcome were the definition in tccp of the abstraction
operator of utcc, and to mimic the notion of time of utcc in the implicit time
of tccp. We are interested in comparing these two languages since both, tccp in
[8,9] and utcc in [16,15], have been used to model security protocols. Since they
have very different characteristics, the approaches for modeling protocols are also
quite different. By transforming utcc programs into tccp programs, we are able
to apply over the resulting tccp program other techniques such as the abstraction
method of [2] or the interpreter presented in [11].

The paper is structured as follows. Section 2 presents the utcc and tccp
languages. The intuition of the transformation from utcc into tccp is given
in Section 3. Then, Section 4 describes the transformation process, and the
correctness of our proposal. Finally, Section 5 concludes and gives some directions
for future work.

2 The utcc and tccp languages

All the languages from the cc paradigm are defined over an underlying constraint
system. In this section, we introduce the notion of constraint system. Thereafter,
we present the utcc and tccp languages.



Bridging the Gap between Two Concurrent Constraint Languages 117

2.1 The Constraint System

The cc framework is parametric w.r.t. a constraint system which states the
constraints that can be used and the entailment relation among them. In this
paper we assume that the two languages share the same constraint system.

Let us recall the definition of constraint system of [16]. A constraint system
C can be represented as the pair (Σ,∆) where Σ is a signature of function and
predicate symbols, and ∆ is a first-order theory over Σ. Let L be the first-order
language underlying C with a denumerable set of variables Var = {x, y, . . .},
and logic symbols ¬,∧,∨,⇒,⇔,∃,∀, true and false. The set of constraints C =
{c, d, . . . } are terms over L. We say that c entails d in ∆, written c `∆ d, iff
c⇒ d ∈ ∆, in other words, iff c⇒ d is true in all models of ∆. In the following
we use ` instead of `∆ when confusion is not possible. For operational reasons,
` is often required to be decidable.

We use ~t for a sequence of terms t1, . . . , tn with length |~t| = n. If |~t| = 0 then
~t is written as ε. We use c[~t\~x], where |~t| = |~x| and xi’s are pairwise distinct, to
denote c with the free occurrences of xi replaced with ti. The substitution [~t\~x]
is similarly applied to other syntactic entities.

2.2 Universal Timed Concurrent Constraint Language

The Universal Timed Concurrent Constraint Language (utcc in short) [16] extends
the deterministic timed language of [6] (called tcc) to model mobile behavior. It
introduces the parametric ask constructor (abs ~x; c)A, replacing the native ask
operation of tcc. The novelty is that the parametric ask not only consults whether
or not a condition holds, but also binds the variables ~x in A to the terms that
make c true. As in the tcc language, the notion of time is modeled as a sequence
of time intervals. During each time interval, some internal steps are executed
until the process reaches a resting point. Let us show the syntax of the language.

Definition 1 (utcc syntax [16]). Processes A,B, . . . in utcc are built from
constraints in the underlying constraint system C as follows:

A,B ::= skip | tell(c) | A ‖ B | (local ~x; c)A | nextA | unless c nextA | !A |
| (abs ~x; c)A

with the variables in ~x being pairwise distinct.

Intuitively, skip does nothing; tell(c) adds c to the shared store. A ‖ B denotes
A and B running in parallel (interleaving) during the current time interval
whereas (local ~x; c) A binds the set of fresh variables ~x in A. Thus, ~x are local
to A under a constraint c. The unit-delay nextA executes A in the next time
interval. The time-out unless c nextA executes A in the next time interval iff c is
not entailed at the resting point of the current time interval. These two processes
explicitly control the time passing. The replication operator !A is equivalent to
execute A ‖ nextA ‖ next2A ‖ . . . , i.e., unboundly many copies of A, one at a
time. Finally, (abs ~x; c)A executes A[~t\~x] in the current time interval for each



118 Alexei Lescaylle, Alicia Villanueva

term ~t such that the condition c[~t\~x] holds in the store. when c doA is used for
the empty abstraction (abs ε; c)A.

The structural operational semantics (SOS) of utcc is shown in Table 1
[16]. It is given in terms of two transition relations between configurations. A
configuration is of the form 〈A, c〉, where A is a process and c a store. The
internal transition 〈A, c〉 −→ 〈A′, c′〉 states that the process A with current store
c reduces, in one internal step, to the process A′ with store c′. The observable

transition A
(c,d)
=⇒ B says that the process A on input c reduces, in one time

interval, to the process B and output d. It is obtained from finite sequences
of internal transitions. The symbol 6−→ indicates that no internal rule can be
applied.

The function F (B) is used to define the observable transition. It determines the
utcc process to be executed in the following time instant looking to the next and
unless processes occurring in A. In particular, F (skip) = skip, F ((abs ~x; c)Q) =
skip, F (P1||P2) = F (P1)||F (P2), F ((local x; c)Q) = (local x)F (Q), F (nextQ) =
Q and F (unless c nextQ) = Q. The equivalence relation ≡ states when two
configurations are equivalent (for instance A||B ≡ B||A).1

RT 〈tell(c), d〉 −→ 〈skip, d ∧ c〉

RP
〈A, c〉 −→ 〈A′, d〉

〈A ‖ B, c〉 −→ 〈A′ ‖ B, d〉

RL
〈A, c ∧ (∃~x d)〉 −→ 〈A′, c′ ∧ (∃~x d)〉

〈(local ~x; c)A, d〉 −→ 〈(local ~x; c′)A′, d ∧ ∃~x c′〉

RU
d ` c

〈unless c nextA, d〉 −→ 〈skip, d〉

RR 〈!A, d〉 −→ 〈A ‖ next !A, d〉

RA
d ` c[~y\~x] |~y| = |~x|

〈(abs ~x; c)A, d〉 −→ 〈A[~y\~x] ‖ (abs ~x; c ∧ ~x 6= ~y)A, d〉

RS
γ1 −→ γ2

γ′1 −→ γ′2
if γ1 ≡ γ′1 and γ2 ≡ γ′2

RO
〈A, c〉 −→∗ 〈B, d〉 6−→

A
(c,d)
=⇒ F (B)

Table 1. Internal and observable reductions of utcc.

1 See [16] for the complete definitions.



Bridging the Gap between Two Concurrent Constraint Languages 119

2.3 Timed Concurrent Constraint Language

The Timed Concurrent Constraint Language (tccp in short) is a declarative
language introduced in [3] to model concurrent and reactive systems. The language
inherits all the features of the cc paradigm, including the monotonicity of the
store. An operator for dealing with negative information and an implicit notion
of time are newly defined. Regarding the notion of time, instead of having time
intervals, in tccp each update or consult to the store takes one time instant.
Different consults and/or updates in parallel take one single time instant. Let us
briefly recall the syntax of tccp [3]. A tccp program P is an object of the form
D.A, where D is a set of procedure declarations of the form p(~x) :−A, and A is
an agent:

A,B,Ai ::= skip | tell(c) |
∑n
i=1 ask(ci)→ Ai | now c thenA elseB | A ‖ B |

∃xA | p(~x)

where c, ci are finite constraints of C. Similarly to utcc, the skip agent does nothing
and tell(c) adds the constraint c to the store. tccp is non-deterministic, thus the
choice agent

∑n
i=1ask(ci)→ Ai executes (in the following time instant) one of

the agents Ai provided its guard ci is satisfied. In case no condition ci is entailed,
the choice agent suspends (and it is again executed in the following time instant);
The conditional agent now c then A else B executes agent A if the store satisfies
c, otherwise executes B; A ‖ B executes the two agents A and B in parallel
(following the maximal parallelism model); The ∃x A agent is used to define
the variable x local to the process A. We use ∃ ~x A to represent ∃x1 . . . ∃xn A;
Finally, p(~x) is the procedure call agent where ~x denotes the set of parameters of
the process p. Regarding time passing, only the tell, choice and procedure call
agents consume time.

As in the original model of cc, and differently from utcc, the store behaves
monotonically, thus it is not possible to change the value of a given variable
along the time. Similarly to the logic approach, to model the evolution of variable
values along the time we can use the notion of stream. For instance, given an
imperative-style variable, we write X = [Y | Z] to denote a stream X recording
the current value Y , and the future values in the stream Z. A specific function
find(X,T ) is defined on the constraint system to consult whether a term can be
retrieved from a stream in the store.

Definition 2 (Find). Let X be a stream, I a constraint and st the current store
at time instant t. Then, find(X, I) returns true if I can be retrieved from the
stream X; Otherwise returns false. Formally,

find(X, I) =
{

true if st `t X⊃̇I
false otherwise

where ⊃̇ denotes the notion of term retrieved from a stream, i.e., it checks if I
unifies with, at least, one of the values stored in the given stream. For example, a
call to find([a(1), b(2) | T ],a(Ag)) would return true provided the variable Ag
is non-instantiated in the store.



120 Alexei Lescaylle, Alicia Villanueva

In this paper, we follow the modified computation model for tccp presented in
[1] where the store was replaced by a structured store in order to ease the task of
updating and retrieving information from the store. A structured store [1] consists
of a timed sequence of stores st i where each store contains the information added
at the i-th time instant. Table 2 shows the operational semantics of tccp in terms
of a transition system over configurations. Each transition step takes one time
unit. The configuration 〈A, st〉 represents the agent A to be executed under the
store st .

R1 〈tell(c), st〉t −→ 〈skip, st tt+1 c〉t+1

R2 〈
Pn
i=0 ask(ci)→ Ai, st〉t −→ 〈Aj , st〉t+1 if 0 6 j 6 n,st `t cj

R3
〈A, st〉t −→ 〈A′, st ′〉t+1

〈now c thenA elseB, st〉t −→ 〈A′, st ′〉t+1
if st `t c

R4
〈B, st〉t −→ 〈B′, st ′〉t+1

〈now c thenA elseB, st〉t −→ 〈B′, st ′〉t+1
if st 6`t c

R5
〈A, st〉t 6−→

〈now c thenA elseB, st〉t −→ 〈A, st〉t+1
if st `t c

R6
〈B, st〉t 6−→

〈now c thenA elseB, st〉t −→ 〈B, st〉t+1
if st 6`t c

R7
〈A, st〉t −→ 〈A′, st ′〉t+1, 〈B, st〉t −→ 〈B′, st ′′〉t+1

〈A ‖ B, st〉t −→ 〈A′ ‖ B′, st ′ t st ′′〉t+1

R8
〈A, st〉t −→ 〈A′, st ′〉t+1, 〈B, st〉t 6−→
〈A ‖ B, st〉t −→ 〈A′ ‖ B, st ′〉t+1

R9
〈A, st1 t ∃x st2〉t −→ 〈A′, st ′〉t+1

〈∃st1xA, st2〉t −→ 〈∃st′xA′, st2 t ∃x st ′〉t+1

R10 〈p(~x), st〉t −→ 〈A, st〉t+1 if p(~x) : −A ∈ D

Table 2. Operational semantics of the tccp language.

Rule R1 describes the behavior of the tell agent at time instant t, which
augments the store st by adding the constraint c. The constraint c will be
available to other agents from the time instant t+ 1. Rule R2 states that Aj is
executed in the following time unit whenever st entails the condition cj . Regarding
the conditional agent, R3 models the case in which the agent A with the current
store st is able to evolve into the agent A′ and a new store st′ and st satisfies
c, then A′ is executed in the following time instant with the computed store
st ′. R7 models the evolution of the parallel agent: if A with store st is able to
evolve into A′ with a new computed store st′, and also B with store st is able to
evolve into an agent B′ with st′′, then A′||B′ is run in the following time instant
with the store resulting from the conjunction of st′ and st′′. The rest of rules are
interpreted in a similar way.



Bridging the Gap between Two Concurrent Constraint Languages 121

3 Embedding utcc into tccp

In this section, we show how utcc can be embedded into tccp. It is not possible to
have a direct transformation since the two languages have important differences in
nature. In particular, both languages handle time differently, and the abstraction
operator of utcc is not present in tccp. We define a transformation which, given
the specification of an utcc program, constructs in an automatic way a tccp
program that preserves the expected behavior of the original utcc program. Let
us first show the intuition of the transformation by means of an example. The
following example is extracted from [16], where it was used to illustrate how
mobility can be modeled in utcc:

Example 1 (Mobility [16]). Let Σ be a signature with the unary predicates out1,
out2, . . . and a constant 0. Let ∆ be the set of axioms over Σ valid in first-order
logic. Consider the following process specifications.

P = (abs y; out1(y)) tell(out2(y))

and

Q = (local z)(tell(out1(z))‖when out2(z) do next tell(out2(0))).

The process models a method to detect when a private information can become
public in a given (non secure) channel (out2). Thus, we have two channels called
out1 and out2. Process P recovers from the first channel a value and forwards it
to the second one. Q sends a private value (locally declared) z to out1 and, in
parallel, checks whether the second channel receives such value. In case the value
appears in the out2 channel, then, in the following time interval, the value 0 is sent
to the second channel (modeling the vulnerability detection). By executing both
processes in parallel P‖Q, the value 0 is produced in the second time interval.

Our transformation generates as many tccp procedure declarations as utcc
processes are defined. In this case, we get the procedure declarations proc P and
proc Q. Then, the initial call P‖Q is transformed into the initial call (agent) of
the tccp program.

We start by showing the transformation for the Q process. In this case, we
have to pay special attention to model the utcc timed operator next, since it does
not exist in tccp. The utcc process states that, when z is retrieved in the second
channel, then in the following time interval (after the resting point) the value
0 is emitted to the channel. We define a global stream Syn that models when
the utcc computation reaches a resting point. Having this in mind, we emit the 0
value when an ok is the value of the stream. At this point of the paper we omit
the details for the computation of the synchronization mechanism (the values for
the synchronization stream), but we present it in the next section.

proc Q() :- ∃ z (tell(out1(z)) ‖
ask(out2(z))→ ask(Syn .= ok)→ tell(out2(0))).



122 Alexei Lescaylle, Alicia Villanueva

The transformation for the P process is a bit more elaborated due to the use
of the abs operator. Remember that (abs y; out1 (y)) tell(out2 (y)) executes (in
parallel) the different instantiations (depending on the possible replacements of
y) of the tell agent. In order to handle the different possible instantiations, we
use an auxiliary declaration absi that simulates the behavior of the abs operator
and a term substi ∈ Σ to accumulatively store the replacement found in each
iteration.

proc P() :- ∃ y, S (abs1(y, S) || tell(subst1(S))).

abs1(y, S) :- ∃ t, S′ ((now(out1(y){t\y} ∧ ¬(find(S, {t\y})))
then (tell(out2(y){t\y}) ‖

(tell(S = [{t\y} | S′]) ‖
abs1(y, S)))

else skip)).

The arguments in the auxiliary call determine the pattern that is defined
in the conditional agent. After executing the agent tell(S = [{t\y} | S′]) the
stream S includes the replacement of y handled in the current recursive call. The
computation stops when there is no replacement retrieved from the store that is
not already in the stream S. The last part of the example is the translation of
the utcc initial process P‖Q:

(proc P ‖ proc Q ‖ tell(Syn = [wait | CT ])
utcc clock(out1(z) ∧ out2(z), Syn)‖ utcc clock(out2(0), Syn))

The two processes are called in parallel, as in the utcc example, and also the
synchronization stream is initialized to the value wait, since the computation
has not reached a resting point. Actually, also two clocks (one for each utcc time
unit) are defined and executed in parallel to the above specification. Each clock
updates the value of Syn whenever a condition (the first parameter of the call
which characterizes a utcc resting point) holds. The conditions are statically
computed, and we show the formalization in the following section. Here we simply
show how we simulate the pass of the time of utcc in tccp by using a procedure
call agent. The declaration for such procedure call utcc clock is shown below. It
contains two parameters, the first one represents the information computed in a
given utcc time unit, whereas the second one is the synchronization variable Syn
as we explain above. Each time a resting point is reached (the condition of the
choice agent, identified by the variable Storei, holds), the synchronization stream
is updated to ok, thus all the agents that were waiting for this value would start
their execution. Then, the value is set again to wait.

utcc clock(Storei,Syn) :-
ask(Storei)→ ∃Sn, Sn1((tell(Syn = [ok | Sn) ‖

ask(true)→tell(Sn = [wait | Sn1]))).

