
UNIVERSIDAD POLITÉCNICA DE MADRID

Escuela Técnica Superior de
Ingenieros Informáticos

Operational Aspects of
Full Reduction in
Lambda Calculi

PhD Thesis

Álvaro Garćıa Pérez

October 2014

Departamento de Lenguajes,
Sistemas Informáticos e Ingeniería de Software

Escuela Técnica Superior de
Ingenieros Informáticos

Operational Aspects of
Full Reduction in
Lambda Calculi

Submitted in partial fulfilment
of the requirements for the degree of

Doctor en Software y Sistemas

Author

ÁLVARO GARCÍA PÉREZ
Máster en Tecnologías para el Desarrollo de Sistemas Software Complejos

IMDEA Software Institute and Universidad Politécnica de Madrid

Advisors

JUAN JOSÉ MORENO NAVARRO
Catedrático de Universidad

IMDEA Software Institute and Universidad Politécnica de Madrid

PABLO NOGUEIRA
Profesor Ayudante Doctor

Universidad Politécnica de Madrid

October 2014

Summary

This thesis studies full reduction in lambda calculi. In a nutshell, full reduction consists in
evaluating the body of the functions in a functional programming language with binders.
The classical (i.e., pure untyped) lambda calculus is set as the formal system that models
the functional paradigm. Full reduction is a prominent technique when programs are
treated as data objects, for instance when performing optimisations by partial evaluation,
or when some attribute of the program is represented by a program itself, like the type in
modern proof assistants.

A notable feature of many full-reducing operational semantics is its hybrid nature,
which is introduced and which constitutes the guiding theme of the thesis. In the lambda
calculus, the hybrid nature amounts to a ‘phase distinction’ in the treatment of abstractions
when considered either from outside or from inside themselves. This distinction entails a
layered structure in which a hybrid semantics depends on one or more subsidiary semantics.

From a programming languages standpoint, the thesis shows how to derive implemen-
tations of full-reducing operational semantics from their specifications, by using program
transformations techniques. The program transformation techniques are syntactical trans-
formations which preserve the semantic equivalence of programs. The existing program
transformation techniques are adjusted to work with implementations of hybrid seman-
tics. The thesis also shows how full reduction impacts the implementations that use
the environment technique. The environment technique is a key ingredient of real-world
implementations of abstract machines which helps to circumvent the issue with binders.

From a formal systems standpoint, the thesis discloses a novel consistent theory for
the call-by-value variant of the lambda calculus which accounts for full reduction. This
novel theory entails a notion of observational equivalence which distinguishes more points
than other existing theories for the call-by-value lambda calculus. This contribution helps
to establish a ‘standard theory’ in that calculus which constitutes the analogous of the
‘standard theory’ advocated by Barendregt in the classical lambda calculus. Some proof-
theoretical results are presented, and insights on the model-theoretical study are given.

v

Resumen

Esta tesis estudia la reducción plena (‘full reduction’ en inglés) en distintos cálculos lamb-
da.1 En esencia, la reducción plena consiste en evaluar los cuerpos de las funciones en los
lenguajes de programación funcional con ligaduras. Se toma el cálculo lambda clásico (i.e.,
puro y sin tipos) como el sistema formal que modela el paradigma de programación fun-
cional. La reducción plena es una técnica fundamental cuando se considera a los programas
como datos, por ejemplo para la optimización de programas mediante evaluación parcial,
o cuando algún atributo del programa se representa a su vez por un programa, como el
tipo en los demostradores automáticos de teoremas actuales.

Muchas semánticas operacionales que realizan reducción plena tienen naturaleza híbri-
da. Se introduce formalmente la noción de naturaleza híbrida, que constituye el hilo con-
ductor de todo el trabajo. En el cálculo lambda la naturaleza híbrida se manifiesta como
una ‘distinción de fase’ en el tratamiento de las abstracciones, ya sean consideradas desde
fuera o desde dentro de si mismas. Esta distinción de fase conlleva una estructura en capas
en la que una semántica híbrida depende de una o más semánticas subsidiarias.

Desde el punto de vista de los lenguajes de programación, la tesis muestra como derivar,
mediante técnicas de transformación de programas, implementaciones de semánticas op-
eracionales que reducen plenamente a partir de sus especificaciones. Las técnicas de trans-
formación de programas consisten en transformaciones sintácticas que preservan la equiva-
lencia semántica de los programas. Se ajustan las técnicas de transformación de programas
existentes para trabajar con implementaciones de semánticas híbridas. Además, se muestra
el impacto que tiene la reducción plena en las implementaciones que utilizan entornos. Los
entornos son un ingrediente fundamental en las implementaciones realistas de una máquina
abstracta.

Desde el punto de vista de los sistemas formales, la tesis desvela una teoría novedosa
para el cálculo lambda con paso por valor (‘call-by-value lambda calculus’ en inglés) que
es consistente con la reducción plena. Dicha teoría induce una noción de equivalencia
observacional que distingue más puntos que las teorías existentes para dicho cálculo. Esta
contribución ayuda a establecer una ‘teoría estándar’ en el cálculo lambda con paso por
valor que es análoga a la ‘teoría estándar’ del cálculo lambda clásico propugnada por
Barendregt. Se presentan resultados de teoría de la demostración, y se sugiere como abordar
el estudio de teoría de modelos.

1Traducimos el adjetivo inglés ‘full’ como ‘pleno’ (con el significado de ‘exhaustivo’) en vez de como el
más habitual ‘completo’, para evitar confusión con el inglés ‘complete’ que significa algo diferente en este
contexto.

vii

Acknowledgements

I would like first to thank the people that enabled me to do a PhD. My PhD advisors,
Juan José Moreno Navarro and Pablo Nogueira, and my advisor of the final project of my
grade in Ingeniería Informática, Nelson Medinilla. Juanjo, I could never be more grateful
for the opportunity you gave to me. Pablo, you did not only take the responsibility to
guide me through my doctoral studies, but the determination to help me in achieving the
key skills and manners that science requires. Nelson, thanks for telling me which doors I
should knock when I was still dubious about pursuing a research career.

Many people helped me by teaching how to do science during my graduate courses
at Universidad Politécnica de Madrid. Thanks are specially due to Pablo Nogueira, Julio
Mariño, Germán Puebla, Lars-Åke Fredlund, Samir Genaim, and Manuel Carro. I am only
fortunate to have attended some graduate courses abroad and on line. My gratitude to
Andreas Döring, Olivier Danvy, and Frank Pfenning. I complemented my education in the
Oxford Spring School 2010 and in the Oregon Summer School 2013. I had the pleasure
to learn from Ralf Hinze, Oleg Kiselyov, Simon Peyton-Jones, Jeremy Siek, and Stephanie
Weirich while in Oxford. The courses by Robert Harper, Frank Pfenning, Simon Peyton-
Jones, Stephanie Weirich, Amal Ahmed, and Andrew Tolmach at Oregon were specially
illuminating.

I also had the opportunity to enjoy academic stays at Oxford University Computing
Laboratory and at Aarhus University. Thanks are due to Bruno Oliveira, Jeremy Gibbons,
Meng Wang, Ralf Hinze, Nicolas Wu, Richard Bird, and Geraint Jones from Oxford Uni-
versity Computing Laboratory, and to Olivier Danvy, Jan Midtgaard, Ian Zerny, and Erik
Ernst from Aarhus University. I am specially grateful for the interest that Peter Sestoft
and Lars Birkedal showed during my one-day visit to ITU Copenhagen.

My sincere gratitude to César Muñoz, Hélène Kirchner, Elvira Albert, Shin-Cheng Mu,
Tom Schrijvers, Ricardo Peña, Wei-Ngan Chin, and Jurriaan Hage for chairing the venues
in which my work has been published. And thanks also to Elvira Albert, Shin-Cheng Mu,
Ricardo Peña, and Tom Schrijvers for their role as guests editors in the Journal of Science
of Computer Programming. I am in debt to the anonymous reviewers of all these venues, in
particular the external reviewers for the special issue of my PEPM’13 paper in the Journal
of Science of Computer Programming. They genuinely helped me to disentangle the formal
principles of my contribution from the presentational aspects. My gratitude to them is not
rhetorical.

Thanks to the external examiners of my dissertation, Olivier Danvy and Herbert
Kuchen. I really appreciate your valuable time. Thanks to the two experts from DLSIIS,

ix

Julio Mariño and Germán Puebla, you put me in the track of a good presentation and of
a smooth and fluent defence. And thanks to the committee members: Julio Mariño, San-
tiago Escobar, Małgorzata Biernacka, Jan Midtgaard and Pierre-Yves Strub. Małgorzata
and Jan, your comments yielded a thorough reflection on the work and, I hope, they will
also yield a fruitful discussion in the future. You were the perfect guardians of rigour. My
work benefited in great extent from your comments and points of view.

I always counted with the support and understanding of my colleagues at Babel Group:
Emilio Gallego, Ángel Herranz, Julio Mariño, Guillem Marpons, Jamie Gabbay, Lars-Åke
Fredlund, Clara Benac, Álvaro Fernández, Susana Muñoz, Ana María Fernández, James
Lipton, Elena Gómez-Martínez, Iván Pérez, Victor Pablos Ceruelo, and Raul Alborodo.

No less important was the stimulating atmosphere at the IMDEA Software Institute.
Thanks to the three Manueles (Hermenegildo, Clavel, and Carro) for steering the ship.
Thanks to Gilles Barthe for his friendly and always constructive criticism, to John Gal-
lagher for his advice, and to Aleksandar Nanevski, Anindya Banerjee, Ilya Sergey, Ger-
mán Delbianco, Mark Marron, Ruy Ley-Wild, Noam Zeilberger, and César Sánchez for
their feedback and comradeship. Juan Manuel, Julián, César, Jürgen, Santiago, Federico,
Artem, Carol, thanks for sharing with me the everyday space. Miguel Ángel, Remy, J.
Fran, Teresa, Alex, Javier, José Miguel, Eugenia, Goran, Antonio, Umer, Alejandro, Zoé,
Guido, Lucio, Martín, Pedro, Dragan, Zorana, Boris, Juan, Pierre, Pavithra, Michael,
Alexey, Salvador, Miriam, Joaquín, Natalia, Platon, Andrea, Giovanni, thanks for keeping
IMDEA as the friendly place that it is and always was. And thanks to the numerous
colleagues and visitors that have spent time at IMDEA during these last years.

Nothing would have been possible without the technical support and management: Ana
María Fernández, María Alcaraz, Paola Huerta, Tania Rodríguez, Carlota Gil, Andrea
Ianetta, Juan Céspedes, and Roberto Lumbreras, thanks for that.

My thesis is made up of articles. I could not have written these articles without the help
of my collaborators. Pablo, Emilio, Juanjo, Ilya, Pierre-Yves, you were excellent mirrors
in which to project my ideas. Thanks for this thrilling interchange.

Among the numerous encounters in scientific venues, I would like to emphasise those
with Kenichi Asai, Beniamino Accattoli, Oleg Kiselyov, Flavien Breuvart, Alberto Carraro,
Jeremy Siek, Ronald Garcia, Jacob Johannsen, Thomas Ehrhard, Frank Pfenning, Amal
Ahmed, Stephanie Weirich, and Simon Peyton-Jones.

This research has been partially funded by the Spanish Ministerio de Ciencia e In-
novación through project DESAFIOS10 TIN2009-14599, and by Comunidad de Madrid
through programme PROMETIDOS P2009/TIC-1465. I have been supported by Comu-
nidad de Madrid grant CPI/0622/2008 and by IMDEA Software Institute. I am deeply
grateful for their essential financial support.

I am also grateful to Luca Aceto and Anna Ingólfsdóttir for providing me with the
opportunity to keep doing research in the NoSOS project at Reykjavík University.

Finally, I am grateful to my family and friends, who were always patience and helpful.
Eugenia, I would have never started a PhD without your encouragement. I am in debt
to you for your cheer and sympathy in the difficult moments. Tina, you provided decisive

support in the second half of my journey, sometimes shaky, but always lively. I am only too
grateful for the help you offered while polishing my defence and for your warm presence.

Disclaimer

This thesis builds on several published and submitted works that I have co-authored.

Journal publications:

• On the syntactic and functional correspondence between hybrid (or layered) normalis-
ers and abstract machines. With Pablo Nogueira. Science of Computer Programming
95(2), 176-199, Elsevier (2014).

Conference publications (peer-reviewed):

• A syntactic and functional correspondence between reduction semantics and reduction-
free full normalisers. With Pablo Nogueira. In: ACM SIGPLAN Symposium on
Partial Evaluation and Program Manipulation (2013).

• Deriving the full-reducing Krivine machine from the small-step operational seman-
tics of normal order. With Pablo Nogueira and Juan José Moreno Navarro. In:
ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming
(2013).

• Deriving interpretations of the gradually-typed lambda calculus. With Pablo Nogueira
and Ilya Sergey. In: ACM SIGPLAN Symposium on Partial Evaluation and Program
Manipulation (2014).

Extended abstracts (peer-reviewed):

• The Beta-Cube. With Pablo Nogueira and Emilio Jesús Gallego Arias. In: 1st In-
ternational Workshop on Strategies in Rewriting, Proving, and Programming (2010).

• A standard theory for the pure lambda-value calculus. With Pablo Nogueira. In:
11th International Workshop on Domain Theory and Application (2014).

I contributed in the elaboration of all of them as the first author.

Contents

Summary v

Resumen vii

Acknowledgements ix

Preface 1

1 Introduction 7
1.1 Full reduction and hybrid strategies . 9
1.2 Call-by-value and the lambda-value calculus 11
1.3 Formal semantics and Inter-derivation of semantic artefacts 13
1.4 Nameful and name-free representations of the lambda

calculus . 15
1.5 Explicit substitutions and the environment technique 16
1.6 The problem . 17
1.7 Contributions . 19

1.7.1 Theoretical contributions . 19
1.7.2 Practical contributions . 21

1.8 Overview . 24

2 Technical Preliminaries 25
2.1 Lambda calculus . 25
2.2 Operational semantics and inter-derivation 28
2.3 Lambda theories and models . 30

I Meta-Theory 33

3 The Beta Cube 35
3.1 Introduction . 35
3.2 Rule template and generic reducer . 36
3.3 The β-cube . 38
3.4 Hybridisation . 39

xv

Contents

3.5 Absorption . 40
3.6 Conclusions and future work . 40

Addendum to Chapter 3 41
3.7 Monadic style and semantics preservation 41
3.8 Absorption and normalisation by evaluation 43
3.9 Balanced generic template . 48
3.10 Spine strategies . 51

3.10.1 Spine applicative order . 52
3.11 Generic template and the λV -calculus . 53
3.12 Relevant strategies . 55

4 Towards a Standard Theory for the Lambda-Value Calculus 57
4.1 Introduction . 58
4.2 Preliminaries: solvability . 61
4.3 Quasi-solvability . 62
4.4 Genericity lemma . 65
4.5 βV Ωω-reduction . 67
4.6 The theory HV . 71
4.7 Completeness of needed reduction . 72
4.8 Completeness of v-needed reduction . 75
4.9 Leftmost, standard, needed, and spine . 78

4.9.1 Spine strategies . 81
4.10 Intuition for models of λV . 81

Addendum to Chapter 4 83
4.11 Needed reduction . 83
4.12 Operational relevance in λV . 83

II Full-Reducing Machines 85

5 On the Syntactic and Functional Correspondence between Hybrid (or
Layered) Normalisers and Abstract Machines 87
5.1 Introduction . 88
5.2 Normal order, a hybrid strategy . 91

5.2.1 Structural operational semantics . 91
5.2.2 Natural semantics . 93
5.2.3 (Context-based) reduction semantics 94

5.3 Hybrid style and hybrid nature . 96
5.4 From search functions to reduction-based normaliser 99

5.4.1 One datatype for irreducible forms 99
5.4.2 Search functions . 99

xvi

Contents

5.4.3 CPS-transformed search functions 100
5.4.4 Simplifying the CPS-transformed search functions 101
5.4.5 Defunctionalising continuations . 102
5.4.6 From search to decomposition . 104

5.5 Continuation stacks . 104
5.5.1 Well-formed continuation stacks and their shape invariant 105
5.5.2 Correspondence between well-formed continuation stacks and reduc-

tion contexts . 108
5.6 From reduction semantics to abstract machine 110

5.6.1 Trampolined-style normaliser . 111
5.6.2 Refocusing intensionally . 112
5.6.3 Pre-abstract machine . 113
5.6.4 Lightweight fusion by fixed-point promotion 113
5.6.5 Corridor transitions and inlining-of-iterate-function 114
5.6.6 Recovering the shallow inspection property 116

5.7 From abstract machine to reduction-free normaliser 117
5.7.1 Refunctionalisation . 117
5.7.2 Back to direct style by inverse CPS transformation 118

5.8 Applicability . 119
5.9 Related and future work . 123
5.10 Conclusions . 124

Addendum to Chapter 5 125
5.11 Characterising the hybrid nature of a strategy 125
5.12 Hybrids and NBE . 127

6 From Normal Order to the Full-Reducing Krivine Machine by Program
Transformation 131
6.1 Introduction . 132
6.2 Structure of the chapter . 134
6.3 Preliminaries . 136
6.4 Normal order in all substitution-based styles 137
6.5 Closures and environment machines . 140

6.5.1 Call-by-name semantics and environment-based machine 141
6.6 Crégut’s full-reducing Krivine machine . 142
6.7 Introducing the calculus of closures λρ̃ . 144

6.7.1 Structural operational semantics of normal order in λρ̃ 148
6.7.2 Stepwise connection between →no and →ño 151

6.8 From SOS to reduction-free normaliser . 153
6.8.1 From structural to reduction semantics 153
6.8.2 Syntactic correspondence . 155
6.8.3 Functional correspondence . 156

xvii

Contents

6.9 Shortcutting ephemeral expansion . 158
6.9.1 Coalescing ephemeral expansion . 158
6.9.2 Preponing . 158
6.9.3 Shortcut normaliser . 160

6.10 From reduction-free normaliser to push/enter abstract machine 162
6.10.1 A reduction-free normaliser with explicit control 162
6.10.2 From reduction-free normaliser to eval/apply abstract machine . . . 163
6.10.3 Removing explicit control . 163
6.10.4 From eval/apply to push/enter machine 164

6.11 Related and future work . 166

Addendum to Chapter 6 169
6.12 The reduction theory of λρ̃ . 169
6.13 Comparative between our inter-derivation and (Munk, 2008) 169

III Gradual Typing 175

7 Interpretations of the Gradually-Typed Lambda Calculus 177
7.1 Introduction . 177
7.2 λ〈·〉→ with implementable reduction semantics 180
7.3 The ED coercion calculus . 183
7.4 Interpretations of the gradually-typed lambda calculus 186

7.4.1 Translating the original interpreter to ML 187
7.4.2 Instantiating the definitional interpreter 187
7.4.3 The correctness conjectures . 188

7.5 Prelude: from casts to coercions . 191
7.5.1 Fissioning evaluator and translation function 191
7.5.2 Deriving a self-contained coercion normaliser 192

7.6 From denotational semantics to 2CPS-normaliser 192
7.6.1 Closure conversion . 192
7.6.2 2-layer continuation-passing-style transformation 195

7.7 Tackling the other side of the diagram . 196
7.8 The calculus of closures . 196

7.8.1 The correctness theorems . 198
7.9 Implementing the reduction semantics . 199
7.10 The syntactic correspondence . 200

7.10.1 Refocusing . 200
7.10.2 Inlining the contraction function . 201
7.10.3 Lightweight-fusing decompose and iterate 201
7.10.4 Compressing static and dynamic corridor transitions 201

7.11 Closing the gap . 202
7.11.1 Refunctionalising the abstract machine 203

xviii

Contents

7.11.2 Cosmetic transformations . 203
7.12 Conclusions and related work . 204

8 General Conclusions 205

Bibliography 214

xix

Contents

xx

List of Figures

2.1 Single-step reduction relations →β and →βV 26
2.2 Irreducible forms in classical lambda calculus 27
2.3 Semantic artefacts and derivation paths . 29

3.1 Template for reduction strategies . 36
3.2 Generic reducer in Haskell . 37
3.3 The β-cube . 38
3.4 Normal forms . 38
3.5 Function cube2red . 39
3.6 Balanced template for reduction strategies 49
3.7 Balanced generic reducer . 50
3.8 The collapsed β-prism . 50
3.9 Balanced functions for uniform and hybrid strategies 51
3.10 Natural semantics of spine applicative order 52
3.11 Template for λV -reduction strategies . 54
3.12 Generic reducer for λV . 54

5.1 Structural operational semantics of normal order 92
5.2 Natural semantics of normal order . 93
5.3 Canonical substitution-based reduction-free normaliser for normal order . . 94
5.4 (Context-based) reduction semantics for normal order. 95
5.5 Example of a normal order reduction sequence in the context-based reduc-

tion semantics . 96
5.6 Grammar of well-formed continuation stacks and grammar of reduction con-

texts . 109
5.7 NFA accepting well-formed continuation stacks and reduction contexts . . . 109
5.8 Context-dependent intensional refocus . 112
5.9 Normal order abstract machine . 117

6.1 Derivation path of KN . 133
6.2 Capture-avoiding substitution function for de Bruijn indices 136
6.3 Structural operational semantics of normal order 137
6.4 Natural operational semantics of normal order 138
6.5 Structural and reduction semantics of call-by-name in λρ̂ 141

xxi

List of Figures

6.6 Substitution function in λρ̂ . 142
6.7 Execution example of KN . 143
6.8 Structural operational semantics of normal order in λρ̃ 149
6.9 Closure-converted eval/apply normal order abstract machine 156
6.10 Natural semantics of normal order in λρ̃ . 157
6.11 Coalesced natural semantics of normal order in λρ̃ 159
6.12 Shortcut natural semantics of normal order in λρ∗ 161
6.13 Natural semantics of normal order in λρ∗ with explicit control 162

7.1 Inter-derivation diagram . 179
7.2 Syntax, contraction rules, and implementable reduction semantics of λ〈·〉→ . . 181
7.3 Complements of λ〈·〉→ . 182
7.4 Syntax, contraction rules, and reduction semantics of ED 184
7.5 Complements of ED . 185
7.6 Environments and values . 187
7.7 Auxiliary functions . 188
7.8 Coercion composition . 189
7.9 Denotational semantics . 190
7.10 Natural semantics for coercion normalisation 193
7.11 Natural semantics for closure normalisation 194
7.12 Environments and look-up function for the closure-converted semantics . . . 195
7.13 Syntax, contraction rules, and implementable reduction semantics of λρ〈·〉→ . 197
7.14 Embed function for closure values . 202

xxii

List of Tables

3.1 All the relevant strategies at a glance . 55

xxiii

List of Tables

xxiv

Preface

En los [lenguages] del hemisferio boreal [. . .] el sustantivo se forma por acumulación
de adjetivos. [. . .] En el caso elegido la masa de adjetivos corresponde a un objeto real;
el hecho es puramente fortuito. En la literatura de este hemisferio [. . .] abundan los
objetos ideales, convocados y disueltos en un momento, según las necesidades poéticas.
Hay objetos compuestos de dos términos. [. . .] Los hay de muchos. [. . .] Esos objetos de
segundo grado pueden combinarse con otros; el proceso, mediante ciertas abreviaturas,
es practicamente infinito. El hecho de que nadie crea en la realidad de los sustantivos
hace, paradójicamente, que sea interminable su número.2

(Tlön, Uqbar, Orbis Tertius, Jorge Luis Borges)

The lambda calculus is a formal system whose terms denote functions. Similar to the
nouns in the imaginary world of Tlön, the meaning of a function in the lambda calculus is
only conveyed intensionally. This is, a function is specified as a particular combination of
(the invocations of) other functions, which contrasts with the extensional specification of
a function consisting of a (possibly infinite) collection of pairs relating inputs with return
values. The lambda calculus is the outcome of the early investigations on the intensional
aspect of mathematics carried out by a generation of logicians in the late nineteenth and
early twentieth century.

In elementary mathematics a function is denoted by F (x) = ‘some expression of x’,
where the variable x is called the formal parameter and the ‘some expression of x’ is the
body of the function. In the lambda calculus this is written as the term λx.B, where
the term B encodes the body ‘some expression of x’ which calculates the result returned
by the function. The term λx.B is called an ‘abstraction’, where the binding symbol λx
signals that the formal parameter x is abstracted in the body B.3 Formally, this means
that the free occurrences of variable x in term B are to be replaced by the argument to
which the function is applied. (The free occurrences of a variable in a term are those which

2In [the languages of] the boreal hemisphere [. . .] the nouns are build up by aggregating adjectives.
[. . .] For the case in point, the mass of adjectives corresponds to a real object; however this is solely
fortuitous. In the literature of this hemisphere [. . .] the ideal objects abound, conveyed and dissolved at
once according only to poetical needs. Some objects are made up by two terms. [. . .] Others are made up
by many terms. [. . .] These second-degree objects can be combined with each other; the process, by means
of some abbreviations, is virtually infinite. Paradoxically, the lack of belief in the reality of nouns makes
them innumerable. (Translation by the author.)

3For illustration, other symbols with binding character are the quantifiers ∀x,∃x in logic, and the
integral

∫
dx in mathematics.

1

are not bound by any λ.) The abstractions in the lambda calculus denote mathematical
functions. These functions are anonymous, i.e., they are defined in situ and applied to
their arguments if any, which explains the absence of the function name ‘F ’ in the term
representation λx.B.

For example, consider the identity function, ID(x) = x, which is written as the lambda
term λx.x. Intensionally, the identity function is encoded as an abstraction that only
returns its formal parameter. Thus, given any argument n (and a term N encoding it)
the application ID(n) is written (λx.x)(N). (Customarily, parenthesis are dropped from
applications and the latter is written (λx.x)N .) By the definition of ID , the application
(λx.x)N is equivalent to its operand N . This equivalence embodies a contraction which
represents an elementary step of computation. The contraction is specified by a rule (called
‘β-rule’ for historical reasons) which stipulates how a reducible expression is replaced by
a more elementary term. The β-rule reads (λx.B)T →β [T/x]B, where [_/_]_ is an
external substitution function which replaces by T the free occurrences of variable x in B.
For instance, (λx.x)N →β N . The term ‘reducible expression’ is customarily abbreviated
to ‘redex’ (or ‘redices’ if plural).

Encoding functions by combining lambda terms is a process of programming in this
setting of intensional definitions, which resembles the construction of nouns in the boreal
hemisphere of Tlön. For instance, consider the mathematical TWICE (f, y) = f(f(y))
which defines a rule of computation that takes two arguments—a function f and a datum
y—and applies the former twice to the latter. In the lambda calculus this is written
λf.λy.f(f y). The two nested lambdas ‘λf.λy. . . .’ stand for the two formal parameters
of TWICE—a binary function is just a unary function that takes the first argument, and
returns another unary function that takes the second argument—and the applications of
the f to the y are written f(f y) according to the parenthesis-dropping convention.4 The
β-rule provides the operational framework for the minimalistic programming language
defined by the lambda calculus. Consider the program TWICE (ID , n) and the lambda
term (λf.λy.f(f y))(λx.x)N encoding it (recall λx.x stands for ID and N for n). The
program can be executed (i.e., evaluated or reduced) by successively applying the β-rule
to the program redices until reaching a result of computation (e.g., a term without redices,
called a normal form). The following reduction sequence, where N is assumed to be in
normal form, illustrates:

(λf.λy.f(f y))(λx.x)N →β (λy.(λx.x)((λx.x) y))n

→β (λx.x)((λx.x)N)→β (λx.x)N →β N

The above reduction sequence precisely matches the evaluation of the program in point
according to elementary mathematics, i.e., TWICE (ID , n) = ID(ID(n)) = ID(n) = n. In
each step, the redex being contracted is underlined.

4In addition to dropping parenthesis from applications, it is standard that application associates to
the left and that λ has greater precedence than application. Thus, the term λx.(λy.B)M N stands for
(λx.(((λy.B)M)N)).

2

Preface

In its pure version the lambda calculus only consists of a denumerable set of variables
x, y, etc., of abstractions λx.B, and of applications M N . To take the analogy of the
languages in Tlön further, the objects that can be represented in the lambda calculus
are not different from the ‘means to make them up’. Let us think of Tlön adjectives as
predicates, i.e., formulae that take an argument and qualify it, like the predicate ‘big x’
which qualifies object x. Interestingly, the objects themselves can only be represented by
predicates, i.e., the nouns do not exist by their own, but as the consequence of combining
adjectives. Similarly, the mathematical objects underneath pure lambda terms consist only
of functions. There is no primitive data other than functions, and a mathematical domain
D for this data would have to be isomorphic to the space of functions within itself, i.e.,
functions with source D and image D. In the lambda calculus, and in the domains of
mathematical objects that it represents, functions are inherently higher-order functions,
this is, they take and return functions.

The pure lambda calculus can be enlarged with applied features, which consider a
domain of primitive data and primitive operators over them, and specify additional con-
traction rules that implement those primitive operators. Although applied versions of the
lambda calculus are convenient and widely used, the pure version alone is enough to de-
fine computable functions. As stated by the Church-Turing Thesis (Church, 1936; Turing,
1937) any computation that could be mechanised (i.e., any general recursive function over
the natural numbers) can be represented as a term of the pure lambda calculus.5

Turning the β-rule into a symmetric relation induces an equivalence relation (called
β-equivalence or =β) which can be used to manipulate programs in an algebraic way and
to reason about equivalence of programs. Consider the two programs

PROG1(x) = . . . TWICE (ID , x) . . .
PROG2(x) = . . . ID(x) . . .

where the ellipsis ‘.’ stand for the same program context in which TWICE (ID , x) and
ID(x) are respectively plugged. Since TWICE (ID , x) =β ID(x) (here the mathematical
notation and the term encoding are used indistinctly) we can conclude that PROG1 and
PROG2 are equivalent. This is known as the principle of indiscernibility of identicals,
or Leibniz’s law. This principle is supported by the principle of referential transparency,
which enforces that evaluating a function does not encompass any side-effect, i.e., given
a function F and an argument n the application F (n) delivers the same result regardless
of when or where such application appears. Referential transparency, together with the
higher-order functions that we mentioned above, are the defining features of the functional
programming paradigm. The lambda calculus (or some of its variants) lays at the core of
nowadays functional programming languages used worldwide.

5In order to define the computable functions, the natural numbers and the booleans are represented
as functions through what is known as the Church encoding. The details of this or other encodings, and
of how general recursion is represented on top of them, are not presented here. The interested reader is
referred to (Hindley & Seldin, 2008, Chapter 4).

3

Since a term may have several redices the β-reduction so far does not define a deter-
ministic way to execute our programs. Consider the program example TWICE (ID , n) and
its reduction sequence above. One may have chosen to contract the innermost redex ID(n)
before contracting the outermost redex ID(ID(n)). The alternative reduction sequence
would have resulted:

(λf.λy.f(f y))(λx.x)N →β (λy.(λx.x)((λx.x) y))N

→β (λx.x)((λx.x)N)→β (λx.x)N →β N

(Notice that in the third step the redex being contracted is the inner (λx.x)N .)
A reduction strategy fixes the order in which the redices in a term are contracted,

and specifies a deterministic operational framework (i.e., an operational semantics) for
the lambda calculus as a programming language. Although this seems irrelevant for the
program example above (the result is the same no matter which strategy is used) the choice
of a reduction strategy has a paramount impact when assuming that some programs may
not terminate. Consider the term Ω ≡ (λx.x x)(λx.x x). The self-application ‘xx’ in the
body of Ω’s operator λx.x x makes the term to contract to itself, i.e., (λx.x x)(λx.x x)→β

(λx.x x)(λx.x x). The term Ω lacks any normal form and entails an infinite reduction
sequence Ω →β Ω →β . . . where in each step there is always a redex candidate to be
contracted. A term with an infinite reduction sequence stands for a computation that gets
stuck without producing any output. Such a term denotes the mathematical ‘undefined’,
customarily written ⊥. Now consider the term λz.N where fresh variable z is picked such
that z does not appear free in N . Since z does not have any effect in N , the term λz.N
denotes a constant function that always returns n, i.e., CONSTn(z) = n. (The subindex
in CONSTn is just to distinguish this function from other constant functions with return
values different from n.) The reduction strategy determines whether a function is strict
or non-strict in its argument. (A strict function always returns an undefined result if
its argument is undefined, a non-strict function may not.) The program CONSTn(⊥)
is encoded as the term (λz.N)Ω. The outermost strategy entails the reduction sequence
(λz.N)Ω→β N , which delivers result n and corresponds to non-strict functional semantics.
The innermost strategy entails the reduction sequence (λz.N)Ω→β (λz.N)Ω→β . . . which
reduces forever (recall this is assimilated to ‘undefined’) and corresponds to strict functional
semantics.

The outermost and innermost strategies are representatives of the two foremost calling
policies in programming languages, known respectively as call-by-name and call-by-value.
A calling policy determines how the argument of a function is treated in a function appli-
cation. With call-by-name the formal parameter of a function is a mere signifier (i.e., a
name) that refers to the argument program. Hence, the signifier could be discarded inside
the body of the function without further ado, and the argument program would only be
retrieved if the formal parameter is in turn applied to some other argument. With call-
by-value the formal parameter of a function is as the argument program itself, i.e., the
argument program is meant to be evaluated to a value before the body of the function is

4

Preface

even considered.6 There is a tension between the two policies. Call-by-value may diverge
for programs that do have a result under call-by-name, but call-by-name may replicate the
redices in the argument program along the body of the function, in which case call-by-value
is proven more efficient. The controversy cannot be settled since each of the strategies is
convenient in particular settings.7

Furthermore, what a program and a value are varies among different definitions of
operational semantics. Programs can be considered as ‘specifications of computation’ or as
‘inputs to a reduction sequence’, and values can be considered as ‘results of computation’
or as ‘irreducible terms’. These two acceptations (respectively to programs and values)
may not coincide with each other. The first acceptation is customary in the programming
languages community. A program cannot have free variables (i.e., has to be a closed term),
since variables are only placeholders which by themselves do not define any computation.
A value consists of a function (i.e., an abstraction, whether it contains redices in its body
or not) since a function alone is a passive element that only waits for some argument to be
applied to, and thus it is a result of computation.8 According to this, call-by-name and call-
by-value never deal with free variables and never reduce inside the body of abstractions.
The second accepting is customary in the formal systems community. Only the terms with
no redices at all (not even under lambda) are irreducible terms, otherwise the β-rule would
still be applicable. When reducing the body of an abstraction, dealing with free variables
is compulsory because, by definition, every occurrence of the formal parameter is free in
the body’s scope. According to this, call-by-name and call-by-value have to deal with free
variables and have to reduce inside the body of abstractions.

Although undeveloped, the second acceptation is also useful in the context of program-
ming languages. This is the case when programs are treated as objects, i.e., when the
terms are manipulated with purposes different than their evaluation, for instance when
optimising a program or when some attribute of a program is represented by a term. In
these cases, contracting the redices inside the bodies of abstractions (which is known as
full reduction) is at need.

There is no general consensus on how the customary reduction strategies in program-
ming languages are transposed into the ‘reduction sequence’ acceptation. Whenever the
redices ‘under lambda’ are eligible for contraction the space of strategies explodes and their
features become singular. For instance, a call-by-value-alike strategy can be specified in
which the results of computation coincide with the normal forms (i.e., irreducible terms),
but which only enforces the arguments in redices to be reduced up to abstractions, re-
gardless of whether they are in normal form or not. Besides being full-reducing, such a
strategy has other desirable properties, the most remarkable is being complete. Complete-
ness means that the strategy will always deliver a normal form which is equivalent to the

6This distinction is reminiscent of the use-mention distinction in analytical philosophy (Quine, 1940,
Section 4).

7There are strategies that combine, up to some degree, the ability of call-by-name to not diverge in the
presence of certain inputs with the efficiency of call-by-value. However, for illustration purposes call-by-
name and call-by-value are enough here.

8A function is a black box that can only be observed by providing arguments to it.

5

input program if such a normal form exists, for particular notions of normal form and of
equivalence which are peculiar of a setting with strict functional semantics. In comparison,
the customary call-by-value strategy fails to deliver a normal form (i.e., values may have
redices under lambda) and transposing this strategy naively into the second acceptation
(i.e., reducing the arguments in redices up to normal form instead of up to abstraction)
yields a strategy which fails to be complete.

The study of such full-reducing strategies, and the repercussion that full reduction has
in the lambda calculus meta-theory, is the topic of this thesis.

6

1
Introduction

Il fine di una buona introduzione definitiva è che il lettore si accontenti di questa,
capisca tutto, e non legga più il resto.1

(Come si fa una tesi di laurea, Umberto Eco)

A computer program is the specification of a computation written in a programming lan-
guage. The program is evaluated when the operations specified by the program are executed
by means of some computing device, typically a computer or an abstract machine.

A reduction system consists of a language of expressions (a.k.a. terms) and one or more
contraction rules, each of them specifying an elementary step of computation by prescribing
how a reducible expression (a redex) is to be replaced by a more elementary expression.
A term is reduced when the redices (plural of ‘redex’) in it are successively contracted.
This process induces a reduction relation whose pairs make up the reduction theory of the
system.

Reduction systems are crafted to model the features of programming languages and
to study their formal semantics. In this setting, ‘evaluation’ and ‘reduction’ refer to the
process of executing a computation, respectively in the programming languages world and
the reduction systems world. Although similar in spirit, ‘evaluation’ and ‘reduction’ carry
contrasting connotations. The former is subject to practical considerations (whether a
program is valid, or whether a result is observable) which emphasise the semantic aspect
of computation, whereas the latter mirrors the internals of the reduction system (terms,
redices, contraction rules, etc.) which emphasise the syntactic aspect of computation.

The lambda calculus (Church, 1941; Barendregt, 1984) is the formal system that lays on
the basis of the functional programming languages (Landin, 1964; Scott & Strachey, 1971;
Stoy, 1979). The traditional syntax of lambda terms is specified by the pseudo-grammar
Λ ::= x | (λx.Λ) | (Λ Λ), where x, y, etc, range over the elements of a countably infinite

1The aim of a good definitive introduction is that the reader contents him or herself with it, understands
everything, and skips the rest of the text. (Translation by the author.)

7

set of variables. The computational part of the lambda calculus hinges on the β-rule
(λx.B)N →β [N/x]B, which specifies how to contract redices in a term. (Section 2.1
of this thesis provides a thorough description of the calculus and its reduction theory.)
A minimalistic functional programming language would take closed terms as programs,
which would be evaluated by means of some customary abstract machine, e.g., the Krivine
Abstract Machine (Crégut, 1990; Krivine, 2007).

With this scenario in mind, the evaluation–reduction connotations concern primarily
whether the redices in the bodies of abstractions are contracted or not. In the context of
programming languages these redices are never contracted since abstractions themselves
are considered as results of evaluation. This is because a function could only be observed
by providing arguments to it. It is customary to dispense with free variables because a
program is a closed term. In the context of reduction systems any redex could be picked
for contraction, even the ones which lay ‘under lambda’. The results of reduction are the
normal forms, i.e., the terms with no redices at all. It is compulsory to deal with free
variables because in the body of an abstraction the formal parameter may pop up, which
by definition is free in the body’s scope.

In this thesis, the two connotations above are referred to as ‘weak reduction’ and ‘full
reduction’ respectively. Weak reduction prevails in the practice of programming languages.
For a realistic programming language, evaluating up to abstractions is more than enough
when executing a program (Landin, 1964; Felleisen & Friedman, 1986; Felleisen & Flatt,
2002; Krivine, 2007). Furthermore, the weak-reducing theories have good model-theoretical
properties, the most notable is the existence of initial models in any of the conventional
categories for semantic domains (Abramsky, 1990; Egidi et al., 1991). However, when a
program is manipulated with purposes different than its evaluation, full reduction may not
only be desirable, but compulsory. This is the case for program optimisation by partial
evaluation, and for the conversion rule in type-checkers of proof assistants (Crégut, 1990).

Numerous works on full reduction exist in the literature (McGowan, 1970; Crégut,
1990; Sestoft, 2002; Grégoire & Leroy, 2002; Crégut, 2007; Munk, 2008). However, the
full-reducing operational frameworks have remained underdeveloped, in comparison with
the conventional weak-reducing ones, which predominate. This thesis helps to cover this
gap by studying full-reducing strategies. The contributions are twofold. In the context of
reduction systems, the full-reducing strategies are analysed and new meta-theoretic results
for full-reduction are provided. Many full-reducing strategies are hybrid, in their definition
depends on one or more subsidiary strategies. In the context of programming languages,
it is shown how to implement the aforementioned strategies by deriving efficient abstract
machines from them. The hybrid character of the strategies is used to adjust the existing
techniques for program transformation to obtain first-order abstract machines with a single
control stack.

The study of lambda calculus and related systems has been more than profuse in the
past four decades. Devoting a PhD thesis to the operational aspects of the pure untyped
version might look nowadays as awkward or outmoded, if not entirely obsolete. However,
full-reduction stands at the basis of advanced techniques in functional programming, like

8

Chapter 1. Introduction

program optimisation and type checking in proof assistants (Crégut, 1990), and ‘going
under lambda’ shows up the paramount issue with binders, i.e., reasoning locally in a
scope where the binding of a free variable is not available (Aydemir et al., 2008). This
thesis aims to show that the operational aspects of full reduction in the untyped lambda
calculi still deserve attention.

1.1 Full reduction and hybrid strategies

Working with a reduction theory directly is cumbersome because the reduction relation
lacks determinism, i.e., an input term is not uniquely mapped to an equivalent term. A
reduction strategy makes the computation deterministic by imposing an order in which the
redices in a term are to be contracted (see Section 2.1 for a formal definition of a strategy).

Given an input term T0, a reduction strategy entails a unique reduction sequence
T0, T1, T2, . . . where Tn+1 follows from Tn by a single step of reduction. The reduction
sequence may be finite if T0 has an equivalent term which is irreducible according to the
strategy, or it may be infinite otherwise (i.e., T0 diverges). The reduction sequence stands
for the trace of execution of T0 according to the strategy.

Broadly, ‘full reduction’ refers to reduction strategies that progress inside the body of
abstractions. ‘Full reduction’ is preferred over ‘normalisation’ because the latter is often
used in connection with big-step semantics, for any particular notion of irreducible term.
For example, the weak-reducing Krivine abstract machine (Crégut, 1990; Krivine, 2007)
normalises terms to weak head normal form (Figure 2.2 defines the customary irreducible
terms in the lambda calculus). ‘Strong reduction’, as used by some authors (Grégoire &
Leroy, 2002; Crégut, 2007; Munk, 2008), is also avoided because the latter can be confused
with ‘strong normalisation’ which is a property of a calculus in which any full-reducing
strategy is complete (Barendregt, 1984).

There are strategies that contract redices under lambda but only up to some notion of
irreducible term which is different from normal form proper. (The normal forms are the
terms which do not have any redex at all, see Section 2.1.) Some of these strategies are
referred to as ‘head’—head reduction (Barendregt, 1984), head spine order (Sestoft, 2002),
ahead machine (Paolini & Ronchi Della Rocca, 1999). The ‘head’ qualifier is connected
to the notions of head reduction and head normal form, which are paramount in the
study of lambda theories (Barendregt, 1984, Chapter 4 and Part IV) since the syntactic
characterisation of solvability and of Böhm trees rely on them. (Solvability and Böhm
trees are, in turn, essential to define the operational relevance of a term (Barendregt, 1971;
Wadsworth, 1976; Barendregt, 1984).)

One prime observation is that the behaviour of some existing full-reducing strategies
changes when they are invoked over certain subterms of the input term. The strategy
may reduce those subterms less in order to uphold some property. A salient example is
the normal order strategy (Curry & Feys, 1958; Barendregt, 1984; Sestoft, 2002). Normal

9

1.1. Full reduction and hybrid strategies

order contracts the leftmost-outermost redex first.2 Intuitively, given an abstraction λx.B,
normal order ‘goes under lambda’ and reduces B to nf. However, given an application
M N , if M reduces in an arbitrary number of steps to an arbitrary abstraction λx.B, at
that point the leftmost-outermost redex is (λx.B)N and normal order must contract that
redex and not the redices in B. Since normal order reduces abstractions fully it cannot
invoke itself recursively on M . It must rely on a less reducing strategy, one that does
not reduce abstractions. In other words, it must rely on the weak-reducing call-by-name
(Barendregt, 1984; Plotkin, 1975; Sestoft, 2002). By using the subsidiary call-by-name,
normal order upholds completeness, i.e., the strategy always finds a normal form if there
exists some that is equivalent to the input term.

This layered character of normal order is in accord with the idea of hybrid strategies,
a terminology taken from (Sestoft, 2002) where it is used informally. Hybrid strategies
are the guiding theme of this thesis. (A thorough description of some prominent hybrid
strategies is presented in Chapter 3, and the formal definition of the hybrid nature of a
strategy is delayed to Section 5.3.)

The hybrid nature of the strategies that contract ‘under lambda’ has been amply echoed
in the literature, although seldom in an explicit way:

• In the folklore, it is known that normal order (Curry & Feys, 1958; Barendregt, 1984)
has to rely on the weak-reducing call-by-name to reduce operators in applications.

• The normalisation by evaluation (NBE) approach (Berger & Schwichtenberg, 1991;
Danvy, 1996) reveals the phase distinction inherent to a full-reducing algorithm which
is implemented in terms of evaluation (i.e., weak reduction). With NBE, normal-
isation is defined as the composition of two functions: evaluation proper, and a
readback loop which reifies values and propagates normalisation into the bodies of
abstractions. In the typed original setting of NBE (Berger & Schwichtenberg, 1991;
Danvy, 1996) the paramount issue with binders is consigned to the η-expansion of
meta-level function bodies. In (Filinski & Rohde, 2004, 2005), the NBE solution is
transposed to an untyped setting via a residualising model where—additionally to
the η-expansion of function bodies—the domain contains a single type of terms (i.e.,
injected terms) and functions. These injected terms are akin to the neutral terms
and ground terms of Chapters 5 and 6 of this thesis.

• Paolini & Ronchi Della Rocca (1999) introduce the ahead machine ⇓a which con-
stitutes the analogous of head reduction in a strict-functional-semantics framework
where arguments are reduced up to weak normal form. The ahead machine is a
strategy consisting of a single function, instead of the composition of two functions
present in NBE. Yet the ahead machine has a layered character, and distinguishes
two different reduction modes, ⇓0

a and ⇓1
a. The former depends on the latter, and

the latter coincides with reduction to weak normal form.

2The leftmost redex according to the definition in (Curry & Feys, 1958, p. 140).

10

Chapter 1. Introduction

• Sestoft (2002) introduces the uniform/hybrid terminology informally and glimpses
the problem underneath full-reducing strategies. His aim was to unify varying def-
initions for the conventional strategies in programming languages and to connect
them to the pure calculus and to the theory of reduction. Sestoft collects the natural
semantics of several paramount strategies in the literature, and notices the dependen-
cies between some of the full-reducing ones (which he calls hybrid) and the ones which
are defined only in terms of themselves (which he calls uniform). Chapter 3 develops
this intuition further by systematising the space of strategies unveiled by Sestoft, and
Section 5.3 provides a definition of the uniform/hybrid nature of a strategy, giving
formal grounds to the informal terminology in (Sestoft, 2002).

• Grégoire & Leroy (2002) redeploy the NBE approach and introduce a full-reducing
strategy which relies on the optimised Zinc Abstract Machine (Leroy, 1991), a ma-
chine that performs weak reduction. Their strategy is the analogous of normal order
in the strict-functional-semantics framework where arguments are reduced up to weak
normal forms.

• Munk (2008) presents context-based definitions of reduction strategies (Felleisen,
1987) where the grammar of reduction contexts is stratified (i.e., layered) meaning
that the productions for the contexts rely on the occurrence of an auxiliary non-
terminal symbol which does not coincide with the start symbol of the grammar. The
formal definition of hybrid nature in Section 5.3 of this thesis states that the grammar
for reduction contexts of a strategy with hybrid nature is necessarily layered.3

1.2 Call-by-value and the lambda-value calculus

The lambda-value calculus (Plotkin, 1975) is the variant of the lambda calculus that cor-
responds to the SECD machine introduced by (Landin, 1964). This machine underlies the
programming languages that implement a by-value calling policy. The calling policy refers
to the way in which arguments in a function call are treated according to a given oper-
ational semantics. The by-value policy specifies that any argument has to be evaluated
before being considered as the input of a function. The by-value policy implements strict
functional semantics (a.k.a., eager semantics).

In the lambda-value calculus, a redex is contracted only when the redex’s operand is a
value. Here ‘value’ has a precise technical meaning as a term which is not an application,
i.e., an abstraction or a variable. (A thorough description of the lambda-value calculus
and its reduction theory is given in Section 2.1.) Considering abstractions and variables as
values is adequate with respect to the conventional call-by-value semantics in the program-
ming languages world. Abstractions stand for functions, which are results of evaluation.

3The ‘layered contexts’ has a technical meaning which is connected to ‘iterated CPS’ and ‘n-level CPS’.
This thesis introduces a ‘hybrid approach’ for semantic artefacts which is an alternative to the ‘n-level
CPS approach’. The reduction contexts in both the n-level CPS and the hybrid approaches have stratified
nature, and thus the epithet ‘layered’ is used for both approaches.

11

1.2. Call-by-value and the lambda-value calculus

Variables stand for ‘arguments of functions’ (notice that programs are closed and every
variable is the formal parameter of some abstraction), which range over values according
to the by-value policy.

In the context of eager semantics, the requirement ‘values as non-applications’ tran-
scends the practice of programming languages and pervades the theory of reduction sys-
tems. A reduction theory for eager semantics would lack consistency if applications were
allowed in values, even if those applications were irreducible (Plotkin, 1975). For illus-
tration, the application x (λx.x x) is irreducible, but it should not be considered a value
because substituting the free x in it by the term (λx.x x) delivers (λx.x x)(λx.x x), which
is a divergent term. Consider the example term M ≡ (λx.(λy.z)(x (λx.x x)))(λx.x x) in
(Plotkin, 1975). The innermost redex in M has the application x (λx.x x) as operand. If
irreducible applications were allowed in values, the following reduction diagram would be
possible:

(λx.(λy.z)(x (λx.x x)))(λx.x x)

(λx.z)(λx.x x) (λy.z)((λx.x x)(λx.x x))

z

In the left part of the diagram, the innermost redex is contracted first, which discards
the application x (λx.x x). Then, the residual of the outermost redex is contracted, which
delivers z. In the right part of the diagram, the outermost redex is contracted first. This
makes up the divergent operand (λx.x x)(λx.x x) in the residual of the innermost redex,
which cannot be contracted. In one path, the application is discarded. In the other
path, the application is turned into a divergent term. The two paths cannot be joined to-
gether, i.e., the system lacks confluence, which ultimately makes the system inconsistent.
Plotkin (1975) shows that in order to recover confluence it is enough to filter out applica-
tions from values, which forbids the left path in the diagram above and restores confluence.
The intuition behind this requirement could be summarised as ‘preserving confluence by
preserving potential divergence’.

Although the calculus was crafted to model eager semantics in the programming lan-
guages world, the reduction theory entailed by the requirement ‘values as non-applications’
is richer than the theory induced by conventional call-by-value semantics. Values should
not be understood as results of evaluation, but rather as a side condition in the contrac-
tion rule which upholds confluence. The reduction system obtained is amenable to full
reduction and is endowed with a notion of lambda-value normal forms which are the irre-
ducible terms, i.e., the terms without redices in which the operand is a value. (Such redices

12

Chapter 1. Introduction

are called βV -redices, to distinguish them from the redices in the classical lambda calcu-
lus.) The lambda-value normal forms contain stuck terms, which consist of applications
that do not reduce to a βV -redex. There has been controversy regarding the full-reducing
character of the lambda-value calculus and the role of stuck terms. Ronchi Della Rocca
& Paolini (2004) argue that some lambda-value normal forms containing stuck terms are
observationally equivalent to terms that are not operationally relevant (i.e., meaningless
terms), and thus the lambda-value normal forms should be considered uninteresting. This
claim is sustained by a notion of operational relevance based on the notion of call-by-value
solvability introduced in (Paolini & Ronchi Della Rocca, 1999) and further described in
(Accattoli & Paolini, 2012). However, call-by-value solvability only characterises opera-
tional relevance according to conventional call-by-value, i.e., in the weak-reducing version
of the lambda-value calculus.4

An alternative calling policy for eager semantics appears recurrently in the literature
where, instead of values, operands are restricted to weak normal forms. (Section 2.1 gives
the definition of weak normal forms and of some other irreducible terms in the lambda
calculus.) In this thesis, this calling policy is referred to as by-weak-normal-form, or just
by-wnf. Similar to conventional call-by-value, the by-wnf policy requires the operands to
be reduced weakly. Differently from conventional call-by-value, the by-wnf policy adds free
variables and allows applications in operands, thus restricting the operands to arbitrary
weak-irreducible terms instead of to values. Both the by-value and by-wnf policies coincide
in the context of programming languages, where the input program is closed and the bodies
of abstractions are never reduced. However, the reduction theory induced by the by-wnf
policy presents the problems with confluence described in (Plotkin, 1975).

The following are examples of strategies implementing the by-wnf policy. Paulson
(1996) introduces eval and byValue, which are weak- and full-reducing by-wnf strategies
respectively. Paolini & Ronchi Della Rocca (1999) distinguishes the inner machine and
the ahead machine, where the former coincides with Paulson’s eval, and the latter is
the analogous of head reduction (Barendregt, 1984) in the by-wnf setting. Grégoire &
Leroy (2002) introduce strong normalisation, which is a by-wnf normalisation-by-evaluation
approach that uses the Zinc Abstract Machine (Leroy, 1991) as the eval weak-reducing
stage. Strong normalisation is equivalent to Paulson’s byValue strategy.

1.3 Formal semantics and inter-derivation of semantic
artefacts

The meaning of a program can be given by a mathematical device (an interpreter, an
inference system, a model, a logic. . .) which underlies the programming language. For-
mal semantics of programming languages, which concerns the study of such mathematical

4This version of the calculus is known in the literature as the lazy lambda-value calculus (Egidi et al.,
1991, 1992), where ‘lazy’ is used only in the sense of ‘weak-reducing’, losing the sense of ‘non-strict’ that
is commonly associated with the word ‘lazy’.

13

1.3. Formal semantics and Inter-derivation of semantic artefacts

devices, usually comes in one of the following three styles.
An operational semantics provides the meaning of a program by specifying how the

program is to be evaluated or executed. An operational semantics is founded on a reduction
strategy that specifies the order in which redices must be contracted. Section 2.2 provides
a thorough description of the different formalisms that define an operational semantics.

A denotational semantics provides meaning by identifying a mathematical structure
(i.e., a model) and assigning each program to an object (i.e., a denotation) in that model.
The denotation of a program is constructed after the denotations of its sub-programs by a
semantic function. Section 2.3 comments on the properties of Scott’s domain D∞ (Scott,
1970) which is the first known lattice model for the lambda calculus.

An axiomatic semantics provides logical assertions for each of the language constructs,
such that the combination of the assertions corresponding to a particular program char-
acterises the meaning of that program in any of the possible models for the programming
language. This thesis does not consider axiomatic semantics.

Different formalisms for operational semantics exist that can be implemented as pro-
grams. Such programs are called ‘semantic artefacts’, a terminology perhaps coined for
mathematical descriptions of semantics but often used by extension to their implemen-
tations (Danvy, 2006a). The semantic artefacts can be derived by means of program
transformation. The derivation techniques were pioneered by (Reynolds, 1998), where a
‘definitional interpreter’ for a ‘simple applicative language’ is transformed into continua-
tion passing style (CPS) in order to make the semantics of the target language independent
from the semantics of the implementation language, and the interpreter is later defunc-
tionalised in order to remove the higher-order functions from it. These techniques were
later collected and extended by Olivier Danvy and his collaborators (Danvy, 2006b, 2008a;
Danvy et al., 2011). The CPS transformation and the defunctionalisation constitute the
core of the functional correspondence (Ager et al., 2003b; Danvy, 2006b) which connects
a natural semantics (Kahn, 1987) with an abstract machine (Landin, 1964). On a related
note, refocusing (Danvy & Nielsen, 2004) and lightweight fusion by fixed-point promotion
(Ohori & Sasano, 2007; Danvy & Millikin, 2008) allow to connect a reduction semantics
(Felleisen, 1987) with an abstract machine through a syntactic correspondence (Danvy,
2005; Biernacka & Danvy, 2007; Danvy, 2008b). The functional and syntactic correspon-
dences together are referred to as ‘inter-derivation techniques’, with the particular meaning
that a reduction semantics and a natural semantics inter-derive to each other when the
abstract machine derived from both is the same. The CPS transformation and defunction-
alisation (Danvy & Millikin, 2009; Danvy et al., 2011) are also used to derive a reduction
semantics from the search function that characterises a structural operational semantics
(SOS) (Plotkin, 1981). Finally, the thunks (Danvy & Hatcliff, 1992; Hatcliff & Danvy,
1997) that appear in a semantic function characteristic of a denotational semantics can be
closure-converted (i.e., defunctionalised) to obtain an environment-based natural seman-
tics (Ager et al., 2003b; Danvy, 2008a). (Section 2.2 provides a thorough description of
the different formalisms for operational semantics and of the inter-derivation techniques,
and Section 1.5 comments about the closures and the environment technique.)

14

Chapter 1. Introduction

In (Munk, 2008; Danvy et al., 2013) the 2-layer CPS (2CPS) and the concomitant
2CPS transformation (Danvy & Filinsky, 1990; Biernacka et al., 2005; Danvy, 2006a) are
used to inter-derive semantic artefacts for full-reducing strategies in the lambda calculus.
Munk (2008) connects the environment-based layered reduction semantics of full-reducing
strategies to the different full-reducing abstract machines in (Curien, 1993; Crégut, 2007;
Kluge, 2010). However, the inter-derivations in (Munk, 2008) are not detailed (i.e., the
code with all the intermediate artefacts is not available) and the 2CPS transformation
increases the complexity when reasoning about the different artefacts obtained.

1.4 Nameful and name-free representations of the lambda
calculus

A binding occurrence of a variable λx specifies that the applied occurrences of x in the
subsequent body are abstracted. This nameful representation entails an equivalence rela-
tion that equates all the terms differing only on the names of their bound variables. The
equivalence is induced by the α-conversion rule,M →α M

′, which rewrites a subterm λx.N
of M into λy.[x/y]N of M ′, where the y does not appear at all in N (Barendregt, 1984).
To avoid issues with the capture of free variables when placing a term into some context,
the Barendregt convention (Barendregt, 1984) is usually assumed. The Barendregt con-
vention specifies that the free variables of the set of terms M1,M2, . . . in a mathematical
context (a definition, a proof, etc.) is always different from the bound variables of that set
of terms, i.e., the required α-conversion is always performed in order to avoid capture of
free variables. This is as is the terms where considered up to α-equivalence.

An alternative solution is to use a name-free representation which maps the linear
order of the nested binding occurrences to the natural numbers, and encodes each applied
occurrence as a natural number. This name-free representation, which is due to (De Bruijn,
1978), comes in one of the following two styles.

The de Bruijn indices represent applied occurrences as the relative distance to the
binding occurrence, with 0 the closest binding occurrence (e.g., nameful λx.(λy.y x)x is
written as the name-free λ.(λ.0 1)0).

The de Bruijn levels represent applied occurrences as the absolute nesting level of the
binding occurrence, with 1 the outermost binding occurrence (e.g., nameful λx.(λy.y x)x
is written as the name-free λ.(λ.2 1)1).

The index (resp. level) for the closest (resp. outermost) binding occurrence is chosen
by convention. The convention here will simplify the calculations when using both indices
and levels together in Chapter 6. Index 0 corresponds to the closer binding occurrence,
whose binding is stored in the first position in the environment (i.e., zero is conventionally
the index for the first position when accessing arrays and other data structures, which
simplifies index arithmetic). Level 0 corresponds to the nesting at the root level (i.e., no
nesting at all), and thus level 1 corresponds to the level when crossing the first lambda
(i.e., the outermost binding occurrence).

15

1.5. Explicit substitutions and the environment technique

1.5 Explicit substitutions and the environment technique

Explicit substitutions provide an intermediate step between the formal specifications of
lambda calculi and its concrete implementations (Abadi et al., 1991; Curien, 1991; Les-
canne, 1994; Hardin et al., 1998; Kesner, 2007; Biernacka & Danvy, 2007). Conventionally,
the contraction rules of a reduction system are specified by means of the external substitu-
tion function [_/_]_ which replaces a term for the free occurrences of a variable in another
term. Explicit substitutions dispose of the external substitution function by incorporating
the notion of substitution as a syntactical construct, and by providing contraction rules
that distribute this syntactical construct into the term structure and progressively carry
out the substitution. The implementations of explicit substitutions are akin to the envi-
ronment technique, which was introduced by (Landin, 1964) in computer science and by
(Scholz & Hasenjaeger, 1961, §54) in logic. A term with explicit substitutions makes up a
closure, which consists of a term and an environment that carries the bindings of the free
variables in the term.

Curien (1991) implements explicit substitutions by using the de Bruijn indices repre-
sentation for variables (De Bruijn, 1978) such that an index n points to its binding in an
environment ρ consisting of a list of terms. Curien turns the β-rule into the contraction
rules:

M [ρ]→∗ (λ.B)[ρ′]

(M N)[ρ]→ B[N [ρ] : ρ′]
(Eval)

n[ρ]→ nth(ρ)
(Var)

Contraction is split into the creation of a new explicit substitution (i.e., pushing a bind-
ing on the environment) and the deferred replacement of the new binding for the formal
parameter in the body of the abstraction (i.e., looking up the formal parameter on the
environment). The following reduction sequence illustrates:

((λ.0)N)[ρ]→ 0[N [ρ] : ρ]→ N [ρ]→ . . .

Curien’s calculus simulates weak reduction in lambda calculus. However, the rules
above do not constitute a truly reduction semantics since rule Eval is not a contrac-
tion rule proper. Although Eval looks superficially like an inference rule, the premiss
M [ρ]→∗ρ (λx.B)[ρ′] is not a judgement of the reduction theory, and hence it does not cor-
respond to a derivation of the inference system. In other words, rules Eval and Var do
not constitute a structural operational semantics proper (Plotkin, 1981) (recall the struc-
tural operational semantics (SOS) formalism of Section 1.3, which is further described in
Section 2.2.) The premiss of Eval consists of the concatenation of multiple reduction
steps. These steps have to be disentangled from the contraction of the outermost redex
(λ.B)N , which is the elementary step that rule Eval should stand for. Biernacka & Danvy
(2007) fix this by adding a syntactical construct for closure application, in the tradition
of eval/apply interpreters for programming languages (Abelson et al., 1985). The new
construct allows the definition of a SOS proper, since the context of both the operator

16

Chapter 1. Introduction

and operand in a closure can be navigated. The contraction rules in (Biernacka & Danvy,
2007) read

(λ.B)[ρ] · N→ B[N : ρ]
(β)

n[ρ]→ nth(ρ)
(Var)

(M N)[ρ]→ M [ρ] ·N [ρ]
(App)

where sans-serif fonts M stand for closures, and closure application is written M · N. Rule
(β) is the conventional β-rule lifted to closure applications, and Var is the look up rule
as before. The new App rule expands an application closure into a closure application. A
SOS for the call-by-name strategy could be easily defined by adding the compatibility rule

M→ M′

M · N→ M′ · N
(µ)

which specifies that closure operators have to be navigated when looking for redices. This
SOS behaves in the same way than rules Eval and Var before, except for the application
expansion step of rule App. The following reduction sequence illustrates:

((λ.0)N)[ρ]→ (λ.0)[ρ] ·N [ρ]→ 0[N [ρ] : ρ]→ N [ρ]→ . . .