In Table 3, we show the trace of the execution of the resulting tccp program.
The table is interpreted from left to right, up to bottom. It is shown for each



Bridging the Gap between Two Concurrent Constraint Languages 123

(tccp) time instant the current store and the agent to be executed. In the original
utcc example, at the second resting point the value out2(0) is emmited. In the
tccp trace, it can be seen that only after the first Syn .= ok holds (thus the first
resting point has been reached), the given value is emmited to the store. The value
of the store at time instant 6 means the same as Syn .= ok. We have simplified
notation at instant 4 to improve clarity. Really, the constraint CT = [ok | Sn],
which implies Syn .= ok, is the information available in the store at time instant
4.

time 0 1

store true Syn = [wait | CT ]

agents

proc P() ‖
proc Q() ‖
tell(Syn = [wait | CT ]) ‖
utcc clock(out1(z) ∧ out2(z),Syn)‖
utcc clock(out2(0),Syn)

abs1(y, S) ‖ tell(subst1(S))
tell(out1(z)) ‖
ask(out2(z))→ . . . ‖
ask(out1(z) ∧ out2(z))→ . . . ‖
ask(out2(0))→ . . .

time 2 3

store out1(z), subst1(S) t = z, out2(z) , S = [{{t\y}} | S′]

agents

now(out1(y){t\y}∧
¬(find(S, {{t\y}}))). . .

tell(out2(y){t\y}) ‖
tell(S = [{t\y} | S′]) ‖
abs(y, S) ‖

ask(out2(z))→ . . . ‖
ask(out1(z) ∧ out2(z))→ . . . ‖
ask(out2(0))→ . . .

now(out1(y){t′\y}∧
¬(find(S, {{t′\y}}))). . .

skip ‖
ask(Syn

.
= ok) → tell(out2(0)) ‖

∃Sn, Sn1(
tell(Syn = [ok | Sn]) ‖
ask(true)→

tell(Sn = [wait | Sn1]))‖
ask(out2(0))→ . . .

time 4 5

store Syn
.
= ok out2(0), Sn = [wait | Sn1]

agents
tell(Sn = [wait | Sn1])‖
ask(out2(0))→ . . .

∃Sn′, Sn′1 (
tell(Syn = [ok | Sn′]) ‖
ask(true)→

tell(Sn′ = [wait | Sn′1]))

time 6 7

store Sn1 = [ok | Sn′] Sn′ = [wait | Sn′1]

agents tell(Sn′ = [wait | Sn′1])

Table 3. Trace of the resulting tccp program.

4 Formalization of the transformation

The transformation from utcc into tccp can be divided in two phases. The first
one encodes each utcc process into tccp code, whereas the second one defines
the necessary synchronization among the generated tccp agents. As we have
shown, since the notion of time of both languages differs, we need to force the
synchronization of processes in order to mimic the behavior of the original utcc
program.



124 Alexei Lescaylle, Alicia Villanueva

In the following, we define the τP function that transforms the utcc program
into a tccp program. As mentioned above, this function includes a final phase
where the synchronization mechanism complements the first transformation phase.
Next we show the formalization. In [10] we show in pseudocode the mechanization
of the process. We also prove that the built tccp program mimics the behavior of
the given utcc program.

We say that an utcc program, similarly to a tccp program, is composed by a
set of utcc declarations of processes and the utcc process that starts the execution
of the program. Let us first introduce some notation. ud is a declaration from
the set of utcc declarations, and ur is an utcc process. Moreover, we say that
name(ud) recovers the declaration name, and body(ud) recovers the process on
the rhs of the declaration. For example, name(P = tell(out2(y))) returns P.

For each declaration ud in the set of declarations of the original utcc program,
we define a tccp declaration in the resulting tccp program. That tccp declaration
has the form:

name(ud) :- τA(body(ud)).

where τA is an auxiliary function that, given the utcc process ur (ur = body(ud)),
constructs a tccp agent that mimics its behavior. Let us now describe the τA
function. Depending on the form of the input process ur, τA behaves differently.
There are nine possible cases:

Case ur≡ skip. The corresponding tccp agent is skip.2

Case ur≡ tell(c). The corresponding tccp agent is tell(c).
Case ur≡ (local ~x; c) A. The corresponding tccp agent is ∃c ~x (τA(A))

The superscript c denotes the initial store in the local computation in A, in
the same sense as it is used in the utcc semantics for the local operator.

Case ur≡ A ‖ B. The corresponding tccp agent is (τA(A) ‖ τA(B)).
Case ur≡ next A. The corresponding tccp agent is ask(Syn .= ok)→ τA(A).

The Syn variable is a synchronization stream that is updated depending on
the clock of the utcc program. The symbol .= checks the last (current) value
of the stream, which is updated to ok each time a resting point is reached in
the utcc program. We introduce later the synchronization mechanism that
takes care of updating Syn.

Case ur≡ unless c next A. The corresponding tccp agent is
ask(Syn .= ok)→ now c then skip else τA(A).

Case ur≡ !A. The corresponding tccp agent is (τA(A) ‖ auxi)
auxi is an auxiliary (fresh) declaration defined to simulate the replication
of utcc by means of the recursion capability of tccp. The definition of the
new declaration is: auxi :- ask(Syn .= ok)→ (τA(A) ‖ auxi), where at each
resting point (Syn .= ok holds) the execution of τA(A) in parallel with the
procedure call modeling recursion are executed.

2 Since the semantics of both the utcc version of the agent and the tccp version of
the agent behave similarly and no confusion can arise, we don’t distinguish them
syntactically.



Bridging the Gap between Two Concurrent Constraint Languages 125

Case ur≡ (abs ~x; c) A. The corresponding tccp agent is
∃ ~x, S (absi(~x, S) || tell(substi(S))), where absi is an auxiliary (fresh) tccp
declaration defined as follows:

absi(~x, S):-∃~t, S′ (now (c{~t\~x} ∧ ¬(find(S, {~t\~x})))
then (τA(A{~t\~x}) ‖

(tell(S = [{~t\~x} | S′])‖
absi(~x, S)))

else skip).

Where substi ∈ Σ, i.e., it is a predicate handled by the constraint system
C and identifies the stream storing the replacement (substitution) found in
each iteration.

Case ur≡ P = A. The corresponding tccp agent is the call to the process name(P ),
i.e., proc P.

Once all the utcc declarations are transformed, the second phase of the
transformation τA can start. It consists in defining the clock that mimics the
time passing in utcc. This is necessary since the explicit notion of time of utcc
differs from the implicit one of tccp: A time unit in utcc may correspond with
several time units in tccp. We use the stream Syn to simulate such clock. The
stream may contain the following values:

– wait, that means that a resting point has not been reached.
– ok, that simulates that the resting point of the current time interval has been

reached.

As a result of this second transformation phase, a new declaration utcc clock
to compute the time passing of utcc in tccp is introduced. Then, the initial call of
the program will contain in parallel many procedures call to utcc clock (with
different conditions) as necessary to simulate the utcc clock. We need to run
a pre-process that computes each time unit of such clock, i.e., it identifies the
resting points of the original utcc program that define when a tick must occur.
In the following, we show the function instant that computes the store generated
during one utcc time instant. This information is used by the clock utcc clock
to update the synchronization variable Syn. The auxiliary function follows is
used to compute the process that must be executed in the following time instant,
and simulates the partial function F of the utcc semantics.

Given the utcc program up, let us assume that there are n process declarations
in the program. First, we define a tccp declarations of the following form.

utcc clock(Storei,Syn) :-
ask(Storei)→ ∃Sn, Sn1((tell(Syn = [ok | Sn]) ‖

ask(true)→ tell(Sn = [wait | Sn1]))).

Then, for each store computed by the functions instant given the process
computed by follows, we specify in the initial term, in parallel, a call to such
declaration with the computed store. This means that we define n runs for the



126 Alexei Lescaylle, Alicia Villanueva

above declaration. When new computed stores have already been generated
(modulo renaming), then the process ends. More specifically, the computation
starts by computing the instant for the initial call. Then, the function follows
computes the process after the following resting point for which the instant is
computed. The iteration proceeds until a loop is reached, i.e., the computed
instant has already been computed (modulo renaming).

The function instant computes the information at the resting point of a given
time interval, following the operational semantics of utcc:

instant(ur, st) =



st if ur ≡ skip
st ∪ c if ur ≡ tell(c)
instant(A{~x′\~x}, c ∧ ∃~xst) if ur ≡ (local ~x; c) A and

~x′ are fresh variables
instant(A1, st) ∧ instant(A2, st) if ur ≡ A1 ‖ A2

st if ur ≡ next A
st if ur ≡ unless c nextA

instant(A, st) if ur ≡ !A∧
z∈θ instant(A{~y\~x}, st) if ur ≡ (abs ~x; c)A and

st ` c{~y\~x} and
θ = {~y | st ` c{~y\~x}}

instant(body(P), st) if ur ≡ P = A
st default

The function follows is similar to the future function F of utcc:

follows(ur, st) =



skip if ur ≡ skip
skip if ur ≡ tell(c)
(local ~x) follows(A, st ∧ c) if ur ≡ (local ~x; c) A
follows(A1, st) ‖ follows(A2, st) if ur ≡ A1 ‖ A2

A if ur ≡ next A
A if ur ≡ unless c nextA and

st 6` c
!A if ur ≡ !A
(abs ~x; c) follows(A, st ∧ c) if ur ≡ (abs ~x; c) A
follows(body(P), st) if ur ≡ P = A
skip default

To guarantee the termination of the process is necessary to define a notion of
equivalence between utcc system states. To achieve this goal, we follow the idea
of the notion of equivalence among states proposed in [5]. An state of the system
is composed by a store and the process to be executed in the following time
instant. The notion of equivalence defines that two states are equivalent if there
exists a renaming of variables that makes the stores of both states equivalents
(looking at the current value of streams) and if the processes to be executed



Bridging the Gap between Two Concurrent Constraint Languages 127

in the following time instant of both states coincide. Thus, each time that we
compute a given store by using the function instant , and the processes to be
executed in the following time instant by using the function follows , we compare
the corresponding state with all the previous generated. Then, in case that we
found an equivalent state we finish the computation of the clock. Due to the
monotonicity of the utcc language a fixed point is always reached. We formalize
the respective proofs in [10]. Moreover, the termination of the abs operator is
proven in [16] by using a symbolic semantic avoiding infinite subsitutions.

4.1 Correctness of the transformation

We have defined a transformation from utcc programs into tccp programs in such
a way that the resulting tccp program mimics the behavior of the original utcc
program. In this section we show that our method is sound in the sense that
each utcc trace of a program can be simulated by a tccp trace of the transformed
version.

We first introduce some notations. Similarly to [15], we say that elements
c1, c2, c

′
1, c
′
2, . . . are the set of constraints defined by C. Then, α, α′, . . . denote

infinite sequences of constraints where α = c1.c2 . . . and α′ = c′1.c
′
2 . . .. Finally,α(i)

denotes the i-th element in α, for instance, α(2) = c2. Note that any constraint by
itself is (or can represent) a store, so we can use both terminologies indistinctly.

Definition 3 (Input-Output Relations over utcc processes [15]). Given

the utcc process P , α = c1.c2 . . . and α′ = c′1.c
′
2 . . ., P

(α,α′)
=⇒ is used to represent

P = P1
(c1,c

′
1)

=⇒ P2
(c2,c

′
2)

=⇒ . . .. Then, the set

ioutcc(P ) = {(α, α′) |P (α,α′)
=⇒ }

denotes the input-output behavior of P . This sequence can be interpreted as an
interaction between the system P and an environment. At the time instant i, the
environment provides an input ci and Pi produces the output c′i.

Now we recall the definition of the observable behavior of tccp agents, based
on the transition system described in Table 2. Let d = d0 · d1 · . . . · di · . . . be a
structured store where dn is the information computed at time instant n.

Definition 4 (Observable Behavior of tccp programs [1]). Given a tccp
program P , an agent A0, and an initial structured store d = d0

0 · trueω where d0
0

represents the first component of d0, the timed operational semantics of P w.r.t.
the initial configuration 〈A0, d0〉 is defined as:

iotccp(P )[〈A0, d0〉] ={d = d0 · d1 · . . . |〈Ai, di〉i −→ 〈Ai+1, di+1〉i+1 for i ≥ 0}

Let us next define the notion of inclusion of a utcc trace into a tccp trace. We
write t06k6jdk with k, j ∈ N for the conjunction of all the stores 0 to j of the
given structured store d.



128 Alexei Lescaylle, Alicia Villanueva

Definition 5 (Entailment Relation). Given the sequence of constraints α′ =
c′1.c
′
2 . . . and the structured store d = d0 · d1 · d2 · . . . representing the outputs

of a given utcc program and a given tccp program, respectively. Let i, j ∈ N
denoting the time instants of utcc and tccp, respectively . We say that d entails
the sequence of constraints α′, denoted as d `τ α′, iff

∀i(d `j α′(i)) s.t. j + 1 > i, i > 0

and the indexes j are pairwise distinct.

The following example illustrates the definition.

Example 2. Given the sequence α′ = (v = 1 ∧ w = 2).z > 8.(x = 7 ∧ y = 5), and
the structured store d = true·(v = 1)·(w = 2)·z > 10·x = 7·r = 3·(y = 5∧q < 3).
We can see that:

– t06k62 dk ` α′(1) since it holds that (true∧v = 1∧w = 2) ` (v = 1∧w = 2)
– t06k63 dk ` α′(2) since it holds that (true∧ v = 1∧w = 2∧ z > 10) ` z > 8
– t06k66 dk ` α′(3) since it holds that (true ∧ v = 1 ∧ w = 2 ∧ z > 10 ∧ x =

7 ∧ r = 3 ∧ y = 5 ∧ q < 3) ` (x = 7 ∧ y = 5)
Therefore, d `τ α′.

Now we are ready to define the notion of trace inclusion, i.e., when a utcc
trace is mimicked by a tccp trace.

Definition 6. Given (α,α′) the sequences of constraints computed by a utcc
program, and d the structured store computed by a tccp program. Then, (α,α′) is
included in d, written (α, α′) ∼τ d, iff d `τ α′.

To guarantee the correctness of our method, we shall prove the correctness of
the synchronization and transformation processes. All proofs of our results can
be found in [10].

Lemma 1 (Correctness of Synchronization). Consider a utcc program U
of the form U := UD.UR where UD is the declaration set and UR is the process
that initiates the execution of U . Let sti the store computed by the ith iteration
of the function instant on the program U . Let U1

R = follows(UR, st0), where st0

is the initial store and U iR = follows(U i−1
R , sti−1). Let ioutcc(U) = (α, α′). Then,

st1 ` α′(1), st2 ` α′(2), . . ., stn ` α′(n) s.t.:

– st1 = instant(U1
R, true) and,

– stn = instant(UnR, true) s.t. n > 1

The following theorem states that a given utcc trace is included in the trace
generated by the equivalent tccp program, i.e., by the tccp program obtained by
the transformation.

Theorem 1 (Correctness of Transformation). Consider an utcc program
U . Let T the tccp program resulting of transforming U , τP (U) = T . Given
ioutcc(U) = (α, α′), and iotccp(T ) = d. Then, (α,α′) ∼τ d.



Bridging the Gap between Two Concurrent Constraint Languages 129

5 Conclusion

This paper presents a sound transformation from utcc processes into tccp specifi-
cations. The two languages belong to the concurrent constraint paradigm, but
they have very different features which make the transformation difficult. The
transformation shows that tccp is expressive enough to model utcc processes. In
particular, by means of a synchronization mechanism based on a shared stream
that acts as a clock, the explicit notion of time of utcc can be simulated. Moreover,
the new abstraction operation can be expressed in terms of parameters passing
among calls. The transformation can be automatized, which would allow us to
reuse the tools defined for the tccp language, such as the recent tccp interpreter.

As future work, we plan to implement the transformation and to study the
relation of the language with other concurrent languages such as Linda.

References

1. Alpuente, M., Gallardo, M.M., Pimentel, E., Villanueva, A.: Verifying Real-Time
Properties of tccp Programs. Journal of Universal Computer Science 12(11) (2006)
1551–1573

2. Alpuente, M., Gallardo, M., Pimentel, E., Villanueva, A.: A semantic framework
for the abstract model checking of tccp programs. Theoretical Computer Science
346(1) (2005) 58–95

3. Boer, F.S.d., Gabbrielli, M., Meo, M.C.: A Timed Concurrent Constraint Language.
Information and Computation 161(1) (2000) 45–83

4. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language
for real-time programming. In: POPL ’87: Proceedings of the 14th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, New York, NY,
USA, ACM (1987) 178–188

5. Falaschi, M., Villanueva, A.: Automatic Verification of Timed Concurrent Constraint
Programs. Theory and Practice of Logic Programming 6(3) (May 2006) 265–300

6. Gupta, V., Saraswat, V.A., Jagadeesan, R.: Foundations of Timed Concurrent
Constraint Programming. In: Proceedings, Ninth Annual IEEE Symposium on
Logic in Computer Science, Paris, France, IEEE Computer Society Press (July
1994) 71–80

7. Harel, D., Pnueli, A.: On the development of reactive systems. (1985) 477–498
8. Lescaylle, A., Villanueva, A.: Using tccp for the Specification and Verification of

Communication Protocols. In: Proceedings of the 16th International Workshop on
Functional and (Constraint) Logic Programming (WFLP’07). (2007)

9. Lescaylle, A., Villanueva, A.: Verification and Simulation of protocols in the
declarative paradigm. Technical report, DSIC, Univeridad Politécnica de Valencia
(2008) Available at http://www.dsic.upv.es/˜alescaylle/files/dea-08.pdf.

10. Lescaylle, A., Villanueva, A.: Bridging the gap between two Concurrent Constraint
Languages. Technical report, DSIC, Univeridad Politécnica de Valencia (2009)
Available at http://www.dsic.upv.es/˜villanue/LV09-techrep.pdf.

11. Lescaylle, A., Villanueva, A.: The tccp Interpreter. Electron. Notes Theor. Comput.
Sci. 258(1) (2009) 63–77

12. Maraninchi, F.: Operational and compositional semantics of synchronous automaton
compositions. In: In CONCUR. LNCS 630, Springer-Verlag (1992) 550–564



130 Alexei Lescaylle, Alicia Villanueva

13. Nielsen, M., Palamidessi, C., F.D., V.: Temporal Concurrent Constraint Program-
ming: Denotation, Logic and Applications. Nordic Journal of Computing 9(1)
(2002) 145–188

14. Nielsen, M., Palamidessi, C., Valencia, F.D.: On the expressive power of temporal
concurrent constraint programming languages. In: PPDP ’02: Proceedings of the 4th
ACM SIGPLAN international conference on Principles and practice of declarative
programming, New York, NY, USA, ACM (2002) 156–167

15. Olarte, C., Valencia, F.D.: The expressivity of universal timed CCP: undecidability
of Monadic FLTL and closure operators for security. In: PPDP ’08: Proceedings of
the 10th international ACM SIGPLAN conference on Principles and practice of
declarative programming, New York, NY, USA, ACM (2008) 8–19

16. Olarte, C., Valencia, F.D.: Universal concurrent constraint programing: symbolic
semantics and applications to security. In: SAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing, New York, NY, USA, ACM (2008) 145–150

17. Saraswat, V.A.: Concurrent Constraint Programming Languages. PhD thesis,
Carnegie-Mellon University, Cambridge, MA (January 1989)

18. Saraswat, V.A.: Concurrent Constraint Programming Languages. The MIT Press,
Cambridge, MA (1993)

19. Tini, S.: On the Expressiveness of Timed Concurrent Constraint Programming. In:
Electronics Notes in Theoretical Computer Science, Electronics (1999)



Large Scale Random Testing with QuickCheck
on MapReduce Framework

Shigeru Kusakabe, Yuuki Ikuta

Grad. School of Information Science and Electrical Engineering, Kyushu University
744, Motooka, Nishi-ku, Fukuoka city, 819-0395, Japan

Abstract. Testing plays an important role in gaining confidence for qual-
ity, robustness, and correctness of software. Among many tools for testing,
a property-based testing tool, QuickCheck, supports a high-level approach
to testing Haskell programs by automatically generating random input
data. Users of QuickCheck can customize their test case generation. Since
increasing the number of tests is effective in obtaining higher confidence,
huge number of tests may be performed especially in developing mission-
critical software. We can run such kind of testing on powerful platforms
such as PC-clusters in developing highly reliable software. We consider an
approach to leveraging the power of testing by using ”Cloud” to perform
arbitrary scale random testing with QuickCheck. We employ Hadoop
framework, an implementation of MapReduce programming model, which
is a programming model for large-scale data-parallel applications. We can
automatically distribute the generation of test data and the execution of
tests in a scalable data-parallel manner.

1 Introduction

Functional programming has many advantages including features useful to create
short, fast, and safe software[1]. One of the features in using a pure functional
language, such as Haskell, is making us think software at a higher level, and
programs serve like a kind of executable specification in formal methods. We
can also translate a large part of the formal model into programs in a functional
programming language as formal specification languages share several features
with functional programming languages. There have been works focusing on their
relations[2][3].

In light-weight formal methods, we do not rely on very rigorous means such
as theorem proofs, while various formal methods are useful in developing highly
reliable mission-critical software. Instead, in order to increase confidence in our
specifications, we use adequately less rigorous means, such as testing executable
specifications. While the specific level of rigor depends on the aim of the project,
millions of tests may be conducted in developing highly reliable mission-critical
software in a light-weight formal approach. For example, in an industrial project
using VDM++, a model-oriented formal specification language[4], they developed



132 Shigeru Kusakabe, Yuuki Ikuta

formal specifications of 100,000 steps including test cases (about 60,000 steps)
and comments written in the natural language, and they carried out about 7,000
black-box tests and 100 million random tests [5].

Even if a model of the target system is correct, its corresponding implementa-
tion code may be incorrect. One approach for gaining confidence in implementa-
tion code is to test it against an executable specification of the model. We can
compare the result of the implementation for a test data with the result of the
executable specification for the same test data. If the results are equal to each
other, we can gain confidence for the implementation. We are trying to develop
this kind of model-based testing framework for software projects using executable
formal specification languages. Our goal is to perform this kind of model-based
testing for as many test cases as the aim of the project requires with less human
intervention.

Regarding the number of test cases, preparing an arbitrary large number of
test cases by hand is possible but impractical. Among many tools for testing, a
property-based testing tool, QuickCheck, supports a high-level approach toward
testing Haskell programs by automatically generating random input data[6]. Users
of QuickCheck can customize their test case generation including the number of
test cases. Since increasing the number of tests is effective in obtaining higher
confidence, millions of tests may be performed on powerful platforms such as
PC-clusters or Grid computing platforms[7].

We consider an approach to leveraging the power of testing by using QuickCheck
on an elastic ”Cloud” platform. We can perform testing of arbitrary scale by
exploiting such a combination. We employ Hadoop framework to easily execute
tests in a data-parallel way. Hadoop is an implementation of MapReduce pro-
gramming model, which is a programming model for large-scale data-parallel
applications. We can automatically distribute the generation of test data and
the execution of tests in a scalable manner with Hadoop.

The rest of this paper is organized as follows. Section 2 briefly introduces
QuickCheck. Section 3 explains MapReduce programming model. Section 4
discusses our implementation issues and presents the results of preliminary
performance evaluation. Section 5 concludes.

2 QuickCheck

QuickCheck is an automatic testing tool for Haskell programs. It defines a formal
specification language to state properties. Properties are universally quantified
over their arguments implicitly. The function quickCheck checks whether the
properties hold for randomly generated test cases when they are passed as its
arguments. QuickCheck has been widely used and inspired related studies[8][9][10]

For the explanation, we use a simple qsort example from a book [11].

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs

where lhs = filter (< x) xs



Large Scale Random Testing with QuickCheck on MapReduce Framework 133

rhs = filter (>= x) xs

We use idempotency as an example invariant to check that the function obeys
the basic rules a sort program should follow. Applying the function twice has
the same result as applying it only once. This invariant can be encoded as a
simple property. The QuickCheck convention in writing test properties is prefixing
with prop to distinguish them from normal code. This idempotency property is
written as a following Haskell function. The function states equality that must
hold for any input data that is sorted.

prop_idempotent xs = qsort (qsort xs) == qsort xs

QuickCheck generates input data for this prop idempotent and passes it to
the property via the quickCheck function. Following example shows the property
holds for the 100 lists generated.

> quickCheck (prop_idempotent :: [Integer] -> Bool)

OK, passed 100 tests.

While the sort itself is polymorphic, we must specify a fixed type at which
the property is to be tested. The type of the property itself determines which
data generator is used. The quickCheck function checks whether the property is
satisfied or not for all the test input data generated.

QuickCheck has convenient features such as quantifiers, conditionals, and test
data monitors. In addition to the type-based default random test data generators,
it provides an embedded language for specifying custom test data generators.

3 MapReduce Programming Framework

We consider an approach to leveraging the power of testing by using ”Cloud”
to perform large scale testing. Increasing the number of tests can be effective
in obtaining higher confidence. We prepare our testing platform in an elastic
manner and perform tests in a data parallel way for test cases generated by using
and customizing QuickCheck.

3.1 Elastic platform

The Cloud Computing paradigm seems to bring a lot of changes in many IT fields.
We believe it also has impact on the field of software engineering and consider an
approach to leveraging light-weight formal methods by using Cloud Computing
which has the following aspects[12]:

1. The illusion of infinite computing resources available on demand, thereby
eliminating the need for Cloud Computing users to plan far ahead for provi-
sioning;

2. The elimination of an up-front commitment by Cloud users, thereby allowing
organizations to start small and increase hardware resources only when there
is an increase in their needs; and



134 Shigeru Kusakabe, Yuuki Ikuta

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Mapper

to be or 
not to be 
that is the 
question

to be or

not to be

that is the

question

<to,1>
<be,1>
<or, 1>
<not,1>
<to,1>
<be,1>

<that,1>
<is,1>

<the,1>
<question,1>

<be,2>
<is,1>
<not,1>

<or,1>
<question,1>

<that,1>
<the,1>
<to,2>

be 2
is 1
not 1
or 1
question 1
that 1
the 1
to 2

split into words count  words

MapReduce takes care of:
splitting input, sorting and distributing 
intermediate results, merging output.

Fig. 1. Word count example in MapReduce.

3. The ability to pay for use of computing resources on a short-term basis as
needed and release them as needed, thereby rewarding conservation by letting
machines and storage go when they are no longer useful.

We can prepare a platform of desired configuration depending on the needs
of the project. In the next section, we briefly explain a software framework to
exploit such platform.

3.2 MapReduce

MapReduce programming model is proposed in order for processing and generating
large data sets on a cluster of machines[13]. Programs are written in a functional
style, in which we specify mapper functions and reducer functions. Input data-set
is split into independent chunks, and the mapper tasks process the chunks in a
parallel manner. The outputs of the mappers are sorted and sent to the reducer
tasks as their inputs.

MapReduce programs are automatically parallelized and executed on a large
cluster of machines. The runtime system takes care of the details of partitioning the
input data, scheduling the program’s execution across a set of machines, handling
machine failures, and managing the required inter-machine communication. Its
implementation allows programmers to easily utilize the resources of a large
distributed system without expert skills for parallel and distributed systems.

Fig.1 shows an outline of a simple application, WordCount, that counts the
number of occurrences of each word in a given input set. A mapper processes
a key/value pair to generate a set of intermediate key/value pairs. A reducer
function merges all intermediate values associated with the same intermediate



Large Scale Random Testing with QuickCheck on MapReduce Framework 135

generate

generate

generate

evaluate

evaluate

evaluate

collect

collect

property
(Haskell)

test data

generate test data 
based on property

give test data to target 
program and evaluate

map map reduce

test results

collect test 
results

collected

Fig. 2. Outline of our approach.

key. The application reads an input file and a mapper processes one line at a
time. A key is a line number and a value is a string for a line. It then splits the
line into tokens separated by whitespaces, and emits a key/value pair of <word,
1>. The output of each mapper is passed through the combiner for aggregation,
after being sorted on the keys. The reducer sums up the values, which are the
occurrence counts for each key (i.e. words in this example).

Conceptually, we can evaluate property expressions in property-based random
testing in a data-parallel style by using MapReduce framework. Each mapper
evaluates the property for one of the test data and reducer combines the results
from mappers. By applying an automatic testing tool such as QuickCheck on
MapReduce framework, we expect we can greatly reduce the cost of a large scale
testing.

4 Implementation

We develop our testing environment by customizing QuickCheck on Hadoop
framework. In this section, we discuss implementation issues and examine the
results of our preliminary evaluation.

Our approach to implementing property-based testing on Hadoop is to separate
the testing process into two phases. We generate test data by using mappers,
and store the data into a file in the first phase. Then we can read and split the
file, and distribute the data to mappers, where the property function written in
Haskell is evaluated. Fig.2 outlines this approach.

4.1 Hadoop streaming

Hadoop, open source software written in Java, is a software framework implement-
ing MapReduce programming model[14]. We write mapper and reducer functions
in Java by default in this Hadoop framework. However, Hadoop distribution



136 Shigeru Kusakabe, Yuuki Ikuta

Table 1. The ratio of unique data and distribution in generating random data
of Int and Float.

Original Naive Modified

Int Unique(%) 34.2 8.2 34.3
Distribution 778 97 774

Float Unique(%) 99.6 95.6 99.6
Distribution 7668 962 7707

contains a utility, Hadoop streaming, which allows us to create and run jobs with
any executable or script as the mapper and/or the reducer. The utility will create
a mapper/reducer job, submit the job to an appropriate cluster, and monitor
the progress of the job until it completes. When an executable is specified for
mappers, each mapper task will launch the executable as a separate process when
the mapper is initialized. When an executable is specified for reducers, each
reducer task will launch the executable as a separate process then the reducer is
initialized. This Hadoop streaming is useful in executing and testing program
written in Haskell on MapReduce framework.

4.2 Redundant test data

We generate the specified number of random test data with mappers in Hadoop
environment in a distributed way. However, naively splitting the number and
assigning the sub-numbers to mappers lead to useless computing due to redundant
test data generated in different mappers. We need to avoid increasing the number
of redundant test data from the view point of efficiency and coverage. We modified
the generator in QuickCheck to avoid this problem. We add one extra parameter
to check function in QuickCheck module. The parameter represents the start
index of test data and is passed to test function. After the total number of tests
is determined, each mapper is given different start index according to the number
of tests assigned to mappers. In order to see the effect of this modification, we
compare the number of unique (non-redundant) test data in generating 8000
and 80000 data for Int and Float type. Table 1 shows the result. ”Original”
means using the QuickCheck original data generator on non-Hadoop environment.
”Naive” means each data generator for subset starts its index from 1 in generating
random test data on mappers in Hadoop environment. ”Modified” means each
data generator knows its own starting index, each of which is different from each
other. According to the result, we can see effectiveness of our modification as we
see no outstanding difference between ”Original” and ”Modified” while we have
some degradation in ”Naive”.

4.3 Effect of distributed execution

In order to examine the effectiveness of our approach, we measured elapsed time in
running QuickCheck for prop idempotent on Hadoop, while changing the number



Large Scale Random Testing with QuickCheck on MapReduce Framework 137

0

500

1000

1500

2000

2500

3000

3500

0 20000 40000 60000 80000 100000 120000

ti
m
e 
(s
ec
on

ds
)

# of test data

single node vs. Hadoop with 4 nodes

Fig. 3. Elapsed time in increasing the number of tests on a single node and on a
Hadoop environment with four nodes.

of test cases. We show the result in Fig. 3. As we see in Fig. 3, until the number
of tests exceeds about 30,000, the total elapsed time of Hadoop version is slower
than that of non-Hadoop version while the former uses four nodes and the latter
uses only a single node. The results of Hadoop version include some overheads
such as distributing test data and collecting evaluation results over network. After
that point, the gap between the two version becomes wider, or Hadoop version
gets faster, as the number of test data increases. Thus, our approach is suitable
for large scale testing.

4.4 Scalability

We evaluate the scalability of our approach when increasing the number of mapper
tasks. The program used is a kind of packet analysis software developed internally.
We change the number of mapper tasks for generating test data and evaluating
property.

We show the result in Fig. 4. The speedup ratio is caluculated against the
result of the normal QuickCheck version. As we see in Fig. 4, the increase of the
number of mapper is effecive. However, the speed up ratio against the number of
mapper is not ideal. While one of the reasons is overhead of using Hadoop, we
will investigate further to achieve more efficient environment.

5 Concluding Remarks

We believe increasing the number of tests in a formal manner is effective in
obtaining higher confidence. We considered an approach to leveraging the power



138 Shigeru Kusakabe, Yuuki Ikuta

0

1

2

3

4

5

6

7

4 8 16 # of mapper

Speedup

100000 tests

80000 tests

60000 tests

Fig. 4. Speedup ratio in chainging the number of mappers on a Hadoop environ-
ment.

of property-based testing by using QuickCheck and elastic ”Cloud” to perform
large scale automated testing. We used Hadoop framework, which implements
MapReduce programming model, to generate test data and execute test cases in
a data-parallel way. We develop a prototype and measured preliminary perfor-
mance results. We generated random data as the same distribution as original
QuickCheck. We also observed scalable performance for large scale testing for
a small set of programs. We will further continue our work to develop more
elaborate environment and show the feasibility for various kinds of software.