The calculus in (Biernacka & Danvy, 2007) simulates the one in (Curien, 1991), and is
therefore suitable for weak reduction in a setting with explicit substitutions.

1.6 The problem

One of the motivations of (Sestoft, 2002) was that varying definitions for the conventional
call-by-name and call-by-value strategies existed in the literature (Plotkin, 1975; Felleisen &
Hieb, 1992; Paulson, 1996), and the relation between programming languages and reduction
systems was unclear. Sestoft did clarify the aforementioned relation to some extent, but
the situation for the full-reducing strategies deserves more attention. Different formalisms
exist (SOS, reduction semantics, abstract machines, natural semantics) which are presented
using different styles (hybrid single functions, NBE). Some strategies are altered unwittingly
when altering their presentation style. For instance, Sestoft (2002) claims that his hybrid
applicative order is equivalent to function byValue in NBE style (Paulson, 1996), but
actually it is not. Other strategies are defined combining different formalisms together,
and it is unclear how to connect them to homogeneous definitions. For instance, strong
reduction (Grégoire & Leroy, 2002) uses a NBE approach where the eval stage is presented
as a context-based reduction semantics, and the readback stage is defined in an equational
way which is akin to a natural semantics. Function byValue (Paulson, 1996) also uses
the NBE approach, where both the eval and the readback stages are a straightforward
translation of natural semantics into ML code. Strong reduction and byValue define the
same strategy, but the connection between them is far from being obvious.

17

1.6. The problem

A significant work has been done to connect reduction semantics with full-reducing
abstract machines (Ager et al., 2003a; Munk, 2008; Danvy et al., 2013). However, the
latter are usually defined in environment-based style, and the correspondence of these to
the full-reducing strategies in the traditional substitution-based style is not formally shown.

There is even more confusion regarding eager semantics. The by-value policy is usually
mixed up with the by-wnf policy (see Section 1.2). Both policies are equivalent in a weak-
reducing setting (i.e., closed terms, not going ‘under lambda’), but they differ in a full-
reducing setting. The semantics which coincide with the by-wnf policy have received more
attention (Paulson, 1996; Paolini & Ronchi Della Rocca, 1999; Sestoft, 2002; Grégoire
& Leroy, 2002; Accattoli & Paolini, 2012), with the notable exception of the principal
reduction machine of (Ronchi Della Rocca & Paolini, 2004) which truly implements5 the
original by-value policy in (Plotkin, 1975). However, (Ronchi Della Rocca & Paolini,
2004) brings up a bigger problem. Although the meta-theory for classical lambda calculus
is well understood (Scott, 1970; Scott & Strachey, 1971; Wadsworth, 1976; Barendregt,
1984; Barendregt et al., 1987), the analogous for the lambda-value calculus is controverted.
According to the tradition in (Egidi et al., 1991, 1992; Paolini & Ronchi Della Rocca, 1999;
Ronchi Della Rocca & Paolini, 2004; Accattoli & Paolini, 2012), the full normal forms in
lambda-value, and hence the by-value full-reducing operational semantics, are considered
uninteresting upfront. This is because of an emphasis in weak-reducing machines in the
context of programming languages, and because of the confusion between the by-value and
by-wnf policies.

The recurrent hybrid (or layered) character which is present in the full-reducing (and
some other) strategies has been acknowledged in the folklore (see Section 1.1). However,
the hybrid character is often considered as a matter of style (i.e., connected to a particular
formalism or representation). Whether the hybrid character is a matter of nature (i.e.,
intrinsic to the strategy itself) is still unclear. No formal characterisation of either style or
nature exists.

Some full-reducing environment-based operational semantics have been inter-derived
(Ager et al., 2003a; Danvy et al., 2013; Munk, 2008). The hybrid character of the underly-
ing strategies has an impact on the complexity of the inter-derivation. The NBE approach
is used and the machines obtained present either two control stacks or a single control stack
which has a layered structure (i.e., implemented by two datatypes, one depending on the
other). In both cases there are different configurations (i.e., states) dispatching on each
of the control stacks (resp. datatypes for control stacks). In (Ager et al., 2003a) a virtual
machine6 with a single layered control stack is derived, but only the functional correspon-
dence is shown and the detailed inter-derivation (the code implementing the intermediate
artefacts) is omitted. In (Munk, 2008; Danvy et al., 2013) an abstract machine with two

5The machine in (Ronchi Della Rocca & Paolini, 2004) is parametric in the set ∆ and in the ∆-normal
forms. To implement the by-value policy ∆ has to be instantiated to values, and the ∆-normal forms to
lambda-value normal forms.

6A virtual machine has an instruction set and requires a compilation stage. An abstract machine
operates directly on terms and does not need a compiler.

18

Chapter 1. Introduction

control stacks is inter-derived, and both the functional and the syntactic correspondences
are shown. (Yet the code implementing the intermediate artefacts is also omitted.) Munk
(2008) considers up to three derivation paths for the syntactic correspondence. In the first
path, the full-reducing machine of (Curien, 1993) is connected to a 2CPS environment-
based reduction semantics. In the second path, this very machine is connected to a plain
CPS (i.e., 1-layer CPS) environment-based reduction semantics with control delimiters. In
the third path, the full-reducing Krivine machine of (Crégut, 2007) (this machine is almost
equivalent to the HOR machine of (Kluge, 2010)) is disentangled to match the machine in
the other two paths, which can be subsequently connected to either of the 2CPS reduction
semantics or the plain CPS reduction semantics with control delimiters. (The work of
(Danvy et al., 2013) only collects the two first paths in (Munk, 2008).) The eval/readback
phase distinction in NBE entails, alternatively, intermediate artefacts in 2CPS or the use
of control delimiters. None of the paths shows how to obtain artefacts with plain CPS
and without control delimiters, since those two features seem to clash. Both features are
desirable for the endeavour of ‘mechanising’ the inter-derivation techniques.

There is an outgrowing number of operational semantics with a layered character, where
a guest semantics is plugged into a host semantics. A recent example is the gradually-typed
lambda calculus (Henglein, 1994; Siek & Taha, 2006; Siek et al., 2009; Siek & Garcia, 2012;
Garcia, 2013), where a family of coercion calculi can be plugged into a simply-typed lambda
calculus. Interpretations of gradually-typed lambda calculus exist (Siek & Garcia, 2012),
but the correctness of the interpreter—for each choice of coercion semantics—has been
only conjectured. The inter-derivation techniques would provide a constructive proof of
correctness, but there is the additional issue of making the inter-derivation modular on the
coercion semantics (i.e., the different inter-derivations for the choices of coercion semantics
could be plugged in the inter-derivation of the host calculus, which would be reused).

1.7 Contributions

The contributions of this thesis can be classified according to their theoretical or prac-
tical character. Chapter 3 and 4 deals with (most of) the theoretical contributions, and
Chapters 5, 6, and 7 with the practical contributions. All they are detailed in what follows.

1.7.1 Theoretical contributions

Hybrid nature and the beta cube

Chapter 3 provides a rationale for the space of strategies unveiled by (Sestoft, 2002). A
definition of the hybrid/uniform nature of a strategy, which gives formal grounds to the
informal terminology in (Sestoft, 2002), is deferred to Section 5.3:

• Section 3.2 introduces a big-step-style template for reduction strategies that can be
instantiated to the foremost strategies in the literature and more. The template is
implemented in Haskell as a higher-order monadic function whose fixed points are

19

1.7. Contributions

reduction strategies. The resulting code is readable, clean, and abstracts away from
the machinery required to guarantee semantics preservation for all strategies in lazy
Haskell.

• Section 3.3 introduces a lattice of reduction strategies which is referred to as the
β-cube. The lattice is obtained by interpreting some parameters of the big-step
template as boolean switches. The β-cube captures neatly and systematically many
reduction strategies of the pure lambda calculus. It contains eight uniform strategies:
applicative order, call-by-value, call-by-name, head spine order, and four new ones.

• Section 3.4 defines a hybridisation function that generates up to ten hybrid strate-
gies by appropriately composing a base and a subsidiary strategy taken from the
cube. The hybrid strategy is a single function that depends on the subsidiary, and
the subsidiary is a uniform strategy. Hybrids are paramount for full reduction. In
particular, the full-reducing strategies that uphold completeness under the calling
policy that they implement, are hybrid.

• Section 3.8 proves that for each hybrid strategy generated from base and subsidiary
from the cube, there exist a pair eval/readback functions in the NBE approach cor-
responding to the hybrid. The subsidiary coincides with the eval stage. This cor-
respondence helps to prove an absorption theorem which states that a subsidiary
strategy is a right identity of any hybrid that depends on the subsidiary.

Towards a standard theory for the lambda-value calculus

Chapter 4 develops the meta-theory of lambda-value calculus for the endeavour of estab-
lishing a ‘standard theory’ which is the natural analogous of the ‘standard theory’ of the
classical lambda calculus (Scott, 1970; Scott & Strachey, 1971; Wadsworth, 1976; Baren-
dregt, 1984; Barendregt et al., 1987):

• Section 4.3 introduces the syntactic notion of quasi-v-solvability, which aims at rein-
stating the validity of lambda-value normal forms (Egidi et al., 1991, 1992; Paolini &
Ronchi Della Rocca, 1999; Ronchi Della Rocca & Paolini, 2004; Accattoli & Paolini,
2012) and to develop on the meta-theory of lambda-value. The new definition, which
differs from that in (Paolini & Ronchi Della Rocca, 1999), captures ‘preservation
of unsolvables’ and ‘genericity lemma’ (Wadsworth, 1976). Similar to (Abramsky,
1990; Paolini & Ronchi Della Rocca, 1999), an unsolvable is qualified with an or-
der which indicates the maximum number of trailing lambdas of any term which is
βV -equivalent to the unsolvable. Quasi-v-solvability rests on the notion of lambda-
value needed reduction, which is a generalisation of the needed reduction in classical
lambda calculus (Barendregt et al., 1987). Lambda-value needed reduction captures
effective use in lambda-value.

• Section 4.5 introduces the theory HV which equates all the unsolvables of equal
order and proves that HV is a consistent extension of the lambda-value theory. The

20

Chapter 1. Introduction

concomitant notion of ω-sensibility (i.e., satisfying HV) aims at characterising the
theories and models in lambda-value with good operational properties.

• Section 4.7 characterises all complete strategies in lambda-value. Theorem 4.8.7
broadens the Standardisation Theorem in (Plotkin, 1975) showing that there are
complete strategies in lambda-value which fail to be standard. The novel value spine
order strategy is introduced, which traverses the spine of the term in an way analogous
to head spine and hybrid normal order (Barendregt et al., 1987; Sestoft, 2002). Value
spine order is the most eager strategy of lambda-value that is complete. Value spine
order is a hybrid strategy that depends on two subsidiaries, of which, one is in turn
a hybrid that also depends on the other subsidiary.

1.7.2 Practical contributions

Inter-deriving hybrid strategies

Chapter 5 shows how to apply the techniques for inter-derivation of semantic artefacts
(Ager et al., 2003b; Danvy, 2005, 2006b, 2008a; Danvy & Millikin, 2008; Danvy et al.,
2011) to the case of hybrid strategies. The solution is showcased by inter-deriving seman-
tics for normal order, the standard, full-reducing, and complete strategy of the classical
lambda calculus. This solution, which is an alternative to the use of 2CPS and control de-
limiters in (Munk, 2008; Danvy et al., 2013), relies on the shape invariant of the strategy’s
reduction contexts to obtain a first-order abstract machine with shallow inspection (i.e.,
in defunctionalised form) and with only one control stack. The intermediate artefacts in
the inter-derivation are in plain CPS and do not require the use of control delimiters:

• Section 5.2 presents SOS, reduction semantics, and natural semantics of normal order
defined by a single hybrid function, as opposed to the composition of two functions
in the NBE approach.

• Section 5.3 introduces a formal definition of the hybrid/uniform nature of a strategy.
The hybrid/uniform character is not an accidental property (i.e., akin to a style of
presentation) but intrinsic to the strategy (i.e., determined by the strategy’s nature).
A strategy is uniform if inclusion of contexts is necessary and sufficient to characterise
all the reduction contexts of the strategy. Otherwise, the strategy is hybrid.

• Section 5.5 obtains the grammar of well-formed continuation stacks and proves its
shape invariant, which will be used latter to enforce the shallow inspection of the
abstract machine.

• Section 5.6.2 shows how the intensional refocusing function for the strategy is context-
dependent, i.e., the function inspects the current continuation in order to decide
which normalising function (subsidiary or hybrid) is to resume.

21

1.7. Contributions

• Section 5.6.6 uses the shape invariant of the reduction contexts to recover shallow
inspection of the abstract machine that is arrived to by applying the standard inter-
derivation steps to the semantics with context-dependent refocusing function. The
obtained abstract machine is in defunctionalised form.

• As further evidence of the applicability of this solution, Section 5.9 discusses the
inter-derivation of many hybrid strategies in the literature, including head reduction
(Barendregt, 1984), strong reduction (Grégoire & Leroy, 2002) and byValue (Paulson,
1996), hybrid applicative order (Sestoft, 2002), the ahead machine (Paolini & Ronchi
Della Rocca, 1999), and the outermost strategy for arithmetic expressions (Danvy
& Johannsen, 2013). All the strategies posses layered reduction contexts where the
appropriate shape invariant can be identified.

It is the experience of the author and his collaborators that plain CPS without control
delimiters makes the inter-derivation more amenable to automation, and could help for
the endeavour of ‘mechanising’ the inter-derivation.

Closure calculus for full reduction

Chapter 6 derives by program transformation the full-reducing Krivine machine of (Crégut,
2007) from the SOS of normal order. This derivation, which is an alternative to the
derivation in (Munk, 2008), unveils the calculus of closures underneath the full-reducing
Krivine machine (Crégut, 2007). The SOS definition of normal order in this calculus enjoys
index alignment and balanced derivations, which are key properties to reason locally in
a scope where the bindings of free variables are not available. The full-reducing Krivine
machine is arrived from a single-stage hybrid SOS by constructing the grammar of well-
formed continuation stacks and observing its shape invariant:

• Section 6.7 introduces the calculus of closures λρ̃ which naturally extends the λρ
calculus of (Curien, 1991) and the λρ̂ calculus of (Biernacka & Danvy, 2007). The
λρ̃ calculus adds de Bruijn levels, closure abstractions, and absolute indices, which
are required for full-reduction. The de Bruijn indices represent the formal parameter
of an unapplied abstraction when its body is being evaluated, a technique dubbed
‘parameter as levels’ which is akin to the full-reducing Krivine Machine of (Crégut,
2007). Closure abstractions are required to represent closures where the redex may
occur under lambda, and absolute indices are required to represent ‘neutral closures’,
i.e., non-redex closure applications (see Section 6.7.1.

• Section 6.7.1 defines the SOS of normal order in λρ̃, and proves that normal order
reduction in λρ̃ mirrors stepwise normal order reduction in the pure lambda calculus.
The SOS enjoy index-alignment and balanced derivations. This features allows to
reason over the SOS, solving the paramount issue with binders of reasoning locally
in an scope where the binding of a free variable is not available (Aydemir et al., 2008).

22

Chapter 1. Introduction

• Section 6.9.2 adds a non-standard but straightforward ‘preponing’ step to the inter-
derivation, which is needed for shortcut optimisation. The preponing step is proved to
be equivalence-preserving. The preponed semantics obtained after this step resembles
the environment-based semantics in (Munk, 2008). In this thesis, the preponed
semantics are arrived to by program transformation, instead of contrived, as is the
case in (Munk, 2008).

• Section 6.10.1 and 6.10.3 show how to use the correlation of certain constructors on
the top of the well-formed continuation stack with some explicit control that has to
be introduced in one of the intermediate artefacts. This is another application of
constructing the grammar of well-formed continuation stacks.

• Section 6.10.4 arrives to a machine which is a slightly optimised version of (Crégut,
2007) that can also work with open terms and that does not need to carry lambda
levels in ground terms. These features are also present in the HOR machine of Kluge
(2010).

Deriving interpretations for the gradually-typed lambda calculus

Chapter 7 shows how to combine hybrid semantics and 2CPS to obtain an inter-derivation
which is modular in the coercion semantics. ‘Modular’ means that different inter-derivations
for different choices of coercion semantics can be plugged in the overall inter-derivation of
the host semantics:

• Section 7.2 introduces a core calculus for gradual-typing which unify and slightly
amends and emends the calculi in (Siek & Garcia, 2012; Siek et al., 2009) so as to have
an implementable reduction semantics satisfying unique-decomposition (Felleisen,
1987).

• Section 7.4 translates the definitional interpreter in (Siek & Garcia, 2012) to ML and
derive an instantiation for a coercion-based eager-downcast dynamic semantics (Siek
et al., 2009).

• Section 7.8 closure-converts the core calculus and introduces a simply-typed lambda
calculus of closures with explicit casts. The reduction semantics of the calculus of
closures is transformed into the instantiation of the definitional interpreter.

The small-step and big-step artefacts for expressions with coercion casts are parametric on
the artefacts for coercions. Thanks to layering and 2CPS the artefacts for coercions can
be replaced by other artefacts implementing different dynamic semantics. This technique
provides the basis for modular derivations of any hybrid semantics, not limited to the
definitional interpreters of the gradually-typed lambda calculus.

23

1.8. Overview

1.8 Overview

Chapter 2 introduces some technical preliminaries. The rest of the thesis builds on a collec-
tion of five papers7 that correspond roughly to Chapters 3 to 7. The collection is structured
in three parts. The first part consists of Chapter 3 (The Beta Cube) and Chapter 4 (To-
wards a Standard Theory for The Lambda-Value Calculus), which deal with the hybrid
and full-reducing strategies in the classical lambda calculus, and with the meta-theory for
full reduction in the lambda-value calculus. The second part consists of Chapter 5 (Inter-
deriving Hybrid Normalisers) and Chapter 6 (Deriving the Full-Reducing Krivine Machine),
which concern efficient implementations of full-reducing machines in substitution-based and
closure-based styles respectively. The third part consists of Chapter 7 (Deriving Interpreta-
tions of the Gradually-Typed Lambda Calculus), where the lessons about hybrid strategies
that were learnt in Parts I and II are applied to the interpretations of the gradually-typed
lambda calculus. Chapter 8 concludes.

The collection of papers contains the published versions or, for those papers whose
extended versions are still unpublished, a stable version which has been considered for
submission. However, these stable versions may not contain some of the contents which
are still in progress. An addendum may be included at the end of the chapters which drafts
and outlines the work in progress. The reader is warned to read these addenda for the
most updated material.

Each chapter in the collection of papers is self-contained, in that a section with con-
clusions and future work is included when appropriate. For the convenience of the reader,
Chapter 8 provides general conclusions and summarises the most relevant discussions.

7Contrary to this chapter and to Chapter 2, where the impersonal voice is used, the collection of papers
uses the active voice which was originally present in the papers.

24

2
Technical Preliminaries

2.1 Lambda calculus

This thesis focuses on the pure untyped lambda calculus and in its strict-functional-
semantics counterpart, i.e., the pure versions of the call-by-name and call-by-value calculi
in (Plotkin, 1975) respectively. The pure version of the call-by-name calculus coincides
with the classical lambda calculus in (Church, 1936; Barendregt, 1984). The pure version
of the call-by-value calculus is described in (Egidi et al., 1991, 1992; Paolini & Ronchi
Della Rocca, 1999; Ronchi Della Rocca & Paolini, 2004). Both calculi shall be referred
to generically as lambda calculus or λ-calculus. When referring to the call-by-name ver-
sion, the epithet ‘classical’, or the abbreviation λK, may be used.1 When referring to the
call-by-value version, the qualifier ‘-value’, or the abbreviation λV , may be used.

The traditional syntax of lambda terms is specified by the pseudo-grammar Λ ::=
x | (λx.Λ) | (Λ Λ), where x, y, etc, range over the elements of a countably infinite set
of variables. In words (to refresh terminology), lambda terms consist of variables, of
abstractions (consisting of a bound variable and the abstraction’s body), and of applications
of an operator to an operand. For example, ((λx.x)y) is the identity abstraction applied to
variable y. The abstraction (λx.x) is the operator and the variable y is the operand. Symbol
Λ is overloaded to stand for a grammatical non-terminal and for the set of lambda terms.
(The subset containing the closed lambda terms is written Λ0.) Uppercase, sometimes
primed, letters M , N , B, M ′, etc, range over elements of Λ. Parenthesis are dropped
according to the standard precedence and association conventions: applications associate
to the left and application binds tighter than abstraction. Hence, the term above is written
(λx.x)y.

The reader must be familiar with the usual definitions of bound and free variables, of
syntactic equality of terms modulo renaming of bound variables (written ≡), of capture-

1The classical lambda calculus is sometimes referred to as λK to distinguish it from the λI version, see
(Barendregt, 1984, Chapters 2 and 9).

25

2.1. Lambda calculus

(λx.B)N →β [N/x]B
(β)

M →β M
′

M N →β M
′N

(µ)

N →β N
′

M N →β M N ′
(ν)

B →β B
′

λx.B →β λx.B
′ (ξ)

N ∈ Val

(λx.B)N →βV [N/x]B
(βV)

M →βV M
′

M N →βV M
′N

(µV)

N →βV N
′

M N →βV M N ′
(νV)

B →βV B
′

λx.B →βV λx.B
′ (ξV)

Val ::= x | (λx.B)

Figure 2.1: Single-step reduction relations →β and →βV

avoiding substitution [N/x]B (which reads substitute N for the free occurrences of x in
B), and of contexts C[] (terms with holes).

Relations are defined as Hilbert-style inference systems (i.e., a set of inference rules
with antecedent and consequent separated by a bar, where the axioms are the rules with
an empty antecedent). Figure 2.1 defines the single-step reduction relations in λK and in
λV (denoted →β and →βV respectively) which are the compatible closure of contraction
rules (β) and (βV). The β-redices are of the form (λx.B)N , and the βV -redices are similar
but withN a value (i.e., N in the set Val defined in the bottom of Figure 2.1). Multiple-step
reduction relations (→∗β and→∗βV) and equivalence relations (=β and =βV) are respectively
the reflexive and transitive closure, and the reflexive, symmetric and transitive closure of
the single-step reduction relations.

Given a reduction system, a reduction strategy (or just strategy) of the system is a
(partial) function which is a sub-relation of the system’s multiple-step reduction. In the
classical lambda calculus, a strategy is a sub-relation of →∗β , and in the lambda-value
calculus, a strategy is a sub-relation of →∗βV . Strategies can be presented in small-step or
big-step fashion.2 A small-step strategy is concerned with the next step of computation,
i.e., it maps a term to a subsequent term in the reduction sequence. A big-step strategy
is concerned with final results, i.e., it maps an input term to the last term in its reduction

2Do not mistake small-step with single-step, nor big-step with multiple-step. Both single-step and
multiple-step are small-step, since the multiple-step relation does not exhaust the reduction relation, i.e.,
reduction is not necessarily carried out until reaching an irreducible form. Through the text, ‘single-’ and
‘multiple-’ are used for relations, and ‘small-’ and ‘big-’ are used for strategies or semantics.

26

Chapter 2. Technical Preliminaries

NF ::= λx.NF | x {NF}∗
WNF ::= λx.Λ | x {WNF}∗
HNF ::= λx.HNF | x {Λ}∗

WHNF ::= λx.Λ | x {Λ}∗

Figure 2.2: Irreducible forms in classical lambda calculus

sequence, or it is undefined if such a term does not exist. Both small- and big-step strategies
are proper sub-relations of the system’s multiple step reduction relation. Each small-
step strategy corresponds to a unique big-step strategy, but not reciprocally. However,
each intensionally defined big-step strategy in this thesis (i.e., any strategy defined by
the big-step operational semantics formalisms described in Section 2.2) does correspond
to a unique small-step strategy. Therefore, in this thesis ‘reduction strategy’ is used to
refer to the deterministic order of contraction for redices that lays underneath any of the
strategy’s small-step or big-step presentations. For a strategy s, its small-step and big-
step presentations are writtenM →s N andM ⇓s N respectively. RelationalM ⇓s N and
functional ⇓s (M) = N notation is used interchangeably, and function composition is used
when appropriate, e.g., (⇓t ◦ ⇓s)(M) = ⇓t (⇓s (M)).

Figure 2.2 shows the grammar of normal forms (nf), weak normal forms (wnf), head
normal forms (hnf), and weak head normal forms (whnf) respectively, which are conven-
tional notions of irreducible terms in the classical lambda calculus. In the text, grammars
are defined in Extended Backus-Naur Form. Sets of terms (or closures, etc.) are written as
non-terminal identifiers in uppercase sans-serif (i.e., NF).3 Sets of contexts (terms with a
hole) are written as non-terminal identifiers in uppercase bold-roman, followed by the hole
symbol (i.e., C[]). The regular expression {NF}∗ in the first line of Figure 2.2 stands for
zero or more occurrences of NF. The sentential forms x, xNF, xNFNF, etc, are derivable
from production x {NF}∗ and respectively associate (according to the convention) as x,
(xNF), ((xNF)NF), etc.

Through the text, the following abbreviations for terms are used. The term I ≡ λx.x
denotes the identity function. The term K ≡ λx.λy.x denotes the constant function (i.e.,
a function that takes two arguments, and returns always the first argument, regardless of
the second argument). The term ∆ ≡ λx.x x denotes the self-application operator (i.e., a
function that takes an argument and applies it to itself). The application of ∆ to itself
gives Ω ≡ (λx.x x)(λx.x x), which is a divergent term (it reduces forever) that denotes
undefined.

A standard reduction sequence (Curry & Feys, 1958) is a reduction sequence where
in each step the leftmost-outermost redex is contracted (‘leftmost’ in their terminology).
The standardisation theorem states that if a term has a normal form, there is a standard
reduction sequence ending in it. ‘Standard reduction up to normal form’ is akin to ‘normal

3In Chapter 6 we contravene this convention and use uppercase roman for stacks (i.e., S).

27

2.2. Operational semantics and inter-derivation

order’. The standardisation theorem states that normal order is a complete strategy, i.e.,
it always delivers a normal form if the input term has some. However, ‘standard’ does
not imply ‘full-reducing’. For instance, call-by-name (Plotkin, 1975; Barendregt, 1984)
is the standard strategy that reduce up to weak head normal form, and head reduction
(Barendregt, 1984) is the one that reduces up to head normal form.

The ‘spine’ qualifier takes the anatomic metaphor of the ‘head’ qualifier further and
refers to strategies that contract the redices in the left front of the abstract syntax tree of
a term (Barendregt et al., 1987). The spine strategies give decidable approximations to
the set of needed redices of a term (Barendregt et al., 1987) (See Section 4.11. Head spine
order and hybrid normal order (Sestoft, 2002) are the spine counterparts of the standard
strategies head reduction and normal order. Some head and spine strategies share many
features with the full-reducing strategies, in particular they have hybrid nature, and hence
they are also studied in this thesis. The spine strategies of the lambda-value calculus are
introduced in Chapter 4.

2.2 Operational semantics and inter-derivation

The formalisms for operational semantics can be classified according to their small-step or
big-step character. Traditional approaches to small-step operational semantics are struc-
tural (Plotkin, 1981), context-based (or reduction semantics) (Felleisen, 1987), and abstract
machines (Landin, 1964). The latter are state transition functions that, unlike virtual ma-
chines, operate directly on terms, have no instruction set, and no need for a compiler. Tra-
ditional approaches to big-step operational semantics are compositional evaluators (Danvy,
2008a),4 natural semantics (Kahn, 1987), and big-step abstract machines. The latter are
first-order tail-recursive presentations of state transition functions.

All the different formalisms for operational semantics can be implemented as programs
(i.e., semantic artefacts) that can be inter-derived by means of program transformation.
‘Inter-derivation’ of semantic artefacts is used in the literature in the specific sense that the
artefacts derive by program transformation to the same (implementation of an) abstract
machine. The following literature is assumed (Ager et al., 2003b,a; Danvy & Nielsen, 2004;
Danvy, 2005, 2008a; Danvy & Millikin, 2008; Biernacka & Danvy, 2007; Danvy et al., 2011),
the last reference an excellent tutorial introduction on which part of the presentation in
this thesis is based.

4Some authors refer to this formalism as ‘denotational semantics’ (Danvy, 2008a), but it shall not be
confused with a denotational semantics proper (Section 1.3). A compositional evaluator comprises only the
operational part of a denotational semantics, namely the semantic function, and lacks the mathematical
structure in which the denotations live. The compositional evaluator, which runs in an implementation
language, translates and executes a program in the target language on the fly. Typically, abstractions in the
target language are shallowly embedded as functions in the implementing language. The implementation
language is assumed to have a well-behaved formal semantics whose details are hidden, which allows the
designer to focus on the semantics of the target language.

28

Chapter 2. Technical Preliminaries

search
function

struct. oper.
semantics

compositional
evaluator
semantic
function

reduction-based
normaliser
reduction
semantics

abstract
machine
state
trans.

reduction-free
normaliser
natural

semantics

decomp.

synt. corresp. funct. corresp.

closure conv.

Figure 2.3: Semantic artefacts and derivation paths

Figure 2.3 illustrates the derivation paths among semantic artefacts. From left to right,
a search function is a simple artefact that mirrors the compatibility rules of a structural
operational semantics (the rules that express how to navigate a term to locate a redex). A
search function delivers for an input term the redex subterm to be contracted or the input
term back if the input term is irreducible. A search function derives to a reduction-based
normaliser by applying the following program-transformation steps: CPS transformation,
simplification, defunctionalisation, and turning the search into a decomposition function
which, additionally to the next redex, delivers the context where the redex appears. A
reduction-based normaliser is a program that implements a reduction semantics by iterat-
ing (i) the unique decomposition of a term into a context and a redex within the context
hole, (ii) the contraction of the redex and, (iii) the recomposition of the resulting term.
The additional recomposition function consists of a left fold over the contexts. A reduction-
based normaliser derives to (a big-step implementation of) an abstract machine by applying
the following steps: refocusing (which optimises the iteration loop), lightweight fusion by
fixed-point promotion, and inlining-of-iterate-function steps. This latter derivation is called
a syntactic correspondence and its steps are in general not reversible. The abstract ma-
chine derives to a reduction-free normaliser by applying refunctionalisation and direct-style
transformation. This derivation is reversible by CPS transformation and defunctionalisa-
tion and is called a functional correspondence. A reduction-free normaliser is a program
implementing a natural semantics, typically a recursive normaliser for deeply-embedded
terms. A reduction-free normaliser derives (in a reversible way) to a compositional evalu-
ator by applying closure conversion (closure unconversion respectively). A compositional
evaluator is a semantic function which sends terms to semantic values. A semantic func-
tion uses the environment technique to store the semantic values that correspond to the
free variables in the term. The input of the semantic function (i.e., the term and the
environment) constitutes an unfolded representation of closures, where the bindings are
semantic values rather than closures themselves.

29

2.3. Lambda theories and models

Reduction-based and reduction-free normalisers (and intermediate abstract machines)
are equivalent because the transformation steps are equivalence-preserving. Consequently,
the artefacts implement the same reduction strategy. A search function is a simpler
artefact which, although not strictly equivalent, is sufficient to characterise the struc-
tural operational semantics (Danvy et al., 2011). It connects the structural and context-
based semantics by adding a recomposition function. A compositional evaluator is neither
strictly equivalent to a reduction-free normaliser, since the former uses a domain of re-
sults with shallow-embedded abstractions (i.e., meta-level functions) and the latter uses
deep-embedded terms, of which the results (i.e., irreducible forms) are just a subset. The
compositional evaluator characterises the reduction strategy underneath the target lan-
guage semantics by wiring it to the implementation language semantics.

Translating the target language into an implementation language with definite seman-
tics raises the paramount issue, first noted in (Reynolds, 1998), of independence from the
implementation language semantics, i.e., implementing a strict semantics in a non-strict
language, or the other way around. This issue pervades every big-step presentation of an
operational semantics. To tackle it, this thesis either uses a monadic normaliser (Chapter 3)
or fixes the implementation semantics to be strict (Chapters 5, 6, and 7) and implements
non-strictness manually by using thunks (Danvy & Hatcliff, 1992).

2.3 Lambda theories and models

The operational and denotational approaches to semantics are akin, respectively, to the
disciplines of proof theory and of model theory in logic. Proof theory is concerned with the
syntactic manipulation of symbols in a formula, whereas model theory is concerned with
the satisfiability of the formula in a particular mathematical structure. Broadly, a theory
is the set of formulae that can be obtained by applying the rules of a formal system, and
a model satisfies the formulae in the theory.

The symbol λ denotes the set of closed β-equations among lambda terms, which char-
acterises the equivalence classes of programs induced by =β . A λ-theory is a consistent
extension of λ which considers an additional set of equations M = N and its closure under
β-equivalence. Extending λ is a salient procedure to give meaning to the calculus in a
less-intensional way (Barendregt, 1984). For instance, it could be reasonable to identify all
the terms that lack a normal form. However, such extension happens to identify any term
with each other, rendering the resulting theory inconsistent (Barendregt, 1984). Consider
M1 ≡ (λx.xN1 Ω) and M2 ≡ (λx.xN2 Ω), with arbitrary N1, N2 ∈ Λ0. According to the
extension,M1 = M2 because both lack a normal form, and henceM1K = M2K. However,

N1 =β KN1 Ω =β (λx.xN1 Ω)K ≡ M1K

= M2K ≡ (λx.xN2 Ω)K =β KN2 Ω =β N2

which violates consistency since it allows to equate any two arbitrary terms N1 and N2.
A better-behaved extension of λ is the one that identifies all the terms that lack a head

normal form. The resulting theory, H, is consistent and hence it is a λ-theory. Identifying

30

Chapter 2. Technical Preliminaries

terms without head normal form follows from the operational relevance of terms, which is
captured by the notion of solvability. A term T is solvable iff it could be effectively used5

in a computation C[T] which delivers a normal form, i.e., C[T]→∗β N ∈ NF (Barendregt,
1972; Wadsworth, 1976; Barendregt, 1984; Paolini & Ronchi Della Rocca, 1999). Solvability
is characterised syntactically as having a head normal form and thus all the terms without
head normal form (i.e., unsolvable terms) are operationally irrelevant, or meaningless. The
Genericity Lemma states that if an unsolvable U takes part in a computation delivering a
normal form, C[U]→∗β N ∈ NF, then the U could be replaced by any other term without
affecting the result of the computation, i.e., ∀T.C[T]→∗β N (Barendregt, 1984).

In the λK-calculus, any model has to meet the domain equation D ∼= [D → D]. The
cardinality of the space of functions over a domain D is always greater than the cardinality
of the domain D itself. Scott (1970) showed that the space of continuous functions over
a complete lattice can be embedded in the lattice itself. He constructed the first lattice
model for the λK-calculus, D∞, which is defined as the inverse limit of a complete lattice
D0 where, inductively, Dn+1 is taken as the space of continuous functions over Dn, i.e.,
Dn+1

∼= [Dn → Dn] (Scott, 1970; Scott & Strachey, 1971; Wadsworth, 1976; Stoy, 1979).
The study of λ-theories bridges proof theory with model theory in λK. The notion of

sensibility characterises theories and models with good operational behaviour. A theory
(or a model) is sensible iff it satisfies H. There is a unique Hilbert-Post completion6 of
H, namely H∗, such that the local structure of D∞ is fully abstract (Curien, 2007) with
respect to it, i.e., for any choice of a complete lattice D0, D∞ |= M = N iff H∗ `M = N
(Barendregt, 1984, p. 505).

The lambda-value calculus is also amenable to proof theory. The symbol λV denotes
the set of closed βV -equations among terms, which characterises the equivalence classes of
programs induced by =βV . In Chapter 4 the theory HV is identified, which is an extension
of λV induced by the novel notion of quasi-v-solvability. Quasi-v-solvability is founded
on a generalisation of needed reduction to the λV -calculus. The theory HV is proven to
be consistent. Full reduction is intrinsic to the definition of quasi-v-solvability and to the
proof theory of the λV -calculus.

5A term T is effectively used in a computation C[T] iff is not the case that C[T] →∗β N ∈ NF implies
∀T ′.C[T ′] →∗β N (Paolini & Ronchi Della Rocca, 1999).

6A λ-theory T is Hilbert-Post complete iff for every equationM = N , either T `M = N or T +(M = N)
is inconsistent (Barendregt, 1984).

31

Part I

Meta-Theory

33

3
The Beta Cube

Mr Reynolds, this is the acorn that will grow a great oak.

(Ed Wood, Tim Burton)

We define a big-step-style template for reduction strategies that can be instantiated to
the foremost (and more) reduction strategies of the pure lambda calculus. We implement
the template in Haskell as a parametric monadic reducer whose fixed points are reduction
strategies. The resulting code is clean and abstracts away from the machinery required to
guarantee semantics preservation for all strategies in lazy Haskell. By interpreting some
parameters as boolean switches we obtain a reduction strategy lattice or beta cube which
captures the strategy space neatly and systematically. We define a hybridisation function
that generates hybrid strategies by composing a base and a subsidiary strategy from the
cube. We prove an absorption theorem which states that subsidiaries are left-identities of
their hybrids. More properties from the cube remain to be explored.

3.1 Introduction

Sestoft (2002) defines the big-step operational semantics of various reduction strategies
for the pure lambda calculus, including call-by-value (bv), call-by-name (bn), applicative
order (ao), normal order (no), hybrid applicative order (ha), hybrid normal order (hn),
and head spine (he). (Strategy ha is not identical to byValue in (Paulson, 1996, p.390), and
he is identical to headNF in (Paulson, 1996, p.390) but different from head reduction (h) in
(Barendregt, 1984).) One of his motivations is to clarify the meaning in the pure lambda
calculus of strategies used in programming languages, where there are no free variables
nor evaluation under lambda. He finds, for example, varying and inaccurate definitions
of bn by several authors, including (Plotkin, 1975). He implements each strategy as a

35

3.2. Rule template and generic reducer

x ⇓p x
(Var)

B ⇓la B′

λx.B ⇓p λx.B′
(Abs)

M ⇓op1 M ′ M ′ ≡ λx.B N ⇓ar1 N ′ [N ′/x]B ⇓su E
M N ⇓p E

(Red)

M ⇓op1 M ′ M ′ 6≡ λx.B M ⇓op2 M ′′ N ⇓ar2 N ′

M N ⇓p M ′′N ′
(App)

Figure 3.1: Template for reduction strategies

reducer function in ML using a deep embedding of lambda terms. He does not discuss the
paramount implementation issue, first noted by Reynolds (Reynolds, 1998) in the context
of interpretation, of semantics preservation or independence from the evaluation strategy
of the implementation language: implementing no in an eager language, ao in a lazy
language, etc. Reynolds showed that continuation-passing style is enough for semantics
preservation, but it has a cost in code readability.

We take Sestoft’s programme much further.
First, we define a big-step-style template for reduction strategies that can be instanti-

ated to all the aforementioned strategies and more. We implement the template in Haskell
as a higher-order monadic function whose fixed points are reduction strategies. We like
to think of this function as a generic reducer although technically it is a functional. The
resulting code is readable, clean, and abstracts away from the machinery required to guar-
antee semantics preservation for all strategies in lazy Haskell.

Second, by interpreting some parameters of the generic reducer as boolean switches,
we obtain a reduction strategy lattice we call the β-cube (after Barendregt’s λ-cube). The
β-cube captures neatly and systematically many reduction strategies of the pure lambda
calculus. It contains eight uniform strategies: ao, bv , bn, he, and four new ones. We define
a hybridisation function that generates up to ten hybrid strategies (including no, byValue,
hn, and h) by appropriately composing a base and a subsidiary strategy taken from the
cube. We prove an absorption theorem which states that subsidiaries are left-identities of
their hybrids. More properties from the cube remain to be explored.

3.2 Rule template and generic reducer

Figure 3.1 defines a big-step-style template for reduction strategies p that is parametric on
strategies la, op1 , ar1 , su, op2 , and ar2 :1

1We consistently use the red, green, and blue colours respectively for the la, ar1 , and ar2 parameters
of the generic reducer and for the axis in the β-cube (Figure 3.3).

36

Chapter 3. The Beta Cube

type Red = Monad m => Term -> m Term
genred :: Red -> Red -> Red -> Red -> Red -> Red -> Red
genred la op1 ar1 su op2 ar2 t =

case t
of v@(Var _) -> return v

(Lam v b) -> do b’ <- la b
return (Lam v b’)

(App m n) -> do m’ <- op1 m
case m’

of (Lam v b) -> do n’ <- ar1 n
su (subst b n’ v)

_ -> do m’’ <- op2 m
n’’ <- ar2 n
return (App m’’ n’’)

ao = genred ao ao ao ao ao ao
bv = genred return bv bv bv bv bv
bn = genred return bn return bn bn return
he = genred he he return he he return
...

Figure 3.2: Generic reducer in Haskell

Rule abs leaves to la reduction under lambda. Rule red relies on op1 to find the redex’s
abstraction, on ar1 to reduce the operand, and on su to reduce after substitution. Rule app
describes what to do when op1 delivers a variable or a non-op1 -reducible application. The
result is the application with subterms reduced by op2 and ar2 . The reason of the op1
and optwo parameters in rule Red is to capture the hybrid strategies in (Sestoft, 2002) in
a straightforward way. The parameter op2 reduces the M instead of the M ′ to preserve
orthogonality of the parameters (i.e., the result of op2 does not depend on op1). The shape
of terms M ′, N ′, E, etc, depends on what sort of normal form the parameter strategies
deliver (if they terminate). For example, nor is p with la, su, op2 = p, op1 = bn, and
ar1 , op2 = id, whereas bv is p with op1 , ar1 , su, op2 , ar2 = p and la = id.

If the left-hand-sides of conclusions are non-overlapping then the rules are determinis-
tic (Baader & Nipkow, 1998). This is the case after the computation of the leftmost premise
in the app and red rules. The template can therefore be interpreted as a syntax-directed
partial function in which a term matching the left-hand-side of the conclusion is recursively
reduced by strategies in the premises from left to right. Infinite derivation accounts for
non-termination. The code in Figure 3.2 implement this function in Haskell as a monadic
higher-order function shown in Figure 3.2 (colours explained in Section 3.3). The monad
constraint m must be instantiated to a monad that guarantees semantics preservation (e.g.,
CPS or strict monad). Specific reducers are fixed points of the function. In the monadic

37

3.3. The β-cube

bn

nbn

hbv

bv

he

nhe

hao

ao la non-weakness

ar1
strictness

ar2
non-headness

Figure 3.3: The β-cube

whnf

wnf

hnf

nf

Figure 3.4: Normal forms

code return corresponds to the identity strategy.

3.3 The β-cube

The generic reducer genred has six parameters. We decrease the number of parameters by
focusing on uniform strategies, which are those where op1, op2, and su are recursive calls.
So-called hybrid strategies rely on other strategies for op1. For example, nor and h rely
on bn, hn relies on he, and byValue and ha rely on bv (Sestoft, 2002). Uniform strategies
differ on whether la, ar1 and ar2 are either recursive calls or return. We can encode
this variability using the Cartesian product of three booleans. The obvious partial order
relation on them induces a lattice we call the β-cube (Figure 3.3). Function cube2red in
Figure 3.5 delivers a uniform reducer from a vertex in the cube. Some vertices correspond
to novel strategies we call head applicative order (hao), head call-by-value (hbv), non-head
spine (nhe) and non-head call-by-name (nbn). Indeed, the boolean parameters (la, ar1 and
ar2) respectively specify non-weakness (whether abstraction bodies are reduced), strictness
(whether arguments are reduced), and non-headness (whether operands with non-reducible
applications as operators are reduced). Unsurprisingly, the front and back faces of the cube
describe the informal inclusion relation between normal forms (‘less reducible form’) along
the non-headness and non-weakness axes.

38

Chapter 3. The Beta Cube

data BetaCube = BC Bool Bool Bool

sel :: Bool -> Red -> Red
sel b r = if b then r else return

cube2red :: BetaCube -> Red
cube2red (BC la ar1 ar2) =

let r = genred (sel la r) r (sel ar1 r) r r (sel ar2 r)
in r

bn = cube2red (BC False False False)
bv = cube2red (BC False True True)
...

Figure 3.5: Function cube2red

3.4 Hybridisation

Recall from Section 3.3 that hybrid strategies rely on a uniform strategy (let us call it
subsidiary) for the op1 argument (the op1 strategy in the template). Interestingly, hybrid
strategies can be obtained by composing their subsidiary with another uniform strategy
from the cube (let us call it base) that specifies the behaviour for la, ar1, and ar2. The
subsidiary is in general expected to perform less reduction than the base because the former
is only used to locate the redex. The following hybridisation function delivers a hybrid
strategy from a subsidiary and a base:

hybridise :: (BetaCube, BetaCube) -> Red
hybridise (sub, (BC lab ar1b ar2b)) =

let s = cube2red sub
h = genred (sel lab h) s (sel ar1b s) h (s >=> h) (sel ar2b h)

in h

Notice that the Kleisli composition s >=> h is the monadic implementation of the relational
composition ⇓h ◦ ⇓s and therefore op2 reduces at least as much as op1. For illustration, we
show nor as a fixed point of genred, using Kleisli composition for the op2 argument, and
as a hybrid of bn (subsidiary) and nhe (base):

no = genred no bn return no (bn >=> no) no
no = hybridise (BC False False False) (BC True False True)

The other cases are: head reduction (h) is a hybrid of bn and he, hybrid normal order (hn)
is a hybrid of he and nhe, and byValue in (Paulson, 1996, p.390) is a hybrid of bv and ao.
The strategy byValue differs from hybrid applicative order (ha) in (Sestoft, 2002) because
in the back face of the cube (strictness) the choice is between return or the subsidiary (not
the hybrid) for ar1. This has consequences for the absorption.

39

3.5. Absorption

3.5 Absorption

Proposition 3.5.1 (Absorption). Let s and b be respectively a subsidiary and a base
strategy that have the same ar1 parameter and that considered as points in the cube satisfy
s v b, i.e., the v is the obvious partial order induced by the Cartesian product of the boolean
parameters (see Section 3.3). Let h be the hybrid strategy obtained from them. Then s is
a right identity of h, that is, ⇓h ◦ ⇓s=⇓h .

Absorption is important because it manifests that the subsidiary is a subrelation of the
hybrid, and this is the key to connect hybrid strategies with the eval/readback approach
(i.e., the subsidiary could be split off as a separate eval stage).

3.6 Conclusions and future work

The β-cube captures neatly and systematically the foremost reduction strategies of the
pure lambda calculus by means of its uniform strategies and of a hybridisation function
that completes the space. The cube helps uncover properties of strategies. Absorption is
one example, but more remain to be explored. The reduction-strategy template suggests
itself naturally as a generalisation of the rules of all the well- and less-well-known strategies
collected by (Sestoft, 2002). The need for op1 and op2 in rule app to accommodate hybrids
is perhaps the only subtlety. We are surprised that generic reduction for the pure lambda
calculus has, to our knowledge, not been considered before nor its consequences been
investigated (e.g., hybrid strategies can be defined in terms of two uniform strategies).
The Haskell implementation is deceivingly straightforward. It requires careful attention to
semantics preservation and deployment of some advanced Haskell programming. The beta
cube is one way of focusing on a subspace of the generic reducer, that of uniform strategies,
from which we can obtain more (even new) strategies and state properties.

It is possible to construct versions of our generic reducer for other calculi (simply
typed, System F, etc.) and for other representations (de Bruijn indices, nominal terms,
explicit substitutions, etc). It is also possible to carry the idea to compositional evaluators
(interpreters as in (Reynolds, 1998; Danvy, 2008a) or normalisation by evaluation (Danvy,
1996; Filinski & Rohde, 2004)). We also wish to formalise the cube and prove properties like
absorption in terms of reduction strategies as mathematical functions on the set of lambda
terms. A first-order inductive representation (which alleviates the pain of α-equivalence)
will surely help simplify the number of lemmas and proofs.

40

Addendum

3.7 Monadic style and semantics preservation

Section 3.1 commented on the semantics preservation issue noted by (Reynolds, 1998)
in the context of interpretation. CPS is enough to enforce semantics preservation but,
as advocated through the chapter, a monadic style is also suitable for this purpose and
improves code readability. The choice of monad is important, only a monad which entails
a strict bind operator (>>=) will preserve semantics of the target language. Let us show
this fact with an example. Consider the following monadic call-by-value evaluator, where
the m could be instantiated with any monad:

cbv :: Monad m => Term -> m Term
cbv v@(Var _) = return v
cbv l@(Lam _ _) = return l
cbv (App m n) = do m’ <- cbv m

n’ <- cbv n
case m’

of (Lam v b) -> do s <- return $ subst b n’ v
cbv s

_ -> return $ App m’ n’

We assume that Term is an instance of Show (the show function is the pretty-printing loop
that pulls evaluation in lazy Haskell) and we assume a substitution function subst that is
non-strict in its argument n’. (A direct implementation of freshness for variables would
force evaluation of n’, but here we allow an implementation which delays this evaluation,
which is also possible.) We test the functional semantics of cbv by applying the evaluator
to term K I Ω, which is encoded as the Term

constIdentOmega = App (App const ident) omega
where const = Lam "x" $ Lam "y" $ Var "x"

ident = Lam "x" $ Var "x"
omega = App twice1 twice2
twice1 = Lam "x" $ App (Var "x") $ Var "x"
twice2 = Lam "x" $ App (Var "x") $ Var "x" -- To avoid sharing

We load the evaluator on GHCi and run:

*Main> cbv constIdentOmega

41

3.7. Monadic style and semantics preservation

The evaluator diverges (i.e., returns undefined) which corresponds to the expected be-
haviour K I Ω ⇑bv . By default, GHCi instantiates m with the IO monad, which is strict.
However, we can force a failure of the intended functional semantics by instantiating m
with the Identity monad.

*Main> import Control.Monad.Identity
*Main Control.Monad.Identity> runIdentity $ cbv constIdentOmega
\x.x

Now GHCi returns ident (pretty-printed as \x.x) which corresponds to K I Ω ⇓bv I. This
violates the intended strict-functional semantics, call-by-value should have reduced operand
Ω forever.

Let us look at the implementation of Identity in module Control.Monad.Identity:

newtype Identity a = Identity { runIdentity :: a }

instance Functor Identity where
fmap f m = Identity (f (runIdentity m))

instance Monad Identity where
return a = Identity a
m >>= k = k (runIdentity m)

By code expansion we have

return undefined >>= (\x -> return $ const () x)
=

Identity undefined >>= (\x -> return $ const () x)
=

(\x -> return $ const () x) (runIdentity (Identity undefined))
=

(\x -> return $ const () x) undefined
=

return $ const () undefined
=

return ()
=

Identity ()

which shows that the monadic bind operator >>= is here non-strict in its left operand
(in the monadic sense). If we consider the Kleisli category (Mac Lane, 1971) and Kleisli
composition >=>, then the composition of a strict function (which may return undefined)
with a non-strict function (like the const () above) will not be a strict function, and this
breaks the intended strict functional semantics.

However, most of Haskell monads are strict. In particular the Cont monad, which im-
plements CPS and adheres to the original solution for semantics preservation in (Reynolds,
1998).

42

Chapter 3. The Beta Cube

3.8 Absorption and normalisation by evaluation

In this section we prove Absorption (Proposition 3.5.1), which states that a subsidiary is
a right identity of the hybrid produced after it by the hybridise combinator. To this aim,
we consider the normalisation by evaluation (NBE) approach (Berger & Schwichtenberg,
1991; Danvy, 1998; Filinski & Rohde, 2004; Aehlig & Joachimski, 2004; Filinski & Rohde,
2005), where normalisation (i.e., reduction) consists of the composition of an eval stage
that delivers terms in some intermediate irreducible form, with a readback stage that
distributes reduction over the subterms of the intermediate forms.

We implement the hybrid strategies using a NBE approach. The implementation con-
sists of parametric sub and reb which stand for the subsidiary (the eval stage in NBE) and
for the readback loop respectively. The parameters specify the three β-cube coordinates
for the subsidiary (las, ar1, and ar2s) and the two remaining coordinates for the base (lab
and ar2b). (Recall from Section 3.4 that when producing hybrids, the ar1 parameter is
fixed in both subsidiary and base.)
sub :: Bool -> Bool -> Bool -> Red
sub las ar1 ar2s v@(Var _) = return v
sub las ar1 ar2s (Lam v b) =

do b’ <- (sel las (sub las ar1 ar2s)) b
return (Lam v b’)

sub las ar1 ar2s (App m n) =
do m’ <- (sub las ar1 ar2s) m

case m’
of (Lam v b) ->

do n’ <- (sel ar1 (sub las ar1 ar2s)) n
(sub las ar1 ar2s) (subst b n’ v)

_ ->
do n’ <- (sel ar2s (sub las ar1 ar2s)) n

return (App m’ n’)

reb :: Bool -> Bool -> Bool -> Bool -> Bool -> Red
reb las ar1 ar2s lab ar2b v@(Var _) = return v
reb las ar1 ar2s lab ar2b (Lam v b) =

do b’ <- ((sel (xor las lab) (sub las ar1 ar2s))
>=> (sel lab (reb las ar1 ar2s lab ar2b))) b

return (Lam v b’)
reb las ar1 ar2s lab ar2b (App m n) =

do m’ <- (reb las ar1 ar2s lab ar2b) m
n’ <- ((sel (xor ar2s ar2b) (sub las ar1 ar2s))

>=> (sel ar2b (reb las ar1 ar2s lab ar2b))) n
return (App m’ n’)

Function sub delivers a strategy equivalent to that implemented by combinator cube2red
and function genred together. Notice the use of the selection function sel and the re-
cursive invocations (sub las ar1 ar2s). Function reb implements a readback loop which
distributes the strategy over the subterms of the intermediate result. Readback intertwines

43

3.8. Absorption and normalisation by evaluation

nested evaluation stages according to the parameters of the base strategy. For the la and
ar2 parameters, if they are recursive calls already in the subsidiary, readback omits the
evaluation stage and only distribute itself. The ‘exclusive or’ operator xor in the selection
clauses (sel (xor) ...) takes care of this. The normal order strategy, which is
the hybrid with subsidiary bn (BC False False False) and base nhe (BC True False True)
can be defined as

no :: Red
no = (sub False False False) >=> (reb False False False True True)

A hybrid strategy is equivalent to the composition of its subsidiary and its corresponding
readback stage, i.e., ⇓h=⇓rb ◦ ⇓s . In what follows, we prove this correspondence formally
by fusing the reb and sub above by lightweight fusion by fixed-point promotion (Ohori &
Sasano, 2007). We will arrive at an implementation consisting of two mutually recursive
functions which coincide with the hybrid and subsidiary strategies entailed by combinators
hybridise and cube2red, and by the generic reducer genred.

We follow the transformation steps in (Ohori & Sasano, 2007) and adopt their terminol-
ogy. Let us write fix s.λx.Es and fix rb.λx.Erb for the recursive definitions of ⇓s and ⇓rb
respectively. In the code, the name definitions and the parameters sub las ar1 ar2s and
reb las ar1 ar2s lab ar2b stand for the fix s. and fix rb. respectively. The term argu-
ment that comes next corresponds to the λx. part. We obtain the composition ⇓rb ◦λx.Es ,
which beta reduces to λx. ⇓rb Es , and name it reb1.

reb1 :: Bool -> Bool -> Bool -> Bool -> Bool -> Red
reb1 las ar1 ar2s lab ar2b v@(Var _) =

do v’ <- return v
(reb las ar1 ar2s lab ar2b) v’

reb1 las ar1 ar2s lab ar2b (Lam v b) =
do b’ <- (sel las (sub las ar1 ar2s)) b

l’ <- return (Lam v b’)
(reb las ar1 ar2s lab ar2b) l’

reb1 las ar1 ar2s lab ar2b (App m n) =
do m’ <- (sub las ar1 ar2s) m

case m’
of (Lam v b) ->

do n’ <- (sel ar1 (sub las ar1 ar2s)) n
s’ <- (sub las ar1 ar2s) (subst b n’ v)
(reb las ar1 ar2s lab ar2b) s’

_ ->
do n’ <- (sel ar2s (sub las ar1 ar2s)) n

a’ <- return (App m’ n’)
(reb las ar1 ar2s lab ar2b) a’

The do notation forces the invocations of ⇓rb (i.e., the (reb ...)) to be already in tail
position. Now we simplify the do notation by applying right identity of monadic bind and
by using the Kleisli composition >=>.

44

Chapter 3. The Beta Cube

reb2 :: Bool -> Bool -> Bool -> Bool -> Bool -> Red
reb2 las ar1 ar2s lab ar2b v@(Var _) =

(reb las ar1 ar2s lab ar2b) v
reb2 las ar1 ar2s lab ar2b (Lam v b) =

do b’ <- (sel las (sub las ar1 ar2s)) b
(reb las ar1 ar2s lab ar2b) (Lam v b’)

reb2 las ar1 ar2s lab ar2b (App m n) =
do m’ <- (sub las ar1 ar2s) m

case m’
of (Lam v b) ->

do n’ <- (sel ar1 (sub las ar1 ar2s)) n
((sub las ar1 ar2s)
>=> (reb las ar1 ar2s lab ar2b)) (subst b n’ v)

_ ->
do n’ <- (sel ar2s (sub las ar1 ar2s)) n

(reb las ar1 ar2s lab ar2b) (App m’ n’)

Next we inline ⇓rb in Es (i.e., inline reb in reb2, obtaining reb3).

reb3 :: Bool -> Bool -> Bool -> Bool -> Bool -> Red
reb3 las ar1 ar2s lab ar2b v@(Var _) = return v
reb3 las ar1 ar2s lab ar2b (Lam v b) =

do b’ <- (sel las (sub las ar1 ar2s)) b
b’’ <- ((sel (xor las lab) (sub las ar1 ar2s))

>=> (sel lab (reb las ar1 ar2s lab ar2b))) b’
return (Lam v b’’)

reb3 las ar1 ar2s lab ar2b (App m n) =
do m’ <- (sub las ar1 ar2s) m

case m’
of (Lam v b) ->

do n’ <- (sel ar1 (sub las ar1 ar2s)) n
((sub las ar1 ar2s)
>=> (reb las ar1 ar2s lab ar2b)) (subst b n’ v)

_ ->
do n’ <- (sel ar2s (sub las ar1 ar2s)) n

m’’ <- (reb las ar1 ar2s lab ar2b) m’
n’’ <- ((sel (xor ar2s ar2b) (sub las ar1 ar2s))

>=> (sel ar2b (reb las ar1 ar2s lab ar2b))) n
return (App m’’ n’’)

We simplify again and apply associativity of monadic bind to sequence together the com-
putations that run over the same intermediate results.

45

3.8. Absorption and normalisation by evaluation

reb4 :: Bool -> Bool -> Bool -> Bool -> Bool -> Red
reb4 las ar1 ar2s lab ar2b v@(Var _) = return v
reb4 las ar1 ar2s lab ar2b (Lam v b) =

do b’ <- ((sel las (sub las ar1 ar2s))
>=> ((sel (xor las lab) (sub las ar1 ar2s))

>=> (sel lab (reb las ar1 ar2s lab ar2b)))) b
return (Lam v b’)

reb4 las ar1 ar2s lab ar2b (App m n) =
do m’ <- (sub las ar1 ar2s) m

case m’
of (Lam v b) ->

do n’ <- (sel ar1 (sub las ar1 ar2s)) n
((sub las ar1 ar2s)
>=> (reb las ar1 ar2s lab ar2b)) (subst b n’ v)

_ ->
do m’’ <- (reb las ar1 ar2s lab ar2b) m’

n’ <- ((sel ar2s (sub las ar1 ar2s))
>=> ((sel (xor ar2s ar2b) (sub las ar1 ar2s))

>=> (sel ar2b (reb las ar1 ar2s lab ar2b)))) n
return (App m’’ n’)

Now we rename the fragments

((sel p (sub ...))
>=> ((sel (xor p p’) (sub ...))