References

1. Hughes, J.: Why functional programming matters. Computer Journal 32(2) (1989)
98–107

2. Borba, P., Meira, S.: From vdm specifications to functional prototypes. J. Syst.
Softw. 21(3) (June 1993) 267–278

3. Visser, J., Oliveira, J.N., Barbosa, L.S., Ferreira, J.a.F., Mendes, A.S.: Camila
revival: Vdm meets haskell. In: First Overture Workshop. (2005)

4. Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M., Fitzgerald, J.: Validated Designs
For Object-oriented Systems. Springer Verlag (1998)

5. Kurita, T., Chiba, M., Nakatsugawa, Y.: Application of a formal specification
language in the development of the ”mobile felica” ic chip firmware for embedding
in mobile phone. In: FM. (2008) 425–429

6. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. ACM SIGPLAN Notices 35(9) (2000) 268–279

7. DUARTE, A., CIRNE FILHO, W., BRASILEIRO, F.V., MACHADO, P.D.L.:
Gridunit: Software testing on the grid. In: Proceedings of the 28th ACM/IEEE
International Conference on Software Engineering. Volume 28., ACM (2006) 779 –
782



Large Scale Random Testing with QuickCheck on MapReduce Framework 139

8. Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing telecoms software with quviq
quickcheck. In: ERLANG ’06: Proceedings of the 2006 ACM SIGPLAN workshop
on Erlang, New York, NY, USA, ACM (2006) 2–10

9. Boberg, J.: Early fault detection with model-based testing. In: Erlang Workshop.
(2008) 9–20

10. Claessen, K., Palka, M., Smallbone, N., Hughes, J., Svensson, H., Arts, T., Wiger,
U.: Finding race conditions in erlang with quickcheck and pulse. In: ICFP. (2009)
149–160

11. O’Sullivan, B., Goerzen, J., Stewart, D.: Real World Haskell. Oreilly & Associates
Inc (2008)

12. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley
view of cloud computing. Technical report, UCB/EECS-2009-28, Reliable Adaptive
Distributed Systems Laboratory (February 2009)

13. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1) (January 2008) 107–113

14. Hadoop: As of Jun.1, 09. http://hadoop.apache.org/core/



Automated Verification of Security Protocols in
tccp?

Alexei Lescaylle, Alicia Villanueva

DSIC, Universidad Politécnica de Valencia,
Camino de Vera s/n, 46022 Valencia (Spain),

alescaylle@dsic.upv.es, villanue@dsic.upv.es

Abstract. The Timed Concurrent Constraint language (tccp in short)
is a declarative concurrent programming language designed to deal with
concurrent and reactive systems. The interaction of agents executing
security protocols can be specified in a compact way by taking advan-
tage of non-determinism and the agent-based computational model. The
constraint-based approach of the language, which is parametric w.r.t.
an underlying constraint system allows us to handle partial information
in an intuitive way. In brief, the computational model of tccp is based
on agents generating (telling) and checking (asking) partial information
(constraints) in a global store. In this work, we present a general, unified
model for the specification of security protocols based on the concurrent
constraint paradigm. We use the Needham-Schroeder public key authenti-
cation protocol along the paper to illustrate the approach and show how
the tccp interpreter implemented in Maude can be used to verify safety
properties.

1 Introduction

The Concurrent Constraint Paradigm (cc in short) [24] is a simple but powerful
model that introduces a rich class of programming languages based on the notion
of computing with partial information (constraints) instead of computing with
explicit information (valuation of variables). The model is parametric w.r.t.
a constraint system specifying the kinds of available constraints and how to
interact with them. The computational model is based on agents, interacting
asynchronously among them by adding (telling) or consulting (asking) constraints
to the store (composed of a conjunction of constraints and where the information
is never cancelled). Note that, by using constraints to represent states, a natural
compression of the search space can be achieved.

The Timed Concurrent Constraint language (tccp in short) [5], extends the cc
model with a notion of time that makes the language suitable for modeling reactive
and embedded systems, namely systems which may have infinite computations,
for example, operating systems, communication protocols, etc. . .
? This work has been supported by the Spanish MEC/MICINN under grant TIN2007-

68093-C02-02, by the Generalitat Valenciana under grant Emergentes GV/2009/024, and
by the Universidad Politécnica de Valencia, program PAID-06-07 (TACPAS).



Automated Verification of Security Protocols in tccp 141

Communication protocols, in particular security protocols, are used for secure
communications between principals (participants) of the protocol. Due to the
growth of internet-based applications, the protocols to securely communicate have
received considerable attention since their correct behavior had to be guaranteed.
Specifically, it is crucial to ensure secrecy and security of any communication
action since these actions take place in a hostile environment. The environment
models the way in which messages travel the network, but also the actions an
intruder may carry out during the execution of a protocol. For modeling the
environment, we follow the most popular approach for it, proposed by Dolev-
Yao in [12]. In this model, the intruder can perform some malicious operations
such as replay, compose, decrypt or replace messages. It is well known that
the implementation of security protocols require a careful design process and
justifies the use of formal models to guarantee that intruders cannot exploit their
vulnerabilities.

In this work, we propose the tccp language for the formal analysis of security
protocols. We take advantage of the agent-based and constraint-based models,
inherited from cc, to specify the interaction between the honest participants of
the protocol and the hostile environment that controls the protocol execution.
In particular, concurrency and non-determinism of the language allow us to
model the execution of more than one session of a protocol concurrently as
well as the whole state-space of the system in a compact wat, thanks to the
constrained nature. Note that the notion of store-as-constraint introduces a
natural abstraction of system states. Moreover, the underlying constraint system
can be extended (enriched) to specify, not only the most basic information,
but also more vital actions such as nonce generation, computations, etc. The
framework allows us to represent a wide number of protocols in an homogeneus
way. We define how to specify the role of each participant and the environment as
tccp declarations, and the properties representing the security requirements of the
protocol. We can model check the specification of the system modeled by using
the tccp model-checking approaches from [2,1,13,17]. In this paper, we carry out
the verification process by using the tccpInterpreter system [18] (a tccp interpreter
implemented in the high-performance reflective language Maude [7,8]). We show
how to use the interpreter to verify in an automatic way safety properties that
may allow us to guarantee the correctness of the specification of a given protocol.
We also show, by using the logic introduced in [10], the properties that we want
to verify and the mapping of them to Maude.

In previous works [15,16], we have proposed a similar methodology for spec-
ifying protocols. The methodology presented in this work is a refinement of
the previous proposals. We have improved the specification of the protocol and
the intruder model, making the model clearer, more compact and simpler. We
have also extended the actions that an intruder can carry out in a protocol
execution. Thanks to the new framework, we have reduced the tccp time instant
in which we detected possible attacks. In particular, we have taken advantage
of the the underlying constraint system to include some of the capabilities that
were previously setted at the language abstraction level. This functionality has



142 Alexei Lescaylle, Alicia Villanueva

been incorporated to the tccpInterpreter in such a way that we have provided
the framework with a constraint system that includes the necessary operations.
We use the Needham-Schroeder protocol as our running example to show our
approach, but other protocols as those shown in [15,14] can also be modeled.

Related Work . The verification of security protocols has been widely treated, in
the literature, through the use of different formalisms [6,20]. Recently, in [22] was
presented the utcc language which allows the specification of mobile behaviors
and to prove reachability properties. In [22], each participant is modeled as
an independent process and the underlying constraint system carries out some
specific operations related to communication protocols. One of the main differences
between this approach and ours is that, following the Dolev-Yao model, in our case
the attack is not explicitly modeled, but a generic specification for the intruder
is used. This means that we are not detecting a known attack, but potentially
any attack that the Dolev-Yao intruder is able to run. Moreover, although both
languages belong to the same cc paradigm, they are quite different in nature:
tccp is non-deterministic whereas utcc is deterministic, and utcc iteration is
based on replication whereas tccp uses recursion. These differences make the
specification of systems different in the two languages. In [9], a method to model
security protocols in a real-time scenario is proposed. We follow the same idea
for specifying a general Dolev-Yao intruder model. As in our approach, also the
model-checking technique is used to verify the given protocol. In [4] a specific
constraint system and some related techniques to analyze security protocols
is developed. In tccp, the specification and verification process integrates the
dependency on the constraint system with the agent-based model. In our case, we
extend the underlying constraint system to represent the information resulting
from the execution of a protocol such as the private knowledge of each principal,
but the particular behavior of participants is not modeled within the constraint
system. Maude and Haskell have been used to model security protocols [11,3]. The
formalization process in both approaches is similar. Each step of the analyzed
protocol is encoded in two rules representing the sending and receiving of a
message, respectively. In both formalisms, a model-checking technique is used
to explore the state space for possible attacks. The main different w.r.t. our
proposal is that we present a general intruder specification that can be use to
analyze different kinds of protocols with no modification.

The paper is organized as follows. An brief description of the tccp language is
given in the next section. Section 3 shows the informal specification of a variant of
the well-known Needham-Schroeder public key authentication protocol. Section 4
presents the formal specification of the Needham-Schroeder protocol and the
hostile environment that models the actions an intruder may perform. In Section 5
we describe the results of the analysis of the given protocol. Finally, in Section 6
we discuss some conclusions and future work.



Automated Verification of Security Protocols in tccp 143

2 The tccp language

The Timed Concurrent Constraint language inherits from cc the agents defined
in this paradigm and adds a new conditional agent for dealing with negative
information. A tccp program P is of the form D.A where D is a set of declarations
of the form p(x):−B and A is an agent that initiates the execution. The syntax
of the language agents is given by the following grammar. We assume that c and
ci are finite constraints (i.e., elements) of the underlying constraint system.

A,B ::= skip | tell(c) |
∑n
i=1 ask(ci)→ Ai | now c thenA elseB | A||B | ∃xA | p(x)

Intuitively, the skip agent does nothing; tell(c) adds the constraint c to the
shared store. The choice agent

∑n
i=1ask(ci)→ Ai asks the store for some infor-

mation. It also models the non-deterministic behavior. More specifically, it checks
whether the store satisfies the constraints ci and non-deterministically chooses
which branch is to be executed, provided its condition ci is satisfied. In case
no condition ci is entailed, then the choice agent suspends (it will be executed
again in the following time instant). The conditional agent now c then A else B
executes A if the store satisfies c, otherwise executes B. Note that, due to the
partial nature of the stored information, the fact that c is not satisfied does not
imply that ¬c is satisfied. A ‖ B executes the two agents A and B in parallel
following the maximal parallelism model. The ∃xA agent is used to define the
variable x local to the process A. Finally, p(x) is the procedure call agent where
x denotes the set of parameters of the process p.

The notion of time is interpreted in the language following the idea that
updates and consults to the store takes one time unit. Therefore, only the tell,
choice and procedure call agents consume time.

Similarly to cc, the store in the original model of tccp behaves monotonically.
Thus, it is not possible to change the value of a given variable along the time.
This problem can be solved by using streams. For instance, we write X = [1|Z]
to denote that a variable X records the current value 1 and Z represents the
future values of X.

To ease the tasks related to streams manipulation, we use the modified
computation model for tccp presented in [1], where the notion of global store
was replaced by the notion of structured store. The structured store consists of a
sequence of stores where each store of the sequence contains only the constraints
added in the corresponding time instant ith.

We can see in Figure 1 the operational semantics of the language, borrowed
from [1], that is slightly different from the original model [10] due to the new
computational model based on structured stores. The semantics is given by means
of a transition relation between configurations 〈A, st〉, composed by an agent A
and the associated store st (at a specific time instant).

Let us describe some of the semantic rules. The first rule R1 describes how the
tell agent at time instant t, augments the store st by adding the constraint c and
then skipping. Therefore, the constraint c will be available to other agents from
the time instant t+ 1. Rule R2 states that Aj is executed in the following time



144 Alexei Lescaylle, Alicia Villanueva

R1 〈tell(c), st〉t −→ 〈skip, st tt+1 c〉t+1

R2 〈
Pn
i=0 ask(ci)→ Ai, st〉t −→ 〈Aj , st〉t+1 if 0 6 j 6 n,st `t cj

R3
〈A, st〉t −→ 〈A′, st ′〉t+1

〈now c thenA elseB, st〉t −→ 〈A′, st ′〉t+1
if st `t c

R4
〈B, st〉t −→ 〈B′, st ′〉t+1

〈now c thenA elseB, st〉t −→ 〈B′, st ′〉t+1
if st 6`t c

R5
〈A, st〉t 6−→

〈now c thenA elseB, st〉t −→ 〈A, st〉t+1
if st `t c

R6
〈B, st〉t 6−→

〈now c thenA elseB, st〉t −→ 〈B, st〉t+1
if st 6`t c

R7
〈A, st〉t −→ 〈A′, st ′〉t+1, 〈B, st〉t −→ 〈B′, st ′′〉t+1

〈A ‖ B, st〉t −→ 〈A′ ‖ B′, st ′ t st ′′〉t+1

R8
〈A, st〉t −→ 〈A′, st ′〉t+1, 〈B, st〉t 6−→
〈A ‖ B, st〉t −→ 〈A′ ‖ B, st ′〉t+1

R9
〈A, st1 t ∃x st2〉t −→ 〈A′, st ′〉t+1

〈∃st1xA, st2〉t −→ 〈∃st′xA′, st2 t ∃x st ′〉t+1

R10 〈p(x), st〉t −→ 〈A, st〉t+1 if p(x) : −A ∈ D

Fig. 1. Operational semantics of the tccp language.

unit whenever st entails the condition cj . Regarding the conditional agent, R3
models that, in case that the agent A with the current store st is able to evolve
into the agent A′ and a new store st′ and st satisfies c, then A′ is executed in the
following time instant with the computed store st ′. R7 models the evolution of
the parallel agent: if A with store st is able to evolve into A′ with a new computed
store st′, and also B with store st is able to evolve into an agent B′ with st′′,
then A′||B′ is run in the following time instant with the store resulting from the
conjunction of st′ and st′′. The rest of rules are interpreted in a similar way.

3 An authentication protocol example

To illustrate our approach, we consider the simplified version of the Needham-
Schroeder protocol public key authentication protocol [21]. This authentication
protocol allows principals A (Alice) and B (Bob) to communicate via the inter-
change of secret nonces which besides to serve as nonces, serve as authenticators.
It is based on the use of public keys cryptography and nonces, and aims to
guarantee confidentiality and authentication, i.e., the nonce received by A from
B and the nonce received by B from A must be knew only by them. Let us show
the informal protocol definition:



Automated Verification of Security Protocols in tccp 145

1. A→ B : {A,NA}KB
2. B → A : {NA, NB}KA
3. A→ B : {NB}KB

The protocol begins when A sends to B a message encrypted with B’s public
key KB which contains the identifier of A, and the nonce NA generated by A.
B decrypts that message by using his private key and sends to A a message,
encrypted with the public key of A, which contains the received nonce NA and a
new generated nonce NB . A decrypts the message by using her secret key. Since
the message contains the nonce NA, A can deduce that the message has recently
been sent by B. Finally, A sends the confirmation message to B, so that B can
infer that he is communicating to A (he had previously sent NB).

This protocol was defined relying upon the assumption of perfect cryptography
and that principals do not divulge secrets. However, it allowed the following man-
in-the-middle attack discovered by Lowe in [19] where IX denotes I impersonating
X:

1. A→ I : {A,NA}KI
2. IA → B : {A,NA}KB
3. B → A : {NA, NB}KA
4. A→ I : {NB}KI
5. IA → B : {NB}KB

The man-in-the-middle attack describes how an intruder can discover a secret
nonce. In the attack, A initiates a protocol run with I, who (impersonating A)
starts a second run of the protocol with B. In other words, the intruder asks B to
initiate a communication session saying that he is A. More precisely, the attack
follows the following steps: First, A sends his name and a nonce to I. Later, I,
impersonating A, sends to B the received message. Then, B, thinking that the
received message comes from A, sends to her the received nonce and a new one
generated by him (corresponding to the second step of the protocol). When A
receives the message sent by B, she thinks that it comes from I (the second
step of the first protocol run), and sends back to I the confirmation message
that contains the nonce generated by B to A. Finally, I sends to B the same
confirmation message. At the end of the attack, B thinks he is communicating to
A, which is false.