>=> (sel p’ (reb ...))))

into (sel p’ ((sub ...) >=> (reb ...))). This transformation holds because of condi-
tion p v p’ among the coordinates of subsidiary and base in Proposition 3.5.1 (i.e., the
subsidiary has to be less or equal than the base in the β-cube lattice).

reb5 :: Bool -> Bool -> Bool -> Bool -> Bool -> Red
reb5 las ar1 ar2s lab ar2b v@(Var _) = return v
reb5 las ar1 ar2s lab ar2b (Lam v b) =

do b’ <- (sel lab ((sub las ar1 ar2s)
>=> (reb las ar1 ar2s lab ar2b))) b

return (Lam v b’)
reb5 las ar1 ar2s lab ar2b (App m n) =

do m’ <- (sub las ar1 ar2s) m
case m’

of (Lam v b) ->
do n’ <- (sel ar1 (sub las ar1 ar2s)) n

((sub las ar1 ar2s)
>=> (reb las ar1 ar2s lab ar2b)) (subst b n’ v)

_ ->
do m’’ <- (reb las ar1 ar2s lab ar2b) m’

n’ <- (sel ar2b ((sub las ar1 ar2s)
>=> (reb las ar1 ar2s lab ar2b))) n

return (App m’’ n’)

46

Chapter 3. The Beta Cube

We prepone an invocation of the subsidiary (sub las ar1 ar2s) before the readback
(reb las ar1 ar2s lab ar2b) that reduces the operator m in applications.

reb6 :: Bool -> Bool -> Bool -> Bool -> Bool -> Red
reb6 las ar1 ar2s lab ar2b v@(Var _) = return v
reb6 las ar1 ar2s lab ar2b (Lam v b) =

do b’ <- (sel lab ((sub las ar1 ar2s)
>=> (reb las ar1 ar2s lab ar2b))) b

return (Lam v b’)
reb6 las ar1 ar2s lab ar2b (App m n) =

do m’ <- (sub las ar1 ar2s) m
case m’

of (Lam v b) ->
do n’ <- (sel ar1 (sub las ar1 ar2s)) n

((sub las ar1 ar2s)
>=> (reb las ar1 ar2s lab ar2b)) (subst b n’ v)

_ ->
do m’’ <- ((sub las ar1 ar2s)

>=> (reb las ar1 ar2s lab ar2b)) m’
n’ <- (sel ar2b ((sub las ar1 ar2s)

>=> (reb las ar1 ar2s lab ar2b))) n
return (App m’’ n’)

This additional reduction, whose aim is to match the behaviour of op1 and op2 in the
generic reducer genred of Figure 3.2, does not alter the strategy because of idempotency
of strategies. (Recall that genred invokes op2 over the unreduced operator m to enforce
independence between op1 and op2 parameters. Here, these two parameters are no longer
independent because of the staged character of NBE.) Now to the last step. Let Erb_s be
the body of the simplified (reb6 ...). We replace the occurrences of ⇓rb ◦ ⇓s in Erb_s by
a new function name ⇓rb_s , and we generate a new binding ⇓rb_s= fix rb_s.λx.Erb_s . This
is, we rename (sub ...) >=> (reb ...) into (reb7 ...) in the definition of new reb7.

reb7 :: Bool -> Bool -> Bool -> Bool -> Bool -> Red
reb7 las ar1 ar2s lab ar2b v@(Var _) = return v
reb7 las ar1 ar2s lab ar2b (Lam v b) =

do b’ <- (sel lab (reb7 las ar1 ar2s lab ar2b)) b
return (Lam v b’)

reb7 las ar1 ar2s lab ar2b (App m n) =
do m’ <- (sub las ar1 ar2s) m

case m’
of (Lam v b) ->

do n’ <- (sel ar1 (sub las ar1 ar2s)) n
(reb7 las ar1 ar2s lab ar2b) (subst b n’ v)

_ ->
do m’’ <- ((sub las ar1 ar2s)

>=> (reb7 las ar1 ar2s lab ar2b)) m’
n’ <- (sel ar2b (reb7 las ar1 ar2s lab ar2b)) n
return (App m’’ n’)

47

3.9. Balanced generic template

Functions sub and reb7 match the implementation of the subsidiary and hybrid strategies
entailed by combinators hybridise, cube2red, and genred as follows.2 The sub las ar1 ar2s
coincides with cube2red (BC las ar1 ar2s) and

(sub las ar1 ar2s) >=> (reb las ar1 ar2s lab ar2b)

coincides with

hybridise (cube2red (BC las ar1 ar2s)) (BC lab ar1 ar2b)

Lemma 3.8.1 (Correspondence to NBE). For every hybrid strategy h obtained from sub-
sidiary s and base b from the cube where s v b and where both s and b have the same ar1
parameter, there exists a readback loop rb such that ⇓h=⇓rb ◦ ⇓s .

Proof. By the program derivation presented in this section, taking functions sub and reb
as the eval and readback stages respectively.

Absorption is now proven easily by resorting to the NBE approach.

Proof of Proposition 3.5.1 (Absorption). By Lemma 3.8.1 any hybrid strategy is decom-
posed into eval and readback stages ⇓h=⇓rb ◦ ⇓s . We need (⇓rb ◦ ⇓s)◦ ⇓s=⇓rb ◦ ⇓s ,
which holds by idempotency of ⇓s .

As a consequence of Absorption, the hybridise function in Section 3.4 can be optimised
by replacing the composition of subsidiary and hybrid (i.e., s >=> h) with only the hybrid
(i.e., h). Similarly, when defining hybrid strategies by instantiating the generic reducer
genred of Section 3.2, it is enough to pass the hybrid for the op2 parameter. The following
definition,

no = genred no bn id no no no

is equivalent to the definition in Section 3.4.

3.9 Balanced generic template

The generic template and reducer in Section 3.2 have been designed with the aim of making
the parameters in the template orthogonal to each other. This explains why, in Figure 3.1,
the M ′ obtained after the premiss M ⇓op1 M ′ in rule App is not piped to the premiss
M ⇓op2 M ′′ in the same rule. If it was, parameters op1 and op2 would no longer be
independent. This is a source for inefficiency of the generic reducer in Figure 3.2, which
manifests in the fact that the op2 parameter may repeat some work that was already done
by the op1 parameter.

The hybridisation function in Section 3.4 has been designed to uphold Absorption (see
Section 3.5). In order to achieve absorption, the ar1 parameter in both the hybrid and

2The versed reader may notice that in the generic reducer the m’’ is produced after the m, instead of
after the m’ in the code avobe. Again, the equivalence trivially holds by idempotency of (sub ...).

48

Chapter 3. The Beta Cube

x ⇓p x
(Var)

B ⇓la B′

λx.B ⇓p λx.B′
(Abs)

M ⇓op1 M ′ N ⇓ar1 N ′ M ′ ≡ λx.B [N ′/x]B ⇓su E
M N ⇓p E

(Red)

M ⇓op1 M ′ N ⇓ar1 N ′ M ′ 6≡ λx.B M ′ ⇓op2 M ′′ N ′ ⇓ar2 N ′′

M N ⇓p M ′′N ′′
(App)

Figure 3.6: Balanced template for reduction strategies

the subsidiary has to be the same, i.e., the strategies have to be hybridised in each face of
the β-cube separately. Besides, in the case of the strict semantics, the operands in redices
have to be reduced by the subsidiary. As a consequence, the choice of which strategy for
ar1 in the hybridisation function is not between return or the hybrid, but between return
or the subsidiary. This is the reason why the byValue of (Paulson, 1996) is obtained when
hybridising bv with ao, instead of the hybrid applicative order of (Sestoft, 2002). (Hybrid
applicative order reduces operands in some redices fully, and thus the calling policy that
it implements is neither the by-wnf nor the by-value. We refer to this calling policy as
by-normal-form (or just by-nf), although not all the operands are reduced to normal form.
The strategy can be defined by instantiating the generic reducer directly:

ha = genred ha bv ha bv ha ha

Orthogonality and absorption suggest a refined version of template and reducer which
we depict in Figures 3.6 and 3.7. We refer to these as balanced (i.e., balanced template,
balanced reducer) because the subsidiary and hybrid stages are split, respectively, into the
moments before and after contraction of the outermost redex by the external substitution
function [N/x]B. In rule Red, the premisses reducing both operator M and operand N
occur before the side condition M ′ ≡ λx.B. In rule App, the same pattern is followed for
the template to be syntax-directed, i.e., rules Red and App share the two first premisses,
after which the condition is checked. The balanced template and reducer are optimised in
that the intermediate M ′ and N ′ obtained in rule App are respectively piped as inputs to
the fourth and fifth premisses in the same rule.

The careful reader may notice that with this balanced version, the four strategies in
the strict face (the back face) of the β-cube collapse into a pair of strategies, since the ar1
and ar2 parameters are no longer independent. This is akin to the observation that it does
not matter anymore which ar2 (return or the hybrid) is passed in the definition of bv and
ao in Figure 3.7. The β-cube turns into the triangular β-prism of Figure 3.8.

49

3.9. Balanced generic template

bal_genred :: Red -> Red -> Red -> Red -> Red -> Red -> Red
bal_genred la op1 ar1 su op2 ar2 t =

case t
of v@(Var _) -> return v

(Lam v b) -> do b’ <- la b
return (Lam v b’)

(App m n) -> do m’ <- op1 m
n’ <- ar1 n
case m’

of (Lam v b) -> su (subst b n’ v)
_ -> do m’’ <- op2 m’

n’’ <- ar2 n’
return (App m’’ n’’)

ao = bal_genred ao ao ao ao return return
bv = bal_genred return bv bv bv return return
bn = bal_genred return bn return bn return return
he = bal_genred he he return he return return
...

Figure 3.7: Balanced generic reducer

bn

nbn

bv

he

nhe

ao

Figure 3.8: The collapsed β-prism

However, the ar2 parameter still has a role in the definition of hybrid strategies. Con-
sider the balanced functions for defining uniform and hybrid strategies in Figure 3.9.
Although the strict segment of the β-prism only contains two uniform strategies (i.e.,
bv and ao) these can be hybridised in various ways, attending to whether the subsidiary
and the base have the same ar2 parameter. Paulson’s byValue and Paolini’s ahead machine
⇓0
a can be defined as follows:

byValue = bal_hybridise (BC False True False, BC True True True)
a0 = bal_hybridise (BC False True False, BC True True False)

The subsidiary is bv in both cases, and the base strategies differ only in the ar2. In the
uniform strategies, the differences in the ar2 are shadowed. In the base strategies, these
differences stand out when defining hybrids.

50

Chapter 3. The Beta Cube

bal_cube2red :: BetaCube -> Red
bal_cube2red (BC la ar1 ar2) =

let r = bal_genred (sel la r) r (sel ar1 r) r r (sel ar2 r)
in r

bal_hybridise :: (BetaCube, BetaCube) -> Red
bal_hybridise (sub, (BC lab ar1b ar2b)) =

let s = bal_cube2red sub
h = bal_genred (sel lab h) s (sel ar1b s) h h (sel ar2b h)

in h

Figure 3.9: Balanced functions for uniform and hybrid strategies

3.10 Spine strategies

The strategy head spine order (he) (Sestoft, 2002) is founded on the notion of head spine
reduction in (Barendregt et al., 1987), where the ‘spine’ terminology is introduced. The
terminology comes from taking the anatomical metaphor of ‘head reduction’ and ‘head
normal forms’ further, which considers the abstract syntax tree of a term as a skeleton,
with the head on the top and the spine on the leftmost front of the tree (i.e., the leftmost
edges starting in the head). Head spine order is the deterministic strategy that contract
the innermost head spine redex. The well-known head reduction (h) (Barendregt, 1984) is
the standard strategy that contracts the outermost head spine redex (i.e., it reduces the
leftmost-outermost redex up to head normal form). Both head spine order and head reduc-
tion are complete with respect to head normal form. The latter keeps out of abstractions
as long as possible, and the former enters abstractions as eagerly as possible, but never
reduces at the right of a variable, thus traversing the spine of the term. Both strategies
deliver the same result, but they entail different reduction sequences. Head spine order is
a uniform strategy,

he = cube2red (BC True False False)

and head reduction is the hybrid of subsidiary call-by-name and base head spine order:

h = hybridise bn (BC True False False)

Broadly, we use ‘spine’ to refer to the strategies that enter abstractions but that reduce
their bodies only enough as to uphold some property, usually completeness with respect
to some notion of irreducible form. Hybrid normal order (hn) (Sestoft, 2002) is the spine
strategy that delivers the same result than normal order (Barendregt, 1984) does. The
former is the hybrid of subsidiary head spine and base nhe, and the latter is the hybrid
of subsidiary call-by-name and base nhe. Both are complete with respect to normal form.
Hybrid normal order is a spine strategy, normal order is a standard (i.e., outermost)
strategy.

51

3.10. Spine strategies

x ⇓hao x
(Hao-Var)

B ⇓hao B′

λx.B ⇓hao λx.B′
(Hao-Abs)

M ⇓hao M ′ M ′ ≡ λx.B N ⇓hao N ′ [N ′/x]B ⇓hao E
M N ⇓hao E

(Hao-Red)

M ⇓hao M ′ M ′ 6≡ λx.B
M N ⇓hao M ′N

(Hao-App)

x ⇓sa x
(Sa-Var)

B ⇓sa B′

λx.B ⇓sa λx.B′
(Sa-Abs)

M ⇓hao M ′ M ′ ≡ λx.B N ⇓sa N ′ [N ′/x]B ⇓sa E
M N ⇓sa E

(Sa-Red)

M ⇓hao M ′ M ′ 6≡ λx.B M ′ ⇓sa M ′′ N ⇓sa N ′

M N ⇓sa M ′′N ′
(Sa-App)

Figure 3.10: Natural semantics of spine applicative order

3.10.1 Spine applicative order

Figure 3.10 introduces spine applicative order (sa), which is the strict-functional-semantics
counterpart of hybrid normal order. Spine applicative order is the hybrid strategy obtained
from subsidiary head applicative order (hao) (see Section 3.3) and from base applicative
order (ao) but such that, similar to hybrid applicative order (see Section 3.9), the hybrid
is used to reduce operands in redices, thus implementing the by-nf calling policy. Spine ap-
plicative order is defined below by instantiating the (non-balanced) generic reducer genred
directly:

hao = genred hao hao hao hao hao id
sa = genred sa hao sa sa sa sa

Spine applicative order optimises reduction by fully reducing operands and by reducing
operators (eagerly) to head normal form. Spine applicative order is the most eager strategy
that, differently from applicative order, allows to implement some thunking mechanism
(Danvy & Hatcliff, 1992; Hatcliff & Danvy, 1997). A thunking mechanism is needed when
implementing recursive functions by means of a fixed-point combinator: the recursive call,
which is a divergent term, is placed inside a thunk that forbids to reduce the divergent term
fully. The thunking mechanism that we have in mind consists of a variation of the call-

52

Chapter 3. The Beta Cube

by-value CPS translation (Plotkin, 1975) where the continuations are delimited, i.e., the
intermediate results are thrown prematurely into the current continuation. For illustration,
we present below the encoding of the factorial function using such a thunking mechanism:3

FACT ≡ λf.λn.λk.IFTE (ISZERO n)
(kONE)
(k(f(PRED n)(MULT n)))

The term Y FACT N I computes the factorial of n, where Y ≡ λf.(λx.f(xx))(λx.f(xx))
is Curry’s fixed-point combinator, N is the Church encoding of numeral n and the iden-
tity I is the initial continuation. The factorial is implemented by passing MULT n as a
continuation to the recursive call f(PRED n). The essence of this thunking mechanism
could be summarised as ‘protecting by a variable’, i.e., the divergent subterm occurs al-
ways at the right of the continuation variable k. Although spine applicative order entails
strict functional semantics, there is no need to use the call-by-value fixed-point combinator
Z ≡ λf.(λx.f(λt.x x t))(λx.f(λt.x x t)). Both Z and Y keep the divergent subterms at the
right of the continuation variable k, and they could both be used with spine applicative
order. However, the Y is enough here. The additional ‘protecting by a lambda’ thunking
mechanism that Z introduces is of no use, since spine applicative order reduces the bodies
of such thunks.

Different from Paulson’s byValue—or from any other strategy which relies on the ‘pro-
tecting by a lambda’ thunking mechanism—spine applicative order optimises the operands
of the f in each recursive invocation to normal form, and reduces the diverging Y FACT to
head normal form. This enables a significant speed-up when codifying the general recursive
functions by means of fixed-point combinators (Hindley & Seldin, 2008, §4C).

3.11 Generic template and the λV -calculus

So far, none of the the strict strategies that have been considered implement the by-value
calling policy proper (recall Section 1.2), which restricts operands in redices to values, i.e.,
non-applications. The balanced generic template and reducer can be adapted to implement
λV -calculus strategies by forbidding contraction of redices when the operand is not a value.
The λV generic template and reducer are depicted in Figures 3.11 and 3.12.

The uniform pure call-by-value ⇓pv , and the hybrids value normal order ⇓vn , value
head reduction ⇓vh , and value spine order ⇓vs (see Section 4.9) can be defined as fixed
points of val_genred in Figure 3.12. Pure call-by-value is a generalisation of evalV in
(Plotkin, 1975) to pure λV . Value normal order is the standard full-reducing strategy in
λV , which only differs from evaluation relation G of (Ronchi Della Rocca & Paolini, 2004)

3We assume that ONE stands for the Church encoding of natural 1, and that IFTE , ISZERO , MULT ,
and PRED encode respectively the logical if-then-else operator, natural comparison with 0, multiplication,
and predecessor functions.

53

3.11. Generic template and the λV -calculus

x ⇓p x
(Var)

B ⇓la B′

λx.B ⇓p λx.B′
(Abs)

M ⇓op1 M ′ N ⇓ar1 N ′ (M ′ ≡ λx.B) ∧ (N ′ ∈ Val) [N ′/x]B ⇓su E
M N ⇓p E

(Red)

M ⇓op1 M ′ N ⇓ar1 N ′ (M ′ 6≡ λx.B) ∨ (N ′ 6∈ Val) M ′ ⇓op2 M ′′ N ′ ⇓ar2 N ′′

M N ⇓p M ′′N ′′
(App)

Figure 3.11: Template for λV -reduction strategies

val_genred :: Red -> Red -> Red -> Red -> Red -> Red -> Red
val_genred la op1 ar1 su op2 ar2 t =

case t
of v@(Var _) -> return v

(Lam v b) -> do b’ <- la b
return (Lam v b’)

(App m n) -> do m’ <- op1 m
n’ <- ar1 n
case (m’, n’)

of (Lam v b, Var _) -> su (subst b n’ v)
(Lam v b, Lam _ _) -> su (subst b n’ v)
_ -> do m’’ <- op2 m’

n’’ <- ar2 n’
return (App m’’ n’’)

pv = val_genred return pv pv pv return return
vn = val_genred vn pv pv vn vn vn
vh = val_genred vh pv pv vh return return
vs = val_genred vs vh pv vs vs vs

Figure 3.12: Generic reducer for λV

in that the latter reduces operands fully before reducing the bodies of blocks, i.e., stuck
redices. Value head reduction and value spine order are novel strategies that we introduce
in Section 4.9. Value head reduction is the λV analogous of the ahead machine (Paolini &
Ronchi Della Rocca, 1999), and value spine order is a complete full-reducing λV -strategy
that traverses the spine of the terms (see Section 3.10). Figure 3.12 defines these strategies
as a direct instantiation of the by-value generic template. Functions generating uniform
and hybrid strategies from points in the cube (analogous to cube2red and hybridise) are
straightforward and omitted.

54

Chapter 3. The Beta Cube

Table 3.1: All the relevant strategies at a glance

Full Head Weakoutermost spine outermost spine

bal_genred
by-name no hn h he bn
by-wnf byValue ∗∗ ⇓0

a ∗∗ bv

genred by-nf ha sa — — —
val_genred by-value vn vs vh ∗∗ pv

3.12 Relevant strategies

The most relevant strategies are depicted in Table 3.1. The strategies in boldface (together
with Paulson’s byValue and Paolini’s ahead machine ⇓0

a) are hybrid, and the rest are
uniform. The top of the table indicates which kind of reduction is performed (full, head,
weak) and whether reduction is outermost or spine, and the left of the table indicates which
generic reducer is used to instantiate the strategy (bal_genred, genred, val_genred) and
which calling policy is implemented (by-name, by-wnf, by-nf, by-value). Notice that the
spine applicative order (sa), the value normal order (vn),4 the value spine reduction (vs),
and the value head reduction (vh) are novel strategies introduced in this thesis. Applicative
order does not appear in Table 3.1. The table only contains strategies that allow some
thunking mechanism, which are suitable for the encodings of general recursive functions
that use fixed-point combinators. All the strategies in the table are complete for some of
such encodings, with respect to the corresponding notion of irreducible terms.

The strategies marked as ‘∗∗’ in Table 3.1 can be defined by instantiating the generic
reducers, or by the bal_sube2red and bal_hybridise functions, but we restrain from con-
triving new names for them. The strategies marked as ‘—’ in Table 3.1 do not rather
make sense, since the by-nf policy (recall form Section 3.9 that the by-nf policy reduces
some operands fully) already requires full-reduction. There are other novel strategies that
can be produced by the generic reducers and by the functions for generating uniform and
hybrid strategies. Table 3.1 only collects the most relevant ones.

4Recall from Section 3.11 that value normal order only differs from evaluation relation G of (Ronchi
Della Rocca & Paolini, 2004) in that the latter reduces operands fully before reducing the bodies of blocks,
i.e., stuck redices.

55

4
Towards a Standard Theory for the

Lambda-Value Calculus

Small-soulded men, no matter how agile their fingers, should not attempt it.

(Preface to Chopin’s Etude Op. 25, No. 11, James Huneker)

The classical lambda calculus has a well-established ‘standard theory’ in which the
notion of solvability characterises the operational relevance of terms. Solvable terms, de-
fined as solutions to a beta-equation, have a ‘syntactic’ characterisation as terms with head
normal form. Unsolvable terms are irrelevant and can be beta-equated without affecting
consistency. The derived notions of sensibility and Böhm trees connect the consistent
theory with models and with a representation of approximate normal forms.

The lambda-value calculus is the calculus that corresponds to a strict functional pro-
gramming language whose operational semantics is defined by the SECD machine. The
beta-equational definition of solvability has been duly adapted to the pure lambda-value
calculus, but the syntactic characterisation (value head normal forms and the ahead ma-
chine) involves beta reduction and not beta-value reduction. The v-unsolvable terms cannot
be equated without affecting consistency, and some v-normal forms are v-unsolvable and
have to be considered irrelevant. This has been ignored in the context of weak reduction
(not going under lambda, an ingredient of call-by-value reduction as specified by the SECD
machine) because of the existence of initial models in this scenario. However, that does
not answer in full the question of v-solvability nor provides a consistent ‘standard theory’
for pure lambda-value. The problem lies in the emphasis on operational equivalence of
closed terms according to SECD. When considering open terms, different v-normal forms
with stuck subterms which are operationally equivalent may differ on the scope at which a
stuck term pops up. A notion of solvability should take into account this distinction which
reflects ‘preserving confluence by preserving potential divergence’ intrinsic in the by-value
mechanism.

57

4.1. Introduction

We introduce the syntactic notion of quasi-v-solvability, which shows that beta-value
reduction is appropriate for solvability and restores the validity of v-normal forms and
full reduction. Quasi-v-solvability suffices to prove the pure lambda-value versions of the
Genericity Lemma and the ‘preservation of unsolvables by application and composition’.
All the quasi-v-unsolvables of equal v-order can be consistently equated. This makes
possible the definitions of Böhm trees for lambda-value. We also characterise complete
full-reducing strategies in lambda-value, broadening Plotkin’s standardisation theorem (for
there are complete strategies that are not v-standard) by stating and proving the analogous
in lambda-value of the Quasi-Leftmost Reduction Theorem.

4.1 Introduction

The classical lambda calculus, λK, has a well-established ‘standard theory’ consisting of
equality (conversion) and reduction theories which enjoy confluence and substitutivity.
There are standard and complete reduction strategies, and well-known models. The oper-
ational relevance of terms is established by the notion of solvability. An unsolvable subterm
cannot be effectively used inside a term that delivers a definite result. A term is ‘effec-
tively used’ if it cannot be replaced by any other term without affecting the result. In
λK, the notion of effective use is captured by head contexts (this is referred to as λK’s
applicative behaviour in the folklore) and definite results are normal forms (nfs). An early
characterisation of solvability is that a term M is solvable iff there exists a head context
C[] such that C[M] has a nf (Barendregt, 1971; Wadsworth, 1976). Another equational
characterisation, equivalent to the former, replaces ‘has a nf’ by ‘β-converts to the term
I ≡ λx.x’. The two can be proven equivalent by the following proposition (Wadsworth,
1976):

Proposition 4.1.1. In λK, for any closed M in nf and any arbitrary term P there exist
N1, . . . , Nm with m ≥ 0 such that M N1 . . . Nm =β P .

An equivalent syntactic characterisation defines solvable terms as those having a head
normal form (hnf) (Wadsworth, 1976; Barendregt, 1984). Head normal forms are ‘normal
forms at the first level’ (Wadsworth, 1976). Any term with a nf also has a hnf, and there is
a recursive reduction strategy known as head reduction which delivers a hnf if the term has
some (Barendregt, 1984). Unsolvable terms are operationally irrelevant because they can
take part in a computation that delivers a definite result but ‘such usages are trivial as the
use of any term in place of the unsolvable would give the same result’ (Wadsworth, 1976).
Unsolvable terms remain unsolvable when they are effectively used, since ‘unsolvability is
preserved by application and composition’ (Wadsworth, 1976). Unsolvables can be equated
without affecting λK’s consistency. In particular, solvability enables the definition of Böhm
trees and of a consistent theory H that equates unsolvable closed terms (Barendregt, 1984).
The λK-calculus has a sensible (i.e., satisfying H) model D∞ that is a solution to Scott’s
equation D ∼= [D → D] (Scott, 1970; Wadsworth, 1976).

58

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

A programming language corresponds with a calculus when programs are closed terms
of the calculus and the operational semantics (reduction strategy) is a sub-relation of the
reduction relation of the calculus. The study of such correspondence was pioneered by
Peter Landin, e.g., (Landin, 1964).

As noted by Abramsky (1990), there is no canonical solution to Scott’s equation and,
furthermore, non-strict functional programming languages reduce closed terms to weak
head normal form (whnf), i.e., do not reduce abstractions. Abramsky is concerned with
the correspondence between calculi and programming languages. He proposed the ‘lazy
lambda calculus’ (Abramsky, 1990), hereafter referred to as λ`, in which unsolvable closed
terms such as Ω ≡ (λx.xx)(λx.xx) and λx.Ω are not equal because the latter is in whnf, a
convergent term according to weak operational semantics, whereas the former is not.

Solvability as defined for λK still captures operational relevance in λ` because solv-
ability is coterminous with the world of full-reduction and nfs, and solvable terms under-
approximate operational relevance in frameworks that reduce to hnf or whnf because nfs
are included in hnfs and whnfs. Thus, some unsolvables are definite results (whnfs), as
illustrated by λx.Ω. Abramsky reconciles unsolvability with divergence (not having whnf)
by imposing a notion of order on unsolvable terms. Solvable terms and unsolvable terms
of order greater than zero converge. Unsolvables of order zero diverge but can be consis-
tently equated. Moreover, the λ`-calculus has a canonical model D that is a solution to
the domain equation D ∼= [D → D]⊥. However, the theory induced by D is not sensible
nor semi-sensible: it equates solvable with unsolvable terms.

The lambda-value calculus was introduced by Plotkin (1975) as the calculus that cor-
responds to a strict call-by-value functional programming language whose operational se-
mantics is given by the SECD machine (Landin, 1964). The pure version of the calcu-
lus, λV , is obtained by removing constants and δ-rules. Broadly, the β-rule changes to
the βV -rule which adds the side condition that operands in redices must be values (i.e.,
non-applications). The calculus enjoys substitutivity, confluence, and there is a complete
small-step reduction strategy →V which delivers a value for a term. Plotkin proves that,
for closed terms, the reduction strategy induced by the SECD machine coincides with the
reflexive and transitive closure of →V .

Although in its applied version λV was motivated by the relation between call-by-
value programming languages and the lambda calculus, pure λV is a full-blown calculus
with good meta-theoretic properties. Certainly →V is a weak (i.e., does not go under
lambda) strategy, but v-standardisation guarantees that complete full-reducing strategies
exist which deliver definite results, in this case v-normal forms (v-nfs). Values are not
definite results in λV , merely a side-condition for confluence. The calculus can be studied
for its own sake, in particular the notion of solvability and sensible models.

The apparatus of λ` and the notion of solvability has been carried successfully to what
is called ‘lazy λV ’ (Egidi et al., 1991, 1992; Paolini & Ronchi Della Rocca, 1999). ‘Lazy’
is used only in the sense of ‘weak’ (abstractions are not reduced), losing the sense of non-
strictness (operands are not reduced in redices) that is also present in λ` and commonly
associated with the word ‘lazy’. In lazy λV , an abstraction is a value and therefore a definite

59

4.1. Introduction

result which is not reduced by the reduction strategy induced by the SECD machine. There
is a canonical solution to the domain equation D ∼= [D →⊥ D]⊥ from which a domain H is
constructed that is fully abstract with respect to SECD (Egidi et al., 1991). The definition
of solvability is not the same as in λK because it must now involve βV -conversion. The
equational definition involving the identity term is duly adapted by (Paolini & Ronchi
Della Rocca, 1999) and called v-solvability, giving rise to concomitant notions of v-sensible
and v-semi-sensible models.

The problem The notion of v-solvability does not accurately capture operational rele-
vance in λV due to the following:

(i) The analogous to Proposition 4.1.1 in λV does not hold and therefore the various
equational definitions of v-solvability are no longer equivalent.

The v-solvability under-approximates weak operational relevance, but fails to capture full
operational relevance. Paolini and Ronchi Della Rocca (1999) introduce an order for v-
unsolvables, in the spirit of λ`, to reconcile v-solvability and termination in SECD: all the
v-unsolvables of order greater than zero converge and the v-unsolvables of order zero can
be consistently equated. Consequently, the model H is not v-sensible nor v-semi-sensible.

In (Paolini & Ronchi Della Rocca, 1999, p. 4), full reduction and v-nfs are disregarded
because there are v-nfs such as U ≡ λx.(λy.∆)(x I)∆, where ∆ ≡ λx.xx, which are
v-unsolvable. (Notice U is also a closed value and therefore a definite result in lazy λV .)
And moreover, U (a v-nf) and λx.Ω (a term without v-nf) are operationally equivalent.

Contrariwise, we interpret U as proof of (i) and that v-solvability is insufficient with
respect to λV . In the setting of a programming language and SECD, input terms and
contexts are closed, and U and λx.Ω are operational equivalent. In λV , terms and contexts
are open, full-reduction requires going under lambda (where free variables may pop up),
and the objections against v-nfs disappear. Clearly, U and λx.Ω can be distinguished
according to SECD if we consider open contexts. For instance, C[U] delivers a stuck
term (execution error) whereas C[λx.Ω] diverges when C[] ≡ [] y. Execution errors and
divergence are observationally distinguishable, as supported by the computability theorems
and the introduction of type systems which aim at forbidding the former.

The interest of full reduction has been acknowledged in (Crégut, 1990). Typical applica-
tions are program optimisation by partial evaluation, and type checking in proof assistants
(Grégoire & Leroy, 2002). Stuck terms have a meaning as open terms in a local scope for
which reduction is deferred until given values for its free variables. But, as said before,
values are not definite results in λV , merely a side-condition to preserve confluence by
preserving potential divergence, an idea which appears informally in (Plotkin, 1975). The
relevant notion of operational equivalence should also take into account the scope at which
a stuck term pops up in a reduction sequence.

Contributions Our aim is to arrive at a ‘standard theory’ for λV that is the natural
analogous of λK’s. This means reinstating full reduction, v-nfs, and, stuck terms. The

60

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

guiding theme is the notion of solvability for λV . We first recall v-solvability in detail.
Then we introduce the syntactic notion of quasi-solvability and quasi-v-solvability which
rely on respective notions of needed and v-needed reduction, and are sufficient to cap-
ture preservation and genericity in their corresponding calculi. In λK, quasi-solvability
coincides with solvability and needed normal forms coincide with head normal forms. In
λV , having v-needed normal form is the characterisation of quasi-v-solvable terms. We
introduce the notion of v-order of a quasi-v-unsolvable term and the λV -theory HV which
equates all quasi-v-unsolvables of equal v-order. We prove that the theory is a consis-
tent extension of λV . We introduce ω-sensibility (i.e., satisfying HV) and conjecture the
existence of ω-sensible lattice models for λV .

The intuition is that that v-needed contexts characterise ‘effective use’ in that calculus.
This provides a syntactic machinery for the goal of defining Böhm trees for λV .

We wrap up characterising all complete strategies in λK and λV . First, we give
a novel proof of the Quasi-Leftmost Reduction Theorem (Hindley & Seldin, 2008) in
terms of needed reduction. Then, we redeploy definitions and proofs for λV and prove
the analogous Recursive v-Needed Reduction Theorem. This theorem broadens Plotkin’s
v-Standardisation Theorem showing that there are complete v-strategies which fail to be
v-standard. We introduce the big-step definitions of two complete strategies, value normal
order (which is v-standard) and value spine order (which is not v-standard). The former is
the analogous to normal order in λK, and equivalent to evaluation relation G in (Ronchi
Della Rocca & Paolini, 2004), and the latter is the most eager λV strategy that is com-
plete. We conclude the chapter discussing that models for λV should reflect an operational
distinction on terms based on the scope at which a stuck term pops up in their reduction
sequence.

4.2 Preliminaries: solvability

The first definition of solvability appears in (Barendregt, 1971):

Definition 4.2.1. A closed term M is solvable iff exist N1, . . . , Nm with m ≥ 0 such
that M N1 . . . Nm has a nf. An open term M is solvable if its closure λx1 . . . xn.M with
{x1, . . . , xn} = FV(M) is solvable.

A term is operationally characterised by providing arguments to it. Wadsworth (1976)
provides an alternative definition:

Definition 4.2.2. An arbitrary term M is solvable iff there exists a head context such that
C[M] has a nf.

A head context has the form (λx1. . . . xn.[])N1 . . . Nm, where n,m ≥ 0. Typically,
FV(M) ⊆ {x1, . . . , xn}. The previous definition is transformed into an equational defini-
tion in two equivalent ways (Wadsworth, 1976):

Definition 4.2.3. An arbitrary term M is solvable iff there exists a head context C[] such
that C[M] =β I.

61

4.3. Quasi-solvability

Definition 4.2.4. An arbitrary term M is solvable iff there exists a head context C[] such
that C[M] =β P for arbitrary P .

The equivalence between Definitions 4.2.3 and 4.2.4 is provided, in the (=⇒) direction,
by appending the P as an additional operand in the head context, and in the (⇐=) direc-
tion, by letting P ≡ I. The equivalence between Definition 4.2.2 and Definitions 4.2.3 and
4.2.4 is provided, in the (=⇒) direction, by Proposition 4.1.1, and in the (⇐=) direction,
by letting P ∈ NF. Finally, solvable terms can be characterised syntactically (Wadsworth,
1976):

Definition 4.2.5. An arbitrary term M is solvable iff M has a head normal form.

The theory H equates all the unsolvable terms and is consistent. A theory T satisfying
H ⊆ T is said to be sensible. A theory that does not equate a solvable term with an
unsolvable term is said to be semi-sensible (Barendregt, 1984).

Definition 4.2.3 is duly translated to λV in (Paolini & Ronchi Della Rocca, 1999)

Definition 4.2.6. An arbitrary term M is v-solvable iff there exists a head context

C[] ≡ (λx1 . . . xn.[])N1 . . . Nm

where n,m ≥ 0, {x1, . . . , xn} = FV(M), and Ni closed values such that C[M] =V I.

The proviso that Ni must be values can be left out because it is implicit in =V . The
analogous to Proposition 4.1.1 in λV does not follow, the term U mentioned in the intro-
duction is a counterexample. Thus, different equational definitions analogous to Defini-
tions 4.2.1 and 4.2.4 are no longer equivalent in λV . In (Paolini & Ronchi Della Rocca,
1999), v-solvable terms are characterised syntactically as those having so-called v-head
normal forms, and there exists a complete reduction strategy, the ahead machine, that
delivers the v-head normal form of a term if it exists. However, the ahead machine is not
a strategy of λV but of λK (i.e., performs β-reduction, not βV -reduction).

4.3 Quasi-solvability

We introduce the syntactic notion of quasi-(v-)solvability (quasi-solvability in λK and
quasi-v-solvability in λV) which is based on a generalisation to λK and λV of the notion
of needed reduction (TeReSe, 2003). Needed reduction reduces needed redices, which are
those that are always reduced in any reduction sequence to an irreducible form. In λK,
needed redices are those never occurring inside the operand of an operator, otherwise,
the operator could eventually discard them. In λK, quasi-solvability coincides with the
syntactic characterisation of solvability (existence of hnf). In λV , v-needed redices are
those never occurring inside the value (a lambda abstraction) of some operator. They
may occur, however, in an applicative context (a context compatible with application but
not with abstraction) in the operand of some operator. As we shall see below, potential
v-needed redices may be promoted (become v-redices) when contracting a v-needed redex
occurring in the operand.

62

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

Definition 4.3.1 (Subterm Position). Function F annotates all the subterms of a term
according to the function or argument position in which they occur.

F(x) = xf

F(λx.B) = (λx.F(B))f

F(M N) = (F(M)A(N))f

A(x) = xa

A(λx.B) = (λx.A(B))a

A(M N) = (A(M)A(N))a

All the subterms of a term in argument position are in argument position. Positions
are relative to the root term, for example, in M(λx.N) term N is in argument position
relative to M(λx.N) but in function position relative to (λx.N). By abuse of language we
say a term is function or argument if it is in function or argument position respectively.

Definition 4.3.2 (Needed Context). A needed context, N[], is defined as follows:

N[] ::= [] | N[] Λ | λx.N[]

Needed positions, represented by the hole, occur only at function position.

Definition 4.3.3 (v-Needed Context). A v-needed context, NV [], is defined as follows:

NV [] ::= [] | NV [] Λ | Λ NA
V [] | λx.NV []

NA
V [] ::= [] | NA

V [] Λ | Λ NA
V []

Now v-needed positions, represented by the hole, occur only at function position or at argu-
ment positions not inside abstractions in argument position. To clarify when an argument
position is a v-needed position consider the term λx.x(M(λx.N)). Both M and N are in
argument position and inside an abstraction in function position (the root term), however,
N is inside an abstraction λx.N in argument position and consequently is not in v-needed
position.

Definition 4.3.4 (Needed Reduction). Needed reduction, →∗ne , is the reflexive and tran-
sitive closure of the following relation:

N[(λx.B)N]→ne N[[N/x]B] where N ∈ Λ

A needed redex is a redex in needed position.

Definition 4.3.5 (v-Needed Reduction). v-needed reduction, →∗neV , is the reflexive and
transitive closure of the following relation:

NV [(λx.B)V]→neV NV [[V/x]B] where V ∈ Val

A potential v-redex is an abstraction applied to some application which has a value. We
say a potential v-redex is promoted to a v-redex when its operand is contracted resulting in
a value. A (potential) v-needed redex is a (potential) v-redex in v-needed position.

63

4.3. Quasi-solvability

We assume the reader familiar with the notions of descendant of a term and residual
of a redex (TeReSe, 2003).

Notation 4.3.5.1. For a context C[], the capture-avoiding substitution function [N/x](C[])
is the usual capture-avoiding substitution function extended to contexts in the trivial way,
where the hole [] acts as a variable different from x and from any other variable in C[].

Lemma 4.3.6 (Descendants of Needed Terms). (i) The descendants of terms in (v-)needed
position are also in (v-)needed position.

(ii) The residual of a v-needed redex is also a v-needed redex.

Proof. By the definition of (v-)needed position and capture-avoiding substitution for con-
texts.

Definition 4.3.7 (v-Substitutive (Plotkin, 1975)). A reduction relation →∗ρ is
v-substitutive iff M →∗ρ M ′ implies ∀N ∈ Val. [N/x]M →∗ρ [N/x]M ′.

Theorem 4.3.8 (βV is v-Substitutive (Theorem 4.1 in Plotkin, 1975)).

∀N ∈ Val. M →∗βV M
′ implies [N/x]M →∗βV [N/x]M ′

Theorem 4.3.9 (v-Needed Reduction is v-Substitutive).

M →∗neV M
′ implies ∀N ∈ Val. [N/x]M →∗neV [N/x]M ′

Proof. By Lemma 4.3.6 and Theorem 4.3.8

Definition 4.3.10 (Quasi-(v-)Solvability). M is quasi-(v-)solvable (abbreviated q.(v-)s.)
iff M has a (v-)needed normal form, that is, it exists M ′ such that M →∗ne(V)

M ′ and
M ′ 6→ne(V)

. The term M is quasi-(v-)unsolv-able (abbreviated q.(v-)u.) if it is not q.(v-)s.

Observe that having needed normal forms coincides in λK with having head normal
forms. Now we give a syntactic characterisation of v-needed normal forms (v-nenf).

Definition 4.3.11 (v-Weak Normal Form). A term is in v-weak normal form (v-wnf) if
it does not have any v-redex except under abstraction. The set VWNF of v-wnfs is defined
below, where StuckW is the set of stuck terms in v-wnf.

VWNF ::= Val

| StuckW

StuckW ::= (xVWNF){VWNF}∗

| ((λx.Λ)StuckW){VWNF}∗

64

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

Definition 4.3.12 (v-Needed Normal Form). A term is in v-needed normal form (v-nenf)
if it does not have any v-needed redex. The set VNeNF of v-nenfs is defined below, where
StuckNe is the set of stuck terms in v-nenf.

VNeNF ::= λx.VNeNF

| x

| StuckNe

StuckNe ::= (xVWNF){VWNF}∗

| ((λx.VNeNF)StuckW){VWNF}∗

The v-nenfs are terms that only have v-redices to the right of free variables and under
abstractions in argument position. They are the λV analogous of hnfs in λK.

Definition 4.3.13 (v-Order of a Term). A term M is of v-order n iff

n = max{ i | ∃N ≡ λx1. . . . λxi.B such that M =V N }

If such n is not defined (i.e., n is unbounded) we say M is of v-order ω.

Unless stated otherwise, we include the case n = ω when saying that a term M is of a
generic v-order n.

Notation 4.3.13.1. Given a set of terms S, we write Sn for the subset of terms with
v-order at most n. For example, values consist of variables plus terms of v-order greater
than 0: Val = Var ∪ (Λ \ Λ0).

The v-order of a q.v-u. term determines the number of operands that can be passed to
it while still delivering a value.

Proposition 4.3.14. LetM be q.v-u. of v-order n > 0 thenM has a value, andM V1 . . . Vi
with Vi ∈ Val has a value for i ≤ n−1 when n finite, or i arbitrary when n = ω. The proof
is immediate from the definition of v-order.

4.4 Genericity lemma

Quasi-v-solvability is enough to prove the λV analogous of ‘preservation of unsolvables
by application and composition’ (Wadsworth, 1976; Barendregt, 1984) and the Genericity
Lemma (Barendregt, 1984).

Definition 4.4.1. The context CZ is zero-level iff it does not contain any trailing lambdas.
This is CZ [] ::= [] | C[] Λ | ΛC[] where the C[] contexts are arbitrary. Zero-level
contexts have the hole or an application at the top level.

Definition 4.4.2 (Level of a Subterm). Let N ⊂M , N is of level n iff

n = max{ i | M ≡ λx1.λx2. . . . λxi.C
Z [N] }

65

4.4. Genericity lemma

The notion of descendants is generalised to contexts in the trivial way.

Lemma 4.4.3. The descendant of a zero-level contexts is a zero-level context.

Proof. Immediate by Definition 4.4.1.

Lemma 4.4.4. If M is q.v-u. of v-order n then it exists R ≡ (λx.B)V with V ∈ Val such
that M →∗neV λx1 . . . λxn.C

Z [R].

Proof. By Definition 4.3.3, the context λx1. . . . λxn.C
Z [] is also a v-needed context and

then R is a v-needed redex. Since →neV commutes (Theorem 4.8.4), →∗neV will eventually
contract next the (residual of the) v-needed redex R in the (descendant of the) context
λx1. . . . λxn.C

Z [], and then the lemma follows by Lemma 4.4.3.

Lemma 4.4.5. M is q.v-u. of v-order n iff, after some point in the infinite v-needed
reduction sequence, all the v-redices contracted at each step are of level n. (Notice that this
proposition only makes sense for finite n.)

Proof. LetM be q.v-u. of v-order n, therefore existsN ≡ λx1. . . . λxi.B such thatM =V N
and M ’s v-needed reduction sequence is infinite. By Lemma 4.4.4 we have M →∗neV
λx1 . . . λxn.C

Z [R] with B ≡ CZ [R] and R a v-redex. From that point the reduction
sequence is infinite with all reducts of that form for particular CZ [R′] with v-redex R′.

Theorem 4.4.6 (Preservation of Quasi-v-Unsolvability). If M is q.v-u. of v-order n then,
for any N ∈ Val,

(i) M N is q.v-u. of v-order n− 1 (‘−’ is subtraction in naturals, i.e., 0− n = 0).

(ii) λx.M is q.v-u. of v-order n+ 1.

(iii) [N/x]M is q.v-u. of v-order n.

Proof. First we consider n finite. Now consider (iii):

Case x 6∈ FV(M) Trivial.

Case x ∈ FV(M) By Theorem 4.3.9 and Lemma 4.4.5 at some point in the infinite v-needed
reduction sequence of [N/x]M we find the reduct λx1 . . . xn.[N/x](CZ [R]). From the
assumptions x ∈ FV(CZ [R]), and [N/x](CZ [R]) ≡ [N/x](CZ

1 [x]) because R is a v-
redex (an application) and there is another zero-level context CZ

1 [] where x occurs
free in CZ

1 [x]. Clearly, [N/x](CZ
1 [x]) ≡ ([N/x](CZ

1 []))[N] and [N/x](CZ
1 []) is a

zero-level context. By Lemma 4.4.5, [N/x]M is q.v-u. of v-order n.

Now consider (i):

Case n = 0 It is immediate by Definition 4.3.10 becauseM is in v-needed position relative
to M N .

66

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

Case n > 0 It holds because M reduces to an abstraction (λx.B) and with [N ′/x]B and
N =V N ′ we are in case (iii).

Finally, (ii) is immediate by adding a lambda to M .
Second, we consider n = ω. We generalise the proof of (iii) as follows: does not exist

n such that M →∗neV λx1 . . . xn.C
Z [x] and by Theorem 4.3.9 and Lemma 4.4.5 it is also

not the case that [N/x]M →∗neV λx1 . . . xn.[N/x](CZ [x]). Cases (i) and (ii) are proven
similarly as before with the proviso ω − 1 = ω and ω + 1 = ω.

Theorem 4.4.7 (Genericity for λV). If N is q.v-u. of v-order n and M N has a v-nf then
∀V ∈ Valm (m ≥ n). M N =V M V .

Proof. This proof assumes the existence of a complete reduction relation, recursive v-needed
reduction, which finds v-nfs via v-nenfs and whose introduction has been postponed to
Theorem 4.8.7. The notions of v-needed positions and contexts are trivially generalised
to recursive v-needed positions and contexts. All descendants of N are discarded at some
point in the recursive v-needed reduction sequence by some operators in v-needed position,
since N do not have v-nf and its descendants are q.v-u. of order n by Theorem 4.4.6(iii).
This can only be the case if the descendants of N do not occur in recursive v-needed
positions. The descendants of N may get applied to at most n − 1 operands. Otherwise,
some descendant of N will deliver a quasi-v-unsolvable of v-order 0 which could occur in
recursive v-needed position, making the sequence diverge. Consequently, any other term
accepting at least n− 1 operands can be replaced for N . If n = ω then N may be applied
to an arbitrary large number of operands and V has to be in Valω.

4.5 βVΩω-reduction

In this section we introduce Ωω-reduction which, along with βV -reduction, will generate
the theory HV that equates all the quasi-v-unsolvables of v-order n and is a consistent
extension of λV (Section 4.6). We prove βV Ωω is Church-Rosser following the steps in
(Barendregt, 1984, Section 15.2) save for the adoption of the Z-property technique (Van
Oostrom, 2008). We assume the reader is familiar with the concept of notion of reduction
in (Barendregt, 1984). Notions of reduction βV and Ωω correspond to the βV -rule (Plotkin,
1975) and relation Ωω in Definition 4.5.1 respectively.

Notation 4.5.0.1. Let Ωn ≡ λx1.λxn.∆ ∆ where ∆ ≡ (λx.x x) and n ≥ 0. We write
Ωω for Ωn with n arbitrary large.

Definition 4.5.1 (Ωω-Reduction). Ωω-reduction, →∗Ωω , is the contextual, reflexive, and
transitive closure of the relation

Ωω = {(M,Ωn) | M q.v-u. of v-order n and M 6≡ Ωn}

We use →Ωω for the one-step Ωω-reduction relation.

67

4.5. βV Ωω-reduction

The relation of Ωω-conversion, =Ωω , is the symmetric closure of Ωω-reduction.

Definition 4.5.2 (βV Ωω-Reduction). βV Ωω-reduction, →∗βV Ωω
, is the reduction relation

generated by the notions of reduction βV and Ωω, i.e., the reflexive and transitive closure
of →βV ∪ →Ωω .

The relation of βV Ωω-conversion, =βV Ωω , is the symmetric closure of βV Ωω-reduction.

Proposition 4.5.3. Given two notions of reduction ρ1 and ρ2, if both are v-substitutive,
the union ρ1 ∪ ρ2 is also v-substitutive.

Proof. By considering each ρ1 or ρ2 step individually in ρ1ρ2-reduction sequences.

Theorem 4.5.4 (βV Ωω is v-Substitutive). By Proposition 4.5.3, it is enough to prove that
Ωω is v-substitutive.

Proof. Let M →Ωω Ωn, by Theorem 4.4.6 [N/x]M is q.v-u. of v-order n for any N ∈ Val.
By the definition of Ωω-reduction, [N/x]M →Ωω Ωn, and trivially Ωn ≡ [N/x]Ωn.

Definition 4.5.5 (Quasi-v-Solvably Equivalence). M and N are quasi-v-solvably equiva-
lent, M ∼q N , iff for every context C[] then C[M] is q.v-u. of v-order n iff C[N] is q.v-u.
of v-order n. Clearly, ∼q is an equivalence relation.

Lemma 4.5.6. (i) M =V N ⇒M ∼q N

(ii) M =Ωω N ⇒M ∼q N

Proof. We first consider (i). If M =V N , by confluence of λV , there exist M ′ such that
M →∗βV M ′ ∗βV← N and, since →∗βV is compatible, C[M] →∗βV C[M ′] ∗βV← C[N]. Then
both C[M] and C[N] are q.v-u. of v-order n iff C[M ′] is, and the lemma follows.

Now consider (ii). We assume the notion of recursive v-needed context in Theorem 4.8.7.
Since ∼q is an equivalence relation, it is enough to show for (M,Ωn) ∈ Ωω that M ∼q Ωn:

Case n is finite By Definitions 4.3.10 and 4.3.13,M =V M ′ such thatM ′ ≡ λx1. . . . λxn.B
and B is q.v-u. of v-order 0. By (i), C[M] ∼q C[M ′]. Let C[M ′] ≡ C′[B], then
C[Ωn] ≡ C′[Ω0]. We consider C′[]. If C′[] is not a recursive v-needed context, by
Theorem 4.8.7 the M is discarded at some point and being q.v-u. of some v-order
only depends on C′[], and then the lemma follows. Otherwise, by Lemma 4.4.4,
C′[B] =V λx1. . . . λxm.C

Z [R]. Clearly, B =V CZ [R] because B is q.v-u. of v-order
0. Then, C′[Ω0] =V λx1. . . . λxm.Ω0 and the lemma follows.

Case n = ω If C[] is a recursive v-needed context, both C[M] and C[Ωω] are q.v-u. of
v-order ω. Otherwise, by Theorem 4.8.7 being q.v-u. only depends on C[].

We assume the reader is familiar with the concept of disjoint subterms (no common
symbol occurrences) of a given term (Barendregt, 1984, p. 25). By extension, we say a
subterm is disjoint with a set of subterms when the subterm is disjoint with every element
of the set.

68

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

Notation 4.5.6.1. The symbol R→ρ denotes a ρ-reduction step where the ρ-redex R is
contracted.

Theorem 4.5.7 (Confluence of Ωω). Ωω-reduction is Church-Rosser.

Proof. It is enough to prove that (→Ωω ∪ ≡) has the diamond property. Consider

M
U1→Ωω M1 and M U2→Ωω M2

where U1 and U2 are the q.v-u. Ωω-redices contracted in each case. We consider the cases:

Case U1 and U2 are disjoint Trivial.

Case U1 and U2 overlap Let U1 be the subterm q.v-u. of v-order n and U2 the superterm
q.v-u. of v-order m. The following diagram commutes because C2[Ωn] ∼q U2 by
Lemma 4.5.6:

M ≡ C1[U2] ≡ C1[C2[U1]] M2 ≡ C1[Ωm]

M1 ≡ C1[C2[Ωn]] C1[Ωm]

U2

U1

C2[Ωn]

Definition 4.5.8 (Maximal Ωω-Redices). A Ωω-redex is maximal iff it is not properly
contained (is not a proper subterm) in another Ωω-redex.

Theorem 4.5.9. Every term has a unique Ωω-normal form.

Proof. The maximal Ωω-redices are mutually disjoint. By replacing them by the appro-
priate Ωns, no new Ωω-redices are created, since Qn ∼q Ωn for Qn q.v-u. of order n. The
Ωω-normal form is unique since Ωω-reduction is Church-Rosser.

Notation 4.5.9.1. We write Ωω(M) for the Ωω-normal form of the term M .

We assume the reader familiar with the notion of complete development M◦ of a term
M (TeReSe, 2003).

Definition 4.5.10. The complete Ωω-development M◦Ω of a term M consists of the com-
plete development of the Ωω-normal form of M , that is, M◦Ω = (Ωω(M))◦

Theorem 4.5.11 (Confluence of βV Ωω). βV Ωω-reduction is Church-Rosser

Proof. It is enough to prove that →βV Ωω has the Z property (Van Oostrom, 2008)

69

4.5. βV Ωω-reduction

M N

M◦Ω N◦Ω

βV Ωω

∗ βV
Ωω

∗
βV Ωω

There are two cases M →Ωω N and M →βV N :

Case M →Ωω N It follows that Ωω(M) ≡ Ωω(N) andM◦Ω ≡ N◦Ω thereforeN →∗βV Ωω
M◦Ω

and M◦Ω →∗βV Ωω
N◦Ω .

Case M →βV N Let R be the v-redex contracted in M →βV N . Let S be the set of
maximal Ωω-redices in M . If R is disjoint with S then M◦Ω ≡ N◦Ω and the theorem
follows as in the previous case. If R is not disjoint with some U ∈ S then consider
sub-cases:

Case (i) U ≡ C[R] is q.v-u. of order n. Let R′ be the contractum of R. By
Lemma 4.5.6 we have Ωω(C[R]) ≡ Ωω(C[R′]) and therefore Ωω(M) ≡ Ωω(N)
and therefore M◦Ω ≡ N◦Ω .

Case (ii) R ≡ (λx.B)C[U] is q.v-s. with B disjoint with S. Let n be the v-order
of U . The following diagram commutes:

M N

C′[(λx.B)C[U]] C′[[C[U]/x]B]

C′[(λx.B)C[Ωn]]

C′[[C[Ωn]/x]B)]

M◦Ω N◦Ω

βV

Ωω

βV Ωω

∗
βV Ωω ∗

βV Ωω

because C′[[C[Ωn]/x]B)]→∗βV Ωω
M◦Ω ≡ N◦Ω since B and S are disjoint.

Case (iii) R ≡ (λx.C[U])V is q.v-s. with V ∈ Val not necessarily disjoint with S.
Let n be the v-order of U . The following diagram commutes:

70

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

M N

C′[(λx.C[U])V] C′[[V/x](C[U])]

C′[(λx.C[Ωn])V] C′[[V/x](C[Ωn])]

C′[(λx.C[Ωn])Ωω(V)]

C′[[Ωω(V)/x](C[Ωn])]

M◦Ω N◦Ω

βV

Ωω Ωω

∗
Ωω

∗ ΩωβV

∗
βV Ωω ∗

βV Ωω

because C′[(λx.C[Ωn])Ωω(V)] →βV C′[[Ωω(V)/x](C[Ωn])] →βV Ωω M
◦Ω ≡ N◦Ω

since C[Ωn] and S \ {U} are disjoint and by v-substitutivity of Ωω. The deriva-
tion

C′[[V/x](C[Ωn])]→∗Ωω C′[[Ωω(V)/x](C[Ωn])]

follows by an immediate lemma about substitution similar to Proposition 2.1.17(ii)
in (Barendregt, 1984).

4.6 The theory HV

We assume the reader is familiar with Chapters 4 and 16 of (Barendregt, 1984). We
generalise to λV some of the notions related to λK.

Definition 4.6.1 (Consistency of a Theory). Let T be a theory with equations as formulae.
T is consistent, Con(T), iff T does not prove every closed equation.

Definition 4.6.2 (λV -Theory). Let T be a set of closed equations.

(i) T +V is the set of closed equations provable in λV +T .

(ii) T is a λV -theory if it is consistent and T = T +V .

Proposition 4.6.3. The set of closed equations provable in λV (λV from now on for short)
is a λV -theory.

Proof. Elementary since λV is the trivial λV -theory (the one where T = ∅) and consistency
is entailed by confluence in the λV -calculus.

We now define HV as the λV -theory equating all the q.v-u. of equal v-order.

71

4.7. Completeness of needed reduction

Definition 4.6.4 (Theory HV). (i) Hv0 = {M = N | M,N are q.v-u. of equal v-order}

(ii) HV = H+V
v0

(iii) A λV -theory T is ω-sensible iff HV ⊆ T .

The name ω-sensibility comes from the presence of ω equivalence classes in Hv0. Now
we prove that HV is consistent via confluence of βV Ωω-reduction.

Lemma 4.6.5 (βV Ωω-Reduction Generates HV).

HV `M = N iff M =βV Ωω N

Proof.(=⇒) If Hv0 ` M = N then M →Ωω Ωn and M →Ωω Ωn because both M and
N are q.v-u. of v-order n. Consequently, for all axioms M = N of HV we have
M =βV Ωω N and the result follows.

(⇐=) Each→βV or→Ωω reduction step is provable in HV . The same holds for =βV Ωω .

Theorem 4.6.6 (Consistency of HV). Con(HV)

Proof. By Lemma 4.6.5 and by Theorem 4.5.11.

4.7 Completeness of needed reduction

Needed positions in λK are in relation to the Quasi-Leftmost Reduction Theorem (Hindley
& Seldin, 2008, Theorem 3.22). This theorem is the most general characterisation of
complete strategies of λK. In words, the theorem states that a reduction strategy which
eventually contracts the leftmost redex is complete, i.e., finds the normal form of a term
if it exists. In this section we prove that needed reduction →ne is complete. This result
is equivalent to the Quasi-Leftmost Reduction Theorem. The intuitions and technical
machinery will be redeployed in Section 4.8 to prove completeness of v-needed reduction
→neV . Recall that in λK needed and non-needed positions are synonyms of function and
argument positions respectively. We use the terminology interchangeably.

Lemma 4.7.1. Contracting non-needed redices does not create any needed redices.

Proof. If the redices occur in argument position, their contractum will remain in argument
position. Some argument redices may be discarded, replicated, or created. However, the
number of function redices remains the same by definition.

We adapt the definition of projection of a reduction step over a redex (TeReSe, 2003).
As introduced in page 69, we annotate reduction steps with the redex that is contracted.

72

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

Definition 4.7.2. The projection of R→ρ over the ρ-redex S, written
R/S−→ρ, is the ρ-reduction

sequence obtained by contracting the residuals of R after contracting S. We append pro-
jections with ∗, +, or none to indicate respectively whether the reduction sequence consists
of either zero-or-more-steps, one-or-more-steps, or one-step. We also omit the notion of
reduction ρ when it is clear from the context.

Notice that the ρ-redices contracted in a projection
R/S−→ρ

∗ are always disjoint.

Lemma 4.7.3 (Postponement of Non-Needed Reduction). Given a reduction sequence
there exists an equivalent reduction sequence where non-needed reduction is postponed to
the end of the sequence. (Two reduction sequences are equivalent if both start with the same
term M and both end with the same term N for arbitrary M and N .)

Proof. Let M A→ M ′
F→ N be the double-step reduction sequence where A and F are

argument and function redices respectively. F ′ is the function redex such that F→ coincides

with
F ′/A−→ . By Lemma 4.7.1, F ′ is unique. The following diagram illustrates:

M M ′

M ′′ N

A

F ′ F ≡ F ′/A

A/F ′ ∗

Observe that all redices (if any) contracted in the sequence
A/F ′−→∗ are disjoint. The function

redices are contracted first, obtaining a reduction sequence equivalent toM A→ M ′
F→ N in

which non-needed reduction is postponed to the end. For any arbitrary reduction sequence
we repeat the swapping operation, postponing all the non-needed steps. Notice that when

swapping redices A and F we do not recurse the swapping operation over
A/F ′−→∗ but trivially

pick the function redices first, since all of them are disjoint. No reasoning by induction is

needed over
A/F ′−→∗.

Lemma 4.7.4. Needed redices have exactly one residual.

Proof. If the contracted redex is in argument position, by Lemma 4.7.1 the number of
function redices will remain the same and everyone of them have exactly one descendant.
If the contracted redex is in function position, new function redices may appear, but the
already existing ones (others than the one being contracted) cannot be discarded nor
replicated, because function redices never occur in the argument of any redex. Again,
everyone of them have exactly one descendant.

Lemma 4.7.5 (Needed Reduction Commutes). Let M be a term with function redices F1

and F2. Contracting them in any order delivers the same term.

73

4.7. Completeness of needed reduction

Proof. Consider the diagram

M M ′

M ′′ N.

F1

F2 F2/F1

F1/F2

By Lemma 4.7.4 there is exactly one residual of any function redex. By substitutivity, the
above diagram commutes.

Remark 4.7.5.1. New function redices may appear after the contraction of a function
redex. Clearly, the newly created ones cannot commute with the one creating them. How-
ever, for the existing needed redices in the term (at a particular moment in the reduction
sequence) the order in which they (or their residuals) are contracted does not matter because
they commute.

Theorem 4.7.6 (Needed Reduction). Contracting all the function redices in any order
delivers a hnf if it exists.

Proof. By Lemmas 4.7.1 and 4.7.3, for any reduction sequence ending in hnf there exists
an equivalent one which contracts function redices first. Once the function redices are
contracted, a hnf is reached. The hnf may have argument redices but contracting them is
unnecessary. By Lemma 4.7.5, the order in which the function redices are contracted does
not matter because they commute.

The set of normal forms NF was defined in Section 2.1. Normal forms have the shape

λx1 . . . xn.xN1 . . . Nm

where n,m ≥ 0, x is called the head variable, and Ni ∈ NF. Head normal forms have a
similar shape save for Ni ∈ Λ.

Definition 4.7.7 (Degree of a Normal Form). The degree of a normal form, D(N), is
recursively defined as follows:

D(λx1 . . . xn.x) = 0 n ≥ 0
D(λx1 . . . xn.xN1 . . . Nm) = 1 + max{D(Ni) | 0 ≤ i ≤ m} n,m ≥ 0

Theorem 4.7.8 (Recursive Needed Reduction). A reduction strategy that eventually con-
tracts the function redices and, recursively, eventually contracts the function redices relative
to the arguments of the head variable, finds the normal form if it exists.

Proof. For a term M =β N with N ∈ NF we proceed by induction on D(N). By Theo-
rem 4.7.6, contracting needed redices delivers a hnf which is β-equivalent to N . The base
case D(N) = 0 is trivial. By the induction hypothesis, recursive needed reduction delivers
the normal forms of head variable’s arguments, and the final result is N .

74

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

Remark 4.7.8.1. The Recursive Needed Reduction Theorem is equivalent to the Quasi-
Leftmost Reduction Theorem (Hindley & Seldin, 2008). The function redices of M are in
the leftmost segment and, inductively on D(N), so are the function redices relative to the
leftmost Ni which is not in nf.

A complete strategy has to contract all needed redices to get a nf. By Lemma 4.7.5
needed redices can be contracted in any order, as far as they are eventually contracted. The-
orem 4.7.8 characterises the normalising reduction sequences in the most general way: no
normalising reduction sequence exists without recursively contracting the needed redices.