4 Specifying the Needham-Schroeder protocol in tccp

This section presents how we can specify in a general way the role of each
participant of a protocol, and the model for the intruder. As a running example,
we show how to formally specify the Needham-Schroeder protocol. We can divide
the specification process into three parts:

1. The representation of the concepts involved in a protocol by means of certain
terms;



146 Alexei Lescaylle, Alicia Villanueva

2. The encoding of the behavior of each participant of a protocol in a tccp
declaration;

3. The codification of the (hostile) environment, a process that controls the
protocol execution by following the Dolev-Yao attacker model [12], as a tccp
declaration.

The specifications obtained from the first and third phases can be used for
the specification of other protocols. In [14], we described the analysis of the
Otway-Rees symmetric key authentication protocol [23]. For the second phase,
the example that we describe should serve as a guideline to transform the informal
definition of a protocol to the corresponding tccp program.

4.1 Some specific constraints

Let us describe the concepts appearing in the informal protocol definition by
means of terms which in our approach are handled as constraints.

We represent the private knowledge acquired by the members of a protocol
with the term know(A,K) where A is the identifier of a protocol participant,
and K is a stream that stores the information. For instance, know(alice,[a(b),
n(nNA), n(nNB)|T]) states that the agent alice knows that b is the identifier
of a protocol participant (identified by the term a/1), and also knows the nonces
nNA and nNB (n/1).

Messages involved in the protocol are represented by a term of the form
msg(ItemList), and when they are posted to the network, a term chn(Msg,State)
is defined. The content of a message ItemList is a list of elements. Each element
is represented by a term of the form enc(Key,Content), stating that the in-
formation in Content has been encrypted with the key Key . The information
is represented as a list of atoms following the classical notation for the cons
constructor of lists. The list of atoms may contain participant’s identifiers, nonces,
etc. . . In chn(Msg,State), the variables Msg and State represent the sent message
and its status. The status that may be that the message has traveled the network
or channel but it has not been processed yet (it remains non-instantiated) or that
the message has been already processed by the environment (it is instantiated
to the value ok). We adopt an asynchronous model for message passing. This
means that, when a principal sends a message, it is stored in the channel to be
processed later. The term rcv(Msg,State) is used by the environment to deliver
a message to the corresponding recipient. The variable State is instantiated to
ok when the expected principal has processed the delivered message.

Finally, the terms blk(Msg) and cnt(Content) are used by the intruder to
state that a message has been blocked, and the information being the content of
a message, respectively.

The constraint system. In addition to the representation of the information to be
handled during the protocol run, some operations may be implemented in the
underlying constraint system. Therefore, we assume that the constraint system
provides the following functionality. When invoked, new(NA) generates a fresh



Automated Verification of Security Protocols in tccp 147

(random) value for the given variable NA. This is used for the nonce generation.
In our specifications, when we use this function, the variable passed as argument
is never instantiated.

The function free(Var) returns a boolean value. It is used to check whether,
given the current store, the given variable Var is instantiated or not. To recover
certain information from a given stream, recover(Stream,Info) is defined. This
function unifies the value matching Info in the stream. We can also use the
auxiliary function find(Stream,Info) that checks whether Info can be recovered
(returning the value true) or not (false). To determine this, the function checks
if Info unifies with, at least, one of the values stored in the given stream. Note
that, in contrast, recover returns the resulting substitution. For example, a call
to recover([ a(b), n(nNA), n(nNB)|T] , a(Ag)) would return Ag = b.

4.2 Encoding principals into tccp

Let us now show how the participants of the protocol can be specified. The
specification of principals must be redefined for each different protocol, and it is
modeled as a tccp declaration.

The tccp declaration modeling the initiator A is shown below.

init (A,B) :-

∃ NA,SA,S1,SA1,NB,S2,S3,SA2

(tell(NA = new(NA)) ||
(tell(know(A,SA)) ||

ask(true)->
(tell(chn(msg(enc(k(B),cons(A,cons(NA,nil)))),S1)) ||
(tell(SA = [(a(B),n(NA)) | SA1]) ||

ask(rcv(msg(enc(k(A),cons(NA,cons(NB,nil)))),S2) ∧ free(S2))->

(tell(rcv(msg(enc(k(A),cons(NA,cons(NB,nil)))),S2)∧ free(S2)) ||
(tell(S2 = ok) ||

ask(true)-> (tell(chn(msg(enc(k(B),cons(NB,nil))),S3)) ||
tell(SA = [n(NB) | SA2])))))))).

Following the steps in the informal protocol description, the participant gen-
erates a new nonce, stored in NA, and states SA as the stream that contains her
private knowledge. Then, by means of a tell agent, she sends to the channel the
message of the first protocol step. This means that she sends to B her identifier
and the generated nonce, both things encrypted with the public key of B. This
is modeled by chn(msg(enc(k(B),cons(A,cons(NA,nil)))),S1). In parallel,
she updates her private knowledge SA with the identifier of the responder and the
generated nonce. Again in parallel, a choice agent will be executed for detecting
when A receives the second message of the protocol (characterized by the con-
straint rcv(msg(enc(k(A),cons(NA,cons(NB,nil)))),S2) ∧ free(S2), and
free(S2) ensures that the message has not been processed). When the condition



148 Alexei Lescaylle, Alicia Villanueva

holds, by means of the tell agents, she recovers in NB the nonce generated by B
and sets S2 to ok (to ensure that the message is processed just one time). Then,
she sends to B the confirmation message that contains the recovered nonce, and
updates her private knowledge with such nonce.

The tccp declaration modeling the responder B is shown below.

resp (B) :-

∃ A,NA,S1,NB,SB,S2,SB1,S3,SB2

ask(rcv(msg(enc(k(B),cons(A,cons(NA,nil)))),S1) ∧ free(S1))->

(tell(rcv(msg(enc(k(B),cons(A,cons(NA,nil)))),S1) ∧ free(S1)) ||
(tell(S1 = ok) ||
(tell(NB = new(NB)) ||
(tell(know(B,SB)) ||

ask(true)->
(tell(chn(msg(enc(k(A),cons(NA,cons(NB,nil)))),S2)) ||
(tell(SB = [(a(A),n(NA),n(NB)) | SB1]) ||

ask(rcv(msg(enc(k(B),cons(NB,nil))),S3) ∧ free(S3))->

(tell(rcv(msg(enc(k(B),cons(NB,nil))),S3) ∧ free(S3)) ||
(tell(S3 = ok) ||

ask(true)-> tell(SB = [secret(NB) | SB2]))))))))).

The execution of the participant B is suspended until the constraint in the first
choice agent rcv(msg(enc(k(B),cons(A,cons(NA,nil)))),S1) ∧ free(S1) is
satisfied. This situation models the moment in which he has received the first
message of the protocol. Then, by means of the tell agents, he recovers in A and
NA the identifier of the initiator A and the nonce generated by her, respectively;
sets S1 to the value ok, generates the new nonce NB and states that SB is
being to contain his private knowledge. After this, the specification sends to
the channel the second message of the protocol. In particular, B sends to the
principal whose identifier has been recovered from the received message the
received nonce and a new one generated by him, all this encrypted with the
public key of the target principal. Finally, he updates his private knowledge with
the recovered information and the generated nonce. After having sent the second
message, B waits until the constraint rcv(msg(enc(k(B),cons(NB,nil))),S3)
∧ free(S3) of the choice agent holds, which means that he has received the last
message of the protocol. Then, he sets S3 to the value ok and updates his private
knowledge by storing the fact that the nonce previously generated by him NB is
secret.

4.3 Encoding the Environment into tccp

The design of protocols turns out problematic even assuming perfect cryptography.
The problem is mainly due to the fact that principals communicate over a network
controlled by a malicious agent (an intruder) who can intercept, analyze, and
modify messages, being thus able to carry out malevolent actions.

In this section, we describe the specification of the network where the protocols
are executed. We do not specify the intruder as a specific principal, but we encode



Automated Verification of Security Protocols in tccp 149

it within the environment. The resulting specification allows the actions from
the Dolev-Yao intruder model [12].

The environment is defined as a cycle where, during each iteration, a message
is processed depending on whether the constraint (chn(M,S) ∧ free(S)) of the
first choice agent holds, which means that there is a message to process, or not.
The tell agents after the condition recover in M the sent message, sets S to the
value ok (to avoid processing a message twice) and states that SI is going to
store the intruder private knowledge. Then, one of the labeled actions (1a to
1d) is non-deterministically chosen to be executed. Finally, the environment is
executed recursively in parallel.

environment(I) :- ∃M,S,SI,Si (

ask(chn(M,S) ∧ free(S)) ->

(tell(chn(M,S) ∧ free(S)) ||
(tell(S = ok) ||
(tell(know(I,SI)) ||

1a ((ask(true) -> tell(SI = [blk(M) | Si]) +

1b (ask(true)-> ∃S1 tell(rcv(M,S1)) +

1c (ask(true) ->

now(M = msg(enc(k(I), ))) then
∃C,X, S1 (tell(M = msg(enc(k(I),C))) ||

ask(true) -> (tell(SI = [cnt(C) | Si]) ||
(tell(recover(SI,a(X))) ||

ask(true)->
tell(rcv(msg(enc(k(X),C)),S1)))))

else skip +

1d ask(true) ->

now(find(SI,blk( ))) then
∃M ′, S1 (tell(recover(SI,blk(M ′))) ||

ask(true) -> tell(rcv(M ′,S1)))
else skip))) ||

ask(true) -> environment(I)))))).

Let us describe the labeled actions 1a to 1d. We have labeled the code to
improve readability of this description. The code in 1a models the situation
in which the environment blocks the communication and as a consequence the
intruder updates his private knowledge with the given term blk. 1b models the
correct transmission of the message. The message is labeled with the term rcv
being S1 a fresh variable. Actions in 1c specify the case when the given message
is encrypted with the public key of the intruder. Then, by using some tell agents,
he recovers in C the content of such message and the identifier of the principal
who is trying to communicate with him. Then, he composes a message with the
recovered information and sends it to the honest principal whose identifier was
previously recovered. Finally, 1d models the replication of message. In case that
the intruder can recover from his private knowledge a message which has been
blocked before, then he may deliver it.

To summarize, the blocking of communication capability of the Dolev-Yao
intruder [12] is modeled by the code excerpt labeled with 1a; The message
intercepting capability is modeled by the fact that the environment is able to select



150 Alexei Lescaylle, Alicia Villanueva

the message to be processed. 1c implements the message composing/decomposing
capability, and finally, the ability of message replaying is modeled by actions 1b
and 1d.

5 Experimental results

In this section, we illustrate how it is possible to analyze the protocol by using
the interpreter for the language and some capabilities from the specification
language Maude. tccpInterpreter has been implemented in Maude. It models
the tccp formalism including the underlying constraint system, agents, and its
operational semantics. The constraint system includes the functionality required
for the protocol execution. Then, given the specification of a tccp program we can
simulate the behavior of such program following the semantics of the language
and, taking advantage of the Maude capabilities, we can also carry out certain
kind of reachability analysis. The interested reader can consult [7,8] for a more
detailed documentation about Maude.

5.1 The interpreter

Let us first introduce some concepts used to represent the main tccp entities in
Maude. The main function runs takes as argument the program to be executed,
and natural number that states a threshold for the maximum number of time
units that we want for the execution of the program (in case we want to make the
execution finite). A configuration (state) of the system is encoded by using the
constructor symbol < P1,P2,P3,P4 > {P5}, where P1 represents the given
program, P2 represents the structured store, P3 contains the list of variables
present in the store, P4 is a boolean constraint used to control the execution of
certain agents, and P5 is the given threshold.

We denote the store as a set of constraints separated by the symbol ,,. The con-
structor symbol empty represents the empty store. Then, a structured store is rep-
resented by a store together with a natural number (between braces). The natural
number represents the current time instant (for example, ((’X > 5,,’X < 10) {2})
is the store at time instant 2). We use the arrow => to separate each store in
the sequence representing a structured store. Terms are written as [Term], for
instance,[’a(A)] is the term for a participant identifier.

The underlying constraint system. To refine the verification process, we use the
auxiliary function getGlobalStoreFromStrStoreList which, given a structured
store, returns a unique store with all the information stored so far. This trans-
formation facilitates the action of consulting the store. Moreover, we implement
some auxiliary functions in the underlying constraint system. These functions are
getStreamOfTrmKnowInStore, getExpFromStream and consultContent. The
first one returns the stream that contains, in a given store, the private knowledge
of a given principal (whose identifier is given in the term know). The second,
returns the value (NB) that is currently labeled as secret in a given stream



Automated Verification of Security Protocols in tccp 151

(in this case, KB models the private knowledge of ’b). Finally, the function
consultContent checks if the values of a given stream, recovered from the given
store, contain the given expression (NB).

5.2 Simulation

Let us show an excerpt of the trace that describes the correct behavior of the
Needham-Schroeder protocol. Consider the tccp program modeling the specifi-
cation of the Needham-Schroeder protocol presented in Chapter 4 and whose
initial agent is (init(’a,’b) || (resp(’b) || environment(’i))). For read-
ability, we use the variable DS instead of the whole code specifying the set of
declarations of the considered program presented in Chapter 4. It can be seen
that, the initial agent initiates a communication of the participant ’a with ’b.
To verify the given program in the interpreter, we must invoke the following
instruction.

search runs ({DS . (init(’a,’b) || (resp(’b) || environment(’i)))} , 22)

=>* < TpPg , StL , VrLt , Bl > {Nt} such that

TpSt := getGlobalStoreFromStrStoreList (StL) ∧
KA := getStreamOfTrmKnowInStore (TpSt , [’know (’a,’ )]) ∧
KB := getStreamOfTrmKnowInStore (TpSt , [’know (’b,’ )]) ∧
KI := getStreamOfTrmKnowInStore (TpSt , [’know (’i,’ )]) ∧
NB := getExpFromStream (KB , [’secret (’ )] , TpSt) ∧
consultContent (KA , NB , TpSt) == true’ ∧
consultContent (KI , NB , TpSt) == false’ .

By using the search command, we can explore the reachable state space in
different ways. The term in the left hand side of the symbol =>* is the initial
state in the execution of the tccp program. The right hand side of the symbol
specifies the final state of the execution. The symbol =>* searches for a proof
consisting of none, one, or more steps that reaches the final state. The final state
which is composed by some variables following the structure for configurations
presented above. TpPg represents the given program, StL represents the resulting
structured store, VrLt represents the corresponding list of variables, Bl is a
boolean constraint and Nt represents the given threshold. With the command
such that, we filter the expected result. In this case, we establish that the
resulting structured store StL must contain 1) the term secret/1 in the private
knowledge of the responder ’b, which means that the protocol ended; 2) the
value, labeled as secret by ’b, in the private knowledge of the initiator ’a; and
finally 3) the value, labeled as secret by ’b must be known just by ’a.

The following LTL property summarize the previous instruction. It states
that there exist a state of the system in which the nonce NB generated by B is
only known by A:

3∃KA,KB,KI,NB(know(’a,KA) ∧ know(’b,KB) ∧ know(’i,KI) ∧
find (KB,[’secret(NB)]) ∧
find (KA,NB) ∧ ¬find (KI,NB))



152 Alexei Lescaylle, Alicia Villanueva

As one can see below, the specified search command computes one solution
at state 60. We know that the protocol has been completed since the expected
nonce has been declared secret. Thus, ’a is able to complete the protocol with
the responder ’b at time instant 21. Since we are dealing with structured stores,
we can observe which information has been added at each time instant.

Solution 1 (state 60)

states: 61 rewrites: 324834 in 620ms cpu (627ms real) (523925 rewrites/second)

StL --> (empty{0}) =>

(((’A :=’ ’a),,(’B :=’ ’b),,(’B’ :=’ ’b),,(’I :=’ ’i)){1}) =>

(([’know(’A,’SAi)],,(’NAi :=’ ’nNAi)){2}) =>

(([’chn([’msg([’enc([’k(’B)],[’cons(’A,[’cons(’NAi)])])])],’Si1)],,

(’SAi :=’ [[’a(’B)],[’n(’NAi)] | ’SAi1])){3}) => (empty{4}) =>

(([’know(’I,’SI)],,(’Si1 :=’ ’S),,(’S :=’ ’ok),,

(’M :=’ [’msg([’enc([’k(’B)],[’cons(’A,[’cons(’NAi)])])])])){5}) =>

(([’rcv(’M,’S1)],,(’I’ :=’ ’I)){6}) => (empty{7}) =>

(([’know(’B’,’SBr)],,(’Ar :=’ ’A),,(’NAr :=’ ’NAi),,(’NBr :=’ ’nNBr),,

(’S1 :=’ ’Sr1),,(’Sr1 :=’ ’ok)){8}) =>

(([’chn([’msg([’enc([’k(’Ar)],[’cons(’NAr,[’cons(’NBr)])])])],’Sr2)],,

(’SBr :=’ [[’a(’Ar)],[’n(’NAr)],[’n(’NBr)] | ’SBr1])){9}) =>

(empty{10}) =>

(((’M’ :=’ [’msg([’enc([’k(’Ar)],[’cons(’NAr,[’cons(’NBr)])])])]),,

(’S’ :=’ ’ok),,(’SI :=’ ’SI’),,(’Sr2 :=’ ’S’)){11}) =>

(([’rcv(’M’,’S1’)],,(’I’’ :=’ ’I)){12}) => (empty{13}) =>

(((’NBi :=’ ’NBr),,(’S1’ :=’ ’Si2),,(’Si2 :=’ ’ok)){14}) =>

(([’chn([’msg([’enc([’k(’B)],[’cons(’NBi)])])],’Si3)],,

(’SAi1 :=’ [[’n(’NBi)] | ’SAi2])){15}) => (empty{16}) =>

(((’M’’ :=’ [’msg([’enc([’k(’B)],[’cons(’NBi)])])]),,(’S’’ :=’ ’ok),,

(’SI :=’ ’SI’’),,(’Si3 :=’ ’S’’)){17}) =>

(([’rcv(’M’’,’S1’’)],,(’I’’’ :=’ ’I)){18}) => (empty{19}) =>

(((’S1’’ :=’ ’Sr3),,(’Sr3 :=’ ’ok)){20}) =>

(’SBr1 :=’ [[’secret(’NBr)] | ’SBr2]){21}

We have shown how to interpret the output for an execution. Let us now
demonstrate how to look for an attack in the protocol. Similarly to the first case,
we have to specify an initial and final state. The idea is to introduce a bad final
state, i.e., a state where an attack has occurred. In this case, the final state says
that both the honest principal ’a and the intruder ’i know the secret nonce
generated by ’b.

search runs ({DS . (init(’a,’i) || (resp(’i) || (environment(’i) ||
ask(true)-> (init (’i,’b) || resp(’b)))))} , 26)

=>* < StL > such that

TpSt := getGlobalStoreFromStrStoreList (StL) ∧
KA := getStreamOfTrmKnowInStore (TpSt , [’know (’a,’ )]) ∧
KB := getStreamOfTrmKnowInStore (TpSt , [’know (’b,’ )]) ∧
KI := getStreamOfTrmKnowInStore (TpSt , [’know (’i,’ )]) ∧
NB := getExpFromStream (KB , [’secret (’ )] , TpSt) ∧
consultContent (KA , NB , TpSt) == true’ ∧
consultContent (KI , NB , TpSt) == true’ .



Automated Verification of Security Protocols in tccp 153

The following LTL property summarize the previous instruction. It states
that there exist a state of the system in which the nonce NB generated by B is
known by A and I:

3∃KA,KB,KI,NB(know(’a,KA) ∧ know(’b,KB) ∧ know(’i,KI) ∧
find (KB,[’secret(NB)]) ∧
find (KA,NB) ∧ find (KI,NB))

We can see that at time instant 25, the responder ’b stores that the nonce
generated by him is secret, thus the protocol run has finished. We can also
see that during the execution, it has been stored the knowledge gained by the
different participants of the protocol. The initiator ’a has also been completed
the protocol (to her knowledge). Moreover, note that ’a thinks, from the time
instant 3, that the messages she will receive come from ’i , which is true but
from the time instant 11, ’b thinks that he is communicating with ’a, which is
false.

Solution 1 (state 592)

states: 593 rewrites: 259361436 in 591320ms cpu (591321ms real)

(438614 rewrites/second)

StL --> (empty{0}) =>

(((’A :=’ ’a),,(’B :=’ ’i),,(’B’ :=’ ’i),,(’I :=’ ’i)){1}) =>

(([’know(’A,’SAi)],,(’A’ :=’ ’i),,(’B’’ :=’ ’b),,(’B’’’ :=’ ’b),,

(’NAi :=’ ’nNAi)){2}) =>

(([’chn([’msg([’enc([’k(’B)],[’cons(’A,[’cons(’NAi)])])])],’Si1)],,

[’know(’A’,’SAi’)],,(’NAi’ :=’ ’nNAi’),,

(’SAi :=’ [[’a(’B)],[’n(’NAi)] | ’SAi1])){3}) =>

(([’chn([’msg([’enc([’k(’B’’)],[’cons(’A’,[’cons(’NAi’)])])])],’Si1’)],,

(’SAi’ :=’ [[’a(’B’’)],[’n(’NAi’)] | ’SAi1’])){4}) =>

(((’M :=’ [’msg([’enc([’k(’B)],[’cons(’A,[’cons(’NAi)])])])]),,

(’S :=’ ’ok),,(’SI :=’ ’SAi’),,(’Si1 :=’ ’S)){5}) =>

(((’C :=’ [’cons(’A,[’cons(’NAi)])]),,(’I’ :=’ ’I)){6}) =>

(((’SAi1’ :=’ [[’cnt(’C)] | ’Si]),,(’X :=’ ’B’’)){7}) =>

(([’rcv([’msg([’enc([’k(’X)],’C)])],’S1)],,(’S’ :=’ ’ok),,

(’M’ :=’ [’msg([’enc([’k(’B’’)],[’cons(’A’,[’cons(’NAi’)])])])]),,

(’SI’ :=’ ’SAi’),,(’Si1’ :=’ ’S’)){8}) =>

(((’I’’ :=’ ’I),,(’Si :=’ [[’blk(’M’)] | ’Si’])){9}) =>

(([’know(’B’’’,’SBr’)],,(’Ar’ :=’ ’A),,(’NAr’ :=’ ’NAi),,

(’NBr’ :=’ ’nNBr’),,(’S1 :=’ ’Sr1’),,(’Sr1’ :=’ ’ok)){10}) =>

(([’chn([’msg([’enc([’k(’Ar’)],[’cons(’NAr’,[’cons(’NBr’)])])])],’Sr2’)],,

(’SBr’ :=’ [[’a(’Ar’)],[’n(’NAr’)],[’n(’NBr’)] | ’SBr1’])){11}) =>

(empty{12}) =>

(((’M’’ :=’ [’msg([’enc([’k(’Ar’)],[’cons(’NAr’,[’cons(’NBr’)])])])]),,

(’S’’ :=’ ’ok),,(’SI’’ :=’ ’SAi’),,(’Sr2’ :=’ ’S’’)){13}) =>

(([’rcv(’M’’,’S1’)],,(’I’’’ :=’ ’I)){14}) => (empty{15}) =>

(((’NBi :=’ ’NBr’),,(’S1’ :=’ ’Si2),,(’Si2 :=’ ’ok)){16}) =>

(([’chn([’msg([’enc([’k(’B)],[’cons(’NBi)])])],’Si3)],,

(’SAi1 :=’ [[’n(’NBi)] | ’SAi2])){17}) => (empty{18}) =>

(((’M’’’ :=’ [’msg([’enc([’k(’B)],[’cons(’NBi)])])]),,(’S’’’ :=’ ’ok),,



154 Alexei Lescaylle, Alicia Villanueva

(’SI’’’ :=’ ’SAi’),,(’Si3 :=’ ’S’’’)){19}) =>

(((’C’ :=’ [’cons(’NBi)]),,(’I’’’’ :=’ ’I)){20}) =>

(((’Si’ :=’ [[’cnt(’C’)] | ’Si’’’]),,(’X’ :=’ ’B’’)){21}) =>

(([’rcv([’msg([’enc([’k(’X’)],’C’)])],’S1’’)]){22}) => (empty{23}) =>

(((’S1’’ :=’ ’Sr3’),,(’Sr3’ :=’ ’ok)){24}) =>

(’SBr1’ :=’ [[’secret(’NBr’)] | ’SBr2’]){25}

Apart from the solution to the query, Maude shows up the time spent during
the computation of each solution and the number of rewrites performed. In the
first case, the result is given in 627ms after rewriting 324834 steps. For the second
case, the system spent almost 10 minutes after 259361436 rewrites. Note that,
due to the generality of the model, that does not restricts to the detection of
a single attack but is general for all the Dolev-Yao attacks, we have to explore
more possible execution paths for the protocol. We think that this performance
is also caused due to the non-determinism of some of the parts of the interpreter.

6 Conclusions and Future Work

We have shown how tccp can be used as a suitable language to verify security
protocols. We have taken advantage of the underlying constraint system by
assuming we have some functions defined at the constraint system level. This
allows us to improve the compactness and clarity of the model. Many of the
defined components in our model, in particular the environment and the specified
constraints, can be reused for the analysis of other protocols. Finally, by using
the tccpInterpreter system, which is an interpreter implemented in Maude, we
have shown how we can check safety properties on tccp programs to detect
vulnerabilities that may lead to attacks.

The tccpInterpreter is publicly available at the following addresses:
http://www.dsic.upv.es/~villanue/tccpInterpreter/ and
http://www.dsic.upv.es/~alescaylle/tccp.html.

We plan to extend the specification of the environment, increasing actions
an attacker can perform, for example to include typing attacks. We also plan
to improve the performance of the interpreter and to study how to adapt the
model-checking technique existing for tccp to this rewriting-based framework.

References

1. Alpuente, M., Gallardo, M.M., Pimentel, E., Villanueva, A.: Verifying Real-Time
Properties of tccp Programs. j-jucs 12(11) (2006) 1551–1573

2. Alpuente, M., Gallardo, M., Pimentel, E., Villanueva, A.: A semantic framework
for the abstract model checking of tccp programs. Theoretical Computer Science
346(1) (2005) 58–95

3. Basin, D., Denker, G.: Maude versus Haskell: an Experimental Comparison in
Security Protocol Analysis. In Futatsugi, K., ed.: Electronic Notes in Theoretical
Computer Science. Volume 36., Amsterdam, Elsevier Science Publishers (2001)



Automated Verification of Security Protocols in tccp 155

4. Bella, G., Bistarelli, S.: Soft constraint programming to analysing security protocols
(2004)

5. Boer, F.S.d., Gabbrielli, M., Meo, M.C.: A Timed Concurrent Constraint Language.
Information and Computation 161(1) (2000) 45–83

6. Clark, J.A., Jacob, J.L.: A survey of authentication protocol literature. Technical
report, Defence Evaluation Research Agency (1997)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude - A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic. Volume 4350 of Lecture Notes in
Computer Science. Springer (2007)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: Maude Web Site (2009) http://maude.csl.sri.com/.

9. Corin, R., Etalle, S., Hartel, P.H., Mader, A.: Timed model checking of security
protocols. In: FMSE ’04: Proceedings of the 2004 ACM workshop on Formal
methods in security engineering, New York, NY, USA, ACM (2004) 23–32

10. de Boer, F.S., Gabbrielli, M., Meo, M.C.: A Temporal Logic for Reasoning about
Timed Concurrent Constraint Programs. In: TIME ’01: Proceedings of the Eighth
International Symposium on Temporal Representation and Reasoning (TIME’01),
Washington, DC, USA, IEEE Computer Society (2001) 227

11. Denker, G., Meseguer, J., Talcott, C.: Protocol Specification and Analysis in Maude.
In Heintze, N., Wing, J., eds.: Proceedings of Workshop on Formal Methods and
Security Protocols, Indianapolis, Indiana (Jun 1998)

12. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Transactions
on Information Theory 29(2) (March 1983) 198–208

13. Falaschi, M., Villanueva, A.: Automatic Verification of Timed Concurrent Constraint
Programs. Theory and Practice of Logic Programming 6(3) (May 2006) 265–300

14. Lescaylle, A.: Master’s thesis: The Timed Concurrent Constraint language in
practice (December 2009) Available at http://www.dsic.upv.es/~alescaylle/

files/tesis-09.pdf.
15. Lescaylle, A., Villanueva, A.: Using tccp for the Specification and Verification of

Communication Protocols. In: Proceedings of the 16th International Workshop on
Functional and (Constraint) Logic Programming (WFLP’07). (2007)

16. Lescaylle, A., Villanueva, A.: Verification and Simulation of protocols in the
declarative paradigm. Technical report, DSIC - Univeridad Politécnica de Valencia
(2008) Available at http://www.dsic.upv.es/~alescaylle/files/dea-08.pdf.

17. Lescaylle, A., Villanueva, A.: A Tool for Generating a Symbolic Representation of
tccp Executions. Electron. Notes Theor. Comput. Sci. 246 (2009) 131–145

18. Lescaylle, A., Villanueva, A.: The tccp Interpreter. Electron. Notes Theor. Comput.
Sci. 258(1) (2009) 63–77

19. Lowe, G.: Breaking and Fixing the Needham-Schroeder public-key protocol using
FDR. In: Tools and Algorithms for the Construction and Analysis of Systems,
Springer Verlag (1996) 147–166

20. Meadows, C.: Formal Verification of Cryptographic Protocols: A Survey. In:
ASIACRYPT: Advances in Cryptology – ASIACRYPT: International Conference
on the Theory and Application of Cryptology, LNCS, Springer-Verlag (1994)

21. Needham, R., Schroeder, M.: Using Encryption for Authentification in Large
Networks of Computers. Communications of the ACM 21(12) (December 1978)
993–999

22. Olarte, C., Valencia, F.D.: Universal concurrent constraint programing: symbolic
semantics and applications to security. In: SAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing, New York, NY, USA, ACM (2008) 145–150



156 Alexei Lescaylle, Alicia Villanueva

23. Otway, D., Rees, O.: Efficient and timely mutual authentication. ACM Operating
System Review 21(1) (1987) 8–10

24. Saraswat, V.A.: Concurrent Constraint Programming Languages. The MIT Press,
Cambridge, MA (1993)



Implementation and Evaluation
of a Declarative Debugger for Java

Herbert Kuchen1 and Christian Hermanns2

1 University of Münster, Münster, Germany,
kuchen@uni-muenster.de

2 University of Münster, Münster, Germany,
hermannc@wi.uni-muenster.de

Abstract. We present a declarative debugger for Java. Declarative de-
bugging is a technique widely used in the area of logic and functional logic
programming. We demonstrate how this method can be adapted to the
object-oriented programming paradigm and show how to tackle crucial
implementation problems of this method. We also extend a technique to
reduce the number of questions which we developed in former research
in this area and show how this technique can be integrated into our
declarative debugger and present the key concepts and techniques of its
implementation. A further important contribution of this paper is to
provide empirical evidence for the usefulness of the technique for reducing
the number of questions the user has to answer.

1 Introduction

Object-oriented languages such as Java heavily rely on the concept encapsulation.
Encapsulation hides the internal behavior of software components and reduces
their mutual dependency. This facilitates their reusability and reduces complexity,
making encapsulation a powerful and successful concept for the software develop-
ment process [1]. Today it is commonly used in the design and implementation
phase of software development.

Nevertheless, the concept of encapsulation has rarely been used in the de-
bugging phase of software development. Common debuggers for object-oriented
languages as Java still trace the debuggee program in a step by step manner and
do not take advantage of component relationships.

Declarative debugging was developed by E. Y. Shapiro [2] for the Logic
Programming paradigm. It was later applied to other declarative programming
paradigms such as functional [3] and functional logic [4] programming.

In this paper we present a debugging tool which implements a declarative
debugging method for the object-oriented language Java. The theoretical foun-
dations of the debugging method were developed in former work [5]. During
the debugging session our debugger will identify an erroneous method by asking
questions about the correctness of method calls occurring during an erroneous
computation, deriving the intended method semantics from the user’s answers.
Thus, the user can concentrate on “what” a method does (the semantics) and no



158 Herbert Kuchen and Christian Hermanns

longer needs to know “how” a method works internally. The main contribution
of this paper is to show how the debugging method can be transformed into a
working tool. Furthermore, we present some test results which reveal the behavior
of our debugger in practice.

The rest of the paper is organized as follows: In the next section we present a
program which we will use as a running example throughout the paper. Section
3 shows how we apply the declarative debugging technique to the Java program-
ming language. Furthermore, it presents a method which reduces the number of
questions a user must answer to find a bug. In section 4 we demonstrate how
our debugger can be used to find the wrong method in the sample program.
Section 5 presents the architecture of our debugger and points out important
implementation techniques. In section 6 we evaluate the results of a set of test
cases we processed with our debugger. The experiments show the usefulness of
our techniques for reducing the number of questions. In section 7 we discuss how
our paper is related to other works in this field. Our work ends with section 8,
where we conclude and point out future work.