4.8 Completeness of v-needed reduction

We prove the λV analogous of Theorem 4.7.8 in similar fashion as in the previous section.
The main difference is that v-needed and non-v-needed (Definition 4.3.3) do not correspond
now to function and argument. Fortunately, however, the proof is almost identical save for
the v qualifier.

The notion of potential v-needed redex has been introduced in Definition 4.3.5.

Lemma 4.8.1. Contracting non-v-needed redices does not create any (potential) v-needed
redex.

Proof. If the non-v-needed redices occur in some position which is under an argument ab-
straction their contractum will remain in that position. Some (potential) non-v-needed
redices may be discarded, replicated or created. However, the number of (potential)
v-needed redices remains the same by definition.

Remark 4.8.1.1. Non-v-needed contraction is not enough to promote a potential v-needed
redex because contraction takes place under an abstraction in argument position, i.e., inside
a term which is already a value. Only the v-needed redices which are in argument position
can promote potential v-needed redices. We say that a v-needed redex in argument position
blocks a potential v-redex when it has a value and it occurs as the operand of an abstraction.
Only v-needed redices in argument position which are not under an abstraction in argument
position can block a potential v-needed redex. In other words, the blocking v-needed redices
are in an applicative context.

Lemma 4.8.2 (Postponement of Non-v-Needed Reduction). Given a v-reduction sequence
there exists an equivalent v-reduction sequence where non-v-needed reduction is postponed
to the end of the sequence.

Proof. Let M U→ M ′
D→ N be the double-step reduction sequence where U and D are

non-v-needed and v-needed redices respectively. D′ is the v-needed redex such that D→
coincides with

D′/U−→ . By Lemma 4.8.1, D′ is unique. The following diagram illustrates:

75

4.8. Completeness of v-needed reduction

M M ′

M ′′ N

U

D′ D ≡ D′/U

U/D′ ∗

Observe that all v-redices (if any) contracted in the sequence
U/D′−→ ∗ are disjoint. The

v-needed redices are contracted first, obtaining a v-reduction sequence equivalent to M U→
M ′

D→ N in which non-v-needed reduction is postponed to the end. For any arbitrary
v-reduction sequence we repeat the swapping operation, postponing all the non-v-needed
steps. Notice that when swapping v-redices U and D we do not recurse the swapping

operation over
U/D′−→∗ but trivially pick the v-needed redices first, since all of them are

disjoint. No reasoning by induction is needed.

Lemma 4.8.3. (Potential) v-needed redices have exactly one descendant.

Proof. There are three cases to consider:

(i) If the contracted v-redex is under an abstraction in argument position, i.e., is in
non-v-needed position, by Lemma 4.8.1 the number of (potential) v-needed redices
remains the same and every one of them has exactly one descendant.

(ii) If the contracted v-redex is in argument position but not under an abstraction in
argument position, i.e., is in v-needed position, that redex may block a potential
v-needed redex that will be promoted. New (potential) v-needed redices may appear
in argument position but the already existing ones (including the potential v-redex
promoted to an actual v-redex) have exactly one descendant.

(iii) If the contracted v-redex is in function position, new (potential) v-redices may ap-
pear but the already existing ones (other than the one being contracted) cannot
be discarded nor replicated because (potential) v-needed redices never occur in the
operand of any v-redex. All the already existing (potential) v-needed redices have
exactly one descendant.

Lemma 4.8.4 (v-Needed Reduction Commutes). Let M be a term with v-needed redices
D1 and D2. Contracting them in any order delivers the same term.

Proof. Consider the diagram

M M ′

M ′′ N.

D1

D2 D2/D1

D1/D2

76

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

By Lemma 4.7.4 there is exactly one residual of any v-needed redex. By v-substitutivity
of →∗neV , the above diagram commutes.

Remark 4.8.4.1. New v-needed redices may appear after the contraction of a v-needed
redex. In particular, already existing potential v-needed redices may be promoted. As in
the proof of Lemma 4.8.2, the newly created ones cannot commute with the one creating
or promoting them. However, for the existing v-needed redices in the term (at a particu-
lar moment in the v-reduction sequence) the order in which they (or their residuals) are
contracted does not matter because they commute.

Theorem 4.8.5 (v-Needed Reduction). Contracting all the v-needed redices in any order
delivers a v-nenf if it exists.

Proof. By Lemmas 4.8.1 and 4.8.2, for any v-reduction sequence ending in v-nenf there
exists an equivalent one which contracts v-needed redices first. Once the v-needed redices
are contracted, a v-nenf is reached. The v-nenf may have non-v-needed redices but con-
tracting them is unnecessary. By Lemma 4.8.4, the order in which the v-needed redices
are contracted does not matter because they commute.

The set of v-normal forms VNF is defined by the EBNF grammar:

VNF ::= λx.VNF

| x

| StuckV

StuckV ::= (xVNF){VNF}∗

| ((λx.VNF)StuckV){VNF}∗

The v-normal forms have the shape λx1 . . . xm.H N1 . . . Nn where n,m ≥ 0, H is called
the head term, and Ni ∈ VNF. Head terms can be either variables or blocks, in terminology
of (Ronchi Della Rocca & Paolini, 2004), of the form (λz.VNF)StuckV. The v-nenfs have
a similar shape, save for the body in the block which is also a v-nenf, its argument is in
StuckNe and Ni ∈ VWNF.

Definition 4.8.6 (Degree of a v-Normal Form). The degree of a v-normal form, DV (N),
is recursively defined as follows:

DV (λx1 . . . xn.x) = 0
DV (λx1 . . . xn.xN1 . . . Nm) = 1 + max{DV (N1), . . . ,DV (Nm)}
DV (λx1 . . . xn.(λz.B)S) = 1 + max{DV (B),DV (S))}

DV (λx1 . . . xn.((λz.B)S)N1 . . . Nm) =
1 + max{DV (B),DV (S),DV (N1), . . . ,DV (Nm)}

where n,m ≥ 0

77

4.9. Leftmost, standard, needed, and spine

Theorem 4.8.7 (Recursive v-Needed Reduction). A reduction strategy that eventually
contracts the v-needed redices and, recursively, eventually contracts the v-needed redices
relative to the arguments of the head term (and its body and argument if it is a block), finds
the v-normal form if it exists.

Proof. For a term M =β N with N ∈ VNF we proceed by induction on DV (N). By
Theorem 4.8.5, contracting v-needed redices delivers a v-nenf which is βV -equivalent to
N . The base case DV (N) = 0 is trivial. By the induction hypothesis, recursive v-needed
reduction delivers the v-normal forms of head term’s arguments (and its body and argument
if it is a block), and the final result is N .

Remark 4.8.7.1. The Recursive v-Needed Reduction Theorem is the analogous in λV of
the Quasi-Leftmost Reduction Theorem in λK. The notions of v-needed positions and con-
texts are generalised in the trivial way to that of recursive v-needed positions and contexts.
These notions are used in the proofs of Theorem 4.4.7 and Lemma 4.5.6.

A complete v-strategy has to contract all v-needed redices to get a v-nf. By Lemma 4.8.4
v-needed redices can be contracted in any order, as far as they are eventually contracted.
Theorem 4.8.7 characterises the v-normalising reduction sequences in the most general way:
no v-normalising reduction sequence exists without recursively contracting the v-needed
redices.

4.9 Leftmost, standard, needed, and spine

In this section we show that v-leftmost strategies are not complete, that v-standard strate-
gies are complete, but there are complete v-strategies which are not v-standard, and that
all complete strategies are v-needed. We define big-step-wise the full-reducing, complete
strategies which we call value normal order and value spine order. The former is the
v-standard strategy analogous to normal order in λK. We show its big-step definition
which corresponds to evaluation relation G in (Ronchi Della Rocca & Paolini, 2004). The
latter is the v-needed, non-v-standard, spine version of the former, and is analogous to
hybrid normal order (Sestoft, 2002) and byName (Paulson, 1996, p. 390) in λK. Value
spine order is the most eager while complete strategy in λV .

The notion of v-leftmost is a direct translation to λV of the definition of leftmost
strategy (Curry & Feys, 1958), which does not capture completeness.

Definition 4.9.1 (v-Leftmost Strategy). A v-leftmost strategy contracts the leftmost v-redex
first.

Consider the term L ≡ (λx.y)((λx.λy.Ω)(I I)) where λy.Ω is a q.v-u. value. The
leftmost v-redex is Ω. The other redex-looking subterms are potential v-redices because
their operands are not values. Contracting Ω leaves the term unchanged and thus v-leftmost

78

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

reduction diverges. However, observe that the following v-reduction sequence (hereafter
referred to as StdSeq) terminates:

(λx.y)((λx.λy.Ω)(I I)) →βV (λx.y)((λx.λy.Ω)I)
→βV (λx.y)(λy.Ω)
→βV y

The seminal paper (Plotkin, 1975) introduced the small-step v-strategy →V which we
adapt to pure λV ,

N ∈ Val

(λx.B)N →V [N/x]B
(βV)

M →V M ′

M N →V M ′N
(µV)

M ∈ Val N →V N ′

M N →V M N ′
(νV)

and gave a definition of v-standard reduction sequences which we adapt to pure λV in the
following definition.

Definition 4.9.2 (v-Standard Reduction Sequence (Plotkin, 1975, p. 137)). A v-standard
reduction sequence (v-s.r.s.) is defined inductively as follows:

(i) Any variable x is a v-s.r.s.

(ii) If N2, ..., Nk is a v-s.r.s. and N1 →V N2, then N1, ..., Nk is a v-s.r.s.

(iii) If N1, ..., Nk is a v-s.r.s. then λx.N1, ..., λx.Nk is a v-s.r.s.

(iv) If M1, ...,Mj and N1, ..., Nk are v-s.r.s. then M1N1, ...,Mj N1, ...,Mj Nk is a v-s.r.s.

The →V v-strategy is v-standard by (ii) but it is a weak strategy (does not reduce
abstractions) and is not v-normalising. Cases (i), (iii), and (iv) recursively specify how to
lift a whole v-s.r.s. to an arbitrary context. Informally, the v-s.r.s. N2, ..., Nk is lifted to
C[N2], ...,C[Nk]. A step N1 →V C[N2] can be prepended to the sequence, but had the
new step required a new context D[] (i.e., D[N1]→V C[N2]) then the rest of the sequence
would have to be lifted to that context too, D[N1],D[C[N2]], ...,D[C[Nk]]. Consequently, a
→V step cannot be prepended with the source term inside an arbitrary context, otherwise,
any v-reduction sequence would be v-standard and Definition 4.9.2 would be void.

The v-Standardisation Theorem (Plotkin, 1975, Theorem 4.3) characterises complete-
ness in λV . In words, it says that for any v-reduction sequence, there exists an equivalent
v-standard one. In particular, if some term has a v-nf, there exists a v-s.r.s. ending in it.
Observe that StdSeq above is v-standard because every step is a →V step.

The small-step evaluation relation G in (Ronchi Della Rocca & Paolini, 2004) is a
v-standard complete strategy delivering a v-nf. We present the Hilbert-style inference

79

4.9. Leftmost, standard, needed, and spine

rules of its big-step counterpart, which we call value normal order and denote by ⇓vn :

x ⇓vn x
(Var)

B ⇓vn B′

λx.B ⇓vn λx.B′
(Abs)

M ⇓pv M ′ N ⇓pv N ′ (M ′ ≡ λx.B ∧N ′ ∈ Val) [N ′/x]B ⇓vn B′

M N ⇓vn B′
(Con)

M ⇓pv M ′ N ⇓pv N ′ (M ′ 6≡ λx.B ∨N ′ 6∈ Val) M ′ ⇓vn M ′′ N ′ ⇓vn N ′′

M N ⇓vn M ′′N ′′
(Stk)

Variables are already v-normal forms (rule Var). Abstractions are reduced to v-normal
form (rule Abs). Operators and operands are reduced to v-weak normal forms (rules Con
and Stk) by the weak pure call-by-value strategy (pv) discussed below. If the resulting
application is a v-redex then the contractum is reduced to v-normal form (rule Con).
Otherwise the application is a stuck term and then both the operator and the operand are
reduced to v-normal form.

Pure call-by-value is a generalisation of the call-by-value strategy called evalV in (Plotkin,
1975). Pure call-by-value takes into account free variables and stuck terms of pure λV and
delivers a v-weak normal forms.

x ⇓pv x
(Var)

λx.B ⇓pv λx.B
(Abs)

M ⇓pv M ′ N ⇓pv N ′ (M ′ ≡ λx.B ∧N ′ ∈ Val) [N ′/x]B ⇓pv B′

M N ⇓pv B′
(Con)

M ⇓pv M ′ N ⇓pv N ′ (M ′ 6≡ λx.B ∨N ′ 6∈ Val)

M N ⇓pv M ′N ′
(Stk)

As noted by (Herbelin & Zimmermann, 2009), v-standard reduction sequences are not
unique: for a term M , v-standardisation characterises some set of v-reduction sequences
ending in M ’s v-nf. We show that this set does not contain all the complete v-reduction
sequences. There are complete v-reduction sequences which are not v-standard. For ex-
ample, consider the sequence (hereafter referred to as NeSeq):

(λz.(λx.λy.x)z t)I (4.1)
→βV (λz.(λy.z)t)I (4.2)
→βV (λz.z)I (4.3)
→βV I (4.4)

Steps (4.2) and (4.3) are not →V steps. Although sequences (4.1),(4.2), and (4.3),(4.4)
are v-s.r.s., two arbitrary v-s.r.s.’s cannot be concatenated to give a complete v-reduction
sequence, according to Definition 4.9.2, and thus NeSeq is not v-s.r.s.. However, NeSeq is
a recursive v-needed reduction sequence as characterised by Theorem 4.8.7.

80

Chapter 4. Towards a Standard Theory for the Lambda-Value Calculus

4.9.1 Spine strategies

A recursive v-needed strategy (complete v-strategy) can reduce abstractions provided that
operands are reduced weakly, consequently the spine of the term can be traversed eagerly.
We introduce the v-strategy value spine order denoted by ⇓vs :

x ⇓vs x
(Var)

B ⇓vs B′

λx.B ⇓vs λx.B′
(Abs)

M ⇓vh M ′ N ⇓pv N ′ (M ′ ≡ λx.B ∧N ′ ∈ Val) [N ′/x]B ⇓vs B′

M N ⇓vs B′
(Con)

M ⇓vh M ′ N ⇓pv N ′ (M ′ 6≡ λx.B ∨N ′ 6∈ Val) M ′ ⇓vs M ′′ N ′ ⇓vs N ′′

M N ⇓vs M ′′N ′′
(Stk)

As before, variables are already v-normal forms (rule Var). Value spine order reduces
abstractions to v-normal forms (rule Abs). But it uses value head reduction ⇓vh on the
operator and pure call-by-value on the operand (rule Con). In the case of an stuck term
it reduces operator and operand to v-normal form (rule Stk).

Value head reduction is defined by the rules:

x ⇓vh x
(Var)

B ⇓vh B′

λx.B ⇓vh λx.B′
(Abs)

M ⇓vh M ′ N ⇓pv N ′ (M ′ ≡ λx.B ∧N ′ ∈ Val) [N ′/x]B ⇓vh B′

M N ⇓vh B′
(Con)

M ⇓vh M ′ N ⇓pv N ′ (M ′ 6≡ λx.B ∨N ′ 6∈ Val)

M N ⇓vh M ′N ′
(Stk)

As value spine order, value head reduction traverses the spine of the term reducing the
operands weakly using pure call-by-value. But now, in the case of stuck terms the operator
and the operand are not fully reduced. Value head reduction delivers a v-nenf.

4.10 Intuition for models of λV

Given two terms M and N , assume the set of open contexts can be partitioned in three
subsets according to their reduction under SECD (⇓s): both C1[M] and C1[N] have a
value, both C2[M] and C2[N] get stuck, or both C3[M] and C3[N] diverge. Then M and
N are operationally equivalent broadly conceived. However, lattice models for λV should
reflect a finer notion of operational equivalence that distinguishes in C2[M] and C2[N]
the scope at which a stuck term pops up. More precisely, consider M ≡ (λz.I)(x y)P and
N ≡ I((λz.P)(x y)) which are v-nfs if P is in v-nf. For those contexts C1[] for which

81

4.10. Intuition for models of λV

(x y) becomes a value then C1[M] ⇓s P and C1[N] ⇓s P . For those contexts C1[] for
which (x y) is stuck then C2[M] and C2[N] can be considered observationally different
with regards to the scope at which the stuck (x y) pops up. This suggests a meaning for
v-nfs.

82

Addendum

4.11 Needed reduction

When we first wrote the manuscript on which Chapter 4 is built, we gave a syntactic
characterisation of needed reduction in λK and λV which was inspired by the notion of
neededness in (TeReSe, 2003, Section 9.2). Later on, we discovered that needed reduction
was fully explored for λK in (Barendregt et al., 1987). Thus, there exist some overlap
between our Chapter 4 and the latter, in particular in relation to the classical lambda cal-
culus. However, the notion of needed reduction in the lambda-value calculus in Chapter 4
is relevant and genuinely original.

4.12 Operational relevance in λV

We introduce a definition of operational relevance in lambda-value which considers the
lambda-value normal forms as the definite results:

Definition 4.12.1. A term M is operationally relevant in λV iff there exists a context
C[] such that C[M]→∗βV N ∈ VNF, and it is not the case that for a term P belonging to
a class of terms which are not βV -equivalent to M , P could be substituted by M in C[]
without affecting the result, i.e., it is not the case that C[P]→∗βV N ∈ VNF.

In words, a term is operationally relevant in λV iff it could be used effectively in λV in
order to produce a v-normal form.

Along Chapter 4 we inquired whether the v-needed contexts were enough to characterise
effective use in λV . In Section 4.3 we introduced the syntactic notion of quasi-v-solvability
in the belief that it would capture operational relevance in lambda-value as in Defini-
tion 4.12.1. Unfortunately this is not the case, since there are terms in VNeNF which
cannot be sent to a VNF. Consider the term M ≡ x((λy.Ω)(z I)). M is a VNeNF because
the operand (λy.Ω)(z I) is a VWNF (see Definition 4.3.11), i.e., it only has redices under
lambda abstraction, and the v-needed reduction will not hit the divergent body of λy.Ω
because z I is a stuck term. However, the Ω could not be discarded by turning z I into a
value, nor it could be reduced to a VNF. Thus, M is not operationally relevant in λV .

The recursive v-needed redices characterise effective use and complete strategies in λV .
Quasi-v-solvability can be defined in terms of βV -reduction, and it is enough to prove
the Genericity Lemma in λV (see Section 4.4). The λV -theory HV equates the quasi-
v-unsolvables of the same order in a consistent way (see Section 4.6). However, having a

83

4.12. Operational relevance in λV

VNeNF falls short as to capture operational relevance in λV , since some of the ‘points’ in
HV are not operationally relevant in λV . In a way, the ‘intermediate normal forms’ (i.e.,
the λV analogous of the head normal forms) should be reduced further in order to filter
terms as the M example above.

This fact claims for a refinement of our syntactic characterisation. In some ongoing
work, we introduce a novel ‘ribcage normal form’ which takes this problem into account
and only allows arbitrary terms in some ‘rib ends’, i.e., in positions which are discardable
according to λV reduction. We are developing a proof to show that the ribcage normal
forms can be sent to a VNF by providing arguments to it. Providing arguments is what dis-
tinguish the relevant uses from the ‘trivial uses’ where a term would only be discarded and
hence it could be replaced by a family of terms (see the Genericity Lemma in Section 4.4).
We focus on the occurrences of what we call stuck accumulators, of the form xVal1 . . .Valn,
inside the ribcage normal forms. We only allow a stuck accumulator to block a v-redex with
operator λy.B when the B is reduced enough as for the application (λy.B)(xVal1 . . .Valn)
to be hereditarily solvable by solving the stuck accumulators inside B. Term B also has
to preserve the ability of the application (λx.B)(xVal1 . . .Valn) to be hereditarily freezable
(i.e., it could be kept as a stuck normal form) in order to avoid the issues that are brought
up by terms similar to the U ≡ (λx.∆)(x I)∆ in (Paolini & Ronchi Della Rocca, 1999).
Our ribcage normal forms can be characterised in terms of βV -reduction. The definition
of the ribcage normal forms is rather intricate, and the details of this material are omitted
here, since the proofs are not fully finished. A preliminary version has been presented in
the International Workshop on Domain Theory and Application, Paris, 8-10 September
2014.

84

Part II

Full-Reducing Machines

85

5
On the Syntactic and

Functional Correspondence between
Hybrid (or Layered) Normalisers and

Abstract Machines

El modo de dar una vez en el clavo es dar cien veces en la herradura.1

(Miguel de Unamuno)

We show how to connect the syntactic and the functional correspondence for normalis-
ers and abstract machines implementing hybrid (or layered) reduction strategies, that is,
strategies that depend on subsidiary sub-strategies. Many fundamental strategies in the
literature are hybrid, in particular, many full-reducing strategies, and many full-reducing
and complete strategies that deliver a fully reduced result when it exists. If we follow the
standard program-transformation steps the abstract machines obtained for hybrids after
the syntactic correspondence cannot be refunctionalised, and the junction with the func-
tional correspondence is severed. However, a solution is possible based on establishing
the shape invariant of well-formed continuation stacks. We illustrate the problem and the
solution with the derivation of substitution-based normalisers for normal order, a hybrid,
full-reducing, and complete strategy of the pure lambda calculus. The machine we obtain
is a substitution-based, eval/apply, open-terms version of Pierre Crégut’s full-reducing
Krivine machine KN.

1To strike a nail once, you must strike the horseshoe a hundred times. (Translation by Great Thoughts
Treasury http://www.greatthoughtstreasury.com/node/517259.)

87

http://www.greatthoughtstreasury.com/node/517259

5.1. Introduction

5.1 Introduction

Figure 2.3 depicts the derivation path for semantic artefacts. Reduction-based and reduction-
free normalisers (and intermediate abstract machines) are equivalent because the transfor-
mation steps are equivalence-preserving. Consequently, the artefacts implement the same
reduction strategy. A search function is a simpler artefact which, although not strictly
equivalent, is sufficient to characterise the structural operational semantics (Danvy et al.,
2011). It connects the structural and context-based semantics, recomposition is straight-
forward to add and, more importantly for us, the simplification and defunctionalisation
of the search function reveals the continuation stack, which is not the case if the starting
point is a whole implementation of the structural operational semantics that searches the
input term, contracts the redex, and delivers the next reduct.

The Problem If we follow the standard program-transformation steps (Ager et al.,
2003b,a; Danvy & Nielsen, 2004; Danvy, 2005; Danvy & Millikin, 2008; Biernacka & Danvy,
2007; Danvy et al., 2011) it is not possible to connect the syntactic and the functional corre-
spondence for normalisers implementing ‘hybrid’ strategies. The correspondences and the
connection have been successfully established for ‘uniform’ strategies such as call-by-name
and call-by-value, and a functional correspondence between a big-step virtual machine and
a reduction-free normaliser has been established for a hybrid strategy, namely, normal
order (Ager et al., 2003a).

We have borrowed the uniform/hybrid terminology from (Sestoft, 2002) where it is
used informally. A strategy is uniform when it is defined as a single function that only
depends on itself, e.g., no other function occurs in the premisses of the inference rules of
its natural semantics. In contrast, a strategy is hybrid (or layered) when it is defined as a
single function that depends on (at least) another subsidiary strategy.2 For example, the
natural semantics of a hybrid ⇓h will have inference rules where a subsidiary ⇓s occurs in
one or more premisses. Here is a possible example rule:

M ⇓s M ′ M ′ ⇓h N
M ⇓h N

(Rule)

In words, and reading relational notation functionally, Rule says that ⇓h reduces M to
N by first reducing M to M ′ using ⇓s and then reducing M ′ to N recursively. The term
M ′ is the point at which ⇓s stops and ⇓h resumes.

In many practical strategies (see Section 5.8), the subsidiary is employed by the hy-
brid to reduce some subterms less in order to uphold some properties. Which strategy,
subsidiary or hybrid, is to start, continue, or resume the next reduction is clear in the
semantics. In the syntactic correspondence, several semantic artefacts (subsidiaries and
hybrid) are written in parallel. However, the refocusing and inlining-of-iterate-function

2We insist on ‘single-function’ to avoid confusion with definitions in eval-readback style (Section 5.3), a
degenerate case of normalisation-by-evaluation where a strategy is defined as the composition of two single
functions, e.g., two natural semantics.

88

Chapter 5. Deriving Hybrid Normalisers

steps become context dependent, and the dispatcher of the abstract machine has to inspect
the continuation stack (the arguments of value constructors that represent defunctionalised
continuations) deeply to find out which strategy is to continue. This prevents the refunc-
tionalisation of the machine. Defunctionalisation and refunctionalisation require ‘shallow
inspection’ of the continuation stack (Ager et al., 2003b). In this thesis we shall refer to
this requirement as the shallow inspection property.

Hereafter, when we say that a strategy is ‘hybrid’ we will not only mean that the
strategy is defined in hybrid style, as discussed before. We will use the name for strategies
that are also hybrid in nature, that is, the subsidiaries are intrinsic to the strategy even
if not written explicitly in a particular semantic definition. We define ‘hybrid nature’
formally and further discuss this point in Section 5.3. The technical solution we present
applies to strategies in hybrid style independently of whether they are hybrid in nature
or uniforms in a hybrid-style disguise. However, the hybrid style is the natural way of
defining a hybrid strategy, and defining in uniform style a strategy that is hybrid in nature
is a recipe for unnatural derivations, as simply illustrated by outermost reduction (Danvy
& Johannsen, 2013) discussed in Section 5.8.

Why the problem is important Many fundamental strategies in the literature are
hybrid, in particular, many full-reducing strategies, and many full-reducing and complete
strategies. A strategy is full-reducing if its final results are normal forms, i.e., terms with
no redices. A full-reducing strategy is complete if it delivers a normal form when the input
term has one. A strategy is incomplete if it diverges for some terms which have normal
form. Full-reducing strategies are important in program optimisation by partial evaluation
and type checking in proof assistants (Crégut, 1990).

Examples of hybrid strategies of the lambda calculus are normal order and head re-
duction (Barendregt, 1984), hybrid normal order and hybrid applicative order (Sestoft,
2002), strong reduction (Grégoire & Leroy, 2002) (similar to byValue in (Paulson, 1996,
p.390) but with right to left reduction of applications in the subsidiary as we explain in
Section 5.8), the ahead machine (Paolini & Ronchi Della Rocca, 1999) (which delivers so-
called ‘value head normal forms’ in the pure lambda calculus), and theG reduction relation
whose implementation as an instance of the principal reduction machine of the parametric
lambda calculus realises an outermost normalising strategy of the pure lambda-value cal-
culus (Ronchi Della Rocca & Paolini, 2004, chp.5). A hybrid strategy outside the lambda
calculus is the outermost strategy for arithmetic expressions (Danvy & Johannsen, 2013).
Of the above, normal order, hybrid normal order, G, and outermost reduction for arith-
metic expressions are full-reducing and complete. Head reduction is complete with respect
to head normal forms, strong reduction is complete within the strongly-normalising calcu-
lus where it is meant to be used, hybrid applicative order is full-reducing but incomplete,
and so on. In contrast, examples of uniform strategies are call-by-name, call-by-value, ap-
plicative order,3 and head spine (Sestoft, 2002; Barendregt et al., 1987), the latter similar

3There is often a confusion with applicative order and call-by-value. Applicative order is a full-reducing
but incomplete strategy of the pure lambda calculus that realises the idea of passing parameters in normal

89

5.1. Introduction

to headNF in (Paulson, 1996, p.390). The natural semantics of some of the above strategies,
uniform and hybrid, can be found in (Sestoft, 2002). In Section 5.8 we cherry-pick a few
hybrids from the list to discuss the general applicability of our technique.

Contributions We show that refocusing and inlining-of-iterate-function steps become
context dependent, the resulting abstract machine cannot be refunctionalised, and thus
the junction with the functional correspondence is severed. However, the grammar of
well-formed continuation stacks has a shape invariant that informs of which configuration
of the abstract machine (hybrid or subsidiary) has to be invoked. This invariant can be
used to recover shallow inspection. An expert inter-derivationist may observe the shape
invariant in the code for one particular strategy, but producing the grammar of well-
formed continuation stacks, and from there the invariant, is the systematic and formal
step. Moreover, a non-deterministic finite automaton can be constructed that establishes
the formal correspondence between well-formed continuation stacks and reduction contexts.
Finally, thanks to the single-function nature of the semantics, the artefacts are implemented
using single-layer continuation-passing style without control delimiters, as opposed to a
two-layer CPS or a single-layer CPS with control delimiters (Biernacka et al., 2005).

In this chapter we illustrate the problem and the solution by deriving substitution-
based4 semantic artefacts for normal order, the standard full-reducing and complete strat-
egy of the pure lambda calculus. The code of the derivation is available on line.5 We use the
same programming language (Standard ML) and follow the same steps in the presentation
of the derivation as (Danvy, 2005) and (Danvy et al., 2011).

As further evidence of the applicability of our solution (which we discuss further in Sec-
tion 5.8) we have also derived substitution-based semantic artefacts for hybrid applicative
order (Sestoft, 2002), a hybrid strategy that is full-reducing but incomplete. The code of
the derivation is also available on line.6 The grammar of well-formed continuation stacks
and the shape invariant are documented in the code.

In the normal order derivation we obtain a substitution-based, eval/apply, open-terms
version of Pierre Crégut’s full-reducing Krivine machine KN (Crégut, 2007). In (García-
Pérez et al., 2013) we have recently derived the original environment-based, push/enter,
closed-terms, etc, version of the machine from a lambda calculus of closures with de Bruijn
indices and levels. In that work we used the grammar of well-formed continuation stacks
not only to recover shallow inspection but also to remove explicit control from an abstract
machine. There are, therefore, other applications of well-formed continuation stacks that

form. Call-by-value in the pure lambda calculus realises the idea of passing parameters in weak normal
form (Sestoft, 2002). Call-by-value in the applied lambda-value calculus of (Plotkin, 1975) and in the pure
lambda-value calculus of (Ronchi Della Rocca & Paolini, 2004) realises the idea of passing parameters in
‘non-application’ form.

4A normaliser is substitution-based when it relies on an external capture-avoiding substitution function.
In contrast, environment-based normalisers carry an environment parameter with the delayed substitu-
tions (Biernacka & Danvy, 2007).

5http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/normal-order.sml
6http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/hybrid-applicative-order.sml

90

http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/normal-order.sml
http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/hybrid-applicative-order.sml

Chapter 5. Deriving Hybrid Normalisers

are worth exploring.

Structure of the chapter In Section 5.2 we show the structural, natural, and context-
based operational semantics of normal order. In Section 5.3 we elaborate on the issue of the
hybrid nature of a strategy. In Sections 5.4 to 5.7 we discuss the derivation of the semantic
artefacts. We start from search functions and arrive at a reduction-free normaliser. The
following sections are of particular interest: Section 5.4.5 where we define the grammar of
continuation stacks from the type of defunctionalised continuations, Section 5.5.1 where we
obtain the grammar of well-formed continuation stacks, prove the shape invariant, and con-
struct the NFA, Section 5.6.2 where we illustrate why refocus becomes context-dependent,
and Section 5.6.6 where we illustrate the loss of shallow inspection and recover it using
the shape invariant. There, we arrive at a version of the full-reducing Krivine machine. In
Section 5.8 we present other hybrid strategies and discuss the general applicability of our
technique which applies not just to normal order but to any hybrid strategy. As usual, we
close this chapter with related and future work, and conclusions.

5.2 Normal order, a hybrid strategy

Normal order is the standard full-reducing and complete strategy of the pure lambda
calculus. It is defined by the slogan ‘contract the leftmost redex first’ understanding
‘leftmost’ as in (Curry & Feys, 1958) or ‘leftmost-outermost’ when referring to the redex’s
position in the abstract syntax tree of the term. Intuitively, given an abstraction λx.B,
normal order ‘goes under lambda’ and reduces B to nf. However, given an applicationM N ,
if M is β-reducible in an arbitrary number of steps to an arbitrary abstraction λx.B, at
that point the leftmost-outermost redex is (λx.B)N and normal order must reduce that
redex and not reduce λx.B. Since normal order reduces abstractions fully it cannot invoke
itself recursively on M . It must rely on a less reducing strategy, one that does not reduce
abstractions and does not reduce operands. In other words, it must rely on call-by-name.

The following sections present the structural, natural, and context-based operational
semantics of normal order. The structural and natural versions are defined in the typical
format of Hilbert-style logical theories where inference rules have zero or more premisses
and at most one conclusion. The context-based or reduction semantics is the starting point
of the syntactic correspondence.

5.2.1 Structural operational semantics

Figure 5.1 defines the structural operational semantics of small-step normal order →no

together with its subsidiary small-step call-by-name →bn . It also defines whnfs and nfs
grammatically.

Call-by-name is a uniform strategy defined only in terms of itself. It is defined by two
rules for applications. There are no rules for variables and abstractions because these are

91

5.2. Normal order, a hybrid strategy

(λx.B)N →bn [N/x]B
(Bn-β)

M 6∈WHNF M →bn M
′

M N →bn M
′N

(Bn-µ)

(λx.B)N →no [N/x]B
(No-β)

M 6∈WHNF M →bn M
′

M N →no M
′N

(No-µ1)

M ∈WHNF M 6≡ λx.B M →no M
′

M N →no M
′N

(No-µ2)

M ∈ NF M 6≡ λx.B N →no N
′

M N →no M N ′
(No-ν)

B →no B
′

λx.B →no λx.B
′ (No-ξ)

WHNF ::= λx.Λ | x {Λ}∗
NF ::= λx.NF | NNF

NNF ::= x {NF}∗

Figure 5.1: Structural operational semantics of normal order. The dependency of normal
order on call-by-name is highlighted. The greyed premisses are redundant but explanatory.

whnfs. Axiom Bn-β applies when the operator is an abstraction. This rule realises call-
by-name β-contraction. Rule Bn-µ applies when the operator M is an application that is
not a whnf. The greyed first premiss in Bn-µ is redundant, for if the second premiss holds
then the greyed premiss holds. Nevertheless we include it for readability and to better
explain the search functions of Section 5.4.2.

Normal order is a hybrid strategy that depends on subsidiary call-by-name. Normal
order is defined by one rule for abstractions and four rules for applications. Axiom No-β
realises normal order β-contraction, and rule No-ξ means ‘go under lambda’. Rule No-
µ1 applies when the operator is not in whnf. The greyed first premiss is also redundant.
The second premiss holds when (and therefore prescribes that) call-by-name reduction is
performed on the operator. This premiss is where the dependency on call-by-name occurs
and is highlighted in the figure. Rule No-µ2 applies when the operator is in whnf but not
an abstraction nor a nf. (If it were an abstraction then No-β would have been applicable,
if it were a nf then Rule No-ν would be the candidate for applicability.) Rule No-ν applies
when the operator is in nf but not an abstraction and the operand is not a nf. Although a
term in nf is also in whnf, No-µ2 and No-ν are non-overlapping because the third premiss
of No-µ2 is not the case when M is a nf. In both cases, the application MN is a neutral
term, i.e., an application that does not reduce to a redex and is an instance of the regular
expression xΛ {Λ}∗. In No-ν, M is either a variable or a neutral term in normal form
xNF {NF}∗, or more succinctly, a term in NNF (Figure 5.1) which by abuse of language
we shall call a neutral term in normal form because including variables will simplify later

92

Chapter 5. Deriving Hybrid Normalisers

x ⇓bn x
(Bn-Var)

λx.B ⇓bn λx.B
(Bn-Abs)

M ⇓bn M ′ M ′ ≡ λx.B [N/x]B ⇓bn B′

M N ⇓bn B′
(Bn-Con)

M ⇓bn M ′ M ′ 6≡ λx.B
M N ⇓bn M ′N

(Bn-Neu)

x ⇓no x
(No-Var)

B ⇓no B′

λx.B ⇓no λx.B′
(No-Abs)

M ⇓bn M ′ M ′ ≡ λx.B [N/x]B ⇓no B′

M N ⇓no B′
(No-Con)

M ⇓bn M ′ M ′ 6≡ λx.B M ′ ⇓no M ′′ N ⇓no N ′

M N ⇓no M ′′N ′
(No-Neu)

Figure 5.2: Natural semantics of normal order. The dependency of normal order on call-
by-name is highlighted.

definitions.

5.2.2 Natural semantics

Figure 5.2 defines the natural semantics of big-step normal order ⇓no together with sub-
sidiary big-step call-by-name ⇓bn . Call-by-name is a uniform strategy defined only in terms
of itself. Rule Bn-Var says call-by-name is an identity on variables. Rule Bn-Abs says
it does not go under lambda. Rule Bn-Con says it reduces redices without reducing the
operands. Rule Bn-Neu says it does not reduce operands in neutral terms.7

Normal order is a hybrid strategy that depends on subsidiary call-by-name (the depen-
dencies are highlighted in the figure). Rule No-Var says normal order is an identity on
variables. Rule No-Abs says normal order goes under lambda. Rules No-Con and No-
Neu say in their first premiss that normal order depends on call-by-name to reduce op-
erators in applications MN which are potential redices. If the result is an abstraction
(second premiss of rule No-Con) then normal order reduces the redex without reducing
the operand. If the result is not an abstraction (second premiss of rule No-Neu) then the

7As explained in (Sestoft, 2002, p.421), this rule is what distinguishes call-by-name in the pure lambda
calculus from its definition in the applied by-name calculus of (Plotkin, 1975) where there are no neutrals.

93

5.2. Normal order, a hybrid strategy

datatype term = IND of int | LAM of term | APP of term * term

(* bn : term -> term *)
fun bn (i as IND n) = i

| bn (l as LAM b) = l
| bn (APP (m, n)) = let val m’ = bn m

in (case m’ of (LAM b) => bn (subst (b, n, 0))
| _ => APP (m’, n))

end

(* no : term -> term *)
fun no (i as IND n) = i

| no (LAM b) = LAM (no b)
| no (APP (m, n)) = let val m’ = bn m

in (case m’ of (LAM b) => no (subst (b, n, 0))
| _ => APP (no m’, no n))

end

Figure 5.3: Canonical substitution-based reduction-free normaliser for normal order

original application MN is a neutral term. In that case normal order reduces the operator
and the operand fully. It is immediate to prove that call-by-name is a right identity of nor-
mal order (⇓no =⇓no ◦ ⇓bn) and, moreover, that the order in which call-by-name reduces
the redices of M corresponds to the order in which normal order is to reduce the redices
of M .

Both ⇓no and ⇓bn are syntax-directed partial functions. The Boolean conditions in pre-
misses are non-overlapping and so the rules can be applied deterministically and translate
directly to a strict functional program in which a term matching the left-hand-side of the
conclusion is recursively reduced according to the premisses from left to right, with condi-
tions corresponding to case analysis. Such a program is the canonical substitution-based
reduction-free normaliser shown in Figure 5.3, where the dependency on subsidiary bn is
highlighted in the code of hybrid no. We have chosen a de-Bruijn-indices representation for
lambda terms (Barendregt, 1984). Function subst implements the standard substitution
operator for de Bruijn terms. We omit its definition here for brevity and refer the reader
to the on-line code.

5.2.3 (Context-based) reduction semantics

A reduction semantics is the starting point of a syntactic correspondence (Danvy & Nielsen,
2004). The reduction semantics of call-by-name and normal order are shown in Figure 5.4.
In Section 5.4 we derive the reduction-based normaliser that implements the reduction

94

Chapter 5. Deriving Hybrid Normalisers

Cbn [] ::= [] | Cbn [] Λ
Cbn [(λx.B)N]→bn Cbn [[N/x]B]

Cno [] ::= [] | Cbn [] Λ | λx.Cno [] | Cne []
Cne [] ::= NNFCno [] | Cne [] Λ
Cno [(λx.B)N]→no Cno [[N/x]B]

Figure 5.4: (Context-based) reduction semantics for normal order.

semantics of normal order. A reduction semantics consists of a grammar for reduction
contexts and a contraction rule for redices within context holes. Reduction is defined
as the iteration of (i) uniquely decomposing the term into a reduction context plus a
redex within the hole, (ii) contracting the redex within the hole and, (iii) recomposing the
resulting term. The iteration either terminates when the term is irreducible or otherwise
diverges.

Call-by-name is a uniform strategy, its context grammar only involves call-by-name
contexts Cbn []. Normal order is a hybrid strategy, its context grammar involves call-by-
name contexts (highlighted). The greyed call-by-name contraction rule is not part of the
normal order reduction which has its own unique contraction rule. Call-by-name contexts
are defined by two productions, one for the empty context when a redex is found, and
another for recursively going over operators in applications. Normal order contexts Cno []
are defined by four productions. The first production derives an empty context (the input
term is a redex). The second derives an application with a call-by-name context in operator
position. The third production derives an abstraction with the context in the body (‘going
under lambda’). The fourth derives a neutral context Cne [] which is in turn defined by
two productions, one for neutral terms in normal form to the left of a normal order context,
and another for going recursively over operators of neutral terms.

Neutral contexts do not define a strategy because they do not derive an empty context.
Observe that the last two productions for Cno [] precisely match the shape of a whnf and
‘specify’ the further reduction of the whnf obtained by call-by-name reduction.

Figure 5.5 shows an example of a reduction sequence for a particular term. The reduc-
tion contexts obtained are shown on the right.

Theorem 5.2.1 (Unique decomposition). A term T is either a nf or there exists a unique
context Cno [] and redex R such that T ≡ Cno [R].

Proof. By structural induction on T .

Case T ≡ x: T is in nf.

Case T ≡ λx.B: if B is in nf then T is in nf. Otherwise, by the ind. hyp. we have
B ≡ Cno [R] and therefore T ≡ λx.Cno [R]. The unique context for T is λx.Cno []

95

5.3. Hybrid style and hybrid nature

(I(x(λx.I I)))N

C1[I(x(λx.I I))]

C1[x(λx.I I)]

(x(λx.I I))N

C2[I I]

C2[I]

(x(λx.I))N

decompose

β

recompose

decompose

β

recompose

Context Derivation

C1[] ≡ []N Cno []⇒
Cbn [] Λ⇒
[] Λ⇒ []N

C2[] ≡ (x(λx.[]))N Cno []⇒ Cne []⇒
Cne [] Λ⇒
(NNFCno []) Λ⇒
(xCno []) Λ⇒
(x(λx.Cno [])) Λ⇒
(x(λx.[])) Λ⇒
(x(λx.[]))N

Figure 5.5: Example of a normal order reduction sequence in the context-based reduction
semantics. The terms I and N stand respectively for the identity abstraction (λx.x) and
for a term in normal form.

derivable from the axiom as follows: Cno []⇒ λx.Cno [].

Case T ≡M N with M ≡ λx.B: whether B is in nf or not, T is a redex and the unique
context for T is [] derivable from the axiom as follows: Cno []⇒ [].

Case T ≡M N with M 6≡ λx.B: there are two sub-cases:

Case M ∈ NNF: if N is in nf then T is in nf. Otherwise, by the ind. hyp. we have
N ≡ Cno [R] and therefore T ≡M Cno [R]. The unique context for T isM Cno []
derivable from the axiom as follows: Cno []⇒ Cne []⇒ NNFCno []⇒M Cno [].

Case M 6∈ NNF: M is not in nf or otherwise it would be an abstraction and we are
assuming M 6≡ λx.B. By the ind. hyp. we have M ≡ Cno [R] and therefore T ≡
Cno [R]N . The only non-terminals leading to a redex in operator position are
Cbn [] and Cne []. These are disjoint cases: in Cbn [] the redex is located in the
leftmost operator of a multiple application whereas in Cne [] the redex is located
at the right of a NNF in the leftmost neutral operator of a multiple application.
In the first case the unique context for T is Cbn []N derived from the axiom as
follows: Cno [] ⇒ Cbn [] Λ ⇒ Cbn []N . In the second case the unique context
for T is Cne []N derived as follows: Cno []⇒ Cne []⇒ Cne [] Λ⇒ Cne []N .

5.3 Hybrid style and hybrid nature

In Section 5.1 we defined uniform and hybrid style, and contrasted it to the notion of
uniform and hybrid nature. We concentrate the discussion on the latter in this section,

96

Chapter 5. Deriving Hybrid Normalisers

where we define it formally and discuss its significance. Let L(Cst []) be the language of
reduction contexts of strategy st .

Definition 5.3.1. (i) A strategy u is uniform in nature iff given contexts C[] ∈ L(Cu[])
and C′[] ≡ C[C′′[]], then C′[] ∈ L(Cu[]) iff C′′[] ∈ L(Cu[]).

(ii) A strategy h is hybrid in nature iff h is not uniform in nature.

In words, given a reduction context C[] of u, all the reduction contexts C′[] of u that
have C[] as a prefix, i.e., C′[] ≡ C[C′′[]], are generated by inclusion of the language
L(Cu[]) in C[]. The latter implies that the language L(Cu[]) is closed by inclusion. For
example, given call-by-name contexts []M and []N the inclusions ([]M)N and ([]N)M are
call-by-name contexts. This applies to every call-by-name context and thus the strategy is
uniform in nature. In contrast, given normal order contexts []M and λx.[] the inclusion
(λx.[])M is not a normal order context. The strategy is hybrid in nature.

Definition 5.3.2. A strategy h that is hybrid in nature depends on a (different) subsidiary
strategy s iff for some context C[] ∈ L(Ch[]) and for any context C′[] ≡ C[C′′[]], then
C′[] ∈ L(Ch[]) iff C′′[] ∈ L(Cs[]).

In words, for some reduction context C[] of h, all the reduction contexts C′[] of h that
have C[] as a prefix, i.e., C′[] ≡ C[C′′[]], are generated by inclusion of the subsidiary
language L(Cs[]) in C[]. The latter implies that the inclusion of any context of s inside
C[] is a context of h, and that there may exist a context C′[] of h such that the inclusion
of C′[] inside C[] is not a context of h. For example, given the normal order context
C[] ≡ []M the inclusion of call-by-name context []N inside C[] gives the normal order
context ([]N)M . However, the inclusion of the normal order context λx.[] inside C[]
gives (λx.[])M which is not a normal order context. We are assuming that a strategy has
the empty context [] in its language of contexts, a so-called strategy that does not contract
the input redex term is a questionable device. For example, Cne [] in Section 5.2.3 is not
a subsidiary strategy of normal order. Had Cne [] included the empty context (by adding
the production Cne [] ::= []) then it would be a subsidiary strategy of Cno [], as well as
a super-strategy of Cbn [], and thus Cno [] would depend on Cbn [] through Cne []. Notice
that in such a case, both no and ne would be hybrid strategies depending on each other.
We assume that a hybrid strategy depends on at least one subsidiary strategy, which may
in turn be uniform or hybrid.

The distinction between style (a property of a semantic definition) and nature (a prop-
erty of a strategy) means that it is possible to define a hybrid in nature in uniform style by
making the subsidiaries implicit. However, due to the hybrid nature, the subsidiaries can
be ‘unearthed’ and made explicit in hybrid style across semantic definitions (structural,
context-based, natural, etc). For example, the various uniform-style structural operational
semantics of normal order discussed in (García-Pérez & Nogueira, 2013, Section 3) (Fig-
ure 1 and the instantiation of the principal reduction machine (Ronchi Della Rocca &
Paolini, 2004)), and Solution 5.3.6 of (Pierce, 2002, p. 502), can be rewritten in hybrid

97

5.3. Hybrid style and hybrid nature

style (Section 5.2.1) for the reasons explained in that work. Here we discuss another illus-
trative example: the natural semantics of normal order in uniform style, in the fashion of
the inner and ahead machines of (Paolini & Ronchi Della Rocca, 1999):

x ⇓no x
(Var)

B ⇓no B′

λx.B ⇓no λx.B′
(Abs)

[N0/x]BN1 . . . Nn ⇓no N ′

(λx.B)N0N1 . . . Nn ⇓no N ′
(Con)

Ni ⇓no N ′i 1 ≤ i ≤ n
xN1 . . . Nn ⇓no xN ′1 . . . N ′n

(Neu)

This definition uses a flattened representation of multiple applications and therefore the
input term must be deeply inspected down to the leftmost operator. Such an inspection
amounts to a search and test for whnf-ness (rules Con and Neu), in other words, a
strategy that reduces non-strictly up to whnf (call-by-name). Rules Var and Con in
isolation implement call-by-name. Rules Var, Abs, and Neu match the shape of a whnf.

A strategy can be defined in a natural semantics as the composition of two functions
in so-called eval-readback style (Grégoire & Leroy, 2002). The ‘eval’ function delivers
intermediate results and the ‘readback’ function distributes reduction over the subterms of
the intermediate result. The eval-readback approach is a degenerate case of normalisation-
by-evaluation (Aehlig & Joachimski, 2004) in which the value domain is the set of terms,
and readback is ‘reify’ without the translation from domain values to terms. Normal
order is defined in eval-readback as ⇓no = ⇓rn ◦ ⇓bn , where ‘eval’ is call-by-name
(unsurprisingly, ‘eval’ is performed by the subsidiary of the hybrid-style definition) and
readback ⇓rn distributes reduction over whnfs and is defined as follows:

x ⇓rn x
(Rn-Var)

B ⇓bn B′ B′ ⇓rn B′′

λx.B ⇓rn λx.B′′
(Rn-Abs)

M ⇓rn M ′ N ⇓bn N ′ N ′ ⇓rn N ′′

M N ⇓rn M ′N ′′
(Rn-Neu)

Notice that ⇓rn has no Rn-Con rule because it operates on terms in whnf, and a term
in whnf does not have an outermost redex. In Section 5.9 we discuss the advantages and
disadvantages of deriving syntactic correspondences for strategies defined in eval-readback
style. We do not use such style in this chapter.8

8An eval-readback strategy can be defined in hybrid style using the eval as subsidiary, but not every
hybrid in nature can be defined in eval-readback style, only those hybrids for which the subsidiary is a
sub-relation, i.e., every subsidiary reduction context is in the hybrid’s language of reduction contexts.

98

Chapter 5. Deriving Hybrid Normalisers

5.4 From search functions to reduction-based
normaliser

Following the steps of (Danvy et al., 2011), we derive the reduction-based normaliser for
normal order from search functions, one for normal order and another for call-by-name,
which mirror the compatibility rules of their respective structural operational semantics.
In Section 5.5.1 we introduce the shape invariant of well-formed continuation stacks which
will allow us to recover the shallow inspection property in Section 5.6.6.

5.4.1 One datatype for irreducible forms

The datatype term representing lambda calculus terms in a de-Bruijn-indices representation
has been given in Figure 5.3 on page 94. As for nfs and whnfs, we could define one datatype
for each but this would complicate defunctionalisation. Instead, since a term in nf is also in
whnf (a nf is a fully-reduced whnf) we use a single datatype whnf for both, reuse most of the
datatypes (irreducible forms, redices, defunctionalised continuations, etc.) and use single-
layer CPS. The definition of whnf follows the ‘function’ and ‘accumulator’ representation of
(Grégoire & Leroy, 2002) and conforms to the definition of whnf in Figure 5.1. In words, a
whnf is an abstraction (value constructor FUN), an index (value constructor ACC applied to
the index and an empty list), or a neutral term (value constructor ACC applied to an index
and a non-empty list of term arguments). Function embed recovers a term from a whnf, and
apply_acc appends a term operand to a whnf.

datatype whnf = FUN of term | ACC of int * term list

(* embed : whnf -> term *)
fun embed (FUN b) = LAM b

| embed (ACC (n, ts)) = foldl (fn (s, t) => APP (s, t)) (IND 0) ts

(* apply_acc : whnf * term -> whnf *)
fun apply_acc (ACC (n, ts), t) = ACC (n, ts @ [t])

5.4.2 Search functions

As suggested by the hybrid definition of the strategy, two search functions are required: a
search_nf function for the hybrid that searches for a nf or the next redex to be contracted,
and a search_whnf function for the subsidiary that searches for a whnf or the next redex
in the call-by-name sub-reduction to be contracted. In the next sections the two search
functions will be transformed into decomposition functions which, additionally to the next
redex, deliver the context where the redex appears. The search functions mirror the com-
patibility rules of the structural operational semantics of Figure 5.1. For those input terms
for which there is no compatibility rule (e.g., variables and abstractions in call-by-name)
the search functions return them as results in the form of a whnf (recall it embeds nfs).

99

5.4. From search functions to reduction-based normaliser

Below, the datatype redex represents redices, and the datatype found consists of a whnf or
a redex.

datatype redex = SUB of term * term
datatype found = WHNF of whnf | RED of redex

(* search_whnf : term -> found *)
fun search_whnf (IND n) = WHNF (ACC (n, []))

| search_whnf (LAM b) = WHNF (FUN b)
| search_whnf (APP (m, n)) =

(case search_whnf m
of (WHNF wm) => (case wm of (FUN b) => RED (SUB (b, n))

| _ => WHNF (apply_acc (wm, n)))
| (red as RED _) => red)

(* search_nf : term -> found *)
fun search_nf (IND n) = WHNF (ACC (n, []))

| search_nf (LAM b) = (case search_nf b
of (WHNF wb) => WHNF (FUN (embed wb))
| (red as RED _) => red)

| search_nf (APP (m, n)) =
(case search_whnf m

of (WHNF wm)
=> (case wm

of (FUN b) => RED (SUB (b, n))
| _ => (case search_nf (embed wm)

of (WHNF nm)
=> (case search_nf n

of (WHNF nn)
=> WHNF (apply_acc (nm, embed nn))

| (red as RED _) => red)
| (red as RED _) => red))

| (red as RED _) => red)

(* search : term -> found *)
fun search t = search_nf t

5.4.3 CPS-transformed search functions

The search functions are CPS-transformed by naming intermediate results of computation
and by turning all the calls into tail calls. Our whnfs are evaluated at call time and there
is no difference between denotable values and expressible values (Danvy, 2006b). Neither
thunks (nor their CPS counterpart) are used to represent whnfs and hence we use the
call-by-value CPS transformation.

100

Chapter 5. Deriving Hybrid Normalisers

(* search_whnf_cps : term * (found -> ’a) -> ’a *)
fun search_whnf_cps (IND n, k) = k (WHNF (ACC (n, [])))

| search_whnf_cps (LAM b, k) = k (WHNF (FUN b))
| search_whnf_cps (APP (m, n), k) =

search_whnf_cps (m,
fn (WHNF wm)

=> (case wm of (FUN b) => k (RED (SUB (b, n)))
| _ => k (WHNF (apply_acc (wm, n))))

| (red as RED _) => k red)

(* search_nf_cps : term * (found -> ’a) -> ’a *)
fun search_nf_cps (IND n, k) = k (WHNF (ACC (n, [])))

| search_nf_cps (LAM b, k) =
search_nf_cps (b,

fn (WHNF wb) => k (WHNF (FUN (embed wb)))
| (red as RED _) => k red)

| search_nf_cps (APP (m, n), k) =
search_whnf_cps (m,

fn (WHNF wm)
=> (case wm

of (FUN b) => k (RED (SUB (b, n)))
| _

=> search_nf_cps (embed wm,
fn (WHNF nm)

=> search_nf_cps (n,
fn (WHNF nn)

=> k (WHNF (apply_acc
(nm, embed nn)))

| (red as RED _) => k red)
| (red as RED _) => k red))

| (red as RED _) => k red)

(* search1 : term -> found *)
fun search1 t = search_nf_cps (t, fn f => f)

5.4.4 Simplifying the CPS-transformed search functions

The CPS-transformed search functions are simplified by making them return a result only
when a redex or a whnf is found. The simplification rests on an isomorphism between
the type signatures of continuations (Ager et al., 2005). Datatype found is the disjoint
sum of whnf and redex, and the type (whnf + redex -> ’a) is isomorphic to the type
(whnf -> ’a) * (redex -> ’a). The (redex -> ’a) continuations are always the identity
and can be optimised away. Since the result is always of type found, we can instantiate the
type variable ’a to found, leaving term * (whnf -> found) -> found as the type signature
for the CPS-simplified search functions.

101

5.4. From search functions to reduction-based normaliser

(* search_whnf_sim : term * (whnf -> found) -> found *)
fun search_whnf_sim (IND n, k) = k (ACC (n, []))

| search_whnf_sim (LAM b, k) = k (FUN b)
| search_whnf_sim (APP (m, n), k) =

search_whnf_sim (m,
fn wm => (case wm of (FUN b) => RED (SUB (b, n))

| _ => k (apply_acc (wm, n))))

(* search_nf_sim : term * (whnf -> found) -> found *)
fun search_nf_sim (IND n, k) = k (ACC (n, []))

| search_nf_sim (LAM b, k) = search_nf_sim (b,
fn wb => k (FUN (embed wb)))

| search_nf_sim (APP (m, n), k) =
search_whnf_sim (m,

fn wm => (case wm of (FUN b) => RED (SUB (b, n))
| _

=> search_nf_sim (embed wm,
fn nm

=> search_nf_sim (n,
fn nn

=> k (apply_acc
(nm,
embed nn))))))

(* search2 : term -> found *)
fun search2 t = search_nf_sim (t, fn w => WHNF w)

5.4.5 Defunctionalising continuations

Continuations are defunctionalised by enumerating the inhabitants of the function space,
collected in datatype continuation, and by introducing the apply_cont function that dis-
patches on them.

datatype continuation = C0
| C1 of term * continuation
| C2 of continuation
| C3 of term * continuation
| C4 of term * continuation
| C5 of continuation * whnf

102

Chapter 5. Deriving Hybrid Normalisers

(* apply_cont : continuation * whnf -> found *)
fun apply_cont (C0, w) = WHNF w

| apply_cont (C1 (n, k), wm) =
(case wm of (FUN b) => RED (SUB (b, n))

| _ => apply_cont (k, apply_acc (wm, n)))
| apply_cont (C2 k, wb) = apply_cont (k, FUN (embed wb))
| apply_cont (C3 (n, k), wm) =

(case wm of (FUN b) => RED (SUB (b, n))
| _ => search_nf_cont (embed wm, C4 (n, k)))

| apply_cont (C4 (n, k), nm) = search_nf_cont (n, C5 (k, nm))
| apply_cont (C5 (k, nm), nn) =

apply_cont (k, apply_acc (nm, embed nn))

(* search_whnf_cont : term * continuation -> found *)
and search_whnf_cont (IND n, k) = apply_cont (k, ACC (n, []))

| search_whnf_cont (LAM b, k) = apply_cont (k, (FUN b))
| search_whnf_cont (APP (m, n), k) = search_whnf_cont (m, C1 (n, k))

(* search_nf_cont : term * continuation -> found *)
and search_nf_cont (IND n, k) = apply_cont (k, ACC (n, []))

| search_nf_cont (LAM b, k) = search_nf_cont (b, C2 k)
| search_nf_cont (APP (m, n), k) = search_whnf_cont (m, C3 (n, k))

(* search3 : term -> found *)
fun search3 t = search_nf_cont (t, C0)

The constructors of datatype continuation are numbered according to the chronological
occurrence of the anonymous functions in Section 5.4.4 that they represent, except for C0,
which represents the initial continuation. Value constructor C1 represents the continuation
in search_whnf_sim. Value constructors C2, C3, C4 and C5 represent the continuations in
search_nf_sim. Following (Danvy et al., 2011) we write C5 of continuation * whnf with
the continuation argument first because in the code of Section 5.4.4 the continuation k
appears before the free nm in the body of the function that C5 stands for. A defunctionalised
continuation is a stack of value constructors where additionally there live terms. The type
continuation is isomorphic to continuation stacks K defined by the following grammar:

K ::= C0 | C1(term) : K | C2 : K | C3(term) : K |
C4(term) : K | C5(whnf) : K

The symbols term and whnf stand for ML expressions of the corresponding type. The
datatype notation and the sugared stack notation of the grammar are equivalent. For
example, C3(n, C0) corresponds to C3(n) : C0. We will heavily use the sugared stack
notation in Section 5.5.

103

5.5. Continuation stacks

5.4.6 From search to decomposition

We turn the search functions into decomposition functions that deliver the input term
back if in irreducible form (whnf or nf respectively) or the found redex together with the
reduction context where it appears. Functions apply_cont, search_whnf, and search_nf
in Section 5.4.5 correspond to decompose_cont, decompose_whnf, and decompose_nf respec-
tively.

datatype whnf_or_decomposition = WHNF of whnf
| DEC of redex * continuation

(* decompose_cont : continuation * whnf -> whnf_or_decomposition *)
fun decompose_cont (C0, w) = WHNF w

| decompose_cont (C1 (n, k), wm) =
(case wm of (FUN b) => DEC (SUB (b, n), k)

| _ => decompose_cont (k, apply_acc (wm, n)))
| decompose_cont (C2 k, wb) = decompose_cont

(k, FUN (embed wb))
| decompose_cont (C3 (n, k), wm) =

(case wm of (FUN b) => DEC (SUB (b, n), k)
| _ => decompose_nf (embed wm, C4 (n, k)))

| decompose_cont (C4 (n, k), nm) = decompose_nf (n, C5 (k, nm))
| decompose_cont (C5 (k, nm), nn) =

decompose_cont (k, apply_acc (nm, embed nn))

(* decompose_whnf : term * continuation -> whnf_or_decomposition *)
and decompose_whnf (IND n, k) = decompose_cont (k, ACC (n, []))

| decompose_whnf (LAM b, k) = decompose_cont (k, FUN b)
| decompose_whnf (APP (m, n), k) = decompose_whnf (m, C1 (n, k))

(* decompose_nf : term * continuation -> whnf_or_decomposition *)
and decompose_nf (IND n, k) = decompose_cont (k, ACC (n, []))

| decompose_nf (LAM b, k) = decompose_nf (b, C2 k)
| decompose_nf (APP (m, n), k) = decompose_whnf (m, C3 (n, k))

(* decompose : term -> whnf_or_decomposition *)
fun decompose t = decompose_nf (t, C0)

5.5 Continuation stacks

In this section we obtain the grammar of well-formed continuation stacks (i.e., the continu-
ations returned by function decompose) which are a subset of the K defined in Section 5.4.5.
The well-formed continuation stacks enjoy a shape invariant which is used in Section 5.6.6
to recover the shallow inspection property of the abstract machine. We also show the
correspondence of well-formed continuation stacks and the reduction contexts of normal
order that were presented in Section 5.2.3.

104

Chapter 5. Deriving Hybrid Normalisers

5.5.1 Well-formed continuation stacks and their shape invariant

Well-formed continuation stacks are defined by the following EBNF grammar (Chapter 2
introduced the regular expression notation):

W ::= A C0
A ::= ε | B C3(term) : | N | A C2 :
B ::= ε | B C1(term) :
N ::= N C4(term) : | A C5(whnf) :

In the rest of this section we prove that decompose delivers well-formed continuation
stacks and that these have a shape invariant. First, we give a definition of the decompo-
sition functions of Section 5.4.6 using the sugared stack notation (highlighted) which will
ease the presentation of the proofs of lemmata and of the theorem about the shape invari-
ant. The shape invariant will be used in Section 5.6.6 to recover the shallow-inspection
property.