2 Sample Program

We have chosen the well-known binary tree data structure [6] which we will use as
a running example throughout the paper. The code of the binary tree comprises
the classes Node, Tree, and TestTree:
1 class Node<K extends Comparable<K>, D> {
2 K fKey;
3 D fData;
4 Node<K, D> fLeft;
5 Node<K, D> fRight;
6
7 Node(K key, D data, Node<K, D> left, Node<K, D> right) {
8 fKey = key;
9 fData = data;

10 fLeft = left;
11 fRight = right;}
12
13 public void insertNode(K key, D data) {
14 if (fKey.compareTo(key) < 0)
15 if (fRight == null)
16 fRight = new Node<K, D>(key, data, null, null);
17 else

18 fRight.insertNode(key, data);
19 else if (fLeft == null)
20 fLeft = new Node<K, D>(key, data, null, null);
21 else

22 fLeft.insertNode(key, data);}
23
24 public D findNode(K key) throws Exception {
25 if (fKey.compareTo(key) < 0)
26 if (fRight == null)
27 throw new Exception(key + " not found");
28 else

29 return fRight.findNode(key);
30 else if (key.compareTo(fKey) > 0)
31 if (fLeft == null)
32 throw new Exception(key + " not found");
33 else

34 return fLeft.findNode(key);



Implementation and Evaluation of a Declarative Debugger for Java 159

35 else

36 return fData;}}

1 public class Tree<K extends Comparable<K>, D> {
2 protected Node<K, D> root = null;
3
4 public void insert(K key, D data) {
5 if (root == null)
6 root = new Node<K, D>(key, data, null, null);
7 else

8 root.insertNode(key, data);}
9

10 public D find(K key) throws Exception {
11 if (root == null)
12 throw new Exception(key+" not found");
13 else

14 return root.findNode(key);}}

1 public class TestBinaryTree {
2 public static void main(String[] args) throws Exception {
3 Tree<Integer, String> tree = new Tree<Integer, String>();
4 tree.insert(4, "four");
5 tree.insert(3, "three");
6 tree.insert(2, "two");
7 tree.insert(1, "one");
8 System.out.println(tree.find(1));}}

This binary tree supports insert and search operations. The intended semantics
of the methods is straightforward. The insert(K key, D data) and find(K
key) methods of the Tree class delegate each operation to the root node of
the data structure. The only special case which needs to be considered here is
the empty root. The insertNode(K key, D data) method of the Node class
delegates the insert operation to the right child node if the value of the argument
key is greater than the value of the field fKey of the node whose method is called
and to the left child node otherwise. If the selected child node does not exist a
new child node is created for this node. The findNode(K key) method works
alike. The find operation is continued in the right subtree if the value of the
argument key is greater than the value of the node’s field fKey and in the left
subtree if key is smaller. The search is successful if key == fKey and it fails if
the selected subtree is empty. The method findNode(K key) contains an error
in line 30 which should be “else if (key.compareTo(fKey) < 0)”.

3 The Declarative Debugging Method

3.1 The Computation Tree

To enable the declarative debugging of Java programs we use a computation tree
structure which we defined in [5]. Each node of the computation tree will contain
information about a particular method call of the computation. Let N be a node
of the computation tree containing information about a call of method m. Child
nodes of N correspond to method calls occurring in m that have been executed
during the computation of the result of N . For example, the computation tree
representing the execution of our sample program in Section 2 is shown in the
first column of Table 1.



160 Herbert Kuchen and Christian Hermanns

In our computation tree structure a buggy node is an invalid node which has
no invalid children. The call represented by the buggy node produced a wrong
result while it’s inputs, i.e. the arguments provided by the parent call and the
return values of the child calls, are all valid. Therefore, the debugging technique
is correct and guarantees to find the erroneous method.

Method calls in an object-oriented language can produce side effects which
are part of the result of a method call. These side effects must be taken into
account during validation of a method call. Hence, the data stored at each node
of our computation tree will be:

– a fully qualified name identifying the method being called.
– all local variables of the method call, i.e. the arguments of the call and all

locally defined variables. In case of a call to a non-static method the “this”
reference to the object whose method is being called is considered as the first
argument. For each local variable an entry and an exit value will be stored.
The entry value is the variables value at the beginning of the method call and
can be regarded as part of the method’s input. The exit value is the value at
the end of the call and belongs to the method’s result.

– objects contain a set of fields. For any object referenced by a local variable
we need to know the entry and exit values of its fields w.r.t. the considered
method call. An array is considered as a special type of object with all its
fields of the same type. Note that the fields of referenced objects can in turn
reference further objects, spanning a graph of referenced objects. We call this
graph the state space which is accessible by the respective method call. The
accessible state spaces spanned by the entry and exit values are part of the
method’s input and the method’s result, respectively.

– additionally, the entry and exit values of static class fields should be available
because they can be part of the methods input and output as well.

– finally, we need the return value.

The usability of the debugger will depend on a compact and clear representation
of the relevant (changed) information.

Note that our approach just identifies an erroneous method. It does not expose
an erroneous statement in this method. This would require a combination of
declarative and trace debugging, which is out of scope of this paper and will be
tackled in future work. If - according to good programming style - a method only
consists of a few lines, identifying an erroneous method is already sufficient to
find a bug quickly.

3.2 Reducing the Number of Questions

The number of questions asked by our debugger can still be large when it comes
to the debugging of complex programs. To reduce the debugging effort we have
employed a heuristic to automatically derive answers for equivalent questions
which we developed in [5].

The definition of equivalent questions, i.e. equivalent method calls, is inspired
by the approaches of glass-box testing [7]. During glass-box testing a system of



Implementation and Evaluation of a Declarative Debugger for Java 161

test cases, i.e. pairs of inputs and corresponding outputs of a component being
tested, which in some sense covers the possible control and/or data flows of a
tested component is generated. Generally, it is not possible to test all possible
control and/or data flows, since there are to many and often infinitely many of
them. Thus, a reasonable coverage criterion is regarded as sufficient. We have
employed two common coverage criteria: coverage of nodes and edges of the
control flow graph (see Figure 1) and coverage of def-use chains [8].

fRight = Node<K, D>
(key, data, , )

fRight.insertNo

de(key, data);

fLeft = Node<K, D>
(key, data, , )

0

1 6

2

4 7 9

3 10

fLeft.insertNode

(key, data);

fLeft == fRight == 

fKey.compareTo(key) < 0

85

Fig. 1. Control-flow graph of the method insertNode in the binary search ex-
ample. The edge numbers correspond to those in Table 1.

A def-use chain is a triple of a variable, a statement where the variable’s
value is computed, i.e. defined, and a statement where the variable’s value is
used. Moreover, the value of the variable must not change between the definition
and the use. For example, in class Node of our running example the parameter
passing in line 13 together with the if statement in line 14 constitute a def-use
chain for the variable key, denoted by (key,13,14) for short. Other examples for
def-use chains are (key,13,18) and (data,13,16). Note that a definition needs not
to be textually above a use, in particular in the presence of loops.

Following the ideas of coverage based testing we will define classes of equivalent
questions. Two questions are members of the same class of equivalent questions
iff their related method calls produced the same coverage. Our debugger will
assume that the answers to all questions of the same equivalence class are
identical. For example, if a question concerning the soundness of a method call
m(a1,. . . ,an) shall be asked by the debugger and if there was a previous question
corresponding to some method call m(b1,. . . ,bn), where m(a1,. . . ,an) and m(
b1,. . . ,bn) are equivalent w.r.t. the corresponding coverage of the control or data



162 Herbert Kuchen and Christian Hermanns

flow, the second question will not be asked but the result of the first question
will be reused.

This heuristic allows our debugger to detect most but not all errors [5]. Thus,
we will allow the user to switch off the coverage-based inference of answers if
the buggy node could not be found during the debugging process. After the
coverage-based inference is disabled, the user will also be asked the questions
which were automatically inferred before. This will allow the user to detect most
of the errors quickly and easily in the first place. The additional effort to answer
equivalent questions is only required if an error could not be detected using
answer inference.

Table 1. Computation tree produced by the binary tree example of section 2. The
first column contains the hierarchy of method calls, i.e. the computation tree. The
second and the third column show the def-use chain and edge coverage produced
by the corresponding method calls, respectively. The following abbreviations are
used for the variable names of def-use chains: t=tree, rt=root, k=key, d=data,
l=left, r=right, fK=fKey, fD=fData, and fL=fLeft.

Edge Def-use chain
Method call coverage coverage
TestBinaryTree.main()→void [0,1,3,5, [(t,3,4),(t,3,5),(t,3,6),(t,3,7),
| 7,9] (t,3,8)]
`Tree.<init>()→void [0,1] []
`Tree.insert(4,”four”)→void [0,1,3] [(rt,4,5), (k,4,6),(d,4,6)]
| xNode.<init>(4,”four”,null,null)→void [0,1] [(k,7,8),(d,7,9),(f,7,10),(r,7,11)]
`Tree.insert(3,”three”)→void [0,2,4] [(rt,5,6),(k,4,6),(d,4,6)]
| xNode.insertNode(3,”three”)→void [0,6,7] [(fK,14,15),(k,14,15),(fL,14,20),
| (k,14,21),(d,14,21)]
| xNode.<init>(3,”three”,null,null)→void *[0,1] *[(k,7,8),(d,7,9),(f,7,10),(r,7,11)]
`Tree.insert(2,”two”)→void [0,2,4] [(rt,5,6),(k,4,6),(d,4,6)]
| xNode.insertNode(2,”two”)→void [0,8,9] [(fK,14,15),(k,14,15),(fL,14,20),
| (fL,14,23),(k,14,23),(d,14,23)]
| xNode.insertNode(2,”two”)→void *[0,6,7] *[(fK,14,15),(k,14,15),
| (fL,14,20),(k,14,21),(d,14,21)]
| xNode.<init>(2,”two”,null,null)→void *[0,1] *[(k,7,8),(d,7,9),(f,7,10),(r,7,11)]
`Tree.insert(1,”one”)→void *[0,2,4] *[(rt,5,6),(k,4,6),(d,4,6)]
| xNode.insertNode(1,”one”)→void *[0,8,9] *[(fK,14,15),(k,14,15),(fL,14,20),
| (fL,14,23),(k,14,23),(d,14,23)]
| xNode.insertNode(1,”one”)→void *[0,8,9] *[(fK,14,15),(k,14,15),(fL,14,20),
| (fL,14,23),(k,14,23),(d,14,23)]
| xNode.insertNode(1,”one”)→void *[0,6,7] *[(fK,14,15),(k,14,15),(fL,14,20),
| (k,14,21),(d,14,21)]
| xNode.<init>(1,”one”,null,null)→void *[0,1] *[(k,7,8),(d,7,9),(f,7,10),(r,7,11)]
xTree.find(1)→”four” [0,2,4] [(rt,11,12),(k,11,15),(rt,11,15)]

xNode.findNode(1)→”four” [0,13,14] [(fK,26,27),(k,26,27),(k,26,32),
(fK,26,32),(fD,26,38)]

Table 1 shows the hierarchy of method calls in our running example. Each
call is associated with the edges of the control flow graph and the def-use chains
it covered. Due to space restrictions the coverage information of a method call
does not contain the coverage information of its subcalls. The complete coverage
of a method is the union of its own coverage set and the coverage sets of any
of its children. If a coverage information is preceded by a * the classification of
the method call can be inferred from previous user answers using the respective



Implementation and Evaluation of a Declarative Debugger for Java 163

coverage criterion. In this case the automatically inferred answers would be the
same regardless of the selected coverage criterion. Note that especially for more
complex method implementations the sets of inferred answers do in fact differ
depending on the coverage criterion we select. In our example any coverage
criterion would eliminate the question about method call Tree.insert(1, "one
") during the debugging session.

4 Debugging the Sample Program

The debugging session starts when the user runs the main method of the
TestBinaryTreeClass and notices the unexpected output “four” rather than
“one”. Now the user starts the debugger which repeats the computation producing
the computation tree which is partly displayed in the Computation Tree View of
Figure 2. The root of the computation tree corresponds to the initial call of the
main method which is marked by the user as invalid. From this starting point
the debugger will select further methods following a top down search strategy.
Anyhow, the user does not need to follow this strategy and is free to select any
method call of the computation tree by himself. In our example we will validate
the method calls in the following order proposed by the debugger:

– The call of the constructor Tree.<init>(). As this constructor is empty, it
is easily detected as valid.

– The next node is the call of Tree.insert(4, "four") which is selected in the
Computation Tree View of Figure 2. In the Node Explorer View of the same
figure we see that the local variable this has changes in its subtree because
it is marked by a yellow (light grey) background color. Its field root which is
marked red (dark grey) has changed from null (Old value) to a reference
to a Node object with id=263 (New value) during the selected method call.
The fields fKey and fData of this object have changed from null to the
values which we want to insert into our data structure. A closer look at the
Computation Tree View in Figure 2 tells us that the new Node object has
obviously been constructed by the only child node, a call to Node.<init>
(4, "four", null, null). We mark the insert call as valid because the
result reflects our expected behavior.

– In the next three steps the debugger asks us to classify the calls Tree
.insert(3, "three"), Tree.insert(2, "two"), Tree.insert(1, "one").
The result of all three calls is a new Node object which is added to the tree
data structure. We can select these nodes in the Computation Tree View and
inspect the changes in the subtree of the this variable in the Node Inspector
View as we have done for the first call to the insert Method. The observed
result does correspond to the intended semantics of this method: each of
the new nodes is added as leftmost child to the tree data structure. With
automatic answer inference enabled our debugger would skip the question
about Tree.insert(1, "one"). As indicated by the coverage information
of Table 1, this node will be classified as valid based on the classification of
Tree.insert(2, "two") which produced the same coverage.



164 Herbert Kuchen and Christian Hermanns

Fig. 2. Screenshot of the declarative debugger user interface. The “Computation
Tree” view shows the computation tree representing the execution of the main
method of the TestBinaryTree class of the running example. The “Node Inspec-
tor” View shows the values of the local variables of the insert method which is
selected in the “Computation Tree” view. The columns “Old value” and “New
value” show the variable values before and after execution of the selected method
call. Variables whose value has changed are marked by a different background
color: red (dark grey) indicates value changes of the variable itself, yellow (light
grey) indicates changes in the subtree of a variable.

– Now we are asked to validate Tree.find(1). The binary tree data structure
which is stored in the root field of the Tree object being called does not
contain a Node with fKey=1 and fData= “four” which would justify the
return value of the method. Hence, this node is invalid. The debugger will
continue to look for the buggy node in the subtree of the current node.

– The call of Node.findNode(1) will also be defined as being invalid. The Node
object’s left subtree contains the searched (key,value) pair (1,“one”). Hence,
the return value “four” of the method call is clearly false.

At this moment the debugger marks the method findNode(K key) as buggy,
ending the debugging session. Now, the user has to check the method and correct
the error.



Implementation and Evaluation of a Declarative Debugger for Java 165

As we have seen, some of the questions that occur during a debugging session
can be complex. Notice however that the same questions will occur implicitly
during a debugging session using a normal trace debugger. Moreover, the use of
the declarative debugger facilitates the debugging process, allowing the user to
compare the input and output values of variables modified during a method call.
The directed navigation also helps by reducing the questions to nodes with an
invalid parent node, while a trace debugger also traces valid computations. Some
additional features of our tool help to further reduce the debugging effort:

– Classes can be marked as trusted before the debugging process starts, just
like the Java API packages in our example. This reduces the size of the
tree and therefore the number of questions. Furthermore, the user can mark
the method associated to any node as trusted during the debugging session.
Subsequently, all nodes associated to this method are automatically valid.

– State changes of local variables and object fields are marked by different
background colors in the “Node Explorer” view as shown in Figure 2. This
greatly simplifies the detection of side effects and reduces the effort to classify
method calls.

– The computation tree gives the user better overview and understanding of
the general control flow of the debuggee program. A feature which helps to
reduce debugging effort, but is totally missing in trace debuggers.

5 Implementation

5.1 Architecture

Basically, there are two possible techniques to obtain the required debugging
information about the execution of the debuggee program: the Java Platform
Debugger Architecture (JPDA) [9] and program transformation. JPDA is an API
specified by the Java Virtual Machine Specification which has an event-based
architecture. It can be used to obtain events about an executed program such as
method-entry, method-exit, and field change events. Because JPDA is part of any
Java Virtual Machine implementation it appears to be a convenient and efficient
way to implement our debugger. Unfortunately, it is not possible to collect any
def-use chain or edge coverage information about an executed program with
JPDA. For example, JPDA does not allow to trace read and write operations
of local variables, a feature which is necessary to record def-use chain coverage.
Hence, we employed program transformation using the ASM framework [10] to
obtain all required information about the execution of the debuggee program.

Figure 3 shows the architecture of our declarative debugger. It consists of
four basic components: Instrumentation Engine, Recording Engine, Debugging
Engine, and the debuggee program. The components are distributed over two
separate JVMs, the Debugger JVM and the Debuggee JVM. The Debugging
Engine resides in the Debugger JVM, while the Instrumentation Engine and the
debuggee program are located in the Debuggee JVM. The Recording Engine is
distributed over both JVMs.



166 Herbert Kuchen and Christian Hermanns

Debuggee VM

Debugger VM

Debuggee
(instrumented 

bytecode)

Instrumentation
Engine

Classloader

Recording
Engine

Event
Sender

Event 
Receiver

Debugging
Engine

Computation tree

Bytecode

Fig. 3. Architecture of the declarative debugger.

During the class loading process of the Debuggee JVM the bytecode of the
loaded class is manipulated by the Instrumentation Engine. After the instrumen-
tation process, the bytecode of the loaded class contains additional instructions
which invoke methods of the EventSender class.

The methods of the EventSender create debugging events which are transmit-
ted to the EventReceiver. As the instrumentation process is conducted during
the dynamic class loading process at bytecode level, it is transparent from a
programmers point of view. In a debugging session a programmer will work with
the original source code. This makes the program transformation invisible to
him.

During the execution of the debuggee program the sequence of debugging
events is collected by the EventReceiver which constructs the computation tree
from these events.

The current implementation of the EventReceiver creates an object model
representation of these computation trees in the memory of the Debugger JVM.
The virtue of this approach is that it guarantees fast access to the elements of
each computation tree for the Debugging Engine. On the other hand, storing
complete computation trees in memory is very resource intensive, especially for
large computations the memory requirements can be huge. To reduce the memory
consumption of our debugger we could store the computation tree in a file or
database first and load the required parts into memory on demand. However,
this solution has not been implemented yet.

5.2 Data Model

Figure 4 shows the data model of our declarative debugger. The model is rep-
resented as a class diagram and contains all the relevant information needed
to apply the debugging technique described in section 3. The data model is
constructed by the EventReceiver class based on the received debugging events
during execution of the debuggee program.



Implementation and Evaluation of a Declarative Debugger for Java 167

Computation
Tree

MethodCall

LocalVariableDefUseChain

Edge

Reference

Object

Method

Primitive

BooleanValue

LongValue

Value

ClassField

*

*

*

*

...

*

entry exit

*

(0,1)

(0,1)

Timestamp

*

entry

exit
*

Fig. 4. Class diagram of the data model of the declarative debugger.

The data model contains a ComputationTree representing the the execution
of the debuggee program. A ComputationTree has a root Method-Call which is
usually the call of the main method of the debuggee program. Each MethodCall
is associated to a specific Method and has a set of local variables and a return
value. Note that the arguments of the method call as well as a possible “this”
reference to the object whose method is called are also treated as local variables.
A set of covered def-use chains and a set of covered edges of the control flow graph
is also stored with each method call. These sets are used to identify equivalent
method calls (section 3.2). Moreover, each method call has a parent call except
for the root call which has no parent call and 0 or more child calls. These relations
build a computation tree as described in section 3.1.

Additionally, a method call has two associated timestamps. The first timestamp
indicates the time at the beginning of the method call and the second timestamp
indicates the time at the end of the method call. The timestamps are needed to
determine the values of class and object fields at the beginning and the end of
a method call. A timestamp is an ordinal value which must meet the following
conditions: Let Ea be the entry timestamp and Xa be the exit timestamp, then
Ea < Xa must hold for any method call a. Let b be a method call occurring after
the execution of a, i.e. after the computation of a is finished, then Xa < Eb must
hold. Furthermore, let c be a child call of a, i.e. a call which occurred during the
execution of a then Ea < Ec < Xc < Xa must hold. This way the timestamps
are guaranteed to be consistent with the method call hierarchy. Note that the
timestamps for a method call can be computed from the method call’s position in
the computation tree in O(n), where n is the number of calls in the computation
tree. To avoid recomputation of these values, they are stored with the method
calls.

Each local variable has an entry and an exit value representing the variable’s
value at the beginning and the end of a method call. A value can either be a
primitive value or a reference value. Primitive values represent the well-known



168 Herbert Kuchen and Christian Hermanns

primitive values of the JVM (boolean, int, etc.). The reference value can either
reference an object or be a null reference. An object belongs to a class and
contains a set of fields. A field can have an arbitrary number of values each
associated with a timestamp of the computation. When we need to compute the
values of a field at method entry and method exit, we can use the method call’s
timestamps to determine the field’s values. If the values are stored chronologically,
a field’s value at some timestamp can be determined in O(log v) using binary
search, where v is the number of values stored values for that field.

Note that the computation of the relevant entry and exit values for a method
call is a recursive process. The process starts by computing the entry and exit
values for all local variables. After that, the process continues with the computation
of the entry and exit values of the fields of the objects referenced by the previously
determined values. The entry and exit values of these fields can in turn reference
further objects. This process is recursively applied to all referenced objects which
have not been visited yet. A method call can also read and write static class fields.
For this reason, the process is also applied to the fields associated to relevant
classes of the computation.

Please note that the described data model is a logic view to the data recorded
during the execution of a debuggee program. Although the current implementation
stores the recorded events in an object model which is based on the described
class class diagram, there are other ways to store the collected data. The model
can also be stored in files or a database. As indicated before this would help to
reduce the memory usage of our debugger.

6 Test Results

To show the practicability of our debugging technique and our debugger imple-
mentation, we have applied our debugger to a set of selected test programs. For
each of the programs which originally contained no errors we created several
test samples. Each sample was generated from the original program by changing
one distinct line of the source code such that the resulting test sample would
contain a common programming error. This way we have created a set of 38
test samples out of 6 different programs. Using our declarative debugger we
have determined the number of questions a user would have to answer, i.e. how
many method calls he has to evaluate, before the erroneous method is found
by the debugger. The debugging process has been conducted three times for
each error sample. Once with automatic answer inference disabled and twice
with automatic answer inference enabled using def-use chain coverage and edge
coverage, respectively. Counting the number of questions we have to answer for
each of the three debugger settings allows us to evaluate their usefulness.

Table 2 shows the test results. Column one indicates the name of the program
which was subject to debugging. For each program we have manually constructed
several test cases as described before. The number of test cases we created this
way is shown in column two. The values in column 3 indicate the average size of
the generated computation tree. Column 4 shows the average number of trusted



Implementation and Evaluation of a Declarative Debugger for Java 169

method calls in the computation tree which are automatically marked as valid.
The next 3 columns contain the average number of answers necessary to find the
erroneous method. Each column corresponds to a coverage criterion we employed
to automatically infer answers. The coverage criteria are: no coverage criterion,
def-use chain coverage, and edge coverage. Depending on the test program either
def-use chain coverage or edge coverage is the inference strategy which eliminates
the most questions. Overall edge coverage performs best, asking 10,53 questions
on average, while the other strategies yield 17,29 (no inference) and 11,66 (def-use
chain). The ratio of the visited search space given in columns 8-10 is calculated
by dividing the average number of answers by the average number of untrusted
method calls in the computation. On average we have to validate 27% of the
methods of the computation tree if we use no inference strategy, 18% if we use
def-use chain coverage, and 17% if we use edge coverage.

Table 2. Results of test cases processed with the declarative debugger.

# of Avg. # of Avg. number of Ratio of visited Relative
Test method calls answers search space savings

Program Cases Total Trusted None DUC Edge None DUC Edge DUC Edge

Avl 10 142,0 74,5 13,90 12,40 12,60 0,21 0,18 0,19 0,11 0,09
Binary Tree 5 138,4 94,4 11,80 11,60 11,60 0,27 0,26 0,26 0,02 0,02
B Tree 8 214,1 137,3 16,13 13,88 14,25 0,21 0,18 0,19 0,14 0,12
Heap sort 5 35,0 1,0 12,20 10,40 9,20 0,36 0,31 0,27 0,15 0,25
Hash table 5 162,0 66,6 32,40 10,00 5,00 0,34 0,10 0,05 0,69 0,85

Total Avg. 33 138,3 74,8 17,29 11,66 10,53 0,27 0,18 0,17 0,33 0,39

The last two columns indicate the relative number of questions that can be
eliminated with answer inference in comparison to debugging without answer
inference. Depending on the test program and the coverage the percentage of
eliminated questions varies between a minimum of 2% and a maximum of 85%,
with an average of 33% for def-use chain and 39% for edge coverage.

7 Related Work

The idea to apply declarative debugging outside the declarative programming
paradigm is not new. In 1998 Shahmehri and Fritzson presented an approach for
declarative debugging of the imperative language Pascal [11] which was further
developed by the same authors in [12]. The main difference of our approach
w.r.t. these earlier proposals is that Java is a language much more complex than
Pascal. The declarative debugging of programs including objects and object states
introduces new difficulties.

There are several approaches which use an execution history to locate bugs
in the debuggee program. In a first step these methods trace and record the
complete execution of the debuggee program. In a second step the recorded



170 Herbert Kuchen and Christian Hermanns

information is used to identify errors in the debuggee program. For example,
JavaDD [13] follows a query-based approach, storing events occurring during
the debuggee program execution in a deductive database. The database can be
queried to retrieve the states of different program entities (variables, threads,
etc.) at different moments of the computation history to infer where the bug
is located. Another approach is omniscient debugging [14] which can trace the
execution of the debuggee program back and forth in time. In contrast to this
approaches our debugger concentrates on the logic of method calls, storing them
in a structured way, i.e. the computation tree. This allows our debugger to guide
the debugging process, deducing the wrong method from user answers.

Hoon-Joon Kouh et al. [15] propose a debugging technique for Java which
combines algorithmic and step-wise debugging. In contrast to our work they
neither present a tool implementation nor do they present a solution to display
side effects in an accessible form. Furthermore, they use slicing techniques to
reduce the size of the computation tree, while our tool uses coverage information.

Our paper is based on previous work [5] we have done in this field. In this
paper we extend our previous ideas and show their practicability by presenting a
declarative debugger implementation. Our debugger enhances the functionality
of a former prototype and includes an implementation of the automated answer
inference presented in section 3.2. Furthermore, we test and evaluate our debugger
using various test scenarios.

8 Conclusions and Future Work

We have presented a tool which enables the declarative debugging of Java pro-
grams. A major difference to the situation found in declarative languages is that
Java enables side effects. Besides the parameters and the result of a method call
these side effects must be presented to the user for validation of the method
calls. This requires a well-designed user interface which does not overstrain the
tester with too much information, but allows to expand the required pieces of
the state space on demand. This includes the demand driven navigation of the
object graph which is accessible from local variables and object fields.

The major advantage of declarative debugging compared to conventional
debugging is that it works on a higher level of abstraction. The tester is relieved
from the task to inspect the state space after each instruction starting from some
break point. By answering questions about the soundness of some method calls
the user can concentrate on the semantics. Furthermore, compared to a trace
debugger the overall debugging effort is not greater. During trace debugging the
user will answer questions about the correctness of method calls implicitly while
observing changes of the state space in a step by step manner.

A particular novelty of our approach is the usage of code-coverage criteria
such as def-use chain coverage and coverage of the edges of the control-flow graph
which we use to define the equivalence of method calls. This notion of equivalence
enables us to reduce the amount of questions significantly.



Implementation and Evaluation of a Declarative Debugger for Java 171

We have conducted a number of tests where we have used our debugger to
find the erroneous method. The results show that our debugger is suitable for
practical application. Note that real-world applications are debugged component
by component such that the search space for the component under consideration
is manageable. Moreover, these tests confirm that our notion of equivalent method
calls clearly reduces the number of questions.

In the future we plan to integrate trace debugging functionality into our
declarative debugger. If a user is uncertain about the correctness of a method
call tracing its execution back and forth in time will provide further information
which helps to classify method calls. Hence, this hybrid debugging approach will
have the benefit that it combines the advantages of both debugging methods.

References

1. Booch, G.: Object-Oriented Analysis and Design with Applications (3rd Edition).
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA (2004)

2. Shapiro, E.Y.: Algorithmic Program DeBugging. MIT Press, Cambridge, MA, USA
(1983)

3. Nilsson, H.: How to look busy while being as lazy as ever: the implementation of a
lazy functional debugger. J. Funct. Program. 11(6) (2001) 629–671

4. Caballero, R., Rodŕıguez-Artalejo, M.: A declarative debugging system for lazy
functional logic programs. Electronic Notes in Theoretical Computer Science 64
(2002)

5. Caballero, R., Hermanns, C., Kuchen, H.: Algorithmic debugging of java programs.
Electron. Notes Theor. Comput. Sci. 177 (2007) 75–89

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
2nd edn. The MIT Press (2001)

7. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. fifth edn.
McGrap-Hill (2001)

8. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison Wesley (August 2006)

9. Sun Microsystems: Java platform debugger architecture. http://java.sun.com/

javase/technologies/core/toolsapis/jpda/ (2009)
10. Object Web: Asm. http://asm.ow2.org/ (2009)
11. Shahmehri, N., Fritzson, P.: Algorithmic debugging for imperative languages with

side-effects. In Third International Workshop CC ’90 Schwerin, FRG, O..., ed.:
Compiler Compilers. Volume 477., Berlin, Germany, Springer (1991) 226–227

12. Fritzson, P., Shahmehri, N., Kamkar, M., Gyimothy, T.: Generalized algorithmic
debugging and testing. ACM Lett. Program. Lang. Syst. 1(4) (1992) 303–322

13. Girgis, H.Z., Jayaraman, B.: Javadd: a declarative debugger for java. Technical
report, Department of Computer Science and Engineering, University at Buffalo (7
2006)

14. Lewis, B.: Debugging backwards in time. CoRR cs.SE/0310016 (2003)
15. Kouh, H.J., Kim, K.T., Jo, S.M., Yoo, W.H.: Debugging of java programs using

hdt with program slicing. In: ICCSA (4). (2004) 524–533

http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://asm.ow2.org/


Author Index

Baggi, Michelle, 35
Ballis, Demis, 35
Braßel, Bernd, 2

Christiansen, Jan, 80

del Vado Vı́rseda, Rafael, 91
Dezani, Mariangiola-Ciancaglini, 1

Falaschi, Moreno, 35
Fischer, Sebastian, 2

Giorgidze, George, 19

Hanus, Michael, 2, 50
Hermanns, Christian, 157

Ikuta, Yuuki, 131

Kuchen, Herbert, 157
Kusakabe, Shigeru, 131

Lescaylle, Alexei, 115, 140

Nilsson, Henrik, 19

Pérez Morente, Fernando, 91
Patai, Gergely, 100

Reck, Fabian, 2

Schrijvers, Tom, 65
Seidel, Daniel, 80

Villanueva, Alicia, 115, 140
Voigtländer, Janis, 80

Wuille, Pieter, 65


	Invited Talk: Sessions and Session Types
	Mariangiola Dezani-Ciancaglini
	Transforming Functional Logic Programs into Monadic Functional Programs
	Bernd Braßel, Sebastian Fischer, Michael Hanus, Fabian Reck
	Mixed-level Embedding and JIT Compilation for an Iteratively Staged DSL
	George Giorgidze, Henrik Nilsson
	An Access Control Language based on Term Rewriting and Description Logic
	Michele Baggi, Demis Ballis, and Moreno Falaschi
	Lazy and Faithful Assertions for Functional Logic Programs
	Michael Hanus
	Parameterized Models  for On-line and Off-line Use
	Pieter Wuille, Tom Schrijvers 
	A Denotational Semantics for Curry
	Jan Christiansen, Daniel Seidel, Janis Voigtländer
	A Declarative Debugger of Missing Answers for FLP
	Fernando Pérez Morente, Rafael del Vado Vírseda
	Efficient and Compositional Higher-Order Streams
	Gergely Patai
	Bridging the Gap between Two Concurrent Constraint Languages 
	Alexei Lescaylle, Alicia Villanueva
	Large Scale Random Testing with QuickCheck on MapReduce Framework
	Shigeru Kusakabe, Yuuki Ikuta 
	Automated Verification of Security Protocols in tccp
	Alexei Lescaylle, Alicia Villanueva
	Implementation and Evaluation  of a Declarative Debugger for Java
	Herbert Kuchen, Christian Hermanns