(* decompose_cont : continuation * whnf -> whnf_or_decomposition *)
fun decompose_cont (C0, w) : = WHNF w

| decompose_cont (C1(n) : k, wm) =
(case wm of (FUN b) => DEC (SUB (b, n), k)

| _ => decompose_cont (k, apply_acc (wm, n)))
| decompose_cont (C2 : k, wb) = decompose_cont (k, FUN (embed wb))
| decompose_cont (C3(n) : k, wm) =

(case wm of (FUN b) => DEC (SUB (b, n), k)
| _ => decompose_nf (embed wm, C4(n) : k))

| decompose_cont (C4(n) : k, nm) = decompose_nf (n, C5(nm) : k)
| decompose_cont (C5(nm) : k, nn) =

decompose_cont (k, apply_acc (nm, embed nn))

(* decompose_whnf : term * continuation -> whnf_or_decomposition *)
and decompose_whnf (IND n, k) = decompose_cont (k, ACC (n, []))

| decompose_whnf (LAM b, k) = decompose_cont (k, FUN b)
| decompose_whnf (APP (m, n), k) = decompose_whnf (m, C1(n) : k)

(* decompose_nf : term * continuation -> whnf_or_decomposition *)
and decompose_nf (IND n, k) = decompose_cont (k, ACC (n, []))

| decompose_nf (LAM b, k) = decompose_nf (b, C2 : k)
| decompose_nf (APP (m, n), k) = decompose_whnf (m, C3(n) : k)

(* decompose : term -> whnf_or_decomposition *)
fun decompose t = decompose_nf (t, C0)

In the following lemmata we use t for the ML deep embedding of a term, and write t
∈WHNF to mean that the term is in whnf.

105

5.5. Continuation stacks

Lemma 5.5.1 (decompose_whnf). Let t be any term and k0 any continuation stack.

(i) If t 6∈WHNF then

decompose_whnf (t, k0) = DEC (SUB (b, n), k : k0)

for some b, n, and k, where k ∈ { C1(term) : }∗.

(ii) If t ∈ WHNF then decompose_whnf (t, k0) = decompose_cont (k0, w) for some w
where embed w = t.

Proof. Both (i) and (ii) are true by direct observation of the decompose_whnf function. If
t is an index or a lambda abstraction, then t ∈ WHNF and (ii) holds by the first or the
second clause of decompose_whnf respectively. If t is an application, then decompose_whnf
will traverse it recursively to the left, pushing new C1 constructors on the stack. If t
6∈ WHNF then the leftmost operator of t is a lambda abstraction LAM b such that the
second clause of decompose_cont will eventually return DEC (SUB (b, n), k : k0) where
k ∈ {C1(term) : }∗, and (i) holds. If t ∈ WHNF then the leftmost operator of t is an
index IND i such that the first clause of decompose_cont (case wm 6= FUN b) will successively
recompose a whnf reflecting the input term t until throwing it into continuation k0, i.e.,
decompose_cont (k0, w) with w = ACC (i, [...]) and embed w = t. Then (ii) holds.

Lemma 5.5.2 (decompose delivers well-formed continuation stacks W). Let t be any term
not in nf. Then decompose(t) = DEC (SUB (b, n), k) for some b, n, and k, where k ∈W.

Proof. In order to deal with an input continuation k0, we generalise the lemma as follows.
Let t be any term not in normal form, and k0 ∈W whose top constructor is neither C1 nor
C3. Then:

decompose_nf (t, k0) = DEC (SUB (b, n), k1 : k0)

for some b, n, and k1 where k1 : k0 ∈W. (The k1 : could be the empty symbol ε.)
The proof is by structural induction on t:

Case t ≡ APP (LAM b, n) : the term t is a redex and then by code expansion:

decompose_nf (APP (LAM b, n), k0)
= decompose_whnf (LAM b, C3(n) : k0)
= decompose_cont(C3(n) : k0, FUN b)
= DEC (SUB (b, n), k0)

where k0 ∈W by assumption and k1 : is equal to ε. This corresponds to production
A ::= ε in the grammar of well-formed stacks.

106

Chapter 5. Deriving Hybrid Normalisers

Case t ≡ APP (IND i, m2) : the IND i is in nf, so decomposition will eventually take the
m2 branch. Then

decompose_nf (APP (IND i, m2), k0)
= decompose_whnf (IND i, C3(m2) : k0)
= decompose_cont (C3(m2) : k0, ACC (i, []))
= decompose_nf (IND i, C4(m2) : k0)
= decompose_cont (C4(m2) : k0, ACC (i, []))
= decompose_nf (m2, C5(ACC (i, []) : k0)

which returns DEC (SUB (b, n), k1 : C5(ACC (i, [])) : k0) where the continuation
k1 : C5(ACC (i, [])) : k0 ∈ W by the induction hypothesis. This corresponds to
productions A ::= N and N ::= A C5(whnf) : in the grammar of well-formed stacks.

Case t ≡ APP (m1, m2) where m1 6≡ LAM t’: there are two sub-cases:

Case m1 is in whnf : let w1 be a whnf such that w1 6≡ FUN t’ and embed w1 = m1.
By code expansion:

decompose_nf (APP (m1, m2), k0)
= decompose_whnf (m1, C3(m2) : k0)

which by Lemma 5.5.1 delivers decompose_cont (C3(m2) : k0, w1) since the m1
is in whnf. By code expansion we get

decompose_nf (m1, C4(m2) : k0)

which, in turn, delivers DEC (SUB (b, n), k1 : C4(m2) : k0) where k1 : C4(m2) :
k0 ∈W by the induction hypothesis.
Moreover, m1 is a neutral term. Thus, the last step where the induction hypoth-
esis is used may only be the case m1 ≡ APP (IND i’, m2’) (the previous case) or
the case m1 ≡ APP (m1’, m2’) with m1’ 6≡ LAM t’’ (this very same case). Hence,
decomposition will push an arbitrary number of C4 constructors until pushing a
C5 constructor and then resuming over the operand of the leftmost index. This
corresponds to productions A ::= N and N ::= N C4(term) : | A C5(whnf) : in
the grammar of well-formed stacks.

Case m1 is not in whnf : then

decompose_nf (APP (m1, m2), k0)
= decompose_whnf (m1, C3(m2) : k0)

which returns DEC (SUB (b, n), k1 : C3(m2) : k0) where k1 ∈ { C1(term) : }∗
by Lemma 5.5.1. This corresponds to productions A ::= B C3(term) : and
B ::= ε | B C1(term) : in the grammar of well-formed stacks.

107

5.5. Continuation stacks

Case t ≡ LAM t’: the t’ is not in nf and then

decompose_nf (LAM t’, k0) = decompose_nf (t’, C2 : k0)

which returns DEC (SUB (b, n), k1 : C2 : k0) where k1 : C2 : k0 ∈W by the induction
hypothesis. This corresponds to production A ::= A C2 : in the grammar of well-
formed stacks.

Observe that the use of the induction hypothesis will produce a prefix of a well-formed stack
which omits the C0 constructor. This explains the role of the axiom W and of the auxiliary
non-terminal A in the grammar of well-formed stacks. The induction hypothesis can only
be applied over stacks whose top constructor is different from C1 or C3, (i.e., different
from the fragments generated by non-terminal B, which corresponds to bn) and the case
for C4 has been already covered by the cases where t = APP (m1, m2). This explains the
occurrences of A on top of constructors C0, C2, and C5 in the grammar of well-formed
stacks.

Theorem 5.5.3 (Shape invariant). Let k ∈W.

(i) In k, a C1 constructor always occurs on top of a C1 or a C3 constructor.

(ii) In k, a C3 constructor never occurs on top of a C1 or a C3 constructor.

Proof. Both (i) and (ii) are immediate by the definition of well-formed stacks W.

The shape invariant reflects the relative order in which the constructors of defunction-
alised continuations appear in the stack, in particular those delimiting the hybrid from
the subsidiary stage, which are the ones needed to recover the shallow inspection property
(Section 5.6.6).

A hybrid strategy will have its grammar of well-formed continuation stacks. The hybrid
and the subsidiary stages alternatively take control in the decomposition function in a
deterministic way, and thus we state that the shape invariant is always observable. This
is supported by the hybrid strategies that we analyse in Section 5.8.

5.5.2 Correspondence between well-formed continuation stacks and
reduction contexts

Figure 5.6 shows the grammar of well-formed continuation stacks on the left and the gram-
mar of reduction contexts on the right. We introduce a nameful representation for well-
formed continuation stacks where term and whnf are replaced by Λ and NNF respectively
(the only whnfs appearing in N are neutrals in nf) and where constructor C2(x) (sans-serif
fonts are used for the nameful representation) carries the variable symbol x which stands
for the formal parameter in the abstraction body that is traversed after pushing C2 on the
stack. Symbols Λ and NNF in the grammar are to be considered as terminals.

108

Chapter 5. Deriving Hybrid Normalisers

W ::= AC0

A ::= ε | BC3(Λ) : | N
| AC2(x) :

B ::= ε | BC1(Λ) :
N ::= NC4(Λ) : | AC5(NNF) :

Cno [] ::= Cau [] ε
Cau [] ::= [] | Cbn [] Λ | Cne []

| λx.Cau []
Cbn [] ::= [] | Cbn [] Λ
Cne [] ::= Cne [] Λ | NNFCau []

Figure 5.6: Grammar of well-formed continuation stacks (left) and grammar of reduction
contexts (right).

Cno []Cne []

[]

Cbn []

C0/ ε

C2(x) : /λx.

_C3(Λ) : /_Λ

_C1(Λ) : /_Λ

ε/ε

C5(NNF) : /NNF

_C4(Λ) : /_Λ

ε/[] ε/[]

Figure 5.7: NFA accepting well-formed continuation stacks and reduction contexts

The two grammars are proven equivalent by respectively replacing non-terminals W,
A, B, and N on the left by non-terminals Cno [], Cau [], Cbn [], and Cne [] on the right,
respectively. The terminal symbols are translated as follows. The initial continuation C0

on the left maps to ε on the right (the extent of the context implicitly represents the bottom
of the stack). The ε on the left maps to [] on the right (the top of the stack implicitly signals
the occurrence of the hole). The other constructors of defunctionalised continuations inform
of the relative position of their arguments with respect to the remaining stack symbols,
which map to the remaining context symbols. Constructors C1(Λ), C3(Λ), and C4[](Λ)
indicate that the lambda term occurs at the right of the rest of the context, i.e., Cbn [] Λ,
Cbn [] Λ, and Cne [] Λ respectively. Constructor C5(NNF) indicates that the neutral in
normal form occurs at the left of the rest of the context, i.e., NNFCau []. Constructor
C2(x) indicates that the rest of the context lays under a lambda abstraction with formal
parameter x, i.e., λx.Cau [] Thus, the constructors of defunctionalised continuations carry
the essential information to recover the mixfix notation of reduction contexts from the
prefix notation of continuation stacks.

The grammar of reduction contexts in Figure 5.6 defines the same language as the
grammar of reduction contexts in Section 5.2.3. This is proven easily by removing the
symbol ε and by inlining recursive non-terminal Cau [] into Cno [], turning the latter into
a recursive non-terminal symbol.

The grammar of well-formed continuation stacks and the equivalent grammar of re-

109

5.6. From reduction semantics to abstract machine

duction contexts characterise the decomposition functions. As further evidence of this, we
define the non-deterministic finite automaton (NFA) of Figure 5.7. The NFA accepts the
stack and context languages (each transition is labelled with stack and context symbols,
separated by a slash). Or alternatively, the NFA is a translating device where the symbols
on the left of the slash are consumed and the symbols on the right are produced.

The NFA is obtained by taking the non-terminals of the grammar of reduction con-
texts in Figure 5.6 as states, and considering the possible productions of the grammar as
transitions. Notice that the recursive Cau [] is obviated and production Cno [] ::= Cau []
is taken as the init transition. The underscore symbol stands for the relative position of
the remaining stack (respectively, context) that the NFA is to accept. In the prefix no-
tation of continuation stacks the underscore symbol always appears to the left (on top of
the stack). In the mixfix notation of contexts the underscore’s position varies accordingly.
The ε symbol denotes that no symbols are consumed or produced. The position of the
underscore is immaterial for the ε symbol, but the right of the init transition is labelled
with _ ε in accordance with the grammar of contexts in Figure 5.6.

Although sometimes related to each other in the literature (Danvy & Millikin, 2008),
the initial continuation C0 and the hole [] are different objects. The initial continuation
represents the bottom of the stack. The bottom of the stack alone corresponds to the empty
context, but it does not correspond to a hole that is a sub-context of another context, e.g.,
the context λx.[] maps to the stack ε C2(x) : C0 where the bottom occurs at the right
side of the stack and the hole is implicitly signaled by the top of the stack in the opposite
side (i.e., the greyed ε). Dually, the extent of the context implicitly stands for the bottom
of the stack. We should morally write (λx.[])ε where the greyed ε (we have also added
greyed parentheses to indicate precedence) correspond to the bottom of the stack.

5.6 From reduction semantics to abstract machine

To obtain a reduction semantics we need a recomposition function that reconstructs a
reduct by plugging a contractum back into the context corresponding to a defunction-
alised continuation. This is implemented by a left fold over the continuation stack (alias,
reduction context). We show the sugared and desugared versions of recomposition:

(* recompose : continuation * term -> term *)
fun recompose (C0, t) : = t

| recompose (C1(n) : k, m) = recompose (k, APP (m, n))
| recompose (C2 : k, b) = recompose (k, LAM b)
| recompose (C3(n) : k, m) = recompose (k, APP (m, n))
| recompose (C4(n) : k, m) = recompose (k, APP (m, n))
| recompose (C5(nm) : k, n) = recompose (k, APP (embed nm, n))

110

Chapter 5. Deriving Hybrid Normalisers

(* recompose : continuation * term -> term *)
fun recompose (C0, t) = t

| recompose (C1 (n, k), m) = recompose (k, APP (m, n))
| recompose (C2 k, b) = recompose (k, LAM b)
| recompose (C3 (n, k), m) = recompose (k, APP (m, n))
| recompose (C4 (n, k), m) = recompose (k, APP (m, n))
| recompose (C5 (k, nm), n) = recompose (k, APP (embed nm, n))

The reduction semantics iterates decomposition, contraction and recomposition until a
nf is found. In the rest of this section we carry out the syntactic correspondence from the
implementation of the reduction semantics and obtain an abstract machine.

5.6.1 Trampolined-style normaliser

The starting point is the trampolined-style normaliser implementing the reduction seman-
tics.

type contractum = term
type result = whnf

(* contract : redex -> contractum *)
fun contract (SUB (b, n)) = subst (b, n, 0)

(* refocus : continuation * contractum -> whnf_or_decomposition *)
fun refocus con = (decompose (recompose con))

(* iterate : whnf_or_decomposition -> result *)
fun iterate (WHNF w) = w

| iterate (DEC (red, k)) = iterate (refocus (k, contract red))

(* normalise : term -> result *)
fun normalise t = iterate (decompose t)

The extensional refocus function is the composition of functions decompose and recompose.
The function contract does not have to consider execution errors. A result (if any) can
only be a nf (embedded in the whnf), otherwise the iteration diverges.

The normaliser implements a small-step state transition machine in trampolined style
(Ganz et al., 1999), where configurations (states) coincide with decompositions (i.e., datatype
whnf_or_decomposition). Discrete transitions steps are implemented by the composition of
contract, recompose and decompose. The last two constitute extensional refocusing (Danvy
& Nielsen, 2004; Danvy et al., 2011) (function refocus). The iterate function is the tram-
poline, taking a decomposition, contracting the redex and then recursively invoking itself
over the refocused contractum until the decomposition consists of a whnf (again, recall it
embeds nfs).

111

5.6. From reduction semantics to abstract machine

〈(I(x(λx.I I)))N,C0〉

〈I(x(λx.I I)),C1(N) : C0〉

〈x(λx.I I),C1(N) : C0〉

〈x(λx.I I),C1(N) : C0〉

〈I I,C2(x) : C5(x) : C4(N) : C0〉

〈I,C2(x) : C5(x) : C4(N) : C0〉

〈I,C2(x) : C5(x) : C4(N) : C0〉

〈(x(λx.I))N,C0〉

decompose_nf

contract

decompose_whnf

decompose_cont

contract

decompose_nf

decompose_cont

Figure 5.8: Context-dependent intensional refocus

5.6.2 Refocusing intensionally

We deforest recomposition and decomposition into an intensional refocus function (Danvy,
2005). The reduction-free iterate-and-refocus normaliser does away with intermediate
reducts:

(* refocus1 : continuation * contractum -> whnf_or_decomposition *)
fun refocus1 (k, t) =

(case k of (C1 (_, _) | C3 (_, _)) => decompose_whnf (t, k)
| _ => decompose_nf (t, k))

(* iterate1 : whnf_or_decomposition -> result *)
fun iterate1 (WHNF w) = w

| iterate1 (DEC (red, k)) = iterate1 (refocus1 (k, contract red))

(* normalise1 : term -> result *)
fun normalise1 t = iterate1 (refocus1 (C0, t))

At this point, if we continue to apply the standard program-transformation steps to de-
rive an artefact that realises the semantics in Section 5.6.1 then the intensional refocus1
will inspect the continuation k that it receives in order to determine which decomposition
function has to continue. This makes refocus1 a context-dependent function. Function
decompose_whnf in Section 5.4.6 is only invoked on C1 and C3. Function decompose_nf is
not invoked on C1 and C3. The case expression in refocus1 takes care of that.

For illustration, Figure 5.8 adapts the reduction example in Figure 5.5 using context-
dependent refocus and where the composition of recompose and decompose is deforested.

112

Chapter 5. Deriving Hybrid Normalisers

Instead of a term within a context, we have a pair 〈term, continuation stack〉. Instead of
recomposition followed by decomposition we have decomposition with the current contin-
uation k (i.e., decompose_whnf or decompose_nf depending on the outermost constructor in
k). When an intermediate result reaches a whnf or a nf after invoking decompose_whnf or
decompose_nf respectively, the intermediate result and the invocation on it of the dispatcher
decompose_cont is shown greyed in the diagram.

In any case, we proceed with the standard derivation which unfortunately will take us
to a machine without the shallow inspection property (Section 5.6.5).

5.6.3 Pre-abstract machine

We inline the contraction function contract in iterate1 and derive a pre-abstract machine
(Danvy & Nielsen, 2004).

(* iterate2 : whnf_or_decomposition -> result *)
fun iterate2 (WHNF w) = w

| iterate2 (DEC (SUB (b, n), k)) =
iterate2 (refocus1 (k, subst (b, n, 0)))

(* normalise2 : term -> result *)
fun normalise2 t = iterate2 (refocus1 (C0, t))

5.6.4 Lightweight fusion by fixed-point promotion

We lightweight-fuse functions iterate2 and refocus1 (Danvy & Millikin, 2008). The result
is an optimised normaliser where adjacent iterate3 and refocus1 have been fused.

(* normalise3_cont : continuation * whnf -> result *)
fun normalise3_cont (C0, w) = iterate3 (WHNF w)

| normalise3_cont (C1 (n, k), wm) =
(case wm

of (FUN b) => iterate3 (DEC (SUB (b, n), k))
| _ => normalise3_cont (k, apply_acc (wm, n)))

| normalise3_cont (C2 k, wb) = normalise3_cont
(k, FUN (embed wb))

| normalise3_cont (C3 (n, k), wm) =
(case wm

of (FUN b) => iterate3 (DEC (SUB (b, n), k))
| _ => normalise3_nf (embed wm, C4 (n, k)))

| normalise3_cont (C4 (n, k), nm) = normalise3_nf (n, C5 (k, nm))
| normalise3_cont (C5 (k, nm), nn) =

normalise3_cont (k, apply_acc (nm, embed nn))

(* normalise3_whnf : term * continuation -> result *)
and normalise3_whnf (IND n, k) = normalise3_cont (k, ACC (n, []))

| normalise3_whnf (LAM b, k) = normalise3_cont (k, FUN b)
| normalise3_whnf (APP (m, n), k) = normalise3_whnf (m, C1 (n, k))

113

5.6. From reduction semantics to abstract machine

(* normalise3_nf : term * continuation -> result *)
and normalise3_nf (IND n, k) = normalise3_cont (k, ACC (n, []))

| normalise3_nf (LAM b, k) = normalise3_nf (b, C2 k)
| normalise3_nf (APP (m, n), k) = normalise3_whnf (m, C3 (n, k))

(* iterate3 : whnf_or_decomposition -> result *)
and iterate3 (WHNF w) = w

| iterate3 (DEC (SUB (b, n), k)) =
(case k

of (C1 (_, _) | C3 (_, _))
=> normalise3_whnf (subst (b, n, 0), k)

| _
=> normalise3_nf (subst (b, n, 0), k))

(* normalise3 : term -> result *)
fun normalise3 t = normalise3_nf (t, C0)

5.6.5 Corridor transitions and inlining-of-iterate-function

There is a configuration (state) with only one possible transition.

normalise3_cont (C0, w)
=

iterate3 (WHNF w)
=

w

We contract this corridor transition by inlining. After that, we perform the inlining-
of-iterate-function step by inlining iterate3 inside normalise3_cont. The following code
shows the result with indices renamed from 3 to 4.

114

Chapter 5. Deriving Hybrid Normalisers

(* normalise4_cont : continuation * whnf -> result *)
fun normalise4_cont (C0, w) = w

| normalise4_cont (C1 (n, k), wm) =
(case wm

of (FUN b)
=> (case k of (C1 (_, _) | C3 (_, _))

=> normalise4_whnf (subst (b, n, 0), k)
| _

=> normalise4_nf (subst (b, n, 0), k))
| _

=> normalise4_cont (k, apply_acc (wm, n)))
| normalise4_cont (C2 k, wb) =

normalise4_cont (k, FUN (embed wb))
| normalise4_cont (C3 (n, k), wm) =

(case wm
of (FUN b)

=> (case k of (C1 (_, _) | C3 (_, _))
=> normalise4_whnf (subst (b, n, 0), k)

| _
=> normalise4_nf (subst (b, n, 0), k))

| _
=> normalise4_nf (embed wm, C4 (n, k)))

| normalise4_cont (C4 (n, k), nm) = normalise4_nf (n, C5 (k, nm))
| normalise4_cont (C5 (k, nm), nn) =

normalise4_cont (k, apply_acc (nm, embed nn))

(* normalise4_whnf : term * continuation -> result *)
and normalise4_whnf (IND n, k) = normalise4_cont (k, ACC (n, []))

| normalise4_whnf (LAM b, k) = normalise4_cont (k, FUN b)
| normalise4_whnf (APP (m, n), k) = normalise4_whnf (m, C1 (n, k))

(* normalise4_nf : term * continuation -> result *)
and normalise4_nf (IND n, k) = normalise4_cont (k, ACC (n, []))

| normalise4_nf (LAM b, k) = normalise4_nf (b, C2 k)
| normalise4_nf (APP (m, n), k) = normalise4_whnf (m, C3 (n, k))

(* normalise4 : term -> result *)
fun normalise4 t = normalise4_nf (t, C0)

Now iterate3 is not used. Observe that the case expression introduced in the refocusing
step (Section 5.6.2) is inlined twice in normalise4_cont (highlighted code). Consequently,
the artefact obtained does not have the shallow inspection property because normalise4_cont
pattern-matches on k at the inlined points.

115

5.6. From reduction semantics to abstract machine

5.6.6 Recovering the shallow inspection property

Function normalise4_cont dispatches on the continuation on top of the stack. In particular,
normalise4_cont dispatches on C1 (n, k) and C3 (n, k) in its second and fourth clauses
respectively, which are the clauses where the highlighted case expressions occur. We use
Theorem 5.5.3 to replace the case expressions by the appropriate normalising functions,
thus recovering the shallow inspection property. The corresponding lines are highlighted.

(* normalise5_cont : continuation * whnf -> result *)
fun normalise5_cont (C0, w) = w

| normalise5_cont (C1 (n, k), wm) =
(case wm

of (FUN b) => normalise5_whnf (subst (b, n, 0), k)
| _ => normalise5_cont (k, apply_acc (wm, n)))

| normalise5_cont (C2 k, wb) =
normalise5_cont (k, FUN (embed wb))

| normalise5_cont (C3 (n, k), wm) =
(case wm

of (FUN b) => normalise5_nf (subst (b, n, 0), k)
| _ => normalise5_nf (embed wm, C4 (n, k)))

| normalise5_cont (C4 (n, k), nm) = normalise5_nf (n, C5 (k, nm))
| normalise5_cont (C5 (k, nm), nn) =

normalise5_cont (k, apply_acc (nm, embed nn))

(* normalise5_whnf : term * continuation -> result *)
and normalise5_whnf (IND n, k) = normalise5_cont (k, ACC (n, []))

| normalise5_whnf (LAM b, k) = normalise5_cont (k, FUN b)
| normalise5_whnf (APP (m, n), k) = normalise5_whnf (m, C1 (n, k))

(* normalise5_nf : term * continuation -> result *)
and normalise5_nf (IND n, k) = normalise5_cont (k, ACC (n, []))

| normalise5_nf (LAM b, k) = normalise5_nf (b, C2 k)
| normalise5_nf (APP (m, n), k) = normalise5_whnf (m, C3 (n, k))

(* normalise5 : term -> result *)
fun normalise5 t = normalise5_nf (t, C0)

The resulting normaliser is a big-step tail-recursive implementation of the abstract machine
in Figure 5.9. The machine uses a nameful representation of terms and type annotations
n, w and c to indicate whether the configuration is the hybrid, the subsidiary, or the
dispatcher respectively. The dependency of the n configuration on the w configuration
is highlighted in the figure. The machine is a substitution-based, eval/apply, open-terms
version of the full-reducing Krivine machine KN (Crégut, 2007; García-Pérez et al., 2013).

116

Chapter 5. Deriving Hybrid Normalisers

T → (T,C0)n
(x, S)n → (x, S)c

(λx.B, S)n → (B,C2(x) : S)n
(M N,S)n → (M,C3(N) : S)w

(x, S)w → (x, S)c
(λx.B, S)w → (λx.B, S)c
(M N,S)w → (M,C1(N) : S)w

(λx.B,C1(N) : S)c → ([N/x]B,S)w
(M,C1(N) : S)c → (M N,S)c

(B,C2(x) : S)c → (λx.B, S)c
(λx.B,C3(N) : S)c → ([N/x]B,S)n

(M,C3(N) : S)c → (M,C4(N) : S)n
(M,C4(N) : S)c → (N,C5(M) : S)n
(N,C5(M) : S)c → (M N,S)c

(T,C0)c → T

Figure 5.9: Normal order abstract machine

5.7 From abstract machine to reduction-free normaliser

From an abstract machine with the shallow inspection property we can now obtain the
reduction-free normaliser by applying standard derivation steps.

5.7.1 Refunctionalisation

The abstract machine in Section 5.6.5 is an instance of a defunctionalised CPS program,
with a configuration for dispatching on the continuations (normalise4_cont) and two config-
urations for the hybrid and the subsidiary strategies (normalise4_nf and normalise4_whnf).
By refunctionalising the machine we obtain a reduction-free normaliser in CPS.

(* normalise6_whnf : term * (whnf -> ’a) -> ’a *)
fun normalise6_whnf (IND n, k) = k (ACC (n, []))

| normalise6_whnf (LAM b, k) = k (FUN b)
| normalise6_whnf (APP (m, n), k) =

normalise6_whnf (m,
fn wm => (case wm

of (FUN b) => normalise6_whnf (subst (b, n, 0), k)
| _ => k (apply_acc (wm, n))))

117

5.7. From abstract machine to reduction-free normaliser

(* normalise6_nf : term * (whnf -> ’a) -> ’a *)
and normalise6_nf (IND n, k) = k (ACC (n, []))

| normalise6_nf (LAM b, k) = normalise6_nf (b,
fn wb => k (FUN (embed wb)))

| normalise6_nf (APP (m, n), k) =
normalise6_whnf (m,

fn wm
=> (case wm

of (FUN b) => normalise6_nf (subst (b, n, 0), k)
| _ => normalise6_nf (embed wm,

fn nm
=> normalise6_nf (n,

fn nn
=> k (apply_acc

(nm, embed nn))))))

(* normalise6 : term -> result *)
fun normalise6 t = normalise6_nf (t, fn w => w)

5.7.2 Back to direct style by inverse CPS transformation

We introduce let expressions for the intermediate results and remove the continuations,
obtaining a direct-style reduction-free normaliser.

(* normalise7_whnf : term -> result *)
fun normalise7_whnf (IND n) = ACC (n, [])

| normalise7_whnf (LAM b) = FUN b
| normalise7_whnf (APP (m, n)) =

let val wm = normalise7_whnf m
in (case wm of (FUN b) => normalise7_whnf (subst (b, n, 0))

| _ => apply_acc (wm, n))
end

(* normalise7_nf : term -> result *)
fun normalise7_nf (IND n) = ACC (n, [])

| normalise7_nf (LAM b) = let val wb = normalise7_nf b
in FUN (embed wb)
end

| normalise7_nf (APP (m, n)) =
let val wm = normalise7_whnf m
in (case wm of (FUN b) => normalise7_nf (subst (b, n, 0))

| _ => let val nm = normalise7_nf (embed wm)
val nn = normalise7_nf (n)

in apply_acc (nm, embed nn)
end)

end

118

Chapter 5. Deriving Hybrid Normalisers

(* normalise7_term : term -> result *)
fun normalise7 t = normalise7_nf t

Save for the ancillary whnf datatype and the init function normalise7, this is the canonical
reduction-free normaliser in Figure 5.3, with normalise7_whnf corresponding to bn and
normalise7_nf corresponding to no. We arrive at the end of the derivation.

5.8 Applicability

As illustrated in Section 5.4.5, a hybrid strategy has a grammar of well-formed continua-
tion stacks whose shape invariant informs of the relative order in which the constructors
of defunctionalised continuations appear on the stack, in particular those delimiting the
hybrid from the subsidiary stages, which are the ones needed to recover the shallow in-
spection property. A hybrid may depend on several subsidiaries, some of which may in
turn be hybrid and depend on other subsidiaries. But the separation between the different
stages is clear and unambiguous, and the appropriate shape invariant can be obtained by
examining the grammar of well-formed continuation stacks.

As discussed in the introduction, many interesting strategies in the literature are hybrid.
In this section we show a few examples for which we have derived the grammar of well-
formed continuation stacks and determined the shape invariants that enable the recovery of
shallow inspection. The derivation of artefacts proceeds in similar fashion as we have done
for normal order. For evidence, the complete derivation of a couple of the hybrids discussed
below (preponed semantics of normal order and hybrid applicative order) is available on
line.9 The grammars of well-formed continuation stacks and the shape invariants are
respectively documented in the code.

Preponed semantics of normal order. Normal order can be presented as the strategy
resulting from adding production Cne [] ::= [] to the non-terminal Cne [] in the reduction
semantics of Section 5.2.3. Here Cno [] and Cne′ are hybrids that depend on each other.
The reduction semantics is pictured below:

Cne′ [] ::= [] | Cne′ [] Λ | NNFCno []
Cno [] ::= [] | Cne′ [] Λ | NNFCno [] | λx.Cno []
Cno [(λx.B)N]→no Cno [[N/x]B]

In the grammar, the mutual dependencies are highlighted. We call this semantics preponed
because the contraction of operands in neutral terms is preponed to the stage finding
the intermediate irreducible form, which in this case is the subset of weak normal forms
defined by the EBNF-grammar WNF′ ::= λx.Λ | NNF. We discuss this semantics further
in Section 5.9.

9http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/normal-order-preponed.sml
http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/hybrid-applicative-order.sml

119

http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/normal-order-preponed.sml
http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/hybrid-applicative-order.sml

5.8. Applicability

Head reduction This strategy performs outermost reduction up to head normal form.
It is defined in (Barendregt, 1984) using a flat representation for multiple applications. The
strategy goes under lambda but the redex (λx.M0)M1 is contracted before contracting any
of the redices in M0.

n ≥ 0 m > 0

λx1 . . . xn.(λx.M0)M1M2 . . .Mm →h λx1 . . . xn.([M1/x]M0)M2 . . .Mm

Head reduction is hybrid with implicit subsidiary call-by-name. The hybrid nature of the
strategy is explicit in the following structural operational semantics. The dependency on
the subsidiary occurs on the highlighted premiss of rule Hr-µ1:

(λx.B)N →bn [N/x]B
(Bn-β)

M →bn M
′

M N →bn M
′N

(Bn-µ)

(λx.B)N →h [N/x]B
(Hr-β)

M →bn M
′

M N →h M
′N

(Hr-µ1)

B →h B
′

λx.B →h λx.B
′ (Hr-ξ)

M ∈WHNF M 6≡ λx.B M →h M
′

M N →h M
′N

(Hr-µ2)

Strong reduction and byValue The former defined in (Grégoire & Leroy, 2002) as
N(T), the latter defined in (Paulson, 1996, p.390) in code. We show their definitions
below with a slight change of notation to avoid clashes with the notation we have used
throughout this chapter. (In particular, we write N (T), V(T), R(Val), Λ̃, Val and C[]
respectively for N(b), V (b), R(v), b, v and Γv in (Grégoire & Leroy, 2002).) Our definition
of byValue uses our term datatype (Figure 5.3).

Λ̃ ::= x | λx.Λ̃ | Λ̃ Λ̃ | 〈x̃ {Val}∗〉
Val ::= λx.Λ̃ | 〈x̃ {Val}∗〉

C[] ::= []Val | Λ̃ []
C[(λx.B)Val]→ C[[Val/x]B]
C[〈x̃ Val1 . . .Valn〉Val]→ C[〈x̃ Val1 . . .Valn Val〉]
V(T) = T ′ (T →∗ T ′, T ′ ∈ Val)

R(λx.B) = λy.N ((λx.B) 〈ỹ〉) (y fresh)
R(〈x̃ Val1 . . .Valn〉) = x R(Val1) . . .R(Valn)

N (T) = R(V(T))

120

Chapter 5. Deriving Hybrid Normalisers

(* eval : term -> term *)
fun eval (APP (m, n)) =

(case eval m of LAM b => eval (subst (b, eval n, 0))
| m’ => APP (m’, eval n))

| eval t = t

(* bodies : term -> term *)
fun bodies (LAM b) = LAM (byValue b)

| bodies (APP (m, n)) = APP (bodies m, bodies n)
| bodies t = t

(* byValue : term -> term *)
and byValue t = bodies (eval t)

Both strategies are defined in eval-readback style (Section 5.3) where eval and V(T)
are the eval functions, and bodies and R(Val) are the readback functions. The strategies
are equivalent, save for the sequencing order of application reduction in eval functions
(left-to-right in eval and right-to-left in V(T)). The strategies are full-reducing (deliver
nfs) and realise the idea of passing parameters in weak normal form. In (Grégoire &
Leroy, 2002) they introduce extended lambda terms (Λ̃ in our notation) and η-expand
abstractions with fresh formal parameters before normalising their bodies, in conformance
with normalisation-by-evaluation, so that the eval stage V(T) can be replaced by the
compiled Zinc Abstract Machine (Leroy, 1991).

Both strategies can be defined as a single hybrid function whose subsidiary is the
strategy realised by the eval function which is, in both cases, call-by-value of the pure
lambda calculus, ⇓bv , a strategy that despite its name passes parameters by weak normal
form. We show the natural semantics of byValue where the dependency is shown by the
highlighted premisses:

x ⇓bv x
(Bv-Var)

λx.B ⇓bv λx.B
(Bv-Abs)

M ⇓bv M ′ M ′ ≡ λx.B N ⇓bv N ′ [N ′/x]B ⇓bv B′

M N ⇓bv B′
(Bv-Con)

M ⇓bv M ′ M ′ 6≡ λx.B N ⇓bv N ′

M N ⇓bv M ′N ′
(Bv-Neu)

121

5.8. Applicability

x ⇓byValue x
(byValue-Var)

B ⇓byValue B′

λx.B ⇓byValue λx.B′
(byValue-Abs)

M ⇓bv M ′ M ′ ≡ λx.B N ⇓bv N ′ [N ′/x]B ⇓byValue B′

M N ⇓byValue B′
(byValue-Con)

M ⇓bv M ′ M ′ 6≡ λx.B M ′ ⇓byValue M ′′ N ⇓byValue N ′

M N ⇓byValue M ′′N ′
(byValue-Neu)

Hybrid applicative order Its natural semantics is defined in (Sestoft, 2002). Hy-
brid applicative order is full-reducing but incomplete. It uses subsidiary call-by-value like
strong reduction and byValue. The dependency on call-by-value occurs in the highlighted
premisses.

x ⇓ha x
(Ha-Var)

B ⇓ha B′

λx.B ⇓ha λx.B′
(Ha-Abs)

M ⇓bv M ′ M ′ ≡ λx.B N ⇓ha N ′ [N ′/x]B ⇓ha B′

M N ⇓ha B′
(Ha-Con)

M ⇓bv M ′ M ′ 6≡ λx.B M ′ ⇓ha M ′′ N ⇓ha N ′

M N ⇓ha M ′′N ′
(Ha-Neu)

Hybrid applicative order does not resemble byValue as claimed by (Sestoft, 2002) because
the former uses the subsidiary call-by-value to reduce operands whereas the latter does
not.

Ahead machine The ahead machine (Paolini & Ronchi Della Rocca, 1999) characterises
operationally the notion of v-solvability. Similarly to strong reduction and byValue, the
ahead machine uses call-by-value to reduce operands in redices, passing parameters ‘by
whnf’. Differently from strong reduction and byValue, operands at the right of a variable
are reduced weakly. These are the original natural semantics of the ahead machine, where
k ∈ {0, 1}:

m ≥ 0 Mi ⇓ka Ni (1≤i≤m)

xM1 . . .Mm ⇓ka xN1 . . . Nm

(Var)

N ⇓1
a N

′ [N/x]BM1 . . .Mm ⇓ka R
(λx.B)N M1 . . .Mm ⇓ka R

(Head)

λx.B ⇓1
a λx.B

(Lazy)
B ⇓0

a B
′

λx.B ⇓0
a λx.B

′ (λ0)

122

Chapter 5. Deriving Hybrid Normalisers

The hybrid is ⇓0
a and the subsidiary is ⇓1

a which coincides with ⇓bv . They only differ
in the treatment of abstraction bodies in rules (λ0) and Lazy.

Outermost strategy for arithmetic expressions In (Danvy & Johannsen, 2013) an
innermost and an outermost strategy for reducing arithmetic expressions are defined. The
authors claim that the reduction contexts for the outermost are the same as those of
the innermost. However, those reduction contexts fail to define the outermost strategy
as a uniquely-decomposable reduction semantics in the manner of (Felleisen, 1987). The
authors have to specify an ad-hoc decomposition function which does not correspond to
their reduction contexts. We show the proper reduction semantics and contexts by defining
the outermost strategy as a hybrid:

t ::= 0 | S(t) | A(t, t)
tnf ::= 0 | S(tnf)

ta ::= 0 | S(t)

Ca[] ::= [] | A(Ca[], t)
C[] ::= [] | S(C[]) | A(Ca[], t)
C[A(0, t)]→ C[t]
C[A(S(t1), t2)]→ C[S(A(t1, t2))]

The reduction contexts C[] rely on contexts Ca[] for reducing left-addends (highlighted in
the definition of C[]). The subsidiary strategy for left-addends—implemented by contexts
Ca[]—never reduces under successor. We write ta for normal left-addends.

In (Danvy & Johannsen, 2013) they hit the mark on the issue of backward-overlapping
rules (Dershowitz, 1981; Guttag et al., 1983; Geupel, 1989). An outermost strategy in the
presence of backward-overlapping rules must be hybrid, since a less reducing subsidiary
strategy is needed to prevent full reduction of the terms unifying with the proper sub-parts
in the backward-overlapping pairs.

5.9 Related and future work

We initially distilled the reduction semantics of Section 5.2.3 from the derived reduction-
based normaliser. To further ensure that the semantics corresponded to the normaliser we
implemented and tested the semantics using PLT Redex (Klein et al., 2012), a domain-
specific language of the Racket language for programming semantics. The code is available
on line.10

In (Danvy et al., 2013) a derivation of an eval-readback full-reducing machine of Curien
implementing normal order (Curien, 1993) is presented. Our single-function and their eval-
readback approach require different CPS transformations. For our single-function artefacts
a single-layer CPS without control delimiters is enough. For their eval-readback artefacts,
either a 2-layer CPS or a single-layer CPS with control delimiters is required (Danvy et al.,
2013; Biernacka et al., 2005). An advantage of the eval-readback approach is that the two
stages (with their types, continuations, etc) are disentangled and modular. However, in

10http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/normal-order.rkt

123

http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/normal-order.rkt

5.10. Conclusions

eval-readback the set of CPS and defunctionalisation transformations get more complicated
and less direct. We believe that single-function implementations are more amenable to
program transformation because no specific CPS techniques nor meta-theory for delimiting
control is required.

Section 11.4 of (Munk, 2008) states that a version of KN is derived from the reduction
semantics of a full-reducing strategy which, although not stated explicitly, is normal order
in eval-readback style in a calculus of closures. A functional correspondence is mentioned,
but the intermediate refunctionalised normaliser is missing. A syntactic correspondence is
also claimed, but no derivation is provided for it. We have tried to implement the suggested
syntactic correspondence unsuccessfully due to several errors in the presentation. The
reduction semantics in (Munk, 2008, Section 7.2) is the same as the ‘preponed’ semantics
obtained in Section 6.9.2 and discussed in Section 5.8, save for the minor visual use of
inside-out contexts. In (Munk, 2008), the calculus of closures is altered substantially
in each transformation to disentangle two auxiliary continuation and meta-continuation
dispatchers by means of non-standard derivation steps, which in turn permit a functional
correspondence in the same spirit as (Danvy et al., 2013) which uses eval-readback and
two-layer CPS.

In Section 5.8 we have shown the appropriate reduction semantics in the manner of
(Felleisen, 1987) of the outermost strategy for arithmetic expressions presented in (Danvy
& Johannsen, 2013) by unearthing its hybrid nature.

The normalisation-by-evaluation (NBE) normaliser in (Grégoire & Leroy, 2002), which
is specified by the N (T) strategy, uses the ZAM (Leroy, 1991) as the eval stage. We
are currently studying the derivation of a machine from the operational semantics of N (T)
presented in Section 5.8. A question to answer is whether the optimisations present in ZAM
can be incorporated by program transformation. We are also studying the inter-derivation
of a machine from the structural operational semantics of the G reduction relation, which
is the full-reducing strategy of the pure lambda-value calculus of (Ronchi Della Rocca &
Paolini, 2004).

5.10 Conclusions

The inter-derivation techniques (Ager et al., 2003b,a; Danvy & Nielsen, 2004; Danvy, 2005;
Danvy & Millikin, 2008; Biernacka & Danvy, 2007; Danvy et al., 2011) can be refined to
accommodate hybrid strategies, some of which are full-reducing and complete. The insight
is to observe the shape invariant of the grammar of well-formed continuation stacks to
recover shallow inspection, and to use single-layer CPS.

124

Addendum

5.11 Characterising the hybrid nature of a strategy

In Section 5.3 we commented on the hybrid style and the hybrid nature of a strategy. The
hybrid character was first noted in (Sestoft, 2002), in relation to the natural semantics
formalism, where a hybrid natural semantics relies on an already defined subsidiary natural
semantics. As we noted in Section 5.3 there are several sources of confusion regarding
whether the hybrid character is just a matter of presentation, or whether it is intrinsic to
the strategy and unconnected to any of the representational concerns.

First of all, the property of being defined by several (mutually inter-)dependent natural
semantics is not distinctive of the hybrid nature, but only of the hybrid style. Relying on
this property to characterise the hybrid nature leads to complications, since a uniform
strategy could be partitioned into several superficially different strategies that depend on
each other. And then checking whether these strategies are truly the same or not could be
non-trivial. Furthermore, a particular representation could make the subsidiary implicit,
enabling a uniform-style definition for some strategies with hybrid nature (i.e., the natural
semantics in the fashion of the inner and ahead machine of (Paolini & Ronchi Della Rocca,
1999) in Section 5.3). In this example, the flattened representation of multiple applications
in lambda terms, together with the unspecified number of nested applicationsM N1 . . . Nn,
defines rule schemata for Con and Neu. These rule schemata entail an implicit inspection
of the input term down to the leftmost operator. For an inference system with such
rule schemata to be syntax directed, the deep inspection of nested applications has to be
instrumented as an ancillary function or strategy that locates the leftmost abstraction in
an applicative context, which is akin to the call-by-name strategy. The subsidiary could
be duly unearthed, as in the hybrid-style definition of ⇓no in Figure 5.2.

Problems would also arise when trying to characterise the hybrid nature by the hybrid
style of the SOS. For instance, it is possible to define in uniform-style a strategy with hybrid
nature. Consider the (uniform-style) definition of→no in (García-Pérez & Nogueira, 2013),

125

5.11. Characterising the hybrid nature of a strategy

which we depict below:

(λx.B)N →no [N/x]B
(β)

M 6∈WHNF M →no M
′

M N →no M
′N

(µ1)

M ∈WHNF M 6≡ λx.B M →no M
′

M N →no M
′N

(µ2)

M ∈ NF M 6≡ λx.B N →no N
′

M N →no M N ′
(ν)

B →no B
′

λx.B →no λx.B
′ (ξ)

Due to the hybrid nature, the subsidiary could be unearthed and the above could be
transformed into a hybrid-style definition in the way described next. Rules (β) and (µ1)
are only applicable when the input term is not in whnf, and rules (µ2), (ν), and (ξ) are
only applicable otherwise. More interestingly, the second premiss M →no M ′ in (µ1)
consists of a derivation that only involves rules (β) and (µ1), because of the side condition
M 6∈ WHNF in (µ1)’s first premiss. If we traced a dependency directed graph with the
rules in the uniform-style definition—the dependency standing for the possible occurrence
of another rule in the premisses of a given rule in a derivation—rules (β) and (µ1) alone
would constitute a sub-graph without exit edges. Thus, rules (β) and (µ1) could be split
away into a separate strategy—which coincides with call-by-name—and the side condition
M 6∈ WHNF could be removed, as in the hybrid-style definition of →no in Figure 5.1. At
the core of this issue is the check on whnf-ness. Implementing this check as a separate
function would be akin to splitting the call-by-name strategy away.

Unearthing the subsidiary could be even more challenging. Consider the SOS of normal
order in (Pierce, 2002, p. 502), which we depict below:

(λx.B)N →no [N/x]B
(E-AppAbs)

M ∈ NA M →no M
′

M N →no M
′N

(E-App1)

M ∈ NNF N →no N
′

M N →no M N ′
(E-App2)

B →no B
′

λx.B →no λx.B
′ (E-Abs)

NA ::= x | Λ Λ
NNF ::= x | NNFNF

NA stands for non-abstraction terms. Recall from Section 5.2 that NNF stands for neu-
tral terms in normal-form, which are non-abstraction normal-forms. Rules (E-AppAbs),
(E-App2) and (E-Abs) coincide respectively with rules (β), (ν) and (ξ) above. We notice
the following equivalence:

NA = Λ \ {λx.Λ}
= (Λ \WHNF) ∪ (WHNF \ {λx.Λ}) (5.1)

126

Chapter 5. Deriving Hybrid Normalisers

We can split rule (E-App1) into two, using each addend of Equation 5.1 as a side condition.
This precisely gives rules (µ1) and (µ2) above and now (β) and (µ1) could be split away
into call-by-name. This time, the subsidiary was obscured because rules (µ1) and (µ2)
were entangled into single E-App1 rule. The whnfs are still conspicuous, but this time in
a negative way, i.e., WHNF = (Λ \ NA) ∪ NNF.

Similar to the case for natural semantics, the representation of lambda terms can also
obscure the subsidiary in the SOS. Consider the definition of normal order as the instan-
tiation of the principal reduction machine →p

Λ of (Ronchi Della Rocca & Paolini, 2004),
which we depict below:

B →p
Λ B

′

λx.B →p
Λ λx.B

′ (p1)
i = min{j ≤ m|Mj 6∈ NF} Mi →p

Λ M
′
i

xM1 . . .Mm →p
Λ xM1 . . .M

′
i . . .Mm

(p2)

(λx.B)N M1 . . .Mm →p
Λ [N/x]BM1 . . .Mm

(p3)

The flattened representation of multiple applications in rules p2 and p3 entails an implicit
inspection of the input term down to the leftmost operator. Rule p3 alone defines call-by-
name. Unsurprisingly, rules p1 and p3 match the syntax of the whnfs, i.e., the intermediate
irreducible forms.

The (context-based) reduction semantics is also prone to the representation issue that
could make the subsidiary implicit. The normal order reduction contexts could be given
as the following uniform-style grammar:

Cno [] ::= [] | ([] {Λ}∗)Λ | NNFCno []{Λ}∗ | λx.Cno []

The flattened representation of multiple applications in the regular expressions of the
second and third productions entails an implicit inspection of the input term down to the
leftmost operator. The first and second productions alone define the reduction contexts of
call-by-name. A hybrid-style definition of these reduction contexts is given in Figure 5.4.

The hybrid nature can be characterised with precision by considering the language of
reduction context of the strategy (see Section 5.3). The language of reduction contexts
is intrinsic to the strategy itself, and unconnected to any presentation of the strategy.
Although the hybrid character is a matter of nature, a hybrid strategy could be partitioned
into hybrid and subsidiaries in different ways. Recall form Section 5.3 that by adding the
hole [] to contexts Cne [] of Section 5.2.1, an alternative definition of normal order is given
which consists of inter-dependent hybrid strategies no and (modified) ne. The requirement
that a strategy has to include the hole in its reduction contexts is primordial for the different
partitions to meet with the formal characterisation of hybrid nature.

5.12 Hybrids and NBE

As we have commented at length in Section 5.9, the NBE-style artefacts could be inter-
derived by using 2CPS or by using single-layer CPS and control delimiters (Munk, 2008;

127

5.12. Hybrids and NBE

Danvy et al., 2013). Our solution in Chapter 5 provides an alternative path to (Munk, 2008;
Danvy et al., 2013) by considering the hybrid counterparts of the NBE-style artefacts. In
our solution all the intermediate artefacts use single-layer CPS, there is no need for control
delimiters, and the abstract machine has a single control stack.

The works (Munk, 2008; Danvy et al., 2013) do not include the detailed inter-derivation,
and the code is not publicly available. We have followed the indications in (Munk, 2008;
Danvy et al., 2013) and have adapted their solution to the normal order strategy in a plain
(i.e., without closures) lambda calculus. Their solution does not connect the SOS with
the (context-based) reduction semantics, and the latter has to be contrived. We remedy
this for normal order by providing the derivation of the reduction semantics from a search
function characteristic of the SOS in NBE-style. The code can be found on line.11 To the
best of our knowledge, the 2CPS approach has not been explored enough as to connect
the SOS formalism, and the normal order strategy in plain lambda calculus has not been
considered before.

Connecting the search function with the reduction semantics requires some ingenuity.
For the simplification step (see Section 5.4.4) both spaces of continuations have to be sim-
plified. However, this simplification cannot be performed in cascade (i.e., the intermediate
artefact with only one simplified continuation space does not type in ML) and hence the
two simplification steps have to be tackled together, which obscures the equivalence of the
resulting artefact. The defunctionalisation step is also not completely straightforward. In
the apply function for the continuation proper (i.e., not for the meta-continuation) the
init case glues together the eval stage with the readback stage in the NBE approach. It is
not quite direct to come up with the code for the defunctionalised artefact, which has to
instrument a recursive invocation of the whole search/decomposition process.

To exemplify the applicability of our technique, and to outline the similitudes and
differences with respect to NBE, we have applied the hybrid and the NBE approach to
yet another hybrid semantics, the outermost strategy for arithmetic expressions in (Danvy
& Johannsen, 2013). Section 5.8 presents the context-based reduction semantics of this
strategy. The code with both transformations can be found on line.12 13

The following diagram illustrates the two alternative paths:

n-stage
NBE

abs. mach.
(n stacks)

n-stage red. sem.
(context-free refocus)

n-mode
hybrid

abs. mach.
(single stack)

n-mode red. sem.
(context dep. refocus)

LWFn−1

nCPS + defunc.

1CPS + defunc.

LWF + inline

LWF + inline

+ shape inv.

Light-weight fusion by fixed-point promotion (LWF) (Ohori & Sasano, 2007) connects the
11http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/normal-order-2cps.sml
12http://babel.ls.fi.upm.es/~agarcia/phd-thesis/outermost-hybrid.sml
13http://babel.ls.fi.upm.es/~agarcia/phd-thesis/outermost-2cps.sml

128

http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PEPM/normal-order-2cps.sml
http://babel.ls.fi.upm.es/~agarcia/phd-thesis/outermost-hybrid.sml
http://babel.ls.fi.upm.es/~agarcia/phd-thesis/outermost-2cps.sml

Chapter 5. Deriving Hybrid Normalisers

NBE artefacts with the (single-function) hybrid artefacts. The LWF has to be applied
n− 1 times to fuse a n-stage artefact.

In the upper part of the diagram the refocus function is context-free, but the interme-
diate artefacts have nested continuation spaces and the number of control stacks in the
abstract machine grows with the number of stages. In the lower part of the diagram the
shape invariant of the control stack allows to remove the dependency introduced by refo-
cusing, the intermediate artefacts have a single space of continuations and the abstract ma-
chine has a single stack. Our solution scales smoothly to any number of (inter-)dependent
modes.

Danvy & Millikin (2009) comment about Dijkstra’s case against the GOTO statement
(Dijkstra, 1968). The implicit message is not that ‘GOTO statements should be considered
harmful’, but that ‘one should be mindful about staying in or straying from the image of
the compiler’ when compiling a structured program without GOTO into some unstruc-
tured program where the GOTO is used to implement the control structures of the former.
As Danvy & Millikin (2009) argue, ‘straying with good reasons is a clear indication that
a useful control structure is missing’. This comment applies to other program transforma-
tions, like CPS transformation or defunctionalisation. Here we put the emphasis on the
LWF. Consider the following diagram:

n-stage programs single-stage programs

LWFn−1

Programs with n stages are fused into single-stage programs. The inter-derivation in
(Munk, 2008; Danvy et al., 2013) departs from the programs in the left of the diagram.
Our inter-derivation departs from the image of LWF in the right part of the diagram, where
certain transformation steps are simpler and more amenable to automation. We aim at
staying in the image of LWF. The shape invariant of the control stack reflects the ‘staging’
control structure in the left part.

Danvy & Johannsen (2013) also explore the refocusing step in the right part of the
diagram above. They remove the dependency on the context by inserting, prior to refocus,
a backtracking operation that blindly reverts the current decomposition a fixed number of
steps. Although effective, their solution deviates from the standard formalisms for opera-
tional semantics. The backtracking operation requires, by design, a grammar of reduction
contexts that does not reflect a reduction semantics proper (Felleisen, 1987), i.e., a gram-
mar that lacks unique decomposition. Starting with a reduction semantics with unique
decomposition forces the refocus function to be context dependent, and duly supersedes

129

5.12. Hybrids and NBE

the solution in (Danvy & Johannsen, 2013) since the backtracking step is implicitly per-
formed by the decomposition function.

130

6
From Normal Order to the

Full-Reducing Krivine Machine by
Program Transformation

Todos los buenos soldados
Que asentaren a esta guerra
No quieran nada en la Tierra
Si quieren ir descansados.

Si salieren con victoria
La paga que les darán
Será que siempre ternán
En el Cielo eterna Gloria.1

(La Guerra, Mateo Flecha el Viejo)

We derive (an implementation of) Pierre Crégut’s full-reducing Krivine machine KN by
program transformation from search functions implementing the compatibility rules of the
structural operational semantics of the normal order reduction strategy in a pure lambda
calculus of closures. We arrive at a slightly optimised KN that can work with open terms.
We prove the stepwise correspondence of normal order reduction in the calculus of closures
and in the pure lambda calculus. We introduce a preponing step before shortcutting
ephemeral expansion, and remove explicit control using the shape invariant of the grammar

1All the good soldiers / That attended to this battle / Should not long for anything while in Earth /
If they want to stay restful. / If they come out victorious / The salary they shall receive / Is to have /
Everlasting Glory in Heaven. (Translation by the author.)

131

6.1. Introduction

of continuation stacks. Thanks to the single-function nature of our semantics we use single-
layer CPS without control delimiters, as opposed to a two-layer CPS or a single-layer CPS
with control delimiters.

6.1 Introduction

Languages and calculi constantly spring up. Their semantics (small-step or big-step oper-
ational, abstract machines, denotational, etc.) are typically specified on paper and their
correspondences are either obviated, conjectured, or proven mathematically. In contrast,
semantics can be implemented and their correspondences can be often established by pro-
gram transformation (e.g., (Ager et al., 2003b; Danvy, 2005; Biernacka & Danvy, 2007;
Danvy, 2008a; Danvy et al., 2011)). A recent case in point is (Siek & Garcia, 2012) where
several definitional interpreters implement the various denotational semantics of the core
language of the gradually-typed lambda calculus. The correspondences with the small-
step operational semantics are left as a conjecture, but they can be established by program
transformation (García-Pérez et al., 2014).

Another case in point, and the topic of this chapter, is the correspondence between the
normal order reduction strategy (aka leftmost reduction) (Barendregt, 1984) and the full-
reducing Krivine machine KN (Crégut, 2007). Normal order is the ‘full-reducing’ (reduces
terms fully to normal form) and ‘complete’ (does not fail to deliver the normal form when
it exists) reduction strategy of the pure lambda calculus. (A reduction strategy specifies
an operational semantics, i.e., the order in which reducible subterms or ‘redices’ (singular,
‘redex’) are to be reduced.)

Pierre Crégut’s KN is a well-known machine that fully reduces pure lambda calculus
terms. More precisely, KN is a push/enter (we borrow the terminology from (Biernacka
& Danvy, 2007)) environment-based closed-terms machine that uses de Bruijn indices and
levels for representing terms. Pierre Crégut proved mathematically that KN finds the
normal form of a closed term when the normal form exists (Crégut, 2007), but the actual
correspondence between KN and normal order, i.e., that KN realises normal order, has
remained unproven.

In this chapter we derive (an implementation of) KN from search functions that im-
plement the compatibility rules (the rules that express how to navigate a term to locate a
redex) of the structural operational semantics of normal order in a pure lambda calculus of
closures. Thus, we prove by means of program-transformation the correspondence between
the strategy and the machine. Actually, what we obtain is a slightly optimised KN that
can also work with open terms, and is therefore suitable for use in implementations of proof
assistants (Crégut, 1990; Kesner, 2007; Grégoire & Leroy, 2002).

Figure 6.1 illustrates the derivation path. The start and end points are shown in
boldface. In the figure the starting point is the reduction-based normaliser obtained from
the search functions. The figure extends the derivational taxonomy of (Biernacka & Danvy,
2007, p.24) and summarises the contents of Sections 6.8.2 to 6.10.4 of this chapter.

132

Chapter 6. Deriving the Full-Reducing Krivine Machine

λ λρ̃ λρ
∗ exp. ctrl. λρ∗

red.-based
normaliser

red.-based
normaliser

push/enter
KN

eval/apply
abs. mach.

eval/apply
abs. mach.

eval/apply
abs. mach.

red.-free
normaliser

preponed
red.-free
normaliser

preponed
red.-free
normaliser

preponed
red.-free
normaliser

refocus
+ LWF
+ inline

refunc.
+ CPS−1

prepone

σC

shortcut exp. ctrl.

CPS
+ defunc

protrude
+ inline

rm. ctrl.

Figure 6.1: Derivation path of KN

Here is a more detailed list of the contributions:

• Our operational semantics are single-function i.e., they define a single but hybrid
normal order strategy that relies on a subsidiary call-by-name strategy (Section 6.4).
Consequently, we can use single-layer CPS without control delimiters, as opposed
to a two-layer CPS or a single-layer CPS with control delimiters, as found in other
works (Section 6.11).

• We introduce the λρ̃ calculus which naturally extends the λρ̂ calculus of Biernacka
and Danvy (Biernacka & Danvy, 2007) with de Bruijn levels (present in KN), closure
abstractions, and absolute indices. The latter two are required for full-reduction.
Closure abstractions are required to represent closures where the redex may occur
under lambda, and absolute indices are required to represent ‘neutral closures’, i.e.,
non-redex closure applications. We define the substitution function σC that simulates
capture-avoiding substitution in the pure lambda calculus, define the structural op-
erational semantics of normal order in λρ̃, and prove that normal order reduction in
λρ̃ mirrors stepwise normal order reduction in the pure lambda calculus.

• We define the small-step structural operational semantics of normal order in λρ̃ and
derive from the search functions that implement the compatibility rules the reduction-
based normaliser, and from it the reduction-free normalisers. In other words, we
derive the context-based and the big-step natural semantics of normal order in λρ̃.

133

6.2. Structure of the chapter

• We use the refined inlining-of-iterate-function step (García-Pérez & Nogueira, 2013,
2014a) that exploits the shape invariant of the continuation stack to recover shallow
inspection of the environment-based eval/apply abstract machine derived from the
reduction-based normaliser.

• We introduce a non-standard but straightforward ‘preponing’ step that is needed
for shortcut optimisation. We prove that preponing is equivalence-preserving (Sec-
tion 6.9.2).

• After shortcut optimisation, which takes us to a version of λρ̃ without ephemerals2

that we call λρ∗, we have to introduce explicit control to combine two reduction-free
normalisers into one. We remove explicit control by constructing the grammar of the
machine’s well-formed stacks and then observing the correlation between the control
characters and the occurrence of certain constructors on the top of the well-formed
stack. (This is another application of constructing grammars of continuation stacks.)

• We obtain is a slightly optimised KN that can also work with open terms and that
does not need to carry lambda levels in ground terms.

We have written all the code of the derivation in Standard ML, the traditional program-
ming language of derivation papers. Though semi-automatically obtained, the code is
rather long (we include all steps in detail) and language-specific. Therefore we present the
semantic artefacts in mathematical notation and simply name in the chapter the functions
implementing the artefacts in the code, which is available on line.3 We have tested the
code. We have not verified the transformations using a proof assistant for several reasons.
First, most transformation steps are standard and easy to check by readers familiar with
derivation papers in Standard ML, but hard to prove using a proof assistant. Second,
involving a proof assistant or a dependently-typed language would result in a different text
for a different readership. We would have to explain additional proof techniques and the
particulars of the assistant. See for instance (Swierstra, 2012) where several techniques
(logical relations, etc) have to be introduced to obtain the weak-reducing KAM machine
for the simply typed lambda calculus.

6.2 Structure of the chapter

• In Section 6.3 we refresh terminology and definitions of the lambda calculus and of
derivation by program transformation of semantic artefacts.

• In Section 6.4 we define the operational semantics (structural, natural, context-based,
and eval-readback) of normal order in the pure lambda calculus.

2The ‘ephemeral’ terminology is introduced in Section 6.5.
3http://babel.ls.fi.upm.es/~agarcia/papers/SCICO-PPDP

134

Chapter 6. Deriving the Full-Reducing Krivine Machine

• In Section 6.5 we describe the closure calculus λρ̂ of Biernacka and Danvy, the small-
step operational semantics of call-by-name in λρ̂, and the substitution function σ
connecting values in λρ̂ with values in the pure lambda calculus (Biernacka & Danvy,
2007).

• In Section 6.6 we describe the full-reducing Krivine machine KN of (Crégut, 2007).

• In Section 6.7 we introduce our λρ̃ calculus, define the substitution function σC that
simulates capture-avoiding substitution in the pure lambda calculus, define the struc-
tural operational semantics of normal order in λρ̃, and prove that normal order re-
duction in λρ̃ mirrors stepwise normal order reduction in the pure lambda calculus.

• In Section 6.8.1 we derive a reduction-based normaliser from the search functions that
implement the compatibility rules of the structural operational semantics of normal
order in λρ̃. We show the reduction semantics implemented by the reduction-based
normaliser and prove that it satisfies unique-decomposition.

• In Section 6.8.2 we transform the reduction-based normaliser to an environment-
based eval/apply abstract machine with shallow inspection property (the machine’s
dispatcher does not inspect the current continuation argument and therefore can be
refunctionalised). In the transformation we employ our refined inlining-of-iterate-
function step (García-Pérez & Nogueira, 2013, 2014a). This step exploits the shape
invariant of the continuation stack to recover shallow inspection.

• In Section 6.8.3 we apply refunctionalisation and inverse CPS to the previous machine
to obtain the reduction-free normalisers that implement the natural semantics of
normal order in λρ̃.

• In Section 6.9 we shortcut ephemeral expansion. Previously we introduce a required
preponing step that prepones some normal order steps to call-by-name. We explain
why preponing is needed and present a proof that it is equivalence-preserving.

• In Section 6.10.1 we transform the shortcut reduction-free normalisers into a single
reduction-free normaliser by introducing explicit control which encodes the differ-
ent treatment of abstractions. We then transform in Section 6.10.2 the normaliser
by defunctionalisation and CPS transformation to an environment-based eval/apply
machine with explicit control.

• In Section 6.10.3 we remove explicit control by constructing the grammar of the
machine’s well-formed stacks and then observing the correlation between the control
characters and the occurrence of certain constructors on the top of the well-formed
stack.

• In Section 6.10.4 we transform the eval/apply machine to a push/enter optimised
KN, and discuss and remove some minor visual differences with the original.

135

6.3. Preliminaries

↑kn m =

{
m+ n if m ≥ k
m otherwise

↑kn (λ.B) = λ. ↑k+1
n B

↑kn (M N) = (↑kn M)(↑kn N)

[T/n]m =

↑0n T if m = n
m− 1 if m > n
m otherwise

[T/n](λ.B) = λ.[T/n+ 1]B
[T/n](M N) = ([T/n]M)([T/n]N)

Figure 6.2: Capture-avoiding substitution function for de Bruijn indices

6.3 Preliminaries

We consider the pure untyped lambda calculus with de Bruijn indices (Barendregt, 1984),
hereafter λ, whose terms are defined by the grammar Λ ::= n | (λ.Λ) | (Λ Λ). A natural
number n represents a variable bound to the nth lambda starting from 0, or to a free
variable when n is greater than or equal to the nesting level. For example, the abstraction
λ.0 is the identity function whereas λ.1 is a constant function delivering free 0 when the
function is applied to an operand. Uppercase, often primed, letters M , M ′, N , B, etc,
will range over elements of Λ. We use the standard precedence and association convention:
applications associate to the left and abstraction binds tighter than application. The
definition of capture-avoiding substitution for de Bruijn indices, [T/m]M , is shown in
Figure 6.2. Function [T/m]M finds occurrences of the variable to substitute for in M . For
each substitution, function ↑kn T shifts the indices of the variables in the subject T that
require it (Crégut, 2007). The reader must be familiar with the usual notions of bound
and free variables, redices (λ.B)M , syntactic equivalence ≡, β-contraction, and relations
→β , →∗β , and =β . A reduction strategy s of λ is a (partial) function that is a sub-relation
of →∗β . We write →s and ⇓s for the small-step and big-step definitions of s. We use
relational M ⇓s N and functional ⇓s (M) = N notation interchangeably, and use function
composition when appropriate, e.g., (⇓t ◦ ⇓s)(M) = ⇓t (⇓s (M)).

We make extensive use of grammars in Extended Backus-Naur Form with regular ex-
pressions for optionals and sequences. For example, NF ::= λ.NF | n {NF}∗ defines the set
of normal forms. Some sentential forms of the second production are n, nNF, nNFNF,
etc., which respectively associate as n, (nNF), ((nNF)NF), etc, according to the conven-
tion. The context grammar C[] ::= []{Λ}? derives the contexts [] (the empty context or
hole) and [] Λ (an application with a hole in operator position and an arbitrary term in
operand position).

In the text we use ‘whnf’ and ‘nf’ to abbreviate ‘weak head normal form’ and ‘normal
form’ respectively. The set of whnfs and nfs is defined in Figure 6.3. Notice that a term

136

Chapter 6. Deriving the Full-Reducing Krivine Machine

(λ.B)N →no [N/0]B
(β)

M 6∈WHNF M →no M
′

M N →no M
′N

(µ1)

M ∈WHNF M 6≡ λ.B M →no M
′

M N →no M
′N

(µ2)

M ∈ NF M 6≡ λ.B N →no N
′

M N →no M N ′
(ν)

B →no B
′

λ.B →no λ.B
′ (ξ)

WHNF ::= λ.Λ
| n{Λ}∗

NF ::= λ.NF
| n{NF}∗

Figure 6.3: Structural operational semantics of normal order (García-Pérez & Nogueira,
2013).

in nf is also in whnf.

6.4 Normal order in all substitution-based styles

Normal order is a full-reducing and complete strategy of the pure lambda calculus. It
is defined by the slogan ‘contract the leftmost redex first’ understanding ‘leftmost’ as in
(Curry & Feys, 1958) or ‘leftmost-outermost’ when referring to the redex’s position in the
abstract syntax tree of the term. Normal order is a hybrid strategy (Sestoft, 2002; García-
Pérez & Nogueira, 2013, 2014a), i.e., it relies on a subsidiary strategy, call-by-name, to
reduce particular subterms. More precisely, given an abstraction λ.B, normal order ‘goes
under lambda’ and reduces B fully to nf. However, given an application MN , if M is
β-reducible in an arbitrary number of steps to an arbitrary abstraction λ.B, at that point
the leftmost-outermost redex is (λ.B)N and normal order must reduce that redex and not
λ.B. Since normal order reduces abstractions fully, it must reduce operators in applications
using a less reducing strategy, one that does not reduce abstractions and that, like normal
order, is ‘non-strict’, i.e., does not reduce operands in redices before substitution. In other
words, it must rely on call-by-name. By choosing the leftmost-outermost redex, normal
order discards unneeded potentially divergent subterms. For example, given the term
(λ.0 Ω)(λ.1) where Ω is a divergent subterm, normal order reduces that leftmost-outermost
redex to (λ.1)Ω, and this term to 0, discarding Ω.

Figures 6.3 and 6.4 show the structural and natural operational semantics of normal
order respectively. In the structural small-step there is no rule for variables because these
are in nf. There are four rules for applications. The first (β) is well-known. It applies

137

6.4. Normal order in all substitution-based styles

n ⇓bn n
(Varbn)

λ.B ⇓bn λ.B
(Lambn)

M ⇓bn M ′ M ′ ≡ λ.B [N/0]B ⇓bn B′

M N ⇓bn B′
(Redbn)

M ⇓bn M ′ M ′ 6≡ λ.B
M N ⇓bn M ′N

(Neubn)

n ⇓no n
(Varno)

B ⇓no B′

λ.B ⇓no λ.B′
(Lamno)

M ⇓bn M ′ M ′ ≡ λ.B [N/0]B ⇓no B′

M N ⇓no B′
(Redno)

M ⇓bn M ′ M ′ 6≡ λ.B M ′ ⇓no M ′′ N ⇓no N ′

M N ⇓no M ′′N ′
(Neuno)

Figure 6.4: Natural operational semantics of normal order (García-Pérez & Nogueira,
2013).

when the operator is an abstraction. The second (µ1) says the redex must be searched for
in the operator if the operator is not in whnf. The third rule (µ2) says the redex must be
searched for in the operator if it is a whnf but not a nf nor an abstraction (if an abstraction
then (β) is applicable). Finally, (ν) says the redex must be searched for in the operand if
the operator is a nf but not an abstraction. The outermost application does not reduce
to a redex and so the redex must be searched for in the operand. Although a nf is also a
whnf, rules (µ2) and (ν) are non-overlapping because the third premiss in (µ2) is not the
case when M ∈ NF. Hereafter we shall refer to variables and non-redex applications as
neutral terms, defined by the regular expression n {Λ}∗. Last, rule (ξ) provides structural
compatibility with abstractions, that is, ‘go under lambda’.

In the structural operational semantics of Figure 6.3 the dependency of normal order
on call-by-name is implicit as a sub-relation: rules (β) and (µ1) taken in isolation make up
call-by-name. The dependency can be made explicit by unearthing the sub-relation, i.e., by
breaking up (β) and (µ1) into call-by-name and normal order rules, with the dependency

138

Chapter 6. Deriving the Full-Reducing Krivine Machine

on call-by-name now explicit in rule (µ1no):

(λ.B)N →bn [N/0]B
(βbn)

(λ.B)N →no [N/0]B
(βno)

M 6∈WHNF M →bn M
′

M N →bn M
′N

(µ1bn)
M 6∈WHNF M →bn M

′

M N →no M
′N

(µ1no)

The dependency on call-by-name is explicit in the big-step natural semantics where normal
order ⇓no relies on call-by-name ⇓bn to reduce operators to whnf (first premiss of rules
Redno and Neuno), and then fully reduces the resulting redex (rule Redno) or the resulting
neutral (rule Neuno). Finally, Lamno says that normal order goes under lambda and Varno

says normal order is an identity on variables. In contrast, call-by-name does not go under
lambda and does not reduce operands in neutral terms.4

The structural and natural semantics in Figures 6.3 and 6.4 are single-function, that
is, →no , ⇓no , and ⇓bn are partial functions. There is an alternative two-function eval-
readback (Grégoire & Leroy, 2002) approach that defines reduction as the composition
of two single functions, namely, an ‘eval’ function that delivers intermediate results, and
a ‘readback’ function that distributes reduction over the subterms of the intermediate
result. The eval-readback approach is a degenerate case of normalisation-by-evaluation
(Aehlig & Joachimski, 2004) in which the value domain is the set of terms, and readback is
‘reify’ without the translation from domain values to terms. (The two-function nature of
eval-readback definitions is also present in their corresponding small-step semantics, where
a reduction sequence consists of nested concatenations of eval and readback sequences.)
Normal order is defined in eval-readback style as the composition ⇓rn ◦ ⇓bn where ⇓bn is
eval and ⇓rn is readback:

n ⇓rn n
Varrn

B ⇓bn B′ B′ ⇓rn B′′

λ.B ⇓rn λ.B′′
Lamrn

M ⇓rn M ′ N ⇓bn N ′ N ′ ⇓rn N ′′

M N ⇓rn M ′N ′′
Apprn

Readback takes input terms in whnf (no redex at the outermost level) which explains the
lack of a contraction rule for it. The equivalence between single-function and eval-readback,
namely ⇓no = ⇓rn ◦ ⇓bn , can be proven by induction on derivations, or by program
transformation using lightweight fusion by fixed-point promotion (Ohori & Sasano, 2007)
(Section 6.9.2).

Now to the context-based reduction semantics. In addition to the grammar of terms
and normal forms there is a grammar for reduction contexts and a contraction rule that

4Call-by-name in the pure untyped lambda calculus differs from call-by-name in the applied and im-
plicitly typed calculus of (Plotkin, 1975) (which also assumes closed input terms) precisely in its treatment
of neutral terms (Sestoft, 2002, p.421).

139

6.5. Closures and environment machines

applies (β) within the context hole.

Red. context: Cno [] ::= [] | Cbn [] Λ | λ.Cno [] | Cne []
Cbn [] ::= [] | Cbn [] Λ
Cne [] ::= n{NF}∗Cno [] | Cne [] Λ

Contraction: Cno [(λ.B)N]→no Cno [[N/0]B]

Given a term M , it is either in nf or is uniquely decomposed into a context, derived
from non-terminal Cno [], and a redex within the hole. For example, the term λ.(λ.0)0
is decomposed into λ.[(λ.0)0] with the context λ.[] grammatically derived as follows:
Cno [] ⇒ λ.Cno [] ⇒ λ.[]. The unique decomposition of Cno [] is proven by structural
induction on the input term (see Theorem 6.8.1 in Section 6.8.1). The dependency of
normal order on call-by-name is indicated by the presence of call-by-name sub-contexts
Cbn [].

6.5 Closures and environment machines

The operational semantics defined in Section 6.4 are all substitution-based, i.e., rely on
the traditional meta-level substitution function [N/n]B. But KN is an environment-based
machine that works with closures M [ρ] consisting of a term M with an environment ρ
that maps M ’s variables to corresponding bindings. Usually, the environment is a list of
closures, such that de Bruijn indices act as lexical offsets (starting with 0) that point to
the appropriate binding in the environment.

The λρ̂ calculus of Biernacka and Danvy (Biernacka & Danvy, 2007) extends the pure
lambda calculus with definitions for closures C and environments ρ. This calculus is itself
an extension of Curien’s calculus of closures λρ. Here is their respective syntax for terms,
adapted from (Biernacka & Danvy, 2007) to our own notation explained below.

λρ
C ::= Λ[ρ]
ρ ::= ε | C : ρ

λρ̂
C ::= Λ[ρ] | C · C
ρ ::= ε | C : ρ

In the λρ̂ calculus we have proper closures Λ[ρ] and closure applications C ·C. We use a left-
associative explicit closure application operator · which is elided in (Biernacka & Danvy,
2007). In both calculi, an environment ρ is either empty, which we denote by ε, or a list
of colon-separated closures. In Curien’s calculus the β-rule is ((λ.B)N)[ρ] → B[N [ρ] : ρ]
which pushes the operand as a closure on the environment. A rule for variables is introduced
n[ρ]→ nth(ρ) to deliver the nth binding in the environment.

Both λρ and λρ̂ assume closures without free variables, i.e., the term is closed by the
environment and a binding is always found. (Input terms are closed and reduction delivers
values: variables or abstractions.) As noted in (Biernacka & Danvy, 2007), small-step
reduction relations cannot be expressed in λρ and a natural solution is to extend λρ with
closure application together with an ephemeral expansion rule (M N)[ρ]→ M [ρ] ·N [ρ] that

140

Chapter 6. Deriving the Full-Reducing Krivine Machine

(λ.B)[ρ] · N→
b̂n
B[N : ρ]

(βρ̂)

M→
b̂n

M′

M · N→
b̂n

M′ · N
(µρ̂)

n[ρ]→
b̂n
nth(ρ)

(Varρ̂)

(M N)[ρ]→
b̂n
M [ρ] ·N [ρ]

(Appρ̂)

C
b̂n

[] ::= [] | C
b̂n

[] · C
C

b̂n
[(M N)[ρ]] →

b̂n
C

b̂n
[M [ρ] ·N [ρ]]

C
b̂n

[n[ρ]] →
b̂n

C
b̂n

[nth(ρ)]

C
b̂n

[(λ.B)[ρ] · N] →
b̂n

C
b̂n

[B[N : ρ]]

Figure 6.5: Structural (left) and reduction semantics (right) of call-by-name in λρ̂ (adapted
from (Biernacka & Danvy, 2007)).

distributes the environment by constructing an ephemeral closure application.5 The β-rule
now operates on closure applications: (λ.B)[ρ] ·N→ B[N : ρ]. (We use uppercase sans-serif
letters M, N, etc, for closure terms to save us from contriving environment symbols. For
instance, N above stands for some closure N [ρ′] with some environment ρ′.)

To illustrate, consider a closed term (λ.0)N . It is initialised to a closure ((λ.0)N)[ε]
and reduced as follows:

((λ.0)N)[ε]→ (λ.0)[ε] ·N [ε]→ 0[N [ε] : ε]→ 0th([N [ε] : ε]) ≡ N [ε]→ . . .

The simulation of λρ reductions in λρ̂ is proven in (Biernacka & Danvy, 2007).

6.5.1 Call-by-name semantics and environment-based machine

The structural and context-based small-step operational semantics of call-by-name in λρ̂ are
shown in Figure 6.5 (adapted from (Biernacka & Danvy, 2007) to our notation). Observe in
the reduction semantics that closure application enables the definition of reduction contexts
for closures. The redex can now occur in the operator side of a closure application. In
(Biernacka & Danvy, 2007), a reduction-based normaliser for this reduction semantics
is implemented, and an environment-machine derived. The ephemeral expansion step is
shortcut, getting rid of the closure application. The machine obtained is the call-by-name
KAM machine (Crégut, 1990).

In (Biernacka & Danvy, 2007, p.9) a substitution function σ is defined that relates
values in λρ̂ with values in λ by forcing all the delayed substitutions. The function is
depicted in Figure 6.6. However, the stepwise connection between λρ̂ and λ via σ is not
proven. The function carries a lexical adjustment parameter k that is incremented when

5‘Ephemeral’ in the sense that closure applications are shortcut when deriving big-step artefacts (Bier-
nacka & Danvy, 2007).

141

6.6. Crégut’s full-reducing Krivine machine

σ(C,N) → Λ

σ(n[ρ], k) =

{
n if n ≤ k
σ((n− k)th(ρ), 0) if n > k

σ((λ.B)[ρ], k) = λ.σ(B[ρ], k + 1)
σ((M N)[ρ], k) = (σ(M [ρ], k))(σ(N [ρ], k))

σ(M · N, k) = (σ(M, k))(σ(N, k))

Figure 6.6: Substitution function in (Biernacka & Danvy, 2007)

going under lambda (second clause). Integers n ≤ k stand for occurrences of formal
parameters of abstractions that have not been applied to an operand. Integers n > k are
occurrences of formal parameters of abstractions that have been applied to an operand and
thus have a binding in the environment (recall λρ̂ assumes closures without free variables).
For these variables the index is adjusted to n−k, and substitution is applied on the binding
with the lexical adjustment reset to zero. The environment and the lexical adjustment are
duplicated for application closures and closure applications (third and fourth clauses). The
lexical adjustment discipline faithfully implements substitution for closures without free
variables.

6.6 Crégut’s full-reducing Krivine machine

The full-reducing machine KN (adapted from (Crégut, 2007) to our notation), is the tar-
get of our derivation. KN is a first-order transition function which operates on a triple
consisting of a closure C, a continuation stack S, and a lambda level l that keeps track of
the current nesting level at which reduction is taking place.

λρ
C ::= Λ[ρ] | n | bΛ, lc
ρ ::= ε | C : ρ

142

Chapter 6. Deriving the Full-Reducing Krivine Machine

λ.0((λ.0)0) (1) init
→ ((λ.0((λ.0)0))[ε], ε, 0) (6) unapplied abstraction
→ (0((λ.0)0)[1 : ε], λ : ε, 1) (4) application
→ (0[1 : ε], ((λ.0)0)[1 : ε] : λ : ε, 1) (3) retrieve top binding
→ (1, ((λ.0)0)[1 : ε] : λ : ε, 1) (7) embed index into ground
→ (b0, 1c, ((λ.0)0)[1 : ε] : λ : ε, 1) (8) retrieve operand from stack
→ (((λ.0)0)[1 : ε], b0, 1c : λ : ε, 1) (4) application
→ ((λ.0)[1 : ε], 0[1 : ε] : b0, 1c : λ : ε, 1) (5) β-redex
→ (0[0[1 : ε] : 1 : ε], b0, 1c : λ : ε, 1) (3) retrieve top binding
→ (0[1 : ε], b0, 1c : λ : ε, 1) (3) retrieve top binding
→ (1, b0, 1c : λ : ε, 1) (7) embed index into ground
→ (b0, 1c, b0, 1c : λ : ε, 1) (10) accumulate neutral in nf
→ (b0 0, 1c, λ : ε, 1) (9) out-of-lambda
→ (bλ.0 0, 1c, ε, 1) (11) continuation stack is empty
→ λ.0 0 done

Figure 6.7: Execution example of KN on term λ.0((λ.0)0)

S ::= ε | Λ[ρ] : S | λ : S | bΛ, lc

(1) T → (T [ε], ε, 0)

(2) ((n+ 1)[C : ρ], S, l) → (n[ρ], S, l)
(3) (0[C : ρ], S, l) → (C, S, l)
(4) ((M N)[ρ], S, l) → (M [ρ], N [ρ] : S, l)
(5) ((λ.B)[ρ], N [ρ′] : S, l) → (B[N [ρ′] : ρ], S, l)

(6) ((λ.B)[ρ], S, l) → (B[l + 1 : ρ], λ : S, l + 1)
(7) (n, S, l) → (bl − n, lc, S, l)
(8) (bM, lc, N [ρ] : S, l′) → (N [ρ], bM, lc : S, l)
(9) (bB, lc, λ : S, l′) → (bλ.B, lc, S, l′)
(10) (bN, lc, bM, l′c : S, l′′) → (bM N, l′c, S, l′′)
(11) (bT, lc, ε, l′) → T

Closures C now include de Bruijn indices (n coming from Λ) and de Bruijn levels (written
n) for encoding the nesting of formal parameters that are pushed on the environment.
The de Bruijn levels realise what we shall refer to as the parameters-as-levels technique.
Closures also include an embedding of ground terms with a lambda level bΛ, lc whose
meaning is explained below. The syntax suggests an implicit calculus which we name
λρ. The continuation stack S can be empty (same symbol as empty environments), store
operands, store the control character λ which indicates that the current scope is under an

143

6.7. Introducing the calculus of closures λρ̃

abstraction, or store embedded ground terms.
The execution example in Figure 6.7 shows the rules of KN at work, where each step

is labelled with the rule that is applied next and with a short description of what the rule
does. We explain each rule in detail. The init rule (1) constructs a triple for a closed term
T . Rules (2) and (3) are for looking up variables by peeling off the environment while
decrementing indices. The binding at the top of the environment is delivered when the
index is 0. Rule (4) pushes on the stack the operand in closure form. Rule (5) embodies a
contraction: the operand closure is retrieved from the stack and pushed on the abstraction
body’s environment. Rule (6) is for unapplied abstractions (there is no closure operand
on the top of the stack). The control character λ is pushed on the stack to signal that
the machine is going under lambda, and the level l is incremented and also pushed on the
abstraction body’s environment. The level pushed on the environment l + 1 encodes the
nesting of the abstraction’s formal parameter. In rule (7), the appropriate de Bruijn index
is computed by subtracting n from the level in the current scope, and the computed index
is embedded in a ground term with the current level. The subtraction is reminiscent of the
lexical adjustment technique in σ (Section 6.5) although in KN level l is not reset to zero
and no adjustment is needed when looking up in the environment, for it grows as formal
parameters are pushed onto it. This guarantees an index alignment property, i.e., every
index points to a binding on the environment.

The remaining rules are for neutral terms and illuminate the reason for embedded
ground terms with levels. We shall explain them with an example. Consider the abstraction
λ.0(λ.M)N which has a neutral term as body. Subterm N has to be reduced with the
same level as the head variable 0. The head variable is embedded in a ground term with
its level (rule (7), already explained), and the embedding pushed on the stack by rule
(8). The machine increments the level when going under lambda in λ.M (rule (6), already
explained), but it does not decrement the level when scoping out of it in rule (9). However,
the appropriate level for N is recovered by rule (10) from the ground term on the top of
the stack. Rule (11) ends the execution when the control stack is empty.

6.7 Introducing the calculus of closures λρ̃

We introduce the λρ̃ calculus as the natural extension of λρ̂ that subsumes λρ:

λρ̃
C ::= Λ[ρ] | n | bnc | λλ.C | C · C
ρ ::= ε | C : ρ

The calculus only adds two ephemeral constructors which are required for full-reduction,
namely, absolute indices bnc (not to be confused with KN’s level-carrying ground terms
bΛ, lc) and closure abstractions λλ.C. Absolute indices are de Bruijn indices that are not
relative to an environment. Absolute indices are different from closures n[ε]. The latter
stand for free variables (as well as n[ρ] with n > |ρ|) and, as we will see below, they
trigger index calculations. The reader can deduce from the previous sentence that λρ̃ as-
sumes closures with free variables (open terms). Absolute indices are required to represent

144

Chapter 6. Deriving the Full-Reducing Krivine Machine

neutral closures which are closure applications of an absolute index to other closures (for
an advance, see the irreducible forms at the bottom of Figure 6.8). Closure abstractions
are required to represent closures where the redex may occur under lambda. There is
an obvious isomorphism between Λ and all the ephemeral closure constructions (hereafter
‘ephemeral closures’), gathered in E ::= bnc | λλ.E | E · E. As was the case with λρ̂
(Section 6.5), the ephemeral closures of λρ̃ are required to define reduction contexts for
closures (Section 6.7.1).

The connection between λρ̃ and λ is established by substitution σC:

σC(C,N) → E

σC(n[ρ], l) =

{
σC(nth(ρ), l) if n < |ρ|
bn− (|ρ| − l)c if n ≥ |ρ|

σC((λ.B)[ρ], l) = σC(λλ.B[l + 1 : ρ], l)
σC(λλ.B, l) = λλ.σC(B, l + 1)
σC(n, l) = bl − nc

σC((M N)[ρ], l) = σC(M [ρ] ·N [ρ], l)
σC(M · N, l) = σC(M, l) · σC(N, l)
σC(bnc, l) = bnc

Function σC is the analogous of function σ in λρ̂ and simulates capture-avoiding substitution
in λ, as proven by Lemma 6.7.3 below. Function σC now carries a lambda level parameter
l and enforces index alignment like KN (Section 6.6). Observe that in the 3rd clause, σC

increments the level encoding the nesting of the formal parameter that is pushed on the
environment as a de Bruijn level, namely l + 1, but does not increment the lambda level
l. It is in the 4th clause, when going under closure abstraction, that the lambda level l is
incremented but the environment is not touched. The remaining clauses are unsurprising.
Absolute indices are simply returned (1st clause), bound variables are looked up in the
environment (2nd clause, case n < |ρ|), free variables are given their absolute indices
(2nd clause, case n ≥ |ρ|) which are calculated by subtracting to the current index n the
number of proper bindings in the environment, i.e., bindings other than de Bruijn levels.
(By the invariant on closures that we introduce in Section 6.7.1 the proper bindings in the
environment are actually proper closures.) This number coincides with the length of the
environment |ρ| minus the current lambda level l. Finally, σC calculates the absolute index
of formal parameters retrieved from the environment (5th clause), lifts application closures
to closure applications (6th clause), and distributes over closure applications (7th clause).

Now we show that σC simulates the capture avoiding substitution function in λ.

Definition 6.7.1 (Well-formed proper closures). A pair 〈T [ρ], n〉 is well-formed, written
wf (T [ρ], n), if the formal parameters in ρ form a descending sequence n : . . . : 1 (an empty
sequence if n = 0) and every closure interspersed in the sequence is a proper closure T ′[ρ′]
such that wf (T ′[ρ′],m) where m is the closest de Bruijn level occurring in ρ from the right,
that is, if m 6= 0 then T [. . . : T ′[ρ′] : . . . : m : . . .] and between T ′[ρ′] and m there are only
proper closures.

145

6.7. Introducing the calculus of closures λρ̃

Trivially, wf (T [ρ], n) implies n ≤ |ρ|.

Notation 6.7.1.1. We write µnm for an environment consisting uniquely of formal param-
eters

[m+ n : . . . : m+ 1]

where n,m ≥ 0.

Lemma 6.7.2 (Shifting preserves σC). For any l,m ≥ 0 and T [ρ] a proper closure such
that wf (T [ρ], l)

σC(T [ρ], l +m) ≡↑0m (σC(T [ρ], l))

In words, flattening a closure with a level l + m yields the same result than flattening the
closure with level l and then shifting it by m with a threshold equals to zero. Notice that
the isomorphism E ∼= Λ is used extensively.

Proof. In order to facilitate a proof by induction, the lemma has to be generalised by
considering how the environment ρ grows with new formal parameters n at its left, i.e.,
when T ≡ {λ.}∗B. The shifting function ↑0m ‘crosses’ the lambda symbols in T , and for
that some appropriate ranges for the trailing formal parameters at the left of ρ have to be
provided. The generalised lemma reads as follows. For any l0, l, k0, k,m ≥ 0 if wf (T [ρ], l0)
and l ≥ l0 then

σC(T [µkl+k0+m : ρ], l + k0 + k +m) ≡↑k0+k
m (σC(T [µkl+k0

: ρ], l + k0 + k))

The proof is by structural induction on T [ρ]. Thanks to the assumption wf (T [ρ], l0) the
induction hypothesis is only called over the sub-closures of T [ρ] that are of the form that
we analyse.

Case T ≡ n: We distinguish the sub-cases:

Case n < k: Then nth(µkl+k0+m : ρ) = l + k0 + k +m− n and
nth(µkl+k0

: ρ) = l + k0 + k − n. We need

σC(l + k0 + k +m− n, l + k0 + k +m) ≡↑k0+k
m (σC(l + k0 + k − n, l + k0 + k))

which simplifies to n ≡↑k0+k
m n. The latter trivially holds since n < k0 + k.

Case k ≤ n < k + |ρ|: Then nth(µkl+k0+m : ρ) = nth(µkl+k0
: ρ) = C. We distinguish

the sub-cases:
Case C ≡ p: We know p ≤ l0 ≤ l from the assumption wf (T [ρ], l0). We need

σC(p, l + k0 + k +m) ≡↑k0+k
m (σC(p, l + k0 + k))

We let q = l − p ≥ 0. The goal simplifies to

q + k0 + k +m ≡↑k0+k
m (q + k0 + k)

which holds by definition of ↑k0+k
m since q + k0 + k ≥ k0 + k.

146

Chapter 6. Deriving the Full-Reducing Krivine Machine

Case C ≡ N [ρ′]: We need

σC(N [ρ′], l + k0 + k +m) ≡↑k0+k
m (σC(N [ρ′], l + k0 + k))

Let k′ = k0 + k, then the goal is

σC(N [ρ′], l + k′ +m) ≡↑k′m (σC(N [ρ′], l + k′))

From the assumption wf (T [ρ], l0) we know wf (N [ρ′], l′) and l ≥ l0 ≥ l′.
The goal holds by the induction hypothesis replacing k0 by k′, and letting
k = 0.

Case n ≥ k + |ρ|: We need

n− (|µkl+k0+m : ρ| − (l + k0 + k +m)) ≡↑k0+k
m (n− (|µkl+k0

: ρ| − (l + k0 + k)))

Let q = n− (k + |ρ|) ≥ 0. The goal simplifies to

q + l + k0 + k +m ≡↑k0+k
m (q + l + k0 + k)

which holds by definition of ↑k0+k
m since q + l + k0 + k ≥ k0 + k.

Case T ≡ λ.B: Both σC and ↑k0+k
m ‘cross’ the lambda, and we need

λ.σC(B[µk0+k+1
l+k0+m : ρ], l + k0 + k + 1 +m) ≡

λ. ↑k0+k+1
m (σC(B[µk0+k+1

l+k0
: ρ], l + k0 + k + 1))

which holds by the induction hypothesis.

Case T ≡M N : By the induction hypothesis.

Lemma 6.7.3 (Function σC simulates [_/_]_). For any l ≥ 0 and B[N [ρ] : ρ] a proper
closure such that wf (B[N [ρ] : ρ], l)

σC(B[N [ρ] : ρ], l) ≡ [σC(N [ρ], l)/0](σC(B[l + 1 : ρ], l + 1))

In words, for any lambda level l, flattening a closure B[N [ρ] : ρ] (i.e., the body of a closure
abstraction λλ.B[l + 1 : ρ] where a closure subject N [ρ] is pushed in the position pointed by
index 0) yields the same term than the substitution of flattened subject σC(N [ρ], l) for 0 in
flattened body σC(B[l + 1 : ρ], l+1). Notice that the isomorphism E ∼= Λ is used extensively.

Proof. In order to facilitate a proof by induction, the lemma has to be generalised by
considering how the environment [N [ρ] : ρ] grows with new formal parameters n at its
left, i.e., when B ≡ {λ.}∗M . The capture-avoiding substitution function [_/_]_ ‘crosses’
the lambda symbols in B. The new formal parameters on the left of [N [ρ] : ρ] have to
be incremented by one in the right part of the lemma. The generalised lemma reads as
follows. For any l0, l,m ≥ 0, if wf (B[N [ρ] : ρ], l0) and l ≥ l0 then

σC(B[µml : N [ρ] : ρ], l +m) ≡ [σC(N [ρ], l)/m](σC(B[µm+1
l : ρ], l +m+ 1))

147

6.7. Introducing the calculus of closures λρ̃

The proof is by structural induction on B[µml : N [ρ] : ρ]. Thanks to the assump-
tion wf (B[N [ρ] : ρ], l0) the induction hypothesis is only called over the sub-closures of
B[N [ρ] : ρ] that are of the form that we analyse.

Case B ≡ n: We distinguish the sub-cases:

Case n = m: Then nth(µml : N [ρ] : ρ) = N [ρ] and by definition of [_/_]_ we need
σC(N [ρ], l +m) ≡↑0m σC(N [ρ], l) which holds by Lemma 6.7.2 where k0, k = 0.

Case n < m: Then nth(µml : N [ρ] : ρ) = l + (m− n) and
nth(µm+1

l+1 : l + 1 : ρ) = l + (m− n) + 1. We need

σC(l + (m− n), l +m) ≡ [σC(N [ρ], l)/m](σC(l + (m− n) + 1, l +m+ 1))

which simplifies to n ≡ [σC(N [ρ], l)/m]n. The lemma holds by definition of
[_/_]_ because n < m.

Case n > m: Then nth(µml : N [ρ] : ρ) = nth(µm+1
l : ρ) = C, where C is either a

formal parameter p or a proper closure T [ρ′]. We distinguish the sub-cases:

Case C ≡ p: From the assumption wf (B[N [ρ] : ρ], l0) we know that p ≤ l0 ≤ l.
We need

σC(p, l +m) ≡ [σC(N [ρ], l)/m](σC(p, l +m+ 1))

which simplifies to q ≡ [σC(N [ρ], l)/m](q + 1), where q ≥ m. The lemma
holds because [_/_]_ decrements by one every index which is greater than
m.

Case C ≡ T [ρ′]: We need

σC(T [ρ′], l +m) ≡ [σC(N [ρ], l)/m](σC(T [ρ′], l +m+ 1))

where wf (T [ρ′], l′). The lemma holds by the induction hypothesis because
l ≥ l0 ≥ l′.

Case B ≡ λ.M : Both σC and [_/_]_ ‘cross’ the lambda, and we need

λ.σC(M [µm+1
l : N [ρ] : ρ], l+m+1) ≡ λ.[σC(N [ρ], l)/m+1](σC(M [µm+2

l : ρ], l+m+2))

which holds by the induction hypothesis.

Case B ≡M N : By the induction hypothesis.

6.7.1 Structural operational semantics of normal order in λρ̃

Figure 6.8 shows the structural operational semantics of normal order in λρ̃. It is a straight-
forward adaptation of the structural operational semantics of normal order in λ (Figure 6.3)

148

Chapter 6. Deriving the Full-Reducing Krivine Machine

n < |ρ|
〈n[ρ], l〉 →ño 〈nth(ρ), l〉

(Varρ̃)

〈(M N)[ρ], l〉 →ño 〈M [ρ] ·N [ρ], l〉
(Appρ̃)

n ≥ |ρ|
〈n[ρ], l〉 →ño 〈bn− (|ρ| − l)c, l〉

(Freρ̃)

〈(λ.B)[ρ], l〉 →ño 〈λλ.B[l + 1 : ρ], l〉
(Lamρ̃)

〈n, l〉 →ño 〈bl − nc, l〉
(Parρ̃)

〈(λλ.B[l + 1 : ρ]) ·N [ρ], l〉 →ño 〈B[N [ρ] : ρ], l〉
(βρ̃)

M 6∈WHNFC 〈M, l〉 →ño 〈M′, l〉
〈M · N, l〉 →ño 〈M′ · N, l〉

(µ1ρ̃)

M ∈WHNFC M 6≡ λλ.B 〈M, l〉 →ño 〈M′, l〉
〈M · N, l〉 →ño 〈M′ · N, l〉

(µ2ρ̃)

M ∈ NFC M 6≡ λλ.B 〈N, l〉 →ño 〈N′, l〉
〈M · N, l〉 →ño 〈M · N′, l〉

(νρ̃)

〈B, l + 1〉 →ño 〈B′, l + 1〉
〈λλ.B, l〉 →ño 〈λλ.B′, l〉

(ξρ̃)

WHNFC ::= λλ.Λ[ρ] | bnc{ · C}∗
NFC ::= λλ.NFC | NNFC

NNFC ::= bnc{ · NFC}∗

Figure 6.8: Parameters-as-levels and closure-converted structural operational semantics of
normal order in λρ̃.

to which we have added rules that consider ephemerals and KN’s parameters-as-levels (Sec-
tion 6.6). The lambda level l has to be carried along and thus→ño operates on pairs 〈C,N〉
rather than just closures. The rules on the top of Figure 6.8 are notions of reduction for
the new constructors and come naturally from σC. Varρ̃ is the rule for bound variables,

149

6.7. Introducing the calculus of closures λρ̃

Appρ̃ for lifting to closure application, Freρ̃ for free variables, Lamρ̃ for lifting to closure
abstraction where the formal parameter (the incremented lambda level) is pushed on the
environment, and Parρ̃ for formal parameters. The first rule on the bottom (βρ̃) contracts
βρ̃-redices (λλ.B[l + 1 : ρ]) · N [ρ], where the formal parameter l + 1 that was pushed on
the top of the environment by an immediately preceding ephemeral expansion Lamρ̃ is
discarded and replaced by the operand N [ρ]. The other compatibility rules (µ1ρ̃), (µ2ρ̃),
(νρ̃), and (ξρ̃) are obtained by adapting to closure-level pairs the corresponding rules in Fig-
ure 6.3. A pair’s lambda level is incremented in (ξρ̃), for it ‘goes under closure abstraction’,
leaving B’s environment untouched.

The dependency on call-by-name can be observed by looking at rules Varρ̃, Appρ̃,
Freρ̃, Lamρ̃, (βρ̃) and (µ1ρ̃) which taken in isolation define call-by-name in λρ̃. If we
compare with call-by-name in λρ̂ (Section 6.5.1, Figure 6.5) we find the addition of Freρ̃
and Lamρ̃, and the omission in (µρ̂) of the premiss M 6∈WHNFC which is present in (µ1ρ̃).
These minor differences are easily justified: Freρ̃ is required for free variables, and Lamρ̃

is the immediately preceding ephemeral expansion required for (βρ̃). Finally, the premiss
M 6∈ WHNFC is not present in (µρ̂) because that rule applies only when M is not in whnf.
The premiss is required in (µ1ρ̃) to control the rule’s applicability as part of a larger set
of rules that specify normal order.

Observe that derivations are balanced, i.e., a pair’s lambda level remains constant in
the left- and right-hand sides of judgements in derivation trees. This makes reasoning by
structural induction easier. Since the lambda level of a bindingN [ρ] depends on its position
in the environment (see Lemma 6.7.4 in this section) the lambda levels need not be carried
along with closures in environments and, unlike KN, levels need not be recovered from the
environment when reducing operands of neutral closures. This suggest an optimisation of
KN that we discuss further in Section 6.10.4.

The syntax for closure whnfs (hereafter whnfC) and closure nfs (hereafter nfC) is shown
at the bottom of Figure 6.8. A nfC consists of a closure abstraction with a body in nfC, or
of a neutral in normal form (hereafter a nnfC). The nfCs are included in ephemeral closures
E but are not included in whnfCs because abstraction bodies in whnfCs are proper closures
with delayed substitutions in their environments. These environments may be enlarged by
the combination of Lamρ̃ and (βρ̃), and their closures can only be removed when demanded
by Varρ̃.

Lemma 6.7.4 (Invariant on closures). (i) wf (T [ρ], l) holds for every pair 〈T [ρ], l〉 in
any derivation of the inference system in Figure 6.8.

(ii) Every βρ̃-redex in a →ño reduction sequence is of the form (λλ.B[l + 1 : ρ]) · N [ρ]
(same ρ in body and operand) and both wf (B[l + 1 : ρ], l + 1) and wf (N [ρ], l) hold
with l the current lambda level.

Proof. (i) By considering rules (βρ̃), Lamρ̃, and (ξρ̃) in Figure 6.8. The rest of the
rules do not modify the environment nor the level. Rule (βρ̃) trivially preserves the
invariant. The combination of Lamρ̃ and (ξρ̃) also preserves the invariant. The

150

Chapter 6. Deriving the Full-Reducing Krivine Machine

environment in the body is enlarged by Lamρ̃ and the level in the pair is incremented
by (ξρ̃).

(ii) By considering all the rules in Figure 6.8. Reduction always starts at a proper clo-
sure, i.e., a term injected into a closure by adding an empty environment. By the
compatibility rules, no operand will be expanded or reduced before the operator in
an application, and the operators are reduced only to closure abstractions (the strat-
egy is leftmost-outermost). Rule Appρ̃ duplicates the environment at both sides of
a closure application, and rule Lamρ̃ enlarges the environment in the body of the
operator when the operator is an abstraction.

6.7.2 Stepwise connection between →no and →ño

In Section 6.7 we said that substitution function σC connects λρ̃ with λ. Moreover, the
stepwise connection can be established between→ño in λρ̃ and→no in λ, as we prove next.
We refer to the union of the rules in the upper part of Figure 6.8 as (ρ̃), which consists of
all the notions of reduction of→ño but (βρ̃). We partition the reduction relation→ño into
ephemeral expansion and single-step βρ̃-reduction:

Definition 6.7.5 (Epehemeral expansion). The ephemeral expansion →ρ̃ is the union of
the compatibility rules in Figure 6.8 and (ρ̃), i.e., all the rules in the figure but (βρ̃). Iter-
ating ephemeral expansion yields a nfC if the input does not reduce to a closure containing
any βρ̃-redex, or an expanded closure, which unravels its leftmost-outermost βρ̃-redex, oth-
erwise. The expanded closures X (do not mistake them with the ephemeral closures E) are
defined by the EBNF grammar X ::= (λλ.Λ[n : ρ]) · C | λλ.X | NNFC · X { ·C}∗.

Definition 6.7.6 (Single-step βρ̃-reduction). The single-step βρ̃-reduction →βρ̃ is the
union of the compatibility rules in Figure 6.8 and (βρ̃), i.e., all the rules in the bottom
part of the figure. Single-step βρ̃-reduction contracts the leftmost-outermost βρ̃-redex (of
the form (λλ.B[l + 1 : ρ]) ·N [ρ]) of an expanded closure.

Relations →ρ̃ and →βρ̃ share the same compatibility rules. Since the notions of reduc-
tion of →ño are partitioned into (ρ̃) and (βρ̃), it is clear that →ño =→ρ̃

⋃
→βρ̃ .

We turn the σC function into a substitution relation:

Definition 6.7.7 (Substitution relation). The substitution relation →σ is the compatible
closure of (ρ̃) minus the rules dealing with bindings in environments.

〈M, l〉 →σ 〈M′, l〉
〈M · N, l〉 →σ 〈M′ · N, l〉

(µσ)
〈N, l〉 →σ 〈N′, l〉

〈M · N, l〉 →σ 〈M · N′, l〉
(νσ)

〈B, l + 1〉 →σ 〈B′, l + 1〉
〈λλ.B, l〉 →σ 〈λλ.B′, l〉

(ξσ)

The compatibility rules above are the same as those of →ño (Figure 6.8) but unrestricted
and simplified by removing the side conditions. Clearly, 〈M, l〉 →ρ̃ 〈M′, l〉 implies 〈M, l〉 →σ

151

6.7. Introducing the calculus of closures λρ̃

〈M′, l〉, but not the opposite. Iterating →σ yields an ephemeral closure where all the de-
layed substitutions have been flattened. This ephemeral closure coincides with the result of
applying σC to the input closure, i.e., 〈C, l〉 →∗σ 〈E, l〉 iff σC(C, l) = E.

Definition 6.7.8 (Height of a closure). The height of a closure is calculated by function
h below.

h(C) → N

h(n[ρ]) =

{
1 + h(nth(ρ)) if n < |ρ|
0 if n ≥ |ρ|

h((λ.B)[ρ]) = 1 + h(λλ.B[n : ρ])
h((M N)[ρ]) = 1 + h(M [ρ] ·N [ρ])

h(λλ.B) = 1 + h(B)
h(n) = 0

h(M · N) = 1 + max{h(M), h(N)}
h(bnc) = 0

The first three clauses calculate the height of a proper closure T [ρ]. In the first clause
T is a de Bruijn index n. If n has a binding in the environment (n < |ρ|) the height is
incremented by one and the function resumes over the binding retrieved from ρ. If n codifies
a free variable (n ≥ |ρ|) the height is zero. The second and third clauses just increment
the height by one and resume over the expanded closure. In the fourth clause, the height
is incremented by one when ‘crossing’ a closure abstraction and the function resumes over
the body. In the sixth clause, the height is incremented by one and the function resumes
over the highest branch. The height is zero for both de Bruijn levels codifying a formal
parameter (fifth clause) and for ground indices (seventh clause).

Theorem 6.7.9 (Normal order commutes with substitution). Let l ≥ 0, Mn be closures, Xn
be expanded closures, En be ephemeral closures, and Mn be terms. The following diagram
commutes:

〈Mi, l〉 〈Xi, l〉 〈Mi+1, l〉

〈Ei, l〉 〈Ei+1, l〉

Mi Mi+1

ρ̃

∗
βρ̃

no

σ ∗

∼=

σ ∗

∼=

Proof. By induction on the height of Mi. The closure Mi has an expanded closure Xi which
contains a βρ̃-redex. Let us first analyse the base cases, which are the βρ̃-redices where the
body is a proper closure with an index term n:

Case Mi ≡ (λλ.n[l + 1 : ρ]) ·N [ρ]: Then Mi ≡ (λ.σC(n[l + 1], l+ 1))(σC(N [ρ], l)), Xi ≡ Mi,
and Mi+1 ≡ n[N [ρ] : ρ]. The commuting condition

σC(n[N [ρ] : ρ], l) ≡ [σC(N [ρ], l)/0](σC(n[l + 1 : ρ], l + 1))

152

Chapter 6. Deriving the Full-Reducing Krivine Machine

holds by Lemma 6.7.3 and by the invariant on closures. If n 6= 0, then Mi has height
h(N [ρ]). Otherwise, Mi has height 1 + h(N [ρ]).

By the invariant on closures, the operand of the redex is always a proper closure N [ρ] so
we need not consider whether the operand is an arbitrary closure. Now we analyse the
general cases:

Case Mi ≡ (λλ.B[l + 1 : ρ]) ·N [ρ]: Then Mi ≡ (λ.σC(B[l + 1], 1))(σC(N [ρ], l)), Xi ≡ Mi,
and Mi+1 ≡ B[N [ρ] : ρ]. The commuting condition

σC(B[N [ρ] : ρ], l) ≡ [σC(N [ρ], l)/0](σC(B[l + 1 : ρ], l + 1))

holds by Lemma 6.7.3 and by the invariant on closures. (We need not consider
whether the operand is an arbitrary closure.)

Case Mi ≡ T [ρ]: Then T [ρ] expands in one step to some M′i with h(M′i) < h(T [ρ]). Since
〈T [ρ], l〉 →ρ̃ 〈M′i, l〉 implies 〈T [ρ], l〉 →σ 〈M′i, l〉, then σC(T [ρ], l) ≡ σC(M′i, l)

∼= Mi,
and the theorem holds by the induction hypothesis.

Case Mi ≡ λλ.B: By the induction hypothesis, the theorem holds for B, in particular at
level l + 1. Hence, the theorem holds for λλ.B at level l.

Case Mi ≡ M · N, M 6≡ λλ.B[n : ρ]: If M has an expanded closure, then the theorem holds
for M by the induction hypothesis. If M expands to a nfC, then N has to have an
expanded closure, and similarly, the theorem holds for N by the induction hypothesis.
In either cases, the theorem holds for M · N.

6.8 From structural operational semantics to reduction-free
normaliser

6.8.1 From structural to reduction semantics

The search functions search_whnf and search_nf in the code implement the compatibility
rules of the structural operational semantics of normal order in λρ̃ (Figure 6.8). The search
functions deliver for an input term the (normal order or call-by-name) redex subterm to
be contracted or the input term back if the input term is irreducible. The entry function
search invokes search_nf. (From now on we omit for brevity the entry functions of all our
semantics.) More precisely, function search_nf searches for a nfC or for the next redex to
be contracted. It relies on search_whnf to check if operators in applications are in whnfC.
Function search_whnf searches for a whnfC or for the next redex in the call-by-name sub-
reduction to be contracted.

The use of two functions explicitly reflects the inclusion of call-by-name within normal
order. An alternative equivalent implementation using a single search function with a
boolean check for whnfC-ness would reflect it implicitly. The derivation tree above a second

153

6.8. From SOS to reduction-free normaliser

premiss of (µ1ρ̃) will only contain call-by-name rules because (µ2ρ̃), (νρ̃) and (ξρ̃) are only
applicable when the operator is in whnfC or in nfC.

We apply standard derivation steps (CPS transformation, simplification, defunctionali-
sation, decomposition) and obtain decomposition functions decompose_whnf, decompose_nf,
and decompose_cont (the latter the continuation dispatcher that inevitably pops up). By
adding the necessary contract, recompose, and trampoline iterate functions (Danvy, 2005)
we obtain the trampolined reduction-based normaliser normalise that implements the fol-
lowing reduction semantics. The reduction-based normaliser is the starting point of the
derivation path shown in Figure 6.1.

Red. context: Cl
ño [] ::= []l | Cl

b̃n
[] · C | λλ.Cl+1

ño [] | Cl
ñe []

Cl
b̃n

[] ::= []l | Cl
b̃n

[] · C
Cl

ñe [] ::= NNFC ·Cl
ño [] | Cl

ñe [] · C

Contraction: 〈C0
ño [n[ρ]], l〉 →ño

{
〈C0

ño [nth(ρ)], l〉 if n < |ρ|
〈C0

ño [bn− (|ρ| − l)c], l〉 if n ≥ |ρ|
〈C0

ño [(M N)[ρ]], l〉 →ño 〈C0
ño [M [ρ] ·N [ρ]], l〉

〈C0
ño [n], l〉 →ño 〈C0

ño [bl − nc], l〉
〈C0

ño [(λ.B)[ρ]], l〉 →ño 〈C0
ño [λλ.B[l + 1 : ρ]], l〉

〈C0
ño [(λλ.B[n : ρ]) · N], l〉 →ño 〈C0

ño [B[N : ρ]], l〉

The reduction relation →ño is defined on pairs 〈C0
ño [R], l〉 consisting of a top-level context

(with the closure redex R within the hole) and the lambda level l at which the redex occurs.
Reduction contexts keep track of the lambda level (superscripts), starting with level zero
(top scope) and incrementing it when entering a λλ scope. Thus, the lambda level l in
〈C0

ño [R], l〉 is such that C0
ño [R] ≡ . . . [R]l. . .

If we compare the above reduction semantics with the call-by-name reduction semantics
of λρ̂ (Section 6.5.1) we find that the differences are easily dispelled by considering C0

b̃n
[] to

be the top-level context, by removing the contraction cases for free variables and for formal
parameters, and by shortcutting closure abstractions. Free variables are not considered in
λρ̂ which assumes closures without free variables. Formal parameters n are not considered
in λρ̂ because call-by-name does not go under lambda. Finally, the last contraction case
for call-by-name in Figure 6.5 can be obtained by shortcutting the last two contraction
cases of the reduction semantics. The lambda level is never incremented by C0

b̃n
[] and can

be dropped.

Theorem 6.8.1 (Unique decomposition). A closure C is either a nfC or there exists a
unique context C0

ño [] and redex R such that C ≡ C0
ño [R].

Proof. By structural induction on C. Let l be the current lambda level, which starts at
zero.

Case C ≡ bnc: C is in nfC.

154

Chapter 6. Deriving the Full-Reducing Krivine Machine

Case C ≡M [ρ]: C is a redex and the unique context for C is the hole []l.

Case C ≡ n: C is a redex and the unique context for C is the hole []l.

Case C ≡ λλ.B: if B is in nfC then C is in nfC. Otherwise, by the ind. hyp. we have
B ≡ Cl

ño [R] and therefore C ≡ λλ.Cl+1
ño [R]. The unique context for C is λλ.Cl+1

ño []

derivable from the axiom as follows: Cl
ño []⇒ λλ.Cl+1

ño [].

Case C ≡ M · N with M ≡ λλ.B: whether B is in nfC or not, C is a redex and the unique
context for C is []l derivable from the axiom as follows: Cl

ño []⇒ []l.

Case C ≡ M · N with M 6≡ λλ.B: there are two sub-cases:

Case M ∈ NNFC: if N is in nfC then C is in nfC. Otherwise, by the ind. hyp. we
have N ≡ Cl

ño [R] and therefore C ≡ M · Cl
ño [R]. The unique context for C is

M·Cl
ño [] derivable from the axiom as follows: Cl

ño []⇒ Cl
ñe []⇒ NNFC·Cl

ño []⇒
M ·Cl

ño [].
Case M 6∈ NNFC: M is not in nfC or otherwise it would be a closure abstraction, and

we are assuming M 6≡ λλ.B. By the ind. hyp. we have M ≡ Cl
ño [R] and therefore

C ≡ Cl
ño [R] ·N. The only non-terminals leading to a redex in operator position

are Cl
b̃n

[] and Cl
ñe []. These are disjoint cases: in Cl

b̃n
[] the redex is located

in the leftmost operator of a multiple closure application whereas in Cl
ñe [] the

redex is located at the right of a NNFC in the leftmost neutral closure operator
of a multiple closure application. In the first case the unique context for C is
Cl

b̃n
[] · N derived from the axiom as follows: Cl

ño [] ⇒ Cl
b̃n

[] · C ⇒ Cl
b̃n

[] · N.
In the second case the unique context for C is Cl

ñe [] · N derived as follows:
Cl

ño []⇒ Cl
ñe []⇒ Cl

ñe [] · C⇒ Cl
ñe [] · N.

6.8.2 Syntactic correspondence

We transform the reduction-based normaliser that implements the reduction semantics
of Section 6.8.1 to the environment-based eval/apply abstract machine shown below using
the following steps: refocusing, refined inlining-of-iterate-function, and transition compres-
sion. The refined inlining-of-iterate-function step (García-Pérez & Nogueira, 2013, 2014a)
exploits the shape invariant of the continuation stack to obtain a machine with a shallow
inspection property, i.e., a machine whose dispatcher does not inspect the current contin-
uation argument and therefore can be refunctionalised. Refunctionalisation and defunc-
tionalisation require shallow inspection of the continuation stack (Ager et al., 2003b). The
machine in Figure 6.9 is the closure-converted version of the substitution-based eval/apply
machine in (García-Pérez & Nogueira, 2013).

The machine has three states, normalise to whnf, normalise to nf, and apply. The
configurations for each state are type-annotated by subscripts w, n, and a respectively.
The machine decrements the level l (6th rule from the bottom) when leaving a λλ scope,

155

6.8. From SOS to reduction-free normaliser

S ::= C0 | C1(C) : S | C2 : S | C3(C) | C4(C) : S | C5(C) : S

T → (T [ε],C0, 0)n
(if n < |ρ|) (n[ρ], S, l)w → (nth(ρ), S, l)w
(if n ≥ |ρ|) (n[ρ], S, l)w → (bn− (|ρ| − l)c, S, l)a

(n, S, l)w → (bl − nc, S, l)a
(bnc, S, l)w → (bnc, S, l)a

((λ.B)[ρ], S, l)w → (λλ.B[l + 1 : ρ], S, l)a
((M N)[ρ], S, l)w → (M [ρ] ·N [ρ], S, l)w

(M · N, S, l)w → (M,C1(N) : S, l)w
(if n < |ρ|) (n[ρ], S, l)n → (nth(ρ), S, l)n
(if n ≥ |ρ|) (n[ρ], S, l)n → (bn− (|ρ| − l)c, S, l)a

(n, S, l)n → (bl − nc, S, l)a
(bnc, S, l)n → (bnc, S, l)a

((λ.B)[ρ], S, l)n → (λλ.B[l + 1 : ρ], S, l)n
(λλ.B[l + 1 : ρ], S, l)n → (B[l + 1 : ρ],C2 : S, l + 1)n

((M N)[ρ], S, l)n → (M [ρ] ·N [ρ] : S, l)n
(M · N, S, l)n → (M,C3(N) : S, l)w

(λλ.B[n : ρ],C1(N) : S, l)a → (B[N : ρ], S, l)w
(M,C1(N) : S, l)a → (M · N, S, l)a

(B,C2 : S, l)a → (λλ.B, S, l − 1)a
(λλ.B[n : ρ],C3(N) : S, l)a → (B[N : ρ], S, l)n

(M,C3(N) : S, l)a → (M,C4(N) : S, l)n
(M,C4(N) : S, l)a → (N,C5(M) : S, l)n
(N,C5(M) : S, l)a → (M · N, S, l)a

(E,C0, l)a → E

Figure 6.9: Closure-converted eval/apply normal order abstract machine

thus mirroring rule (ξρ̃) in Figure 6.8. The functions normalise4_whnf, normalise4_nf, and
normalise4_cont in the code make up the big-step tail-recursive implementation of the
machine.

6.8.3 Functional correspondence

We apply refunctionalisation and inverse CPS to the big-step tail-recursive implemen-
tation of the machine shown in Section 6.8.2 and obtain the reduction-free normalisers
normalise6_whnf and normalise6_nf that implement the big-step natural semantics in Fig-
ure 6.10.

156

Chapter 6. Deriving the Full-Reducing Krivine Machine

n < |ρ| 〈nth(ρ), l〉 ⇓
b̃n
〈N, l〉

〈n[ρ], l〉 ⇓
b̃n
〈N, l〉

(Var
b̃n

)
〈n, l〉 ⇓

b̃n
〈bl − nc, l〉

(Par
b̃n

)

n ≥ |ρ|
〈n[ρ], l〉 ⇓

b̃n
〈bn− (|ρ| − l)c, l〉

(Fre
b̃n

)
〈bnc, l〉 ⇓

b̃n
〈bnc, l〉

(Abs
b̃n

)

〈(λ.B)[ρ], l〉 ⇓
b̃n
〈λλ.B[l + 1 : ρ], l〉

(Lam
b̃n

)

〈M [ρ] ·N [ρ], l〉 ⇓
b̃n
〈C, l〉

〈(M N)[ρ], l〉 ⇓
b̃n
〈C, l〉

(App
b̃n

)

〈M, l〉 ⇓
b̃n
〈M′, l〉 M′ ≡ λλ.B[l + 1 : ρ] 〈B[N : ρ], l〉 ⇓

b̃n
〈B′, l〉

〈M · N, l〉 ⇓
b̃n
〈B′, l〉

(Red
b̃n

)

〈M, l〉 ⇓
b̃n
〈M′, l〉 M′ 6≡ λλ.B[l + 1 : ρ]

〈M · N, l〉 ⇓
b̃n
〈M′ · N, l〉

(Neu
b̃n

)

n < |ρ| 〈nth(ρ), l〉 ⇓ño 〈N, l〉
〈n[ρ], l〉 ⇓ño 〈N, l〉

(Varño) 〈n, l〉 ⇓ño 〈bl − nc, l〉
(Parño)

n ≥ |ρ|
〈n[ρ], l〉 ⇓ño 〈bn− (|ρ| − l)c, l〉

(Freño) 〈bnc, l〉 ⇓ño 〈bnc, l〉
(Absño)

〈λλ.B[l + 1 : ρ], l〉 ⇓ño 〈λλ.B′, l〉
〈(λ.B)[ρ], l〉 ⇓ño 〈λλ.B′, l〉

(Lamño)

〈B[l + 1 : ρ], l + 1〉 ⇓ño 〈B′, l + 1〉
〈λλ.B[l + 1 : ρ], l〉 ⇓ño 〈λλ.B′, l〉

(Bodño)

〈M [ρ] ·N [ρ], l〉 ⇓ño 〈C, l〉
〈(M N)[ρ], l〉 ⇓ño 〈C, l〉

(Appño)

〈M, l〉 ⇓
b̃n

M′ M′ ≡ λλ.B[l + 1 : ρ] 〈B[N : ρ], l〉 ⇓ño 〈B′, l〉
〈M · N, l〉 ⇓ño 〈B′, l〉

(Redño)

〈M, l〉 ⇓
b̃n
〈M′, l〉 M′ 6≡ λλ.B[l + 1 : ρ] 〈M′, l〉 ⇓ño 〈M′′, l〉 〈N, l〉 ⇓ño 〈N′, l〉

〈M · N, l〉 ⇓ño 〈M′′ · N′, l〉
(Neuño)

Figure 6.10: Natural semantics of normal order in λρ̃

157

6.9. Shortcutting ephemeral expansion

6.9 Shortcutting ephemeral expansion

Shortcutting ephemeral expansion consists of coalescing the rules that expand proper clo-
sures to ephemerals and of eliminating ephemeral constructs. For the latter we need to
introduce a new preponing step.

6.9.1 Coalescing ephemeral expansion

We eliminate the rules that expand proper closures to ephemerals and obtain the natural
semantics. We also eliminate levels in final results because they are no longer needed. The
coalesced semantics is shown in Figure 6.11. Rule Lam

b̃n
cannot be eliminated because

closure abstractions are in whnfC. Rules Lamño and Bodño are coalesced in rule Lamñoc .
Rules App

b̃n
and Appño are coalesced with Red and Neu rules of their respective calculus.

6.9.2 Preponing

We have to eliminate ephemeral constructs. Eliminating ephemeral closure abstractions
is straightforward. First, we have to change rule Lam

b̃n
c so that it delivers the body

B[l + 1 : ρ] which is a proper closure. Second, we have to modify the second premiss of
Red

b̃n
c , Neu

b̃n
c , Redñoc , and Neuñoc , to a check on whether M′ is a proper closure.

Eliminating ephemeral neutral closures would be possible if its operands were in nfC
after call-by-name. That is, if the reduction steps within the third premiss 〈M′, l〉 ⇓ñoc M′′
of Neuñoc that normalise the operands of neutral closures were preponed to the call-by-
name steps of the first premiss 〈M, l〉 ⇓

b̃n
c M′ of that same rule. Fortunately, this can

be easily achieved by copying the last premiss 〈N, l〉 ⇓ñoc N′ in Neuñoc and pasting it as
the last premiss in Neu

b̃n
c , and by removing the third premiss 〈M′, l〉 ⇓ñoc M′′ in Neuñoc

which is no longer needed because M′ would now be in nfC.
The resulting Lam

b̃n
p , Neu

b̃n
p and Neuñop rules, relabelled with a p superscript for

readability, are shown below. The remaining rules stay as in Figure 6.11 save for the
addition of the superscript.

〈(λ.B)[ρ], l〉 ⇓
b̃n
c B[l + 1 : ρ]

(Lam
b̃n

p)

〈M [ρ], l〉 ⇓
b̃n
p M′ M′ 6≡ B[l + 1 : ρ] 〈N [ρ], l〉 ⇓ñop N′

〈(M N)[ρ], l〉 ⇓
b̃n
p M′ · N′

(Neu
b̃n

p)

〈M [ρ], l〉 ⇓
b̃n
p M′ M′ 6≡ B[l + 1 : ρ] 〈N [ρ], l〉 ⇓ñop N′

〈(M N)[ρ], l〉 ⇓ñop M′ · N′
(Neuñop)

Due to preponing now ⇓
b̃n
p and ⇓ñop are mutually recursive. The resulting preponed

normaliser is implemented by functions normalise15_whnf and normalise15_nf in the code.

158

Chapter 6. Deriving the Full-Reducing Krivine Machine

n < |ρ| 〈nth(ρ), l〉 ⇓
b̃n
c N

〈n[ρ], l〉 ⇓
b̃n
c N

(Var
b̃n

c)
〈n, l〉 ⇓

b̃n
c bl − nc

(Par
b̃n

c)

n ≥ |ρ|
〈n[ρ], l〉 ⇓

b̃n
c bn− (|ρ| − l)c

(Fre
b̃n

c)
〈bnc, l〉 ⇓

b̃n
c bnc

(Abs
b̃n

c)

〈(λ.B)[ρ], l〉 ⇓
b̃n
c λλ.B[l + 1 : ρ]

(Lam
b̃n

c)

〈M [ρ], l〉 ⇓
b̃n
c M′ M′ ≡ λλ.B[l + 1 : ρ] 〈B[N [ρ] : ρ], l〉 ⇓

b̃n
c B′

〈(M N)[ρ], l〉 ⇓
b̃n
c B′

(Red
b̃n

c)

〈M [ρ], l〉 ⇓
b̃n
c M′ M′ 6≡ λλ.B[l + 1 : ρ]

〈(M N)[ρ], l〉 ⇓
b̃n
c M′ · N

(Neu
b̃n

c)

n < |ρ| 〈nth(ρ), l〉 ⇓ñoc N
〈n[ρ], l〉 ⇓ñoc N

(Varñoc)
〈n, l〉 ⇓ñoc bl − nc

(Parñoc)

n ≥ |ρ|
〈n[ρ], l〉 ⇓ñoc bn− (|ρ| − l)c

(Freñoc)
〈bnc, l〉 ⇓ñoc bnc

(Absñoc)

〈B[l + 1 : ρ], l + 1〉 ⇓ñoc B′

〈(λ.B)[ρ], l〉 ⇓ñoc λλ.B′
(Lamñoc)

〈M [ρ], l〉 ⇓
b̃n
c M′ M′ ≡ λλ.B[l + 1 : ρ] 〈B[N [ρ] : ρ], l〉 ⇓ñoc B′

〈(M N)[ρ], l〉 ⇓ñoc B′
(Redñoc)

〈M [ρ], l〉 ⇓
b̃n
c M′ M′ 6≡ λλ.B[l + 1 : ρ] 〈M′, l〉 ⇓ñoc M′′ 〈N [ρ], l〉 ⇓ñoc N′

〈(M N)[ρ], l〉 ⇓ñoc M′′ · N′
(Neuñoc)

Figure 6.11: Coalesced natural semantics of normal order in λρ̃

Theorem 6.9.1 (Preponing is equivalence-preserving). Let C be a closure and l be the
current lambda level. Take the following propositions:

(i) 〈C, l〉 ⇓
b̃n
c C′ iff 〈C, l〉 ⇓

b̃n
p C′ when C′ is not a neutral.

(ii) 〈C, l〉 ⇓
b̃n
c C′ iff 〈C, l〉 ⇓

b̃n
p C′′ when C′ is a neutral and C′′ is the normal form of

C′.

(iii) 〈C, l〉 ⇓ñoc C′′ iff 〈C, l〉 ⇓ñop C′′

159

6.9. Shortcutting ephemeral expansion

Proof. Proposition (i) holds because the Neu rule in the coalesced and preponed versions
is never used in a derivation and the remaining rules are exactly the same in both versions.
Propositions (ii) and (iii) hold assuming (i) and by simultaneous induction on ⇓

b̃n
and

⇓ño derivations.

The correctness of preponing can also be observed in the eval-readback version of
the natural semantics. The reduction-free normalisers implementing the single-function
and eval-readback semantics versions are inter-derivable by inverse and direct lightweight
fusion by fixed-point promotion (Ohori & Sasano, 2007). (For the sake of completeness we
have included their detailed inter-derivation in the code, see entry functions normalise7 to
normalise14). Recall from Section 6.4 that ⇓no = ⇓rn ◦ ⇓bn . Preponing here consists of
moving to the call-by-name stage the first reduction steps of ⇓rn for applications, namely
those of the first premiss M ⇓rn M ′ of Apprn . In other words, it consists of shifting the
point at which eval ends and readback begins when reducing neutrals. This is achieved by
removing the first premiss M ⇓rn M ′ of Apprn , and then copying the last two premisses
N ⇓bn N ′ and N ′ ⇓rn N ′′ of the same rule, and pasting them as the last two premisses
of rule Neubn in Figure 6.4. The equivalence between the coalesced and the preponed
versions of the natural semantics is stepwise, that is, both semantics contract the same
redices in the same order.

6.9.3 Shortcut normaliser

After preponing, we are now in a position to eliminate ephemeral constructs. We have to
distinguish final results from closures and will use ground terms without levels bΛc for final
results, since levels are not needed in final results (Section 6.9.1). The resulting calculus
which we call λρ∗ is similar to λρ except that ground terms do not carry levels.

λρ
∗ C ::= Λ[ρ] | n | bΛc

ρ ::= ε | C : ρ

Shortcutting removes ephemeral constructors and rules Abs
b̃n
p , App

b̃n
p , Absñop , and

Appñop because only proper closures will be inputs. The resulting rules in Figure 6.12
now deliver ground terms except for Varbn , Redbn , and Lambn . Rule Lambn delivers a
proper closure B[l + 1 : ρ] and rules Varbn and Redbn simply propagate proper closures.
The second premiss of Redbn and Redno checks if M′ is a proper closure, and the second
premiss of Neubn and of Neuno checks if M′ is a ground term. Functions normalise16_whnf
and normalise16_nf in the code implement the shortcut natural semantics.

160

Chapter 6. Deriving the Full-Reducing Krivine Machine

n < |ρ| 〈nth(ρ), l〉 ⇓bn N

〈n[ρ], l〉 ⇓bn N
(Varbn)

〈n, l〉 ⇓bn bl − nc
(Parbn)

n ≥ |ρ|
〈n[ρ], l〉 ⇓bn bn− (|ρ| − l)c

(Frebn)

〈(λ.B)[ρ], l〉 ⇓bn B[l + 1 : ρ]
(Lambn)

〈M [ρ], l〉 ⇓bn M′ M′ ≡ B[n : ρ] 〈B[N [ρ] : ρ], l〉 ⇓bn B′

〈(M N)[ρ], l〉 ⇓bn B′
(Redbn)

〈M [ρ], l〉 ⇓bn M′ M′ ≡ bM ′c 〈N [ρ], l〉 ⇓no bN ′c
〈(M N)[ρ], l〉 ⇓bn bM

′N ′c
(Neubn)

n < |ρ| 〈nth(ρ), l〉 ⇓no bNc
〈n[ρ], l〉 ⇓no bNc

(Varno) 〈n, l〉 ⇓no bl − nc
(Parno)

n ≥ |ρ|
〈n[ρ], l〉 ⇓no bn− (|ρ| − l)c

(Freno)

〈B[l + 1 : ρ], l + 1〉 ⇓no bB′c
〈(λ.B)[ρ], l〉 ⇓no bλ.B′c

(Lamno)

〈M [ρ], l〉 ⇓bn M′ M′ ≡ B[l + 1 : ρ] 〈B[N [ρ] : ρ], l〉 ⇓no bB′c
〈(M N)[ρ], l〉 ⇓no bB′c

(Redno)

〈M [ρ], l〉 ⇓bn M′ M′ ≡ bM ′c 〈N [ρ], l〉 ⇓no bN ′c
〈(M N)[ρ], l〉 ⇓no bM ′N ′c

(Neuno)

Figure 6.12: Shortcut natural semantics of normal order in λρ∗

161

6.10. From reduction-free normaliser to push/enter abstract machine

c ::= w | n

n < |ρ| 〈nth(ρ), l, c〉 ⇓ctl N
〈n[ρ], l, c〉 ⇓ctl N

(Varctl) 〈n, l, c〉 ⇓ctl bl − nc
(Parctl)

n ≥ |ρ|
〈n[ρ], l, c〉 ⇓ctl bn− (|ρ| − l)c

(Frectl)

〈(λ.B)[ρ], l,w〉 ⇓ctl B[l + 1 : ρ]
(Lam1ctl)

〈B[l + 1 : ρ], l + 1,n〉 ⇓ctl bB
′c

〈(λ.B)[ρ], l,n〉 ⇓ctl bλ.B
′c

(Lam2ctl)

〈M [ρ], l,w〉 ⇓ctl M
′ M′ ≡ B[l + 1 : ρ] 〈B[N [ρ] : ρ], l, c〉 ⇓ctl B

′

〈(M N)[ρ], l, c〉 ⇓ctl B
′ (Redctl)

〈M [ρ], l,w〉 ⇓ctl M
′ M′ ≡ bM ′c 〈N [ρ], l,n〉 ⇓ctl bN

′c
〈(M N)[ρ], l, c〉 ⇓ctl bM

′N ′c
(Neuctl)

Figure 6.13: Natural semantics of normal order in λρ∗ with explicit control

6.10 From reduction-free normaliser to push/enter abstract
machine

6.10.1 A reduction-free normaliser with explicit control

The mutually recursive ⇓bn and ⇓no of the shortcut natural semantics in Figure 6.12 differ
in the treatment of abstractions. Rule Lambn takes place when the abstraction is applied
to an operand whereas Lamno takes place when the abstraction is unapplied. We transform
the shortcut normalisers normalise16_whnf and normalise16_nf into a single normalise_ctl
normaliser with explicit control that encodes the different treatment of abstractions. We
introduce the control characters w and n that respectively encode a sub-derivation with
Lambn and a sub-derivation with Lamno . The normaliser with explicit control implements
the natural semantics of Figure 6.13. The control character w is used for operators in
applications, and n for operands of neutral closures.

162

Chapter 6. Deriving the Full-Reducing Krivine Machine

6.10.2 From reduction-free normaliser to eval/apply abstract machine

We apply defunctionalisation and CPS transformation to the normaliser with explicit con-
trol and obtain the following environment-based eval/apply machine with explicit con-
trol. The machine is implemented in the code by functions normalise_ctl_cont and
apply_ctl_cont.

S ::= C0 | C1(C, c) : S | C2 : S | C3(C) : S
c ::= w | n

T → (T [ε],C0, 0,n)

(if n < |ρ|) (n[ρ], S, l, c) → (nth(ρ), S, l, c)
(if n ≥ |ρ|) (n[ρ], S, l, c) → (bn− (|ρ| − l)c, S, l)

(n, S, l, c) → (bl − nc, S, l)
((λ.B)[ρ], S, l,w) → (B[l + 1 : ρ], S, l)

((λ.B)[ρ], S, l,n) → (B[l + 1 : ρ],C2 : S, l + 1,n)
((M N)[ρ], S, l, c) → (M [ρ],C1(N [ρ], c) : S, l,w)

(B[n : ρ],C1(N, c) : S, l) → (B[N : ρ], S, l, c)
(bMc,C1(N, c) : S, l) → (N,C3(bMc) : S, l,n)

(bBc,C2 : S, l) → (bλ.Bc, S, l − 1)
(bNc,C3(bMc) : S, l) → (bM Nc, S, l)

(bT c,C0, l) → T

The horizontal bar in the middle separates the eval configuration from the apply con-
figuration. The eval configuration pattern-matches on the control character c to decide
whether to go under lambda. The apply configuration does not use the control character.
The occurrence of the control character discriminates both configurations and there is no
need for type annotations. Observe the use of w when reducing operators in applications
and the use of n when reducing operands in neutral closures. Observe that continuation
C1(C, c) carries along the control character which is restored after contraction (first rule
of the apply configuration).

6.10.3 Removing explicit control

Once the normaliser is in defunctionalised CPS we can observe the correlation between
explicit control and the continuation stack. Control character w can be replaced by check-
ing for the occurrence of C1 on the top of the stack, as we show next by constructing the
grammar of well-formed stacks of the eval/apply machine with explicit control.

S ::= AC0

A ::= ε
| {C1(C,w) : }∗ {C2 : }∗
| AC3(bn{NF}∗c) : {C1(C,w) : }∗ {C2 : }∗

163

6.10. From reduction-free normaliser to push/enter abstract machine

The stack S starts always with the initial continuation C0. Non-terminal A is introduced
to exclude the initial continuation in further (and optional since A derives to ε) recursive
occurrences of a well-formed segment of the stack. The machine can go under lambda (C2)
but never after pushing operands on the stack (C1(C,w)) because otherwise contraction
would occur. The operands are only pushed on the stack with control character w, and
that control character is preserved after contraction (i.e., when a lambda abstraction is
found, and after retrieving the operand from the stack and pushing it on the environment).
If a formal parameter or a free variable is found, its ground index n is embedded into a
ground term and pushed on the stack (C3(bnc)). Ground terms are only modified by
applying them to other ground terms, which by definition are nfs. Thus, ground terms
coincide with neutral terms in normal form bn{NF}∗c. Once a ground term is pushed on
the stack, the machine resumes execution with control character n, which is signaled by
the recursive occurrence of A in the grammar of stacks.

The occurrence of C1 on the top of the stack determines the different treatment of
abstractions. We use this fact to eliminate explicit control from the eval/apply machine
and obtain the following eval/apply machine with implicit control:

S ::= C0 | C1(C) : S | C2 : S | C3(C) : S

T → (T [ε],C0, 0)e
(if n < |ρ|) (n[ρ], S, l)e → (nth(ρ), S, l)e
(if n ≥ |ρ|) (n[ρ], S, l)e → (bn− (|ρ| − l)c, S, l)a

(n, S, l)e → (bl − nc, S, l)a
((λ.B)[ρ],C1(N) : S, l)e → (B[l + 1 : ρ],C1(N) : S, l)a

((λ.B)[ρ], S, l)e → (B[l + 1 : ρ],C2 : S, l + 1)e
((M N)[ρ], S, l)e → (M [ρ],C1(N [ρ]) : S, l)e

(B[n : ρ],C1(N) : S, l)a → (B[N : ρ], S, l)e
(bMc,C1(N) : S, l)a → (N,C3(bMc) : S, l)e

(bBc,C2 : S, l)a → (bλ.Bc, S, l − 1)a
(bNc,C3(bMc) : S, l)a → (bM Nc, S, l)a

(bT c,C0, l)a → T

Type annotations are required again to distinguish the eval and apply configurations.
The machine with implicit control is implemented by functions normalise20_cont and
apply20_cont in the code.

Pattern-matching on the stack breaks the shallow inspection required to refunctionalise
the machine, but this context-dependency is present in KN and has to be introduced at
some point in order to derive the machine.

6.10.4 From eval/apply to push/enter machine

To turn the machine into push/enter, the apply function has to be inlined in eval. There
are three eval transitions going to apply, namely the 2nd, 3th, and 4th. The last can be

164

Chapter 6. Deriving the Full-Reducing Krivine Machine

inlined (‘compressed’) with the first transition of apply. To inline the other two we first
‘protrude’ (inverse inline) them into a new eval transition for ground terms going to apply:

(if n ≥ |ρ|) (n[ρ], S, l)e → (bn− (|ρ| − l)c, S, l)e
(n, S, l)e → (bl − nc, S, l)e

(bnc, S, l)e → (bnc, S, l)a

The rest of the transitions remain the same and are omitted. The protruded machine is
implemented in the code by functions normalise21_cont and apply21_cont. We inline the
transitions of apply for ground terms into the new transition in the protruded machine and
obtain the push/enter machine below.

S ::= C0 | C1(C) : S | C2 : S | C3(C) : S

T → (T [ε],C0, 0)

(if n < |ρ|) (n[ρ], S, l) → (nth(ρ), S, l)
(if n ≥ |ρ|) (n[ρ], S, l) → (bn− (|ρ| − l)c, S, l)

(n, S, l) → (bl − nc, S, l)
((λ.B)[ρ],C1(N) : S, l) → (B[N : ρ], S, l)

((λ.B)[ρ], S, l) → (B[l + 1 : ρ],C2 : S, l + 1)
((M N)[ρ], S, l) → (M [ρ],C1(N [ρ]) : S, l)

(bMc,C1(N) : S, l) → (N,C3(bMc) : S, l)
(bBc,C2 : S, l) → (bλ.Bc, S, l − 1)

(bNc,C3(bMc) : S, l) → (bM Nc, S, l)
(bT c,C0, l) → T

The machine is implemented in the code by function normalise22_push.
Save for two minor visual differences that we discuss in the next paragraph, this machine

is an optimised version of the original KN that can work with open terms. The optimisation
is minor: embedded ground terms do not carry a level, so such levels need not be recovered
from the environment when reducing operands of neutral closures, because the machine
decrements the current level when leaving a lambda scope, as specified by rule (ξρ̃) in the
structural operational semantics of normal order in Figure 6.8. Naturally, the machine can
take closed terms as input. The clause for free variables would simply not be used.

The visual differences with the original KN are the following. First, the use of nth for
look-up instead of a recursive peeling-off of the environment (nth can be implemented by
recursive peel-off, but also by random access). Second, the presence of defunctionalised
continuations coming from the stack S of the push/enter machine.

We remove the visual differences. The nth function for look-up is replaced by a peeling-
off definition (consequently, the transition for free variables n[ε] has to be adapted). And
defunctionalised continuations in S are replaced by the constructors of λρ∗ (and the control

165

6.11. Related and future work

character λ) that they represent (collected in stack S in the optimised machine below).

S ::= ε | Λ[ρ] : S | λ : S | bΛc : S

T → (T [ε], ε, 0)

((n+ 1)[C : ρ], S, l) → (n[ρ], S, l)
(0[C : ρ], S, l) → (C, S, l)

(n[ε], S, l) → (bn+ lc, S, l)
((M N)[ρ], S, l) → (M [ρ], N [ρ] : S, l)

((λ.B)[ρ], N [ρ′] : S, l) → (B[N [ρ′] : ρ], S, l)

((λ.B)[ρ], S, l) → (B[l + 1 : ρ], λ : S, l + 1)
(n, S, l) → (bl − nc, S, l)

(bMc, N [ρ] : S, l) → (N [ρ], bMc : S, l)
(bBc, λ : S, l) → (bλ.Bc, S, l − 1)

(bNc, bMc : S, l) → (bM Nc, S, l)
(bT c, ε, l) → T

The machine is implemented by function normalise23_push in the code.
We have derived KN and are now at the end of our journey.

6.11 Related and future work

Single-function and eval-readback (Section 6.4) approaches require different CPS transfor-
mations. For the former, a single-layer CPS without control delimiters is enough (García-
Pérez & Nogueira, 2013) because reduction is performed in a single stage. All the artefacts
shown in this chapter are single-function. For eval-readback, either a two-layer CPS or a
single-layer CPS with control delimiters is required (Biernacka et al., 2005). Both NBE
and eval-readback are popular within the programming languages community. However,
single-function structural and natural semantics are conceptually simpler, and their imple-
mentations more amenable to program transformation because no specific CPS techniques
nor meta-theory for delimiting control is required.

In (Danvy et al., 2013) they present a derivation involving the full-reducing machine
of Curien (Curien, 1993) itself based on the KAM machine (Crégut, 1990). Our work
and (Danvy et al., 2013) have been independently developed and are, to our knowledge,
the only works demonstrating the derivation of full-reducing machines. The differences
between our work and (Danvy et al., 2013) are substantial.

• The full-reducing machines are different. Moreover, we arrive at KN whereas (Danvy
et al., 2013) departs from Curien’s machine.

• We follow a single-function approach to derive KN, and use single-layer CPS and
plain CPS-related techniques. In contrast, (Danvy et al., 2013) follows the eval-

166

Chapter 6. Deriving the Full-Reducing Krivine Machine

readback approach present in Curien’s machine and presents two derivation paths,
one using two-layer CPS and another using single-layer CPS with control delimiters.

• The precise control of levels in λλ scopes (rules Lamρ̃ and (ξρ̃) in Figure 6.8) results
in index alignment and balanced derivations which makes reasoning by structural
induction easier and substantiates the optimisation of the original KN machine (Sec-
tion 6.7.1). In (Danvy et al., 2013) environments carry a lexical adjustment value
that is incremented when popping a binding off the environment which complicates
reasoning by structural induction on environments.

• In Section 6.10, we introduce explicit control to combine the hybrid and subsidiary
reduction-free normalisers into one, and derive an explicit-control eval/apply abstract
machine. When removing explicit control the resulting machine is context-dependent,
i.e., it does not have the shallow-inspection property. This prevents the refunction-
alisation of the machine. However, the problem is not in our derivation but in the
fact that context-dependency is present in KN, and has to be introduced at some
point in order to derive the machine. In any case, we have shown in Sections 6.8.2
and 6.10.2 that environment-based machines with the shallow-inspection property
can be derived. In (Danvy et al., 2013), machines do not have explicit control be-
cause two-layer CPS or single-layer CPS with control delimiters are used.

In (Grégoire & Leroy, 2002) a full-reducing strategy is specified in eval-readback style that
is used in a proof assistant. The eval stage V(T) is implemented by an optimised, pre-
compiled abstract machine. This machine has been contrived, not derived. The readback
stage N (T) is symbolic. The strategy resulting from the composition of V(T) and N (T)
is the same as the strategy resulting from the composition of symbolic eval and symbolic
byValue in (Paulson, 1996, p.390), save for the right-to-left sequencing order in which
operands are reduced before operators. (The strategy implements strict semantics for
redices, but performs β-reduction, not the βV -reduction of the lambda-value calculus of
(Plotkin, 1975), and consequently, it is not a full-reducing strategy of that calculus.) We
are currently studying the derivation of a whole machine from the single-function natural
semantics obtained (via lightweight fusion by fixed-point promotion) from eval-readback
eval and byValue. A question to answer is whether optimisations can be incorporated by
program transformation.

The closure calculi λρ̃ and λρ∗ we have introduced are rather natural extensions of λρ,
as illustrated by the following diagram:

167

6.11. Related and future work

λρ

λρ
∗ λρ̂

λρ̃

+ n
+ bΛc + C · C

bΛc∼=bnc
| λλ.C
| C · C

+ n
+ bnc
+ λλ.C

We have not defined the reduction theory of λρ̃, only presented the reduction strategy ño,
which has taken us to the KN machine. Such theory is of interest since it has to consider
compatibility with environments (reducing bindings inside environments) which poses a
challenge.

168

Addendum

6.12 The reduction theory of λρ̃

In Section 6.11 we commented on the challenge of defining the reduction theory of λρ̃. The
problem was to reduce bindings inside environments, for which the appropriate lambda
nesting level has to be figured out. The solution to this problem appears implicit in
Definition 6.7.1 (well-formed proper closures) and Lemma 6.7.4 (invariant on closures).
The parameters-as-levels enforces that the global nesting level is incremented with every
insertion of a de Bruijn level in the environment, and thus, the proper bindings between
two consecutive de Bruijn levels are to be reduced at the lambda nesting level coinciding
with the de Bruijn level at the right. This enables the compatibility rule for the bindings
in environments that we depict below:

〈C, n〉 →ρ̃ 〈C′, n〉
〈T [. . . : n+ 1 : . . . : C : . . . : n : . . .], l〉 →ρ̃ 〈T [. . . : n+ 1 : . . . : C′ : . . . : n : . . .], l〉

Envρ̃

The n+ 1 on the left may not exist, in which case n = l where l is the global nesting
level. If no de Bruijn level exists at the right of a closure C, then the C has to be reduced
with lambda nesting level 0. Notice that de Bruijn levels in environments can be duly
reduced to closures in normal form by subtracting them from the global nesting level l and
enclosing them in a ground index.

Rule Envρ̃ opens up for the definition of reduction strategies different form normal
order. Rule Envρ̃, together with the notions of reduction in Figure 6.8, and with the
the compatibility rules as the ones in Definition 6.7.7 defines a true reduction relation in
λρ̃. This reduction relation simulates the reduction relation →β in plain λK, which is
straightforward to prove in the light of Lemmata 6.7.2, 6.7.3, and Theorem 6.7.9. This
contribution opens up for the definition in λρ̃ of reduction strategies different from normal
order.

6.13 Comparative between our inter-derivation and
(Munk, 2008)

When we first wrote the manuscript on which Chapter 6 is based, we were not aware
of the work (Munk, 2008), where he departs from KN and arrives to a (context-based)
reduction semantics that implements full reduction in a calculus of closures. Thus, ours is

169

6.13. Comparative between our inter-derivation and (Munk, 2008)

not the first inter-derivation of KN. In what follows we summarise the differences between
Chapter 6 and (Munk, 2008):

• Section 11.4 of (Munk, 2008) states that a version of the full-reducing Krivine ma-
chine KN of Crégut (Crégut, 2007) is derived from the reduction semantics of a
full-reducing strategy which, although not stated explicitly, is normal order in eval-
readback style in a calculus of closures. A functional correspondence is mentioned,
but the intermediate refunctionalised normaliser is missing. A syntactic correspon-
dence is also claimed, but no derivation is provided for it.

We have tried to implement the syntactic correspondence indicated by Munk, unsuc-
cessfully due to several errors in the presentation.

For example, Munk starts with a grammar of reduction contexts with two mutually
dependent layers:

A[] ::= [] | A[λ[]] | C[a []]
C[] ::= A[] | C[[] c]

This semantics is the closure-converted version of the reduction semantics that Munk
introduces in Section 7.2, which is the one coinciding with our preponed reduction
semantics (save for the minor visual use of inside-out contexts, which explains the
nested square brackets [. . . [] . . .] in his notation). The a and c are respectively
Munk’s closure-converted normal forms and terms, which stand for our neutrals in
normal form and our terms.

In particular, the proposed reduction semantics (Page 128) is incorrect with respect
to his calculus of closures (the ‘term language’ in Page 127). It is not clear which
syntactic construct corresponds to the left-hand-side of Munk’s contraction rule,

Subst : 1[t[s′,m′] · s,m] → t[s′,m]

since t[s′,m′] is not a value v, and environments s can only be empty • or contain
values v. The same could be said about the left-hand-side of rule Subst ′ and the
right-hand-side of rule Beta, where a closure c occurs in the environment. Munk
also distinguishes the notion of reduction Abs which only applies to contexts A[].
The role of this notion of reduction is to expand abstraction closures into closure
abstractions (akin to our ephemeral construct λλ) thus providing enough syntactical
structure as to define the small-step reduction semantics. This expansion resembles
the closure-level application constructor in (Biernacka & Danvy, 2007).

As for the functional correspondence, it is carried after repeated substantial alterations
in each transformation step to KN’s original calculus of closures (Crégut, 2007).
These alterations allow Munk to disentangle two auxiliary continuation and meta-
continuation dispatchers by means of non-standard derivation steps, which in turn
permit a functional correspondence in the same spirit as (Danvy et al., 2013) (also co-
authored by Munk) and which uses eval-readback and 2CPS. Alas, the intermediate
refunctionalised normaliser is not shown.

170

Chapter 6. Deriving the Full-Reducing Krivine Machine

If the functional correspondence is to be carried using single functions and 1CPS (as
opposed to eval-readback and 2CPS) to obtain well-formed continuation stacks with
unique-decomposition, and an abstract machine with shallow inspection, the same
problems that we described in Chapter 5 arise and the techniques we introduced there
are required. We have commented at length on the differences between (Danvy et al.,
2013) and our contribution in Section 6.11 and a similar discussion would apply to
(Munk, 2008).

• Whereas in (Munk, 2008) the reduction semantics is given in preponed style, our
preponed semantics is obtained during a derivation step, for we depart again from
search functions implementing the hybrid SOS of normal order.

Our derivation departs from a different starting point and considers preponing a
step. The preponed semantics is equivalent to the hybrid-style semantics, as proven
by simultaneous induction.

We present a syntactic and a functional correspondence where the closure calculus
remains the same, modulo the isomorphism Λ = n | λλ.C | C ·C. KN intrinsically im-
plements a preponed normal order, and hence the detour in Section 6.9 is inexorable
if we want to connect the standard (i.e., non-preponed) normal order to KN. The
preponed step could arguably be performed in the small-step semantics (either in the
SOS or in the context-based reduction semantics) but doing so would be contrived,
and a relevant proof of its correctness (which we do provide) would still be needed.

The preponed version can be easily arrived at after applying a standard program
transformation technique, namely LWF, but only in the natural semantics presenta-
tion. This is why we preferred to show the preponing step at that point.

Our derivation is not a consequence of implementation choices, but rather a principled
approach to reuse most of the standard program-transformation steps and minimise
the ad hoc steps. The preponing step could have only been moved to other places in
the derivation (SOS, context-based reduction semantics), where it would still have
been required.

Irreducible closures:

WNFC ::= λλ.Λ[ρ]
| bnc{ · NFC}∗

NFC ::= λλ.NFC
| bnc{ · NFC}∗

Preponed reduction semantics:

Cl
ño [] ::= [] | Cl

b̃n
′ [] · C | bnc{ · NFC}∗ ·Cl

ño [] | λλ.Cl
ño []

Cl

b̃n
′ [] ::= [] | Cl

b̃n
′ [] · C | bnc{ · NFC}∗ ·Cl

ño []

171

6.13. Comparative between our inter-derivation and (Munk, 2008)

Preponed structural operational semantics:

M 6∈WNFC 〈M, l〉 →
b̃n
′ 〈M′, l〉

〈M · N, l〉 →
b̃n
′ 〈M′ · N, l〉

(µ
b̃n

′)

M ∈WNFC M 6≡ λλ.B 〈N, l〉 →ño 〈N′, l〉
〈M · N, l〉 →

b̃n
′ 〈M · N′, l〉

(ν
b̃n

′)

M 6∈WNFC 〈M, l〉 →
b̃n
′ 〈M′, l〉

〈M · N, l〉 →ño 〈M′ · N, l〉
(µño)

M ∈WNFC M 6≡ λλ.B 〈N, l〉 →ño 〈N′, l〉
〈M · N, l〉 →ño 〈M · N′, l〉

(νño)

〈B, l + 1〉 →ño 〈B′, l + 1〉
〈λλ.B, l〉 →ño 〈λλ.B′, l〉

(ξño)

But the natural semantics seems the place to apply the preponing step, because there
it is a trivial transformation after applying LWF. We have deliberately avoided at-
tempting the preponing step in the abstract machines themselves. Consider trying to
prove the machine in Section 6.7.1 equivalent to either the machines in Sections 6.8.2
or 6.9.3. That would have resulted in an unnecessarily complex derivation. The ex-
plicit control is also compulsory. This control (which is later turned into a check for
the occurrence of constructor C2 in the stack) is precisely what prevents KN to have
shallow-inspection. However, the two modes for no and bn’ have to be fused into
an explicitly-controlled single mode before arriving to the machine itself, in order to
correlate the control with the occurrence of C2. Again, the right place to introduce
the explicit control is the natural semantics, and correctness of this transformation
is direct.

Because KN does not have shallow inspection we must use preponing at some point
and explicit control. The modified ⇓bn ′ is a consequence of preponing, and is consis-
tent with the discussion of hybrid and uniform in Section 5.3 (⇓bn′ is the semantics
resulting by adding the hole to contexts Cne [] there). In Munk’s work, as in (Danvy
et al., 2013), this is not a concern because the eval-readback approach implements
this control either with control delimiters or by the layering which is implicit in
2CPS. Control delimiters and explicit control must not be confused. The former
delimits the computation, disentangling what happens before and after reaching an
intermediate irreducible form, whereas the latter only tracks the mode (no or bn’)
that will resume the computation at a given moment. Explicit control is compulsory
if we aim to keep the single-stage (as opposed to eval-readback) and the single-layer
CPS which are present in KN.

• Our work exposes the preponed nature and explicit control present in KN. Munk’s

172

Chapter 6. Deriving the Full-Reducing Krivine Machine

calculus of closures does not truly reflect the internals of KN. Munk disentangles
a function aux that operates on stacks and level-annotated ground terms P , by re-
moving the global lambda level and the environment. Then, he hits the mark on
ground terms being normal forms, and removes the level annotation from ground
terms. To do so, he has to introduce this level annotation in the environment. How-
ever, disentangling does not allow to remove level annotations completely, as we do
by incrementing the global lambda level after leaving a lambda scope. Munk also
removes formal parameters (our n) from U closures and places them only in the
environments. As a result, the new machine operates on standard lambda terms
with an environment which has the formal parameters, and where the stack stores
the level-annotated ground terms. This results in a machine with three configura-
tions, KN, aux and aux’, which corresponds functionally (through the use of 2CPS
transformations) to a big-step eval-readback normalisation function in the modified
calculus. This is in essence very similar to (Danvy et al., 2013).

• We obtain KN from the SOS of normal order in a calculus of closures that, unlike
Munk, does not change through the derivation (modulo the isomorphism between
ground terms and ephemerals). The SOS uses parameters-as-levels (present in KN)
and enjoys good meta-theoretic properties such as index alignment and balanced
derivations, two of the main ideas, which makes the SOS amenable to proof by
induction which is one of the contributions. These follow from the treatment of formal
parameters and lambda scopes (implying that you have to keep formal parameters
in your calculus of closures). Index alignment turns the syntactic adjustments into a
global and uniform concern, placing the required machinery (lexical offsets) out of the
environments. Balanced derivations enables easy reasoning by structural induction
over the SOS, since there is no need to look at the inners of any closure. A fair
derivation would have to keep the inherent features of KN in the artefacts. In a
way, Munk’s resorts to clever tricks and shortcuts (disentangling, simplifying the
calculus, using 2CPS techniques) while we just deal with the inherent nature of the
machine directly, minimising the tricks to a protrude step in Section 10.4. (akin to
the disentangling of aux function in Munk’s).

• We have been inspired by the foundational ideas of (Biernacka & Danvy, 2007)
regarding substitution functions and proved that normal order in the calculus of
closures commutes with normal order in the pure lambda calculus via substitution
functions. Again, the intuition is the idea of hybrid strategy. The reduction semantics
and other artefacts are obtained by derivation. Constructing the grammar of well-
formed continuation stacks was necessary this time to recover explicit control. As
we said before, preponing is introduced as a derivation step, we do not depart from
a preponed semantics, but from a hybrid-style SOS, which in our opinion is easier to
understand and motivate.

• We must add that Munk does not explicitly call his eval-readback function ‘normal

173

6.13. Comparative between our inter-derivation and (Munk, 2008)

order’ although it is that strategy (we know that because we do show the eval-
readback version of normal order in Section 6.4). There are other normalising and
complete strategies in the lambda calculus (e.g., hybrid normal order (Sestoft, 2002)),
so the explicit connection with normal order is not made, although it is there.

Our aim has been to reuse standard techniques and to unearth the intrinsics of KN and
keep ad hoc transformation steps to a minimum. Our single-stage and their eval-readback
approach require different CPS transformations. For our single-stage artefacts a single-
layer CPS without control delimiters is enough. For their eval-readback artefacts, either a
two-layer CPS or a single-layer CPS with control delimiters is required (Danvy et al., 2013;
Biernacka et al., 2005). An advantage of the eval-readback approach is that the two stages
(with their types, continuations, etc) are disentangled and modular. However, in eval-
readback the set of CPS and defunctionalisation transformations get more complicated and
less direct. We believe that single-stage implementations are more amenable to program
transformation because no specific CPS techniques nor meta-theory for delimiting control
is required.

By unearthing the intrinsics of KN, we have also arrived at index alignment, balanced
derivations, step-by-step correspondence, which are also key contributions and are not
present in Munk’s work.

174

Part III

Gradual Typing

175

7
Deriving Interpretations of the

Gradually-Typed Lambda Calculus

Siek & Garcia (2012) have explored the dynamic semantics of the gradually-typed lambda
calculus by means of definitional interpreters and abstract machines. The correspondence
between the calculus’s mathematically described small-step reduction semantics and the
implemented big-step definitional interpreters was left as a conjecture. We prove and gen-
eralise Siek and Garcia’s conjectures using program transformation. We establish the cor-
respondence between the definitional interpreters and the reduction semantics of a closure-
converted gradually-typed lambda calculus that unifies and amends various versions of the
calculus. We use a hybrid approach and two-layer continuation-passing style so that the
correspondence is parametric on the subsidiary coercion calculus. We have implemented
the whole derivation for the eager error-detection policy and the downcast blame-tracking
strategy. The correspondence can be established for other choices of error-detection policies
and blame-tracking strategies, by plugging in the appropriate artefacts for the particular
subsidiary coercion calculus.

7.1 Introduction

Since the publication of (Ager et al., 2003b) a decade ago there has been substantial
research on inter-derivation by program transformation of implementations of ‘semantic
artefacts’, i.e., implementations of operational semantics, denotational semantics, and ab-
stract machines. The research has established a semantics framework and has contributed
to the repertoire of program transformation techniques. Unfortunately, inter-derivation
remains underused. Languages and calculi constantly spring up but their semantics are
specified on paper and their correspondences are either obviated, conjectured, or proven
mathematically.

177

7.1. Introduction

We think inter-derivation is underused for various reasons. First, for readers unfamil-
iar with the technicalities, proving correspondences by program transformation provides
the same assurance as proving them on paper. Formal verification must be brought into
the process. This brings us to the second related criticism: the lack of tools. Inter-
derivation may become more popular when techniques and folklore are collected, their
requirements for program verification formally studied, and a tool developed, preferably
integrated within a popular freely-available tool framework. An often suggested possibility
is a Coq library for inter-derivation.

Reusability in the form of parametricity and modularity will be an important require-
ment for this endeavour, in particular, the support for derivation of parametric semantic
artefacts. We think two important ingredients in this regard are hybrid calculi (García-
Pérez & Nogueira, 2013; García-Pérez et al., 2013), and two-layer continuation-passing
style (Danvy et al., 2013). On the one hand hybrid calculi depend on subsidiary sub-calculi,
which ought to be turned into a parameter. On the other hand two-layer continuation-
passing style can be used to separate the hybrid and subsidiary continuation spaces and
help parametrise on the subsidiary. In this paper we showcase the marriage of hybrid
semantics and two-layer CPS.

Our case study is the recently popular gradually-typed lambda calculus (Garcia, 2013;
Siek & Taha, 2006; Siek et al., 2009; Siek & Garcia, 2012). Gradual typing is about giving
programmers the freedom to move from dynamic typing to static typing by letting them
add type annotations gradually to their programs. The gradually-typed lambda calculus
λ?
→ is a simply-typed lambda calculus with a dynamic type Dyn that is assigned by the

type system to expressions whose type is statically unknown. The expressions of λ?
→ are

translated to the expressions of an intermediate language λ〈·〉→ with explicit casts that carry
blame labels. A cast failure delivers a blame label that indicates the location of the failing
cast. The dynamic semantics of λ〈·〉→ depends on two design decisions (lazy or eager error-
detection, downcast or upcast-downcast blame-tracking) which give rise to a design space
with four different points: eager-downcast (ED), eager-upcast-downcast (EUD), lazy-
downcast (LD), and lazy-upcast-downcast (LUD). These points are captured by different
coercion sub-calculi.

In (Siek & Garcia, 2012) we find several implemented denotational semantics (defi-
nitional interpreters using meta-level functions) that illustrate the implementation of the
variants of λ〈·〉→. The small-step reduction semantics are defined mathematically (Siek et al.,
2009; Siek & Garcia, 2012) and the correspondences with the denotational semantics are
left as conjectures. We prove and generalise the conjectures using program derivation,
parametrising the λ〈·〉→ artefact on the coercion artefact to permit derivations for the whole
design space. The inter-derivation diagram of Figure 7.1 describes the derivation of the
semantic artefacts in the paper. Here is our detailed list of contributions:

• We present a coercion-based version of λ〈·〉→ (Section 7.2) and an eager-downcast
coercion calculus ED (Section 7.3). These calculi unify and slightly amend and
emend the versions in (Siek & Garcia, 2012; Siek et al., 2009) so as to have an

178

Chapter 7. Interpretations of the Gradually-Typed Lambda Calculus

reduction
semantics

denotational
semantics

abstract
machine

2CPS-
normaliser

natural
semantics

syntactic
corresp.

refunc.
2CPS

transform

closure
conversion

Figure 7.1: Inter-derivation diagram

implementable reduction semantics satisfying unique-decomposition (Felleisen, 1987).

• In Section 7.4 we translate the definitional interpreter (Siek & Garcia, 2012) to
ML and derive an instantiation for ED dynamic semantics (eager-downcast, named
L∪D∪E in (Siek et al., 2009)) which is the more appealing for ‘it provides thorough
error detection and intuitive blame assignment’ (Siek et al., 2009, p.13). In Section 7.5
we disentangle translation and normalisation to obtain a purely coercion-based inter-
preter for expressions that uses a self-contained subsidiary coercion interpreter. In
Section 7.6 we finally produce a 2CPS-normaliser that implements the corresponding
big-step natural semantics. These steps belong to the right-hand-side of Figure 7.1.

• We extend λ〈·〉→ to λρ〈·〉→, the simply-typed lambda calculus of closures with explicit
casts (Section 7.8) whose implementable reduction semantics is the starting point of
the syntactic correspondence (Danvy & Nielsen, 2004; Danvy, 2008b; Danvy et al.,
2011) on the left-hand-side of Figure 7.1. We state the theorems generalising the
conjectures in (Siek & Garcia, 2012) (Section 7.8.1), and prove them via program
transformation by linking the two sides of the diagram at the 2CPS-normaliser (Sec-
tion 7.10, etc).

• The small-step and big-step artefacts for expressions with coercion casts are para-
metric on the artefacts for coercions. We have presented a full derivation for ED
dynamic semantics, but thanks to hybrids and 2CPS the artefacts for coercions can
be replaced by other artefacts implementing different dynamic semantics. This tech-
nique provides the basis for modular derivations of any hybrid semantics, not limited
to the definitional interpreters of the gradually-typed lambda calculus.

This paper makes contributions for ‘program-derivationists’ as well as for ‘gradual-type-
theorists’. To celebrate the union of the two lines of research, we have summarised in
the main sections the important points for each readership, so they can understand the
contributions at a glance. In particular, the program-derivationist need not know all details
of, and our contributions to, λ〈·〉→. The gradual-type-theorist will find the semantic artefacts
in the paper written in traditional mathematical notation. We strongly encourage the

179

7.2. λ〈·〉→ with implementable reduction semantics

program-derivationist to read the derivation parts of the paper alongside the code,1 which
is the main star of the film. The code is written in Standard ML and organised around
the sectioning structure of the paper. Thus, ‘Section 1.2’ refers to a section of the paper
whereas ‘Code 3.1’ refers to a section of the code.

7.2 λ〈·〉→ with implementable reduction semantics

Figure 7.2 shows the syntax, contraction rules, and implementable reduction semantics of a
coercion-based version of λ〈·〉→. The foremost point for the program-derivationist is the boxed
rule StepCst specifying that the contraction of a cast 〈c〉s that applies a coercion c to a
simple value s depends on the single-step reduction of c to c′ in a coercion sub-calculus X.
Thus, λ〈·〉→ is a hybrid calculus whose syntax, contraction rules and, by extension, reduction
semantics, depend on a subsidiary coercion calculus. Fortunately, the dependency on
the syntax is not such: coercion expressions are the same across coercion calculi, and
what varies is the syntax of ‘normal coercions’ (normalised coercion expressions) which
naturally depends on the reduction semantics. However, the syntax of normal coercions
always includes the ones in the contraction rules of λ〈·〉→. Such rules have to be part of
λ〈·〉→ for reasons explained below. Thus, the real dependency is on ‘7−→X’, the reduction
semantics for coercions. Observe that λ〈·〉→ admits type cast expressions 〈S ⇐ T 〉`e which
are present in (Siek & Garcia, 2012, p.2) and in (Siek et al., 2009, Fig.1). In particular, the
interpreters in (Siek & Garcia, 2012) work with them. However, type casts are translated
off to coercion casts 〈c〉e. The translation function depends on the reduction semantics for
coercions.

A point of interest to the program-derivationist and to the gradual-type-theorist is
that in Figure 7.2 blames are expressions, and reduction lifts blames in any reduction
context to a result. Consequently, the figure shows a reduction semantics proper that can
be implemented (more details below). Blames are results but not expressions in (Siek &
Garcia, 2012; Siek et al., 2009). The other contents of the section explain whence our
version of the calculus which is of interest mainly to the gradual-type-theorist.

The syntax of types, constants, and primitive operators is the same as in (Siek & Garcia,
2012) and is unmysterious.2 The syntax of expressions includes the expressions of (Siek
et al., 2009, Fig.7), namely, variables, constants, type-annotated abstractions, expression
applications e e, and coercion casts 〈c〉e. The unannotated abstractions λx.e of (Siek &
Garcia, 2012) can be represented by λx : Dyn.e. The syntax of expressions also includes
applications of primitive operators to expressions, and conditional expressions, both present
in (Siek & Garcia, 2012). Finally, expressions also include Blame ` expressions because they

1http://babel.ls.fi.upm.es/~agarcia/papers/Gradual
2For the thorough reader: in (Siek & Garcia, 2012) some expressions carry labels, but in the coercion-

based versions only coercions and blames carry labels. Our version is coercion-based and therefore only
coercions and blames carry labels, together with type cast expressions which will be later removed.

180

Chapter 7. Interpretations of the Gradually-Typed Lambda Calculus

Syntax: e ∈ λ〈·〉→

base types B = {Int, Bool}
types T ::= B | Dyn | T → T
constants k ::= n ∈ N | t | f
operators op ::= inc | dec | zero?
expressions e ::= k | op e | if e e e | x | λx : T.e | e e |

〈S ⇐ T 〉`e | 〈c〉e | Blame `

simple values s ::= k | λx : T.e
values v ::= s | 〈c〉s
results r ::= v | Blame `

Contraction: e −→ e

(λx : T.e)v−→ [x/v]e (β)

op n−→ δ(op, n) (δ)

if k e1 e2−→
{
e1 if k = t

e2 if k = f
(If)

〈c〉s−→ 〈c′〉s if c 7−→X c′ (StepCst)

〈ι〉s−→ s (IdCst)

〈d〉〈c〉s−→ 〈c ; d〉s (CmpCst)

〈c̃→ d̃〉s v−→ 〈d̃〉(s 〈c̃〉v) (AppCst)

〈Fail`〉s−→ Blame ` (FailCst)

〈(c̃→ d̃) ; Fail`〉s−→ Blame ` (FailFC)

Reduction semantics: e 7−→ e

E[] ::= [] | op (E[]) | if (E[]) e1 e2 | (E[]) e | v (E[]) | 〈c〉(E[])

e −→ e′

E[e] 7−→ E[e′] E[Blame `] 7−→ Blame `

Figure 7.2: Syntax, contraction rules, and implementable reduction semantics of λ〈·〉→

can be the result of a contraction, and must thus be a particular kind of expression. The
type system for λ〈·〉→ can be found in Figure 7.3.

Now to operational semantics. Results r are now expressions: either values v or blames.
Values v are simple values s or a coercion expression that applies a wrapper coercion c

181

7.2. λ〈·〉→ with implementable reduction semantics

δ-rules δ(op, n) = k

δ(inc, n) = n+ 1
δ(dec, n) = n− 1

δ(zero?, 0) = t

δ(zero?, n) = f (n 6= 0)

Type system for expressions of λ〈·〉→ Γ ` e : T

Γ ` k : typeC (k) Γ ` op : typeO(op)

Γ ` e1 : Bool Γ ` e2 : T Γ ` e3 : T

Γ ` if e1 e2 e3 : T Γ ` x : Γ(x)

Γ, x 7→ T ` e : S

Γ ` (λx : T.e) : T → S

Γ ` e1 : T → S Γ ` e2 : T

Γ ` e1 e2 : S

Γ ` e : T

Γ ` 〈S ⇐ T 〉`e : S

` c : S ⇐ T Γ ` e : T

Γ ` 〈c〉e : S Γ ` Blame ` : T

Type of constants: typeC (k) = B

typeC (n) = Int

typeC (t) = Bool

typeC (f) = Bool

Type of operators: typeO(op) = B → B

typeO(inc) = Int→ Int

typeO(dec) = Int→ Int

typeO(zero?) = Int→ Bool

Figure 7.3: Complements of λ〈·〉→ in Figure 7.2

to a simple value. Wrapper coercions are a subset of normal coercions ĉ, those that may
be applied to simple values. A definition of wrapper and normal coercion for the eager
coercion calculus with downcast blame-tracking is given in Section 7.3. In the definitional
interpreters of (Siek & Garcia, 2012), simple values include meta-level functions because
the interpreters implement denotational semantics (Section 7.4).

The contraction rules are straightforward. The first three specify the contraction of β-,

182

Chapter 7. Interpretations of the Gradually-Typed Lambda Calculus

δ-, and conditional redices. (Function δ can be found in Figure 7.3.) Rule StepCst has
already been discussed. The remaining rules, except CmpCst, deal with casts containing
normal coercions. Rule CmpCst contracts nested casts (expressions of λ〈·〉→) to coercion
sequences. Rule IdCst contracts a cast with an identity coercion. Rule AppCst contracts
the application of an arrow coercion 〈c̃→ d̃〉 to a simple value s (an abstraction if well-
typed) when the application is in turn applied to an operand v. The cast is performed
against the operand and the result of the application. This is the standard solution for
higher-order casts (arrow coercions) (Siek et al., 2009). Rules FailCst and FailFC con-
tract fail coercions to blames. Rule FailFC is given in λ〈·〉→ to preserve confluence in the
coercion calculus (Section 7.3).3

The reduction semantics at the bottom of the figure consists of reduction contexts and
single-step contraction rules for redices within context holes. Observe that blames are
short-circuited to results by lifting a blame in an arbitrary reduction context to the top
level. The reduction contexts specify call-by-value reduction. The reduction of casts would
consist of reducing the expression to a simple value, then reducing the coercion within the
subsidiary coercion calculus, and the appropriate contraction rule in λ〈·〉→ would take it from
there.

7.3 The ED coercion calculus

Figure 7.4 shows the syntax, contraction rules, and implementable reduction semantics of
ED, our version of the eager coercion calculus with downcast blame-tracking, which unifies
and slightly amends and emends the versions in (Siek & Garcia, 2012; Siek et al., 2009).
The foremost point for both the program-derivationist and the gradual-type-theorist is that
the reduction semantics in the figure satisfies the unique-decomposition property (Felleisen,
1987) required for implementation, i.e., every coercion expression is uniquely-decomposable
into a coercion reduction context with a redex within the hole. The reduction semantics
in (Siek et al., 2009, Fig.4) does not have that property (more details below), and (Siek
& Garcia, 2012) is about big-step definitional interpreters so, naturally, it is unconcerned
with reduction semantics. The rest of the discussion about our version of the calculus is
of interest mainly to the gradual-type-theorist.

First, we discuss coercion expressions. Injectable types to Dyn are those types other
than Dyn because injecting or projecting Dyn to Dyn is equivalent to the identity coercion.
Coercion expressions consist of the identity coercion ι, an injection I! of an injectable type
I to Dyn, a projection from the dynamic type I?` to injectable type I decorated with a
blame label `, arrow coercions c→ d, sequences c ; d (diagrammatic composition) and fail
coercions Fail` decorated with a blame label. So far, no differences with (Siek & Garcia,

3For the thorough reader: in (Siek & Garcia, 2012) rule FailFC is implemented in different places for
different semantics. In the lazy artefacts the rule is implemented by seq_lazy, and in the eager artefacts
by mk_cast_eager.

183

7.3. The ED coercion calculus

Syntax: c ∈ ED

injectable types I ::= B | T → T
coercions c, d ::= ι | I! | I?` | c→ c | c ; c | Fail`

wrappers c ::= c̃ where c̃ 6= (c̃1 → c̃2 ; Fail`) and c̃ 6= ι
normal parts c̃ ::= ĉ where ĉ 6= Fail`

normal coercions ĉ ::= c if 6 ∃c′.c 7−→ED c′

Contraction: c −→ED c

I1! ; I2?`−→ED 〈〈I2 ⇐ I1〉〉` (InOut)

(c̃1 → c̃2) ; (d̃1 → d̃2)−→ED ((d̃1 ; c̃1)→ (c̃2 ; d̃2)) (Arr)

ι ; ĉ−→ED ĉ (IdL)

ĉ ; ι−→ED ĉ (IdR)

Fail` ; ĉ−→ED Fail` (FailCo)

I! ; Fail`−→ED Fail` (InFail)

(Fail` → d̂)−→ED Fail` (FailL)

(c̃→ Fail`)−→ED Fail` (FailR)

Reduction semantics: c 7−→ED c

Cc[] ::= [] if c is a redex
| Cc1 [] ; c2 if c ≡ c1 ; c2

| ĉ1 ;Cc2 [] if c ≡ ĉ1 ; c2

| Cc1 []→ c2 if c ≡ c1 → c2

| ĉ1 → Cc2 [] if c ≡ ĉ1 → c2

| ĉ11 ;C(ĉ12 ;ĉ2)[] if c ≡ (ĉ11 ; ĉ12) ; ĉ2

| C(ĉ1 ;ĉ12)[] ; ĉ22 if c ≡ ĉ1 ; (ĉ21 ; ĉ22)

c −→ED c′

c1 ≡ Cc1 [c] 7−→ED Cc2 [c′] ≡ c2

Figure 7.4: Syntax, contraction rules, and reduction semantics of ED

2012; Siek et al., 2009) other than notational. The type system of ED can be found in
Figure 7.5.

The differences arise in the reduction semantics. The reduction semantics at the bottom
of Figure 7.4 satisfies unique-decomposition and is therefore implementable. The one
in (Siek et al., 2009, Fig.4) is defined modulo a congruence on sequences (c1 ; c2) ; c3

∼=

184

Chapter 7. Interpretations of the Gradually-Typed Lambda Calculus

Translation function for casts: 〈〈T ⇐ T 〉〉` = ĉ

〈〈B ⇐ B〉〉` = ι
〈〈B2 ⇐ B1〉〉` = Fail` if B1 6= B2

〈〈Dyn⇐ Dyn〉〉` = ι
〈〈Dyn⇐ B〉〉` = B!
〈〈B ⇐ Dyn〉〉` = B?`

〈〈T1 → T2 ⇐ B〉〉` = Fail`

〈〈B ⇐ S1 → S2〉〉` = Fail`

〈〈T1 → T2 ⇐ S1 → S2〉〉` = mkArr(〈〈S1 ⇐ T1〉〉`, 〈〈T2 ⇐ S2〉〉`)
〈〈Dyn⇐ S1 → S2〉〉` = S1 → S2!
〈〈T1 → T2 ⇐ Dyn〉〉` = T1 → T2?`

Arrow combinator: mkArr(ĉ, ĉ) = ĉ

mkArr(Fail`, ĉ2) = Fail`

mkArr(ĉ1, Fail
`) = Fail`

mkArr(ĉ1, ĉ2) = ĉ1 → ĉ2 otherwise

Type system for coercions; ` c : T ⇐ T

` ι : T ⇐ T ` T ! : Dyn⇐ T ` T?` : T ⇐ Dyn ` Fail` : T ⇐ S

` c : S1 ⇐ T1 ` d : T2 ⇐ S2

` (c→ d) : (T1 → T2)⇐ (S1 → S2)

` c : T1 ⇐ T2 ` d : T2 ⇐ T3

` (c ; d) : T1 ⇐ T3

Figure 7.5: Complements of ED in Figure 7.4

c1 ; (c2 ; c3) that permits the definition of simpler reduction contexts:

C[] ::= [] | C[] ; c | ĉ ;C[] | C[]→ c | c̃→ C[]

c ∼= C[c1] c1 −→ED c2 C[c2] ∼= c′

c 7−→ED c′

To resolve the ambiguity introduced by congruence we fix the association by defining
reduction contexts Cc[] which are indexed by the input coercion c, so that decomposition
is guided by the shape of c. (Note the difference between syntactic identity ‘≡’ in Figure 7.4
and congruence ‘∼=’ in the original reduction semantics.) The productions of the generative
grammar for reduction contexts have precedence and are intended to be ‘short circuited’,
i.e., the the sixth production is ‘tried’ first and, if ĉ11 ; ĉ12 does not contain any redex—and

185

7.4. Interpretations of the gradually-typed lambda calculus

hence the decomposition function does not come to a decomposition for ĉ1 ; ĉ2—, then the
seventh production is tried. Unique-decomposition is proven by structural induction on c.

The difficulties in implementing a deterministic semantics for coercions have already
been acknowledged by Garcia (Garcia, 2013). He introduces a composition-free representa-
tion for coercions, named supercoercions, and a new set of contraction rules. His approach
solves the challenge of being ‘complete in the face of inert compositions and associativity’
(Garcia, 2013), superseding the ‘ad hoc reassociation scheme’ in (Siek & Garcia, 2012).
Here we stick to the ad hoc scheme, since we aim to prove the conjectures relative to (Siek
& Garcia, 2012).

The rest of this section is addressed to the gradual-type-theorist. Recall from Sec-
tion 7.2 that wrapper coercions c are normal coercions ĉ that may be applied to simple
values. Normal coercions are those that cannot be further reduced, and normal parts are
coercions other than the fail coercion. The notion of wrapper is induced by the treatment
of ι, Fail`, and c̃ → d̃ ; Fail`. Wrappers can only coerce constants and abstractions.
We add the required side-condition c̃ 6= (c̃ → d̃ ; Fail`) to wrappers which is missing in
(Siek et al., 2009, Fig.7). The side-condition is required because the contraction rule for
〈(c̃→ d̃ ; Fail`)〉s in Figure 7.2 delivers a blame. In (Siek & Garcia, 2012) an extensional
definition of normal coercions is provided that rules out the ill-typed ones according to the
type system of λ〈·〉→ and ED.

The contraction rule InOut coalesces an injection followed by a projection using a
translation function 〈〈I2 ⇐ I1〉〉` (Figure 7.5). This function translates a type cast to a
normal coercion. If the projection is illegal the translation function delivers a fail coercion
decorated with the projection’s blame label. The contraction rules Arr to FailR are those
in (Siek & Garcia, 2012, Sec.6.1) but with normal coercions ĉ substituted for arbitrary
coercions c in order to have a reduction semantics with unique-decomposition and preserve
confluence: arbitrarily long sequences ending in Fail` must be allowed to fail due to
previous coercions early in the sequence. (This is also the reason why FailFC is specified
in λ〈·〉→ and not in ED, see (Siek et al., 2009) for details.)

Like (Siek & Garcia, 2012) but unlike (Siek et al., 2009) we omit rule ι → ι −→ ι
because it is superfluous: according to Arr, IdL, and IdR, sequencing the ι→ ι arrow to
any other arrow has the same effect as sequencing the identity ι.

7.4 Interpretations of the gradually-typed lambda
calculus

In (Siek & Garcia, 2012) a definitional interpreter interp for a type-cast-based λ〈·〉→ is
given that is parametric on functions cast and apply. The choice and name of parame-
ters do much more than reflect the dependency on the coercion sub-calculus X. Among
other things they also accommodate the translation to coercion casts, and apportion
the implementation of contraction rules. Broadly, the cast parameter is instantiated
to apply_cast_X which given a type cast and a value, it first invokes the translation

186

Chapter 7. Interpretations of the Gradually-Typed Lambda Calculus

Syntax:
environments ρ ::= ε | (x 7→ v) : ρ
procedures proc ∈ V→ R ::= fn v => r
simple values s ::= k | proc
values v ∈ V ::= s | 〈c〉s
results r ∈ R ::= v | Blame `

Figure 7.6: Environments and values for the interpreter in (Siek & Garcia, 2012).

function mk_coerce_X to the type cast to obtain a normal coercion, and then invokes
apply_coercion_X that applies that normal coercion to the value. The apply parameter
is instantiated to apply_X which, broadly, realises rule AppCst in Figure 7.2. The cast
parameter realises the other rules in the figure dealing with coercions.

The definitional interpreter is environment-based and implements a denotational se-
mantics. It delivers meta-level-function results, nicknamed ‘procedures’ in (Siek & Garcia,
2012). Figure 7.6 defines in mathematical notation the environments and the hierarchy
of results used by the definitional interpreter. An environment is a colon-separated list of
bindings x 7→ v, where x is a variable and v is a value. Values are either simple values or
coercion expressions applying a wrapper over a simple value. A simple value is either a
constant or a procedure fn v => r that takes a value and returns a result that depends on
this value. Finally, a result is a value or a blame label.

7.4.1 Translating the original interpreter to ML

We have translated to Standard ML the original definitional interpreter in (Siek & Garcia,
2012) which is written in Scheme. We are more comfortable with ML, which is used
in many papers in program derivation. The ML translation can be found in Code 1.1.
In the code, we use a nameless representation with de Bruijn indices, but we keep the
traditional nameful representation in the mathematical notation. For readability, and to
avoid the (un)packing of data constructors, we have embedded the whole hierarchy of
normal coercions in one datatype coercion. For the hierarchy of values and results we
use the mutually dependent datatypes value and result, with procedures represented by
clause VPROC of value -> result.

In the ML translation, we have replaced the monadic macro for let-expressions letB in
(Siek & Garcia, 2012) by case expressions that short-circuit the blames to results.

7.4.2 Instantiating the definitional interpreter

We have to ‘instantiate’ the parametric definitional interpreter to a particular dynamic
semantics in order to establish the correspondence with an implementation of a reduc-
tion semantics that allegedly realises exactly that dynamic semantics. We choose the

187

7.4. Interpretations of the gradually-typed lambda calculus

Look-up function: ρ !x = v

ρ !x = v where (x 7→ v) contains the first occurrence of x in ρ

Cast combinator mkCast(ĉ, s) = r

mkCast(ι, s) = s
mkCast(Fail`, s) = Blame `

mkCast((c̃→ d̃ ; Fail`), s) = Blame `
mkCast(c, s) = 〈c〉s

Figure 7.7: Auxiliary functions for the denotational semantics in Figure 7.9

ED semantics (Section 7.1). To obtain an instantiation we inline the function calls and
produce functions mk_arrow, translate_cast, compose_coercion, mk_cast, apply_coercion,
apply_cast,apply, and eval (our name for interp_ED) all found in Code 1.2. Func-
tion compose_coercion corresponds to seq_eager in (Siek & Garcia, 2012). Function
translate_cast is the instantiation of mk_coerce_d with parameter mk_arrow_eager. Func-
tion translate_cast implements 〈〈S ⇐ T 〉〉` defined in Figure 7.5.

Figure 7.9 shows in mathematical notation the denotational semantics implemented by
Code 1.2. We have written e[ρ] =〈·〉 r for the evaluation of expression e in an environment
ρ with result r. The notation e[ρ] stands for an unfolded representation of a closure. This
denotational semantics is the one on the top right corner of the inter-derivation diagram
(Figure 7.1). The mathematical semantics can be checked by both the gradual-type-theorist
and the program-derivationist against the Scheme or ML versions of the instantiated def-
initional interpreter. Function eval in Code 1.2 is specified by the evaluation section of
the figure, apply by the application section, apply_cast by the cast application section,
apply_coercion by the coercion application section, and compose_coercion by the coercion
composition section.

The evaluation rule EvProc specifies the evaluation of an abstraction in an environ-
ment. The evaluation results in a procedure fn v => r. The value v is the one passed to
the procedure in rule ApProc.

7.4.3 The correctness conjectures

In (Siek & Garcia, 2012) several correspondences between some instantiations of the defi-
nitional interpreter and the relevant reduction semantics are conjectured, which we quote:

Conjecture 1. If the unique cast labelled with ` in program e respects subtyping,4 then
eval_ld(e) 6= Blame `.

4Here ‘subtyping’ means that all the casts (or coercions) are safe at static time, see (Siek et al., 2009).

188

C
hapter

7.
Interpretations

of
the

G
radually-T

yped
Lam

bda
C
alculus

Coercion composition: ĉ ; ĉ ⇓co
ED ĉ

ĉ1 ; ĉ2 ∈ NC

ĉ1 ; ĉ2 ⇓co
ED ĉ1 ; ĉ2

(ComNorm)
I! ;J?` ⇓co

ED 〈〈J ⇐ I〉〉`
(ComInOut)

ι ; ĉ ⇓co
ED ĉ

(ComIdL)
ĉ ; ι ⇓co

ED ĉ
(ComIdR)

c̃21 ; c̃11 ⇓co
ED ĉ3 c̃22 ; c̃12 ⇓co

ED ĉ4

(c̃11 → c̃12) ; (c̃21 → c̃22) ⇓co
ED mkArr(ĉ3, ĉ4)

(ComArr)
ĉ12 ; ĉ2 ⇓co

ED ĉ3 ĉ11 ; ĉ3 ⇓co
ED ĉ4

(ĉ11 ; ĉ12) ; ĉ2 ⇓co
ED ĉ4

(ComAssL)

ĉ1 ; ĉ21 ⇓co
ED ĉ3 ĉ3 ; ĉ22 ⇓co

ED ĉ4

ĉ1 ; (ĉ21 ; ĉ22) ⇓co
ED ĉ4

(ComAssR)
Fail` ; ĉ ⇓co

ED Fail`
(ComFailL)

I! ; Fail` ⇓co
ED Fail`

(ComFailR)

Coercion application: 〈ĉ〉v ⇓co
cr r

c ; d̂ ⇓co
ED ĉ1

〈d̂〉(〈c〉s) ⇓co
cr mkCast(ĉ1, s)

(CoeComp)
〈ĉ〉s ⇓co

cr mkCast(ĉ, s)
(CoeNorm)

Cast application: 〈S ⇐ T 〉`v ⇓co
cs r

〈 〈〈S ⇐ T 〉〉` 〉v ⇓co
cr r

〈S ⇐ T 〉`v ⇓co
cs r

(Cst)

Application: v v ⇓co
ap r

proc v ⇓co
ap proc(v)

(ApProc)
〈c̃〉v ⇓co

cr v1 proc v1 ⇓co
ap v2 〈d̃〉v2 ⇓co

cr r

(〈c̃→ d̃〉proc)v ⇓co
ap r

(ApArr)

〈c̃〉v ⇓co
cr Blame `

(〈c̃→ d̃〉proc)v ⇓co
ap Blame `

(ApArrBL)
〈c̃〉v ⇓co

cr v1 proc v1 ⇓co
ap Blame `

(〈c̃→ d̃〉proc)v ⇓co
ap Blame `

(ApArrBR)

Figure 7.8: Coercion composition and application for the denotational semantics in Figure 7.9. Auxiliary functions
〈〈S ⇐ T 〉〉` and mkArr are defined in Figure 7.5, and function mkCast is defined in Figure 7.7.

189

7.4.
Interpretations

of
the

gradually-typed
lam

bda
calculus

Evaluation: e[ρ] =〈·〉 r

k[ρ] =〈·〉 k
(EvConst)

e[ρ] =〈·〉 k

(op e)[ρ] =〈·〉 δ(op, k)
(EvOper)

e[ρ] =〈·〉 Blame `

(op e)[ρ] =〈·〉 Blame `
(EvOperB)

e1[ρ] =〈·〉 t e2[ρ] =〈·〉 r

(if e1 e2 e3)[ρ] =〈·〉 r
(EvIfL)

e1[ρ] =〈·〉 f e3[ρ] =〈·〉 r

(if e1 e2 e3)[ρ] =〈·〉 r
(EvIfR)

e1[ρ] =〈·〉 Blame `

(if e1 e2 e3)[ρ] =〈·〉 Blame `
(EvIfB)

e[(x 7→ v) : ρ] =〈·〉 r

(λx : T.e)[ρ] =〈·〉 (fn v => r)
(EvProc)

e1[ρ] =〈·〉 v1 e2[ρ] =〈·〉 v2 v1 v2 ⇓co
ap v3

(e1 e2)[ρ] =〈·〉 v3
(EvApp)

e1[ρ] =〈·〉 Blame `

(e1 e2)[ρ] =〈·〉 Blame `
(EvAppBL)

e1[ρ] =〈·〉 v1 e2[ρ] =〈·〉 Blame `

(e1 e2)[ρ] =〈·〉 Blame `
(EvAppBR)

ρ !x =〈·〉 r

x[ρ] =〈·〉 r
(EvVar)

e[ρ] =〈·〉 v 〈S ⇐ T 〉`v ⇓co
cs r

(〈S ⇐ T 〉`e)[ρ] =〈·〉 r
(EvCast)

e[ρ] =〈·〉 Blame `

(〈S ⇐ T 〉`e)[ρ] =〈·〉 Blame `
(EvCastB)

(Blame `)[ρ] =〈·〉 Blame `
(EvBlame)

Figure 7.9: Denotational semantics in mathematical notation implemented by equivalent definitional interpreters
interp_ed ((Siek & Garcia, 2012) and Code 1.1) and eval (Code 1.2). Auxiliary function ρ !x, is defined in Figure 7.7.
Application ⇓co

ap and cast application ⇓co
cs are defined in Figure 7.8.

190

Chapter 7. Interpretations of the Gradually-Typed Lambda Calculus

Conjecture 2. For any well-typed program e, eval_ld(e) = o if and only if 〈〈e〉〉 7−→∗LD r
and observe(r) = o.

Conjecture 9.1. Given two well-typed coercions in normal form, c1 and c2, we have
seq_ed(c1,c2) = ĉ3 and (c1 ; c2) 7−→∗ED ĉ3.

Conjectures 1 and 2 state the correctness of the instantiated interpreter relative to the
LD semantics. Conjecture 1 states subtyping soundness (by the way, eval_ld type-checks
expressions and invokes interp_ld). Conjecture 2 states the correspondence between the
instantiated definitional interpreter and the LD reduction semantics. Function observe is
a reflect function as in normalisation by evaluation: it produces denotational (meta-level)
results from results produced by reduction. Expressions with type casts are translated by
〈〈·〉〉 to expressions with coercion casts. There are analogous Conjectures 3 and 4 in (Siek &
Garcia, 2012) for the LUD semantics. However, no conjectures are stated for the ED and
the EUD semantics. Conjecture 9.1 states the correctness relative to the ED semantics
of the composition of two normal coercions.

As discussed in the introduction, we generalise and prove these conjectures for the
ED semantics (Section 7.5.2 and 7.8) by inter-deriving the reduction semantics and the
instantiated definitional interpreter. The other conjectures can be proven similarly by
plugging a different reduction semantics for coercions (Section 7.11.2).

7.5 Prelude: from casts to coercions

The denotational semantics in Figure 7.9 is defined for a type-cast-based λ〈·〉→. In this
section we discuss how we have turned it (actually, its implementation eval) into a purely
coercion-based semantics by applying two program transformation steps. The bulk of this
section will be of interest to the program-derivationist who is advised to read Code 2
alongside this section.

7.5.1 Fissioning evaluator and translation function

Function apply_cast (Section 7.4.2, Code 1.2) first translates type casts to coercion casts
and then invokes apply_coercion. We want to get rid of the translation and obtain a
coercion-based normaliser. We inline apply_cast in eval to get rid of apply_cast, and
then perform lightweight fission by fix point promotion to separate translate_expression
from eval1, the obtained translation-free evaluation function. The fission transformation
(a.k.a. trampoline transformation) is the inverse of the fusion transformation described in
(Ohori & Sasano, 2007). Function apply_cast is no longer used. The resulting coercion-
based interpreter eval1 and the translate_expression are found in Code 2.1. The latter
implements 〈〈·〉〉 in Conjecture 2. It fires on type casts, is an identity on variables, constants,
and blame expressions, and recursively proceeds over other expressions. Hereafter we can
forget about type casts.

191

7.6. From denotational semantics to 2CPS-normaliser

7.5.2 Deriving a self-contained coercion normaliser

As a result of the previous inlining, the coercion-based interpreter for expressions eval1
invokes compose_coercion, which implements the natural semantics ⇓co

ED in Figure 7.8,5

to normalise sequences of normal coercions. In order to prove the correspondence with
the reduction semantics we need a self-contained coercion normaliser. We have produced
such normaliser normalise_coercion_nor in Code 2.2.3, which implements the natural se-
mantics ⇓ED shown in Figure 7.10.6 To obtain this normaliser we first write a coercion
normaliser (Code 2.2) that normalises sequences and arrows left-to-right, invoking respec-
tively compose_coercion or mk_arrow afterwards, and is an identity on the other normal
coercions. We replace the calls to compose_coercion by recursive calls to the normaliser on
a sequence (Code 2.2.1), inline sequencing within normalisation (Code 2.2.2) and defer the
normalisation of sequences of arrows by constructing intermediate arrows with sequences
(Code 2.2.3). All these steps are equivalence-preserving, and normalise_coercion_nor
behaves like compose_coercion for sequences of normal coercions. Function eval_nor
in Code 2.2.3 is the instantiated definitional interpreter that employs the self-contained
normalise_coercion_nor.

7.6 From denotational semantics to 2CPS-normaliser

In this section, we apply closure conversion (Danvy, 2008a) to defunctionalise the meta-
level procedures of the definitional interpreter. We obtain a natural semantics (a big-step
normaliser) that is the starting point of the functional correspondence (Ager et al., 2003b;
Danvy & Millikin, 2009; Danvy et al., 2011) (the derivation of an abstract machine from
a natural semantics).

7.6.1 Closure conversion

Closure-conversion consists of defunctionalising the procedures in eval_nor (Code 2.2.3)
by enumerating the inhabitants of the function space and by introducing a datatype con-
structor (defunctionalised continuation) for each of the inhabitants. An auxiliary function
will apply such constructors to the intermediate results of computation. There is only
one inhabitant, namely, the function packed within the VPROC constructor, which takes
an operand and invokes eval_nor on the procedure body, passing an environment en-
larged with the operand. We defunctionalise and introduce constructor VPROC1 in datatype
value_clos (Code 3.1). The constructor stores the body and the environment of the lambda
expression representing the procedure, which together make up a closure (Landin, 1964).
The auxiliary function that applies the defunctionalised continuation is inlined in function

5Figure 7.8 defines a natural semantics with the proviso that rule ComAssL has precedence over
rule ComAssR. This precedence is a consequence of the precedence of the productions in the generative
grammar of reduction contexts alluded to in Section 7.3.

6As before, Figure 7.10 defines a natural semantics with the proviso that rule CoeAssL has precedence
over rule CoeAssR.

192

C
hapter

7.
Interpretations

of
the

G
radually-T

yped
Lam

bda
C
alculus

Coercion normalisation: c ⇓ED ĉ

ĉ ⇓ED ĉ
(CoeTriv)

c1 ⇓ED I! c2 ⇓ED J?`

c1 ; c2 ⇓ED 〈〈J ⇐ I〉〉`
(CoeInOut)

c ⇓ED ĉ d ⇓ED d̂

(c→ d) ⇓ED mkArr(ĉ, d̂)
(CoeArr)

c1 ⇓ED ĉ1 c2 ⇓ED ι

c1 ; c2 ⇓ED ĉ1
(CoeIdL)

c1 ⇓ED ι c2 ⇓ED ĉ2

c1 ; c2 ⇓ED ĉ2
(CoeIdR)

c1 ⇓ED (c̃11 → c̃12) c2 ⇓ED (c̃21 → c̃22) ((c̃21 ; c̃11)→ (c̃12 ; c̃22)) ⇓ED ĉ3

c1 ; c2 ⇓ED ĉ3
(CoeSeqArr)

c1 ⇓ED (ĉ11 ; ĉ12) c2 ⇓ED ĉ2 ĉ12 ; ĉ2 ⇓ED ĉ3 ĉ11 ; ĉ3 ⇓ED ĉ4

c1 ; c2 ⇓ED ĉ4
(CoeAssL)

c1 ⇓ED Fail` c2 ⇓ED ĉ2

c1 ; c2 ⇓ED Fail`
(CoeFailL)

c1 ⇓ED ĉ1 c2 ⇓ED (ĉ21 ; ĉ22) ĉ1 ; ĉ21 ⇓ED ĉ3 ĉ3 ; ĉ22 ⇓ED ĉ4

c1 ; c2 ⇓ED ĉ4
(CoeAssR)

c1 ⇓ED I! c2 ⇓ED Fail`

c1 ; c2 ⇓ED Fail`
(CoeFailR)

Coercion application: 〈ĉ〉v ⇓cr r

c ; d̂ ⇓ED ĉ1

〈d̂〉(〈c〉s) ⇓cr mkCast(ĉ1, s)
(NSComp)

〈ĉ〉s ⇓cr mkCast(ĉ, s)
(NSNorm)

Figure 7.10: Coercion normalisation and coercion application for the natural semantics in Figure 7.11. Auxiliary functions
〈〈S ⇐ T 〉〉` and mkArr are defined in Figure 7.5, and function mkCast is defined in Figure 7.7.

193

7.6.
From

denotationalsem
antics

to
2C

P
S-norm

aliser
Closure application: v v ⇓ap r

e[(x 7→ v) : ρ] ⇓ r
(λλ.e[(x : T) : ρ])v ⇓ap r

(NsProc)
〈c̃〉v ⇓cr v1 (λλ.e[(x : T) : ρ])v1 ⇓ap v2 〈d̃〉v2 ⇓cr r

(〈c̃→ d̃〉(λλ.e[(x : T) : ρ]))v ⇓ap r
(NsArr)

〈c̃〉v ⇓cr Blame `

(〈c̃→ d̃〉(λλ.cl))v ⇓ap Blame `
(NsArrBL)

〈c̃〉v ⇓cr v1 (λλ.cl) v1 ⇓ap Blame `

(〈c̃→ d̃〉(λλ.cl))v ⇓ap Blame `
(NsArrBR)

Closure normalisation: e[ρ] ⇓ r

k[ρ] ⇓ k
(NSConst)

e[ρ] ⇓ n
(op e)[ρ] ⇓ δ(op, n)

(NSOper)
e[ρ] ⇓ Blame `

(op e)[ρ] ⇓ Blame `
(NSOperB)

e1[ρ] ⇓ t e2[ρ] ⇓ r
(if e1 e2 e3)[ρ] ⇓ r

(NSIfL)
e1[ρ] ⇓ f e3[ρ] ⇓ r
(if e1 e2 e3)[ρ] ⇓ r

(NSIfR)
e1[ρ] ⇓ Blame `

(if e1 e2 e3)[ρ] ⇓ Blame `
(NSIfB)

ρ !x ⇓ r
x[ρ1] ⇓ r

(NSVar)
(λx : T.e)[ρ] ⇓ (λλ.e[(x : T) : ρ])

(NSFun)
e1[ρ] ⇓ v1 e2[ρ] ⇓ v2 v1 v2 ⇓ap r

(e1 e2)[ρ] ⇓ r
(NSApp)

e1[ρ] ⇓ Blame `

(e1 e2)[ρ] ⇓ Blame `
(NSAppBL)

e1[ρ] ⇓ λλ.e[(x : T) : ρ′] e2[ρ] ⇓ Blame `

(e1 e2)[ρ] ⇓ Blame `
(NSAppBR)

e[ρ] ⇓ v 〈c〉v ⇓cr r

(〈c〉e)[ρ] ⇓ r
(NSCoe)

e[ρ] ⇓ Blame `

(〈c〉e)[ρ] ⇓ Blame `
(NSCoeB)

(Blame `)[ρ] ⇓ Blame `
(NSBla)

Figure 7.11: Natural semantics for closure normalisation. Coercion normalisation ⇓ED and coercion application ⇓cr are
defined in Figure 7.10. Auxiliary function ρ !x is defined in Figure 7.7.

194

Chapter 7. Interpretations of the Gradually-Typed Lambda Calculus

Environments for the closure-converted semantics: ρ

ρ ::= ε | (x 7→ v) : ρ | (x : T) : ρ

Closure-converted look-up function: ρ !x = {cl | T}

ρ !x =

{
cl if bind = (x 7→ cl)
T if bind = (x : T)

where bind contains the
first occurrence of x in ρ

Figure 7.12: Environments and look-up function for the closure-converted semantics in
Figure 7.11.

apply_clos. The resulting natural semantics is shown in Figure 7.11 and corresponds to
the bottom right corner of the inter-derivation diagram (Figure 7.1).

In mathematical notation VPROC1 will be represented by symbol λλ to suggest the re-
lationship with the meta-level. The symbol will also help us discriminate between the
result λλ.e[ρ′] of evaluating an abstraction closure (λx : T.e)[ρ], and an input closure e[ρ′].
The closure-converted result hierarchy is morally the same as the original result hierarchy
(Figure 7.6) except that procedures are represented at the object-level by λλ.e[ρ′].

In rule NSFun, the type-annotated formal parameter (x : T) is stored directly in the
environment instead than attached to λλ for lexical scoping reasons explained in Section 7.8.
The definition of environment and look-up is duly adapted (Figure 7.12).

Datatypes item_clos and environment_clos in Code 3.1 implement the closure-converted
environments in Figure 7.7. Function mk_cast_clos is the closure-converted cast com-
binator, with values and results in the closure-converted results hierarchy. Functions
apply_coercion_clos, apply_clos, and eval_clos in Code 3.1 implement the natural se-
mantics in Figure 7.11.

Recall from Section 7.4.2 that the code uses an unfolded representation of closures. A
datatype for closures will be introduced in Section 7.10 for the reduction semantics.

7.6.2 2-layer continuation-passing-style transformation

The hybrid nature of the semantic artefacts require specific CPS transformation techniques
to keep coercion and expression semantics apart. We use 2-layer CPS (2CPS) (Danvy et al.,
2013) to introduce two function spaces for the rest of the computation: an inner space
of continuations for coercion normalisation, and an outer space of meta-continuations for
expression normalisation. We 2CPS-transform eval_clos by naming intermediate results of
computation, respectively for coercion and expression normalisation, and by turning all the
calls into tail calls. Functions normalise_coercion_cps, mk_cast_cps, apply_coercion_cps,
apply_cps, and eval_cps in Code 3.2 implement the 2CPS-normaliser (a refunctionalised

195

7.7. Tackling the other side of the diagram

abstract machine) in the bottom middle of Figure 7.1.
After 2CPS transformation, the functional correspondence would have continued by

defunctionalising the 2CPS-normaliser. However, we halt the functional correspondence
at this point and move on to the reduction semantics (top left corner of Figure 7.1). In
Section 7.8, we introduce the calculus of closures λρ〈·〉→, which allows to define the closure-
converted small-step reduction semantics.

7.7 Tackling the other side of the diagram

Section 7.4 to Section 7.6 have dealt with the right-hand side of the inter-derivation dia-
gram (Figure 7.1). We now move to the other side. The 2CPS-normaliser is an artefact
with closures, but the reduction semantics given in Sections 7.2 and 7.3 are for plain
expressions. In Section 7.8 we extend λ〈·〉→ to λρ〈·〉→, a simply-typed lambda calculus of clo-
sures with explicit casts, whose reduction semantics is the starting point of the syntactic
correspondence that will arrive at the 2CPS-normaliser.

7.8 The calculus of closures

Figure 7.13 shows the syntax, contraction rules, and implementable reduction semantics
of λρ〈·〉→. This section is also of interest to the gradual-type-theorist. Observe that boxed
rule StepCstρ is present.

Closures cl consist of proper closures e[ρ] and some additional ephemeral closures, in
the spirit of (Biernacka & Danvy, 2007), that lift expression scopes to closure scopes, and
are needed to define the reduction contexts Cl[] in the bottom of the figure. Ephemeral
constructors consist of closure constants con k, closure primitive application prim op cl,
closure conditionals if cl cl cl, closure applications cl · cl, closure abstractions λλ.cl, clo-
sure coercion casts 〈〈〈c〉〉〉cl, and closure blames Blame `. The type system for closures is a
straightforward extension of the type-system for expressions (Figure 7.3) and we omit it
for lack of space. The hierarchy of results is the one for expressions but lifted to ephemeral
closures. Observe that closure blames are closure results.

The contraction rules are separated in three groups. The first seven rules induce
ephemeral expansion, i.e., a relation that lifts proper closures to their corresponding
ephemeral constructors, and distributes the outermost environment over the closure scopes.
Ephemeral expansion is needed in small-step artefacts, but will be shortcut (Biernacka &
Danvy, 2007) when deriving the big-step semantics by applying compression of corridor
transitions in Section 7.10.4.

Observe that in rule Lamρ lambda abstractions are ephemerally expanded although re-
duction will not ‘go under lambda’. We have introduced the ephemeral closure abstraction
λλ.cl to match the procedure representations in the closure-converted natural semantics of
Figure 7.11. The λλ symbol helps discriminate between an input closure and the result of
reducing an abstraction closure (recall the similar discussion in Section 7.6.1). Rule Lamρ

196

Syntax: cl ∈ λρ〈·〉→

environments ρ ::= ε | (x 7→ v) : ρ | (x : T) : ρ
closures cl ::= e[ρ] | con k | prim op cl | if cl cl cl

| λλ.cl | cl · cl | 〈〈〈c〉〉〉cl | Blame `

closure simple values s ::= con k | (λλ.e[(x : T) : ρ])
closure values v ::= s | 〈〈〈c〉〉〉s
closure results r ::= v | Blame `

Contraction: cl −→ρ cl

k[ρ]−→ρ con k (Conρ)
(op e)[ρ]−→ρ prim op (e[ρ]) (Primρ)

(if e1 e2 e3)[ρ]−→ρ if (e1[ρ]) (e2[ρ]) (e3[ρ]) (IfTEρ)

(λx : T.e)[ρ]−→ρ (λλ.e[(x : T) : ρ]) (Lamρ)

(e1 e2)[ρ]−→ρ (e1[ρ]) · (e2[ρ]) (Appρ)
(〈c〉e)[ρ]−→ρ 〈〈〈c〉〉〉(e[ρ]) (Coerρ)

(Blame `)[ρ]−→ρ Blame ` (Blaρ)

x[ρ]−→ρ cl where ρ !x = cl (Varρ)

(λλ.e[(x : T) : ρ]) · v−→ρ e[(x 7→ v) : ρ] (βρ)

prim op (n[ρ])−→ρ con (δ(op, n)) (δρ)

if (con k) cl1 cl2−→ρ

{
cl1 if k = t

cl2 if k = f
(Ifρ)

〈〈〈c1〉〉〉s−→ρ 〈〈〈c2〉〉〉s if c1 7−→X c2 (StepCstρ)

〈〈〈ι〉〉〉s−→ρ s (IdCstρ)
〈〈〈d〉〉〉〈〈〈c〉〉〉s−→ρ 〈〈〈c ; d〉〉〉s (CmpCstρ)

(〈〈〈c̃→ d̃〉〉〉s) · v−→ρ 〈〈〈d̃〉〉〉(s · 〈〈〈c̃〉〉〉v) (AppCstρ)
〈〈〈Fail`〉〉〉s−→ρ Blame ` (FailCastρ)

〈〈〈(c̃→ d̃) ; Fail`〉〉〉s−→ρ Blame ` (FailFCρ)

Reduction semantics: cl 7−→ρ cl

Cl[] ::= [] | prim op (Cl[]) | if (Cl[]) cl cl
| (Cl[]) · cl | v · (Cl[]) | 〈c〉(Cl[])

cl −→ρ cl
′

Cl[cl] 7−→ρ Cl[cl′] Cl[Blame `] 7−→ρ Blame `

Figure 7.13: Syntax, contraction rules, and implementable reduction semantics of λρ〈·〉→.
Auxiliary look-up function ρ !x is defined in Figure 7.12.

197

7.8. The calculus of closures

also pushes a type annotation (x : T) on the environment, similar to rule NSFun in Fig-
ure 7.11. The purpose of this is to close the scope of the abstraction body e such that every
variable points to some element in the environment, preventing dangling variables in e.7

The second group of rules consists of rule Varρ alone, which performs substitution on
demand by looking up the binding of a variable. The look-up function always returns a
closure cl because the reduction semantics never goes under lambda and the type system
enforces that all the variables are bound.

The third and last group are the closure versions of the contraction rules in λ〈·〉→. These
rules induce reduction proper. Notice that (βρ) discards the λλ in the operator and replaces
the formal parameter’s type annotation by the actual binding.

The reduction contexts Cl[] and the reduction semantics 7−→ρ for closures are simply
the closure version of the reduction contexts and reduction semantics of λ〈·〉→. The reduction
semantics of λρ〈·〉→ simulates stepwise the reduction semantics in λ〈·〉→ by means of substitu-
tion function σ that flattens all the delayed substitutions in a closure. The proof, which is
omitted, goes in a similar way as the proof of the stepwise connection between →no and
→ño in Section 6.7.9.

7.8.1 The correctness theorems

We are now in a position to state the correspondence between the instantiated definitional
interpreter and the reduction semantics for closures with respect to ED:

Theorem 7.8.1. Given a well-typed coercion c1 we have c1 ⇓ED ĉ2 iff c1 7−→∗ED ĉ2.

Proof. By establishing the correspondence between normalise_coercion_nor
(Code 2.2.3, Section 7.5.2) and normalise_coercion (Code 5.3.2, Section 7.9).

Theorem 7.8.2. If every coercion labelled with ` in program e respects subtyping, then
e[ε] 67−→∗ρ Blame `.

Proof. The proof is straightforward by induction on 7−→ρ.

Theorem 7.8.3. Given a well-typed expression e, we have e[ε] ⇓ r iff e[ε] 7−→∗ρ r.

Proof. By establishing the correspondence between eval_clos (Code 3.1, Section 7.6.1)
and normalise (Code 5.3.2, Section 7.9).

Different from the conjectures in Section 7.4.3, we do not need a separate theorem
stating soundness of subtyping for the natural semantics ⇓ because Theorem 7.8.3 proves
it equivalent to reduction semantics 7−→ρ.

7This feature is reminiscent of the dummy bindings standing for formal parameters in Crégut’s full-
reducing Krivine machine (Crégut, 1990, 2007), and in the equivalent semantic artefacts inter-derived in
(García-Pérez et al., 2013).

198

Chapter 7. Interpretations of the Gradually-Typed Lambda Calculus

7.9 Implementing the reduction semantics

We turn to the implementation of 7−→ρ in Figure 7.13. Similarly to the 2CPS discus-
sion of Section 7.6.2 we use continuations for 7−→X (the reduction semantics of coercions)
and meta-continuations for 7−→ρ (the reduction semantics of closures). In Code 5 we de-
scribe a transformation step which is uninteresting to the gradual-type-theorist and for
lack of space we merely outline it. We start with hybrid search functions that implement a
structural operational semantics. We then derive the reduction semantics from the search
functions, by CPS transformation, simplification, and defunctionalisation. This standard
practice (Biernacka & Danvy, 2007; Danvy & Millikin, 2008; Danvy, 2008a; Danvy & Mil-
likin, 2009; Danvy et al., 2011) is not essential to establish a syntactic correspondence,
but it reveals better the correspondence between reduction contexts and defunctionalised
continuations. Moreover, the transformation step clarifies two important points and justi-
fies the accompanying design decisions. We elaborate on this two points in the following
paragraphs. We strongly advise the program-derivationist to read Code 5 alongside this
section.

The first point: the simplification step prescribes that the search functions discard the
current continuation when a redex is found. However, a tail-recursive implementation of
our hybrid semantics would require to keep the closure meta-continuation in order to throw
into it the found coercion redex. Since the closure meta-continuation will be dropped by the
simplified coercion semantics, the closure semantics needs to invoke the coercion semantics
in non-tail-recursive fashion, by delimiting its invocation by passing the initial continua-
tion.8 Thus, the implementation of the small-step semantics is not in 2CPS anymore, but
rather in continuation-composing style (i.e., two 1-layer CPS programs which are glued
together by the closure semantics delimiting the invocations of the coercion semantics).
All this is unavoidable. Dropping the meta-continuation in the inner simplified semantics
is essential for the separated transformation of closure and coercion semantics. For the
coercions, the tail calls to iterate need to happen immediately after decompose, enabling
to light-weight fuse them in Code 6.3.

The second point: decomposition (to have a term and its context) is fundamental to
implement a trampolined style reduction semantics (Ganz et al., 1999) (a driver loop iterat-
ing decomposition, contraction, and recomposition). We have a hybrid reduction semantics
involving closures and coercions. The following rule (implicitly entailed by StepCstρ in
Figure 7.13) illustrates the inclusion of the inner semantics in the outer one:

C[c] 7−→X C[c′]

Cl[〈〈〈C[c]〉〉〉s] 7−→ρ Cl[〈〈〈C[c′]〉〉〉s]

In order to implement the subsidiary coercion semantics 7−→X in trampolined style, we
have to modify the datatype representing the outer redices Cl[〈〈〈C[c]〉〉〉s] to include the inner

8The sceptical program-derivationist is invited to attempt the simplification step in a true 2CPS program
implementing a semantics with hybrid redices, like the ones entailed by rule StepCstρ in Figure 7.13.

199

7.10. The syntactic correspondence

decomposition C[c], rather than just a plain coercion c1 ≡ C[c]. This is implemented by
clause

ESTEPCST1 of decomposition * simple_value

of datatype redex1 in Code 5.3.1. This is ultimately isomorphic to 2CPS (i.e., iter-
ated CPS) since the inner decomposition includes both the continuation and the meta-
continuation. The apparent detour from using 2CPS upfront is due to the need to perform
the simplification step in each of the closure and coercion semantics in a modular way.

Code 5.3 implements the reduction semantics 7−→ρ in Figure 7.13, which corresponds
to the top left corner in Figure 7.1. In the following sections, we apply the syntactic
correspondence and arrive at an abstract machine which will be refunctionalised into the
2CPS-normaliser in Section 7.6.2 and Code 3.2, thus closing the gap and completing the
inter-derivation.

7.10 The syntactic correspondence

In Section 7.9, we implemented the reduction semantics 7−→ρ, which is the starting point of
the syntactic correspondence arriving at the abstract machine on the bottom left corner of
Figure 7.1. The syntactic correspondence (Danvy & Nielsen, 2004; Danvy, 2008b; Danvy
et al., 2011) consists of refocusing, inlining of contraction function, lightweight-fusion by fix
point promotion (Ohori & Sasano, 2007), and compression of corridor transitions. These
steps are standard and hence merely outlined in the chapter, except for the specific details
concerning our hybrid semantics. In the fourth step, we elaborate on two different classes
of corridor transitions found in the literature (Danvy, 2008b) (Section 7.10.4).

On occasion, we generically refer to both the coercion and closure artefacts by naming
the entry function, e.g., normalise1 in Code 6.1.

7.10.1 Refocusing

The refocus function maps a pair (contractum, context) to the decomposition for the next
redex in the reduction sequence. Extensional refocus consist of (respectively on coercions
and closures) recomposition followed by decomposition. The refocusing step deforests this
detour, turning the extensional refocus function into an intensional refocus function which
is an alias for the decompose function (Danvy & Nielsen, 2004).

Since our semantics is hybrid, we apply refocusing to the coercion and the closure
artefacts in succession. First, we deforest recomposition followed by decomposition turning
the extensional refocus_coercion in Code 5.3.2 into the intensional refocus1_coercion in
Code 6.1. This is an alias for function decompose_coercion. Functions iterate1_coercion
and normalise1_coercion follow from that. Before performing the same operation in the
closure artefact, we coalesce all the StepCstρ steps in the closure reduction semantics.

200

Chapter 7. Interpretations of the Gradually-Typed Lambda Calculus

The modified inclusion-of-semantics rule now reads:

c 7−→∗X ĉ

Cl[〈〈〈c〉〉〉s] 7−→ρ Cl[〈〈〈ĉ〉〉〉s]

This transformation trivially preserves equivalence. To implement the rule above, we mod-
ify the decomposition of closures accordingly. In Code 6.1, the clause for meta-continuation
MC5 in function decompose1_meta_cont now invokes normalise1_coercion. In the same pro-
gram clause, there is no case returning a ESTEPCST1 redex, since the coercion found nc (on
which the program is pattern-matching after normalise1_coercion) is trivially a normal
coercion.

We turn refocus_closure in Code 5.3.2 into the intensional refocus1_closure in Code 6.1
which is an alias for decompose1_closure.

7.10.2 Inlining the contraction function

We inline the contraction functions in the corresponding iterate functions (Danvy, 2008b),
obtaining normalise2 in Code 6.2. Due to the modified rule in Section 7.10.1, the case for
ESTEPCST1 redices in contract_closure is no longer considered.

7.10.3 Lightweight-fusing decompose and iterate

There are several invocations of decomposition followed by iteration in the iterate and
normalise functions. We fuse them together in a single normalise function by applying
lightweight fusion. As in Section 7.10.1, we proceed in succession for the coercion and the
closure artefacts. The resulting reduction-free normaliser normalise3 is in Code 6.3.

7.10.4 Compressing static and dynamic corridor transitions

Some of the transitions in normalise3 are to configurations where there is only one possible
further transition. These are called corridor transitions, and by hereditarily compressing
them, the iterate functions will become unused and could be safely removed.

The conventional corridor transitions (for which we use the epithet static) are those
detected by looking at the code of the normalising functions, i.e., the program clauses where
the right-hand side consists of a single tail call, or of a selection statement having a unique
case (Danvy, 2008b; Danvy et al., 2011). These transitions are compressed by successively
unfolding the right-hand side of the program clauses involved. The shortcut operation
coalescing ephemeral expansion (Biernacka & Danvy, 2007) belongs to this category of
corridor transitions. By compressing the static corridor transitions we obtain the big-step
normaliser normalise4 in Code 6.4.

The not-so-conventional corridor transitions (for which we use the epithet dynamic),
are those starting at a configuration where the input term is irreducible, i.e., a normal
coercion or a value (Danvy, 2008b, p.140-141). For coercions, remember from Section 7.4
that we use a single coercion datatype both for arbitrary coercions and for the hierarchy

201

7.11. Closing the gap

Embed function for closure values: ↓ v = e[ρ]

↓ (con k) = k[ε]
↓ (λλ.e[(x : T) : ρ]) = (λx : T.e)[ρ]

↓ (〈〈〈c〉〉〉v) = (〈c〉e)[ρ] where ↓ v = e[ρ]

Figure 7.14: Embed function for closure values

of normal coercions. For the closures, in Code 4 we introduced datatype value_clos and
function embed_clos, the latter implementing the embedding function ↓v in Figure 7.14.9

Since the programs are in defunctionalised CPS, all the calls are tail calls (respectively to
the coercion or closure semantics). The computation will eventually throw the irreducible
input term into the current continuation (meta-continuation respectively). Thus, these
administrative transitions can be coalesced until that point, i.e., a call to normalise4_cont
or normalise4_meta_cont respectively. Compressing dynamic corridor transitions reveals
more opportunities to compress static corridor transitions. By compressing them all we
obtain normalise5 in Code 6.5, which implements the abstract machine at the bottom left
corner of Figure 7.1.

Let us show one of such dynamic corridor transitions:

normalise4_closure (embed_clos f1, MC3 (CCOER (c1, embed_clos v), MC5 (c2, mk)))
=

normalise4_meta_cont (MC3 (CCOER (c1, embed_clos v), MC5 (c2, mk)), f1)
=

normalise4_closure (CCOER (c1, embed_clos v), MC4 (f1, MC5 (c2, mk)))
=

normalise4_closure (embed_clos v, MC5 (c1, MC4 (f1, MC5 (c2, mk))))
=

normalise4_meta_cont (MC5 (c1, MC4 (f1, MC5 (c2, mk))), v)

The normaliser specifies a control-flow invariant for the cases matching the initial clause of
the corridor transition. The invariant allows the meta-continuation stack to be loaded with
a fixed sequence of defunctionalised meta-continuations, which will help us refunctionalise
the abstract machine into several mutually recursive functions in Section 7.11.1.

7.11 Closing the gap

In this section we close the gap between the right- and left-hand sides of the inter-derivation
diagram (Figure 7.1). We defunctionalise the abstract machine into a 2CPS program with

9The embedding function is used in contract_closure in Code 5.3.2. Embed only considers closure
values because closure blames are short-circuited to closure results and do not appear in redices. Observe
that embed followed by normalise is the identity.

202

Chapter 7. Interpretations of the Gradually-Typed Lambda Calculus

several mutually recursive functions which is almost the 2CPS-normaliser in Figure 7.1.
Then, we apply some cosmetic transformations to remove minor differences between the
refunctionalised abstract machine and the 2CPS-normaliser, thus concluding the deriva-
tion.

7.11.1 Refunctionalising the abstract machine

We observe two facts about the dispatcher for meta-continuations normalise5_meta_cont:

1. In the clause for MC5, the program either invokes the clause itself (normalise5_meta_cont
passing MC5), or makes a delimited non-tail call to normalise5_coercion and then re-
turns a blame or throws some intermediate result into the current meta-continuation.
This clause can be refunctionalised into a stand-alone recursive function, which we
name apply6_coercion (Code 7.1).

2. In the clause for MC4, the program either calls normalise5_closure, or invokes the
dispatcher normalise5_meta_cont passing a new continuation which adds up to three
new constructors, i.e., MC5 (c1, MC4 (f1, MC5 (c2, mk))). This clause can be re-
functionalised into a stand alone recursive function which unwinds the defunction-
alised continuation, and invokes apply6_coercion and itself according to the occur-
rences of MC4 and MC5 in the defunctionalised continuation. We name the function
apply6 (Code 7.1).

Although the clause for MC4 invokes normalise5_closure, equivalence is preserved
because the latter never invokes normalise5_meta_cont directly passing MC4.

The rest of the clauses and functions are straightforwardly defunctionalised.
We also undelimit the inner continuations, turning the non-tail calls into tail calls. This

is only possible at a reduction-free artefact, since the program does not need to consider
the individual redices in the reduction sequence, in particular the coercion redices (recall
the discussion in Section 7.9). We have decided to do this transformation after refunction-
alisation to save us from introducing a new datatype for defunctionalised continuations.
The result is the 2CPS refunctionalised abstract machine normalise6 in Code 7.1.

7.11.2 Cosmetic transformations

We remove some minor differences between the refunctionalised normaliser normalise6 in
Code 7.1 and the 2CPS-normaliser eval_cps in Code 3.2.

We inline apply6_coercion in Code 7.1 into itself (notice that the value sv passed
in the recursive call is a simple value), duplicating the selection statement in the sec-
ond clause. This selection statement is, in turn, protruded (i.e., inversely inlined) into
combinator mk_cast7 (Code 7.2). We unfold datatype closure into a pair (expression,
environment_clos) and protrude combinator mk_arrow7 (Code 7.2). The result is normalise7
in Code 7.2, which is exactly the same as the 2CPS-normaliser eval_clos in Code 3.2.

203

7.12. Conclusions and related work

This establishes the correspondence between =〈·〉 and 7−→, and between ⇓ED and 7−→ED,
constituting a proof by program transformation of Theorems 7.8.1 and 7.8.3.

Theorems 7.8.1 and 7.8.3 can be generalised for other choices of dynamic semantics by
applying the correspondence described through the chapter starting with a different set of
coercion artefacts. Layering and 2CPS allows us to reuse the off-the-shelf infrastructure,
in particular the closure artefacts.

7.12 Conclusions and related work

We have shown the inter-derivation of semantic artefacts for λ〈·〉→. Our choice of the 2CPS
is motivated by the need for a modular coercion semantics that can be plugged into the
λ〈·〉→ hybrid semantics. This allows us to generalise the theorems for a family of dynamic
semantics reusing most of the inter-derivation for λ〈·〉→.

We have presented the calculus λρ〈·〉→, which is an important ingredient to inter-derive
the closure-converted version of the definitional interpreters in (Siek & Garcia, 2012). The
semantics in λρ〈·〉→ simulates step-by-step-wise the semantics in λ〈·〉→.

In (Danvy et al., 2013) the 2CPS is applied to inter-derive a full-reducing eval-readback
machine of Curien (Curien, 1993) that normalises pure untyped lambda calculus terms.
The machine relies on a hybrid reduction strategy with two separated stages for eval and
readback. We have independently investigated in (García-Pérez et al., 2013) a different
approach for single-stage (as opposed to eval-readback) hybrid artefacts, showcasing the
derivation of the full-reducing Krivine machine (Crégut, 1990) from the operational seman-
tics of normal order. In (Danvy et al., 2013) the subsidiary strategy is modular, but this
introduces a conceptual overhead in the 2CPS transformations. In (García-Pérez et al.,
2013) we show how to use plain CPS when the target strategy is single-staged, but this
requires reasoning on the shape of the continuation stack. Both approaches differ in their
weaknesses and strengths, as well as in their range of applicability.

The semantic artefacts in this chapter are qualitatively different from those in (Danvy
et al., 2013) and (García-Pérez et al., 2013). The semantics ⇓ here is single-stage (there is
only one pass of the big-step definitional interpreter) but its implementation is 2-layered.
In the big-step artefacts we use 2CPS. In the small-step artefacts we disentangle the inner
continuation space by delimiting the continuations in the non-tail calls to the coercion
semantics. This way, we keep the semantics in (Siek & Garcia, 2012), but arrive at a
solution which is modular with respect to the coercion semantics.

Garcia (2013) has tackled and solved the challenge of defining a reduction semantics
for coercions which is ‘complete in the face of inert compositions and associativity’. We
have rather followed the ‘ad hoc reassociation scheme’ in (Siek & Garcia, 2012), proving
the correctness conjectures there. Garcia also introduces threesome-based variants of the
Blame Calculus. We believe that the semantics for the threesome-based gradually-typed
lambda calculi are good candidates for applying the techniques in this chapter. Thanks to
hybrids and 2CPS, modularity with respect to the blame calculi would be straightforward.

204

8
General Conclusions

The idea of hybrid strategies, which appeared informally in (Sestoft, 2002), articulates
most of the work in this thesis. Hybrid strategies are paramount when studying full reduc-
tion because the full-reducing strategies that exhibit desirable meta-theoretical properties
happen to be hybrid. This thesis shows that the hybrid character is intrinsic to the strat-
egy’s nature, not to its style, i.e., it is unconnected to any particular definition or to
representational concerns.

The beta-cube systematises the space of strategies unveiled by (Sestoft, 2002), and
shows how a particular kind of hybrid strategies (those relying on a single subsidiary strat-
egy which is a right identity of the hybrid) have a corresponding NBE-style presentation,
in which the eval stage corresponds to the subsidiary and the readback stage distributes
reduction over the subterms of the result delivered by eval.

The weak-reducing character of the lambda-value calculus (Egidi et al., 1991, 1992;
Paolini & Ronchi Della Rocca, 1999; Ronchi Della Rocca & Paolini, 2004; Accattoli &
Paolini, 2012) has been emphasised because the notion of lambda-value normal form was
considered uninteresting (Ronchi Della Rocca & Paolini, 2004). The emphasis on weak-
reducing machines, like the SECD machine of (Landin, 1964), and the misconception about
the by-value and the by-wnf calling policies entail a notion of operational relevance which
is not in accord with the reduction theory of the lambda-value calculus, but only with its
weak-reducing sub-theory (Paolini & Ronchi Della Rocca, 1999). This has been overlooked
in the literature because weak reduction entails good model-theoretical properties (Abram-
sky, 1990; Egidi et al., 1991, 1992). However, the lambda-value calculus has a meta-theory
of its own, which has remained unexplored. This thesis helps to reinstate the full-reducing
character of lambda-value by disclosing interesting aspects of its meta-theory. This thesis
develops the notion of needed reduction (Barendregt et al., 1987) in this calculus, based
on which quasi-v-solvability is defined. Quasi-v-solvability is more accurate than the ex-
isting ‘call-by-value solvability’ (Paolini & Ronchi Della Rocca, 1999; Accattoli & Paolini,
2012). This contribution helps for the endeavour of establishing a ‘standard theory’ of the
lambda-value calculus which resembles that of the classical lambda calculus (Barendregt,

205

1984; Abramsky, 1990).
A reduction strategy stands at the basis of an operational semantics, which is imple-

mented by a so called semantic artefact. The semantic artefacts can be inter-derived by
program transformation (Reynolds, 1998; Ager et al., 2003b; Danvy, 2006a; Danvy et al.,
2007; Danvy & Millikin, 2008; Danvy et al., 2011). The full-reducing strategies can be im-
plemented by a single-stage hybrid artefact or by a multiple-stage artefact in NBE-style.
An n-stage artefact can be fused by lightweight fusion by fixed-point promotion (LWF) into
a single-stage hybrid artefact with n modes. The inter-derivation techniques in (Munk,
2008; Danvy et al., 2013) depart from the n-stage artefacts, which requires the use of
n-layer CPS and yields an abstract machine with n stacks. This thesis shows how to carry
the inter-derivation to the single-stage hybrid artefacts by observing a shape invariant of
the control stack. This enables an inter-derivation using single-layer CPS and yields an
abstract machine with only one stack. The shape invariant of the control stack reflects the
‘staging’ control structure in the n-stage artefacts.

Most of the implementations of abstract machines rely on closures and on the envi-
ronment technique (Landin, 1964). The full-reducing strategies considered in this thesis
can be closure converted into strategies in the λρ̃-calculus introduced in Chapter 6. This
novel calculus of closures, which relies on the use of both be Bruijn indices and levels,
generalises and extends several calculi in the literature (Curien, 1991; Biernacka & Danvy,
2007; Crégut, 2007). Contrary to other calculi of closures, λρ̃ simulates reduction in plain
λK in a step-by-step fashion. Besides, λρ̃ enforces SOS with index alignment and bal-
anced derivations, an important contribution which helps to solve the paramount issue
with binders, i.e., reasoning locally in a scope where the binding of a free variable is not
available (Aydemir et al., 2008).

Layered (i.e., hybrid) operational semantics are constantly springing up. The gradually-
typed lambda calculus (Siek & Taha, 2006; Siek et al., 2009; Siek & Garcia, 2012) is a recent
example, where a family of dynamic semantics for coercions can be plugged into the static
semantics of a host simply-typed lambda calculus. This thesis shows how the 2CPS tech-
niques can be applied together with the hybrid strategies to inter-derive interpretations of
the gradually-typed lambda calculus in a way which is parametric in the semantic artefact
for coercions (i.e., the different inter-derivations for the choices of coercion semantics can
be plugged in the inter-derivation of the host calculus, which would be reused).

206

Bibliography

Abadi, M., Cardelli, L., Curien, P.-L. & Lévy, J.-J. (1991). Explicit substitutions.
Journal of Functional Programming 1(4), 375–416.

Abelson, H., Sussman, G. J. & Sussman, J. (1985). Structure and Interpretation of
Computer Programs. Cambridge, Massachusetts: MIT Press.

Abramsky, S. (1990). The lazy lambda calculus. In: Research Topics in Functional
Programming (Turner, D. A., ed.). Reading, MA: Addison-Welsey, pp. 65–116.

Accattoli, B. & Paolini, L. (2012). Call-by-value solvability, revisited. In: Eleventh
International Symposium on Functional and Logic Programming (FLOPS 2012).

Aehlig, K. & Joachimski, F. (2004). Operational aspects of untyped normalisation by
evaluation. Mathematical Structures in Computer Science 14(4), 587–611.

Ager, M. S., Biernacki, D., Danvy, O. & Midtgaard, J. (2003a). From interpreter
to compiler and virtual machine: a functional derivation. Tech. Rep. RS-03-14, BRICS,
Department of Computer Science, Aarhus University, Denmark.

Ager, M. S., Biernacki, D., Danvy, O. & Midtgaard, J. (2003b). A functional
correspondence between evaluators and abstract machines. In: Proceedings of the Fifth
ACM-SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming. ACM Press.

Ager, M. S., Danvy, O. & Midtgaard, J. (2005). A functional correspondence be-
tween monadic evaluators and abstract machines for languages with computational ef-
fects. Theoretical Computer Science 342(1), 149–172.

Aydemir, B., Charguéraud, A., Pierce, B. C., Pollack, R. & Weirich, S. (2008).
Engineering formal metatheory. In: Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008.

Baader, F. & Nipkow, T. (1998). Term Rewriting and All That. Cambridge University
Press.

Barendregt, Kennaway, Klop & Sleep (1987). Needed reduction and spine strategies
for the lambda calculus. Information and Computation 75(3), 191–231.

207

Bibliography

Barendregt, H. (1972). Solvability in lambda caculi. In: Proceedings of the Orléans
Congrès de Logique.

Barendregt, H. (1984). The Lambda Calculus, Its Syntax and Semantics. North Holland.

Barendregt, H. P. (1971). Some Extensional Term Models for Combinatory Logics and
Lambda Calculi. Ph.D. thesis, University of Utrecht, Utrecht, NL.

Berger, U. & Schwichtenberg, H. (1991). An inverse of the evaluation functional
for typed λ-calculus. In: Proceedings of the 6th Annual IEEE Symposium on Logic in
Computer Science.

Biernacka, M., Biernacki, D. & Danvy, O. (2005). An operational foundation for
delimited continuations in the CPS hierarchy. CoRR abs/cs/0508048.

Biernacka, M. & Danvy, O. (2007). A concrete framework for environment machines.
ACM Trans. Comput. Log 9(1), 6:1–6:29.

Borges, J. L. (1944). Tlön, Uqbar, Orbis Tertius. In: Ficciones. Editorial Sur, Buenos
Aires, Argentina.

Burton, T. (1994). Ed Wood. Buena Vista Pictures.

Church, A. (1936). An unsolvable problem of elementary number theory. American
Journal of Mathematics 58, 354–363.

Church, A. (1941). The Calculi of Lambda Conversion. Princeton University Press.

Crégut, P. (1990). An abstract machine for lambda-terms normalization. In: LISP and
Functional Programming.

Crégut, P. (2007). Strongly reducing variants of the Krivine abstract machine. Higher-
Order and Symbolic Computation 20(3), 209–230.

Curien, P.-L. (1991). An abstract framework for environment machines. Theoretical
Computer Science 82(2), 389–402.

Curien, P.-L. (1993). Categorical Combinators, Sequential Algorithms and Functional
Programming. Progress in Theoretical Computer Science. Birkhaüser.

Curien, P.-L. (2007). Definability and full abstraction. Electr. Notes Theor. Comput.
Sci 172, 301–310.

Curry, H. B. & Feys, R. (1958). Combinatory Logic, vol. 1. North-Holland.

Danvy, O. (1996). Type-directed partial evaluation. In: Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. St. Petersbur
(FL), USA.

208

Bibliography

Danvy, O. (1998). Online type-directed partial evaluation. In: Fuji International Sym-
posium on Functional and Logic Programming.

Danvy, O. (2005). From reduction-based to reduction-free normalization. Electr. Notes.
Theor. Comput. Sci 124(2), 79–100.

Danvy, O. (2006a). An Analytical Approach to Programs as Data Objects. Ph.D. thesis,
University of Aarhus. Doctor Scientiarum in Computer Science.

Danvy, O. (2006b). Refunctionalization at work. In: Proceedings of the 8th International
Conference on Mathematics of Program Construction.

Danvy, O. (2008a). Defunctionalized interpreters for programming languages. In: Pro-
ceedings of the 13th ACM SIGPLAN International Conference on Functional Program-
ming.

Danvy, O. (2008b). From reduction-based to reduction-free normalization. In: Advanced
Functional Programming, vol. 5832 of Lecture Notes in Computer Science. Springer.

Danvy, O. & Filinsky, A. (1990). Abstracting Control. In: In Proceedings of the 1990
ACM Conference on LISP and Functional Programming.

Danvy, O. & Hatcliff, J. (1992). Thunks (continued). In: WSA.

Danvy, O. & Johannsen, J. (2013). From outermost reduction semantics to abstract
machine. In: Pre-Proceedings of 23rd Symposium on Logic-Based Program Synthesis and
Transformation.

Danvy, O., Johannsen, J. & Zerny, I. (2011). A walk in the semantic park. In:
Proceedings of the 2011 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM 2011, Austin, TX, USA, January 24-25, 2011 (Khoo, S.-C. &
Siek, J. G., eds.). ACM.

Danvy, O. & Millikin, K. (2008). On the equivalence between small-step and big-step
abstract machines: a simple application of lightweight fusion. Inf. Process. Lett 106(3),
100–109.

Danvy, O. & Millikin, K. (2009). Refunctionalization at work. Sci. Comput. Program
74(8), 534–549.

Danvy, O., Millikin, K. & Munk, J. (2007). A correspondence between reduction-
based and reduction-free normalization functions. Unpublished draft.

Danvy, O., Millikin, K. & Munk, J. (2013). A correspondence between full normal-
ization by reduction and full normalization by evaluation. A scientific meeting in honor
of Pierre-Louis Curien.

209

Bibliography

Danvy, O. & Nielsen, L. R. (2004). Refocusing in reduction semantics. Tech. Rep.
RS-04-26, BRICS, Department of Computer Science, Aarhus University, Denmark.

De Bruijn, N. G. (1978). A namefree lambda caculus with facilities for internal defi-
nitions of expressions and segments. Tech. Rep. 78-WSK-03, Technological University
Eindhoven, Netherlands.

Dershowitz, N. (1981). Termination of linear rewriting systems. In: ICALP: Annual
International Colloquium on Automata, Languages and Programming.

Dijkstra, E. W. (1968). Go to statement considered harmful. Communications of the
ACM 11, 147–148.

Eco, U. (2001). Come si fa una tesi di laurea. Bompiani.

Egidi, L., Honsell, F. & Rocca, S. R. D. (1992). Operational, denotational and
logical descriptions: a case study. Fundam. Inform 16(1), 149–169.

Egidi, L., Honsell, F. & Ronchi della Rocca, S. (1991). The lazy call–by–value
λ–calculus. In: Proceedings of Mathematical Foundations of Computer Science. (MFCS
’91) (Tarlecki, A., ed.), vol. 520 of LNCS. Berlin, Germany: Springer.

Felleisen, M. (1987). The Calculi of Lambda-v-CS Conversion: A Syntactic Theory of
Control and State in Imperative Higher-Order Programming Languages. Ph.D. thesis,
Department of Computer Science, Indiana University.

Felleisen, M. & Flatt, M. (2002). Programming languages and lambda calculi. notes
for Utah CS6520.

Felleisen, M. & Friedman, D. P. (1986). Control operators, the SECD-machine, and
the lambda-calculus. In: Formal Description of Programming Concepts III.

Felleisen, M. & Hieb, R. (1992). The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science 103, 235–271.

Filinski, A. & Rohde, H. K. (2004). A denotational account of untyped normalization
by evaluation. In: 7th International Conference on Foundations of Software Science and
Computation Structures, vol. 2987 of Lecture Notes in Computer Science. Barcelona,
Spain.

Filinski, A. & Rohde, H. K. (2005). Denotational aspects of untyped normalization by
evaluation. Theoretical Informatics and Applications 39(3), 423–453.

Flecha, M. (1584). Las ensaladas de Flecha. Praga: Lorge Negrino. Recopiladas por
Mateo Flecha su sobrino.

Ganz, S. E., Friedman, D. P. & Wand, M. (1999). Trampolined style. In: Proceedings
of International Conference on Functional Programming.

210

Bibliography

Garcia, R. (2013). Calculating threesomes, with blame. In: Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming.

García-Pérez, A. & Nogueira, P. (2013). A syntactic and functional correspondence
between reduction semantics and reduction-free full normalisers. In: Proceedings of
Partial Evaluation and Program Manipulation.

García-Pérez, A. & Nogueira, P. (2014a). On the syntactic and functional corre-
spondence between hybrid (or layered) normalisers and abstract machines. Science of
Computer Programming 95(2), 176–199.

García-Pérez, A. & Nogueira, P. (2014b). A standard theory for the pure lambda-
value calculus. Submitted to 11th International Workshop on Domain Theory and Ap-
plication.

García-Pérez, A., Nogueira, P. & Moreno-Navarro, J. J. (2013). Deriving the
full-reducing Krivine machine from the small-step operational semantics of normal order.
In: Proceedings of Principles and Practice of Declarative Programming.

García-Pérez, A., Nogueira, P. & Sergey, I. (2014). Deriving interpretations of the
gradually-typed lambda calculus. In: Proceedings of the 2014 ACM SIGPLAN Sympo-
sium on Partial Evaluation and Program Manipulation.

García-Pérez, A., Nogueira, P. & Gallego Arias, E. J. (2010). The beta cube
(extended abstract). In: Proceedings of the 1st International Workshop on Strategies in
Rewriting, Proving, and Programming (IWS’10) (Muñoz, C. & Kirchner, H., eds.).
Edinburgh, UK.

Geupel, O. (1989). Overlap closure and termination of term rewriting systems. Tech.
Rep. MIP-8922, Universität Passau (Germany).

Grégoire, B. & Leroy, X. (2002). A compiled implementation of strong reduction. In:
Proceedings of International Conference on Functional Programming.

Guttag, J. V., Kapur, D. & Musser, D. R. (1983). On proving uniform termination
and restricted termination of rewrite systems. SIAM Journal of Computing 12(1), 189–
214.

Hardin, T., Maranget, L. & Pagano, B. (1998). Functional runtimes within the
lambda-sigma calculus. Journal of Functional Programming 8(2), 131–172.

Hatcliff, J. & Danvy, O. (1997). Thunks and the λ-calculus. Journal of Functional
Programming 7(3), 303–319.

Henglein, F. (1994). Dynamic typing: Syntax and proof theory. Science of Computer
Programming 22(2), 197–230. Special Issue on European Symposium on Programming
1992.

211

Bibliography

Herbelin, H. & Zimmermann, S. (2009). An operational account of call-by-value min-
imal and classical λ-calculus in “natural deduction” form. In: Ninth International Con-
ference, TLCA ’07, Brasilia, Brazil. July 2009, Proceedings (Curien, P.-L., ed.), vol.
5608 of Lecture Notes in Computer Science. Springer.

Hindley, J. & Seldin, J. (2008). Lambda-calculus and combinators, an introduction.
Cambridge University Press.

Huneker, J. (1943). Preface to Etude op. 25 no. 11. In: Chopin: Etudes for the Piano
(Friedheim, A., ed.), vol. 33 of Schirmer’s Library of Musical Classics.

Kahn, G. (1987). Natural semantics. In: Proceedings of the Symposium on Theoretical
Aspects of Computer Science (STACS) (Brandenburg, F.-J., Vidal-Naquet, G. &
Wirsing, M., eds.), vol. 247 of Lecture Notes in Computer Science. Springer-Verlag,
pp. 22–39.

Kesner, D. (2007). The theory of calculi with explicit substitutions revisited. HAL-
CCSd-CNRS. Hal-00111285 version 3.

Klein, C., Clements, J., Dimoulas, C., Eastlund, C., Felleisen, M., Flatt, M.,
McCarthy, J. A., Rafkind, J., Tobin-Hochstadt, S. & Findler, R. B. (2012).
Run your research: on the effectiveness of lightweight mechanization. In: Proceedings of
Symposium on Principles of Programming Languages.

Kluge, W. (2010). Abstract Computing Machines: A Lambda Calculus Perspective.
Springer Publishing Company, Incorporated.

Krivine, J.-L. (2007). A call-by-name lambda-calculus machine. Higher-Order and Sym-
bolic Computation 20(3), 199–207.

Landin, P. (1964). The mechanical evaluation of expressions. Computer Journal 6(4),
308–320.

Leroy, X. (1991). The ZINC experiment: an economical implementation of the ML
language. Tech. Rep. 117, INRIA.

Lescanne, P. (1994). From lambda-sigma to lambda-upsilon: A journey through cal-
culi of explicit substitutions. In: Proceedings of the 21st Symposium on Principles of
Programming Languages.

Mac Lane, S. (1971). Categories for the Working Mathematician. Springer.

McGowan (1970). The correctness of a modified SECD machine. In: STOC: ACM
Symposium on Theory of Computing (STOC).

Munk, J. (2008). A Study of Syntactic and Semantic Artifacts and its Application to
Lambda Definability, Strong Normalization, and Weak Normalization in the Presence of
State. Master’s thesis, BRICS, Aarhus University, Denmark.

212

Bibliography

Ohori, A. & Sasano, I. (2007). Lightweight fusion by fixed point promotion. In: Pro-
ceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2007, Nice, France, January 17-19, 2007 (Hofmann, M. &
Felleisen, M., eds.). ACM.

Paolini, L. & Ronchi Della Rocca, S. (1999). Call-by-value solvability. ITA 33(6),
507–534.

Paulson, L. C. (1996). ML for the Working Programmer. Cambridge, England: Cam-
bridge University Press, second ed.

Pierce, B. (2002). Types and Programming Languages. The MIT Press.

Plotkin, G. (1975). Call-by-name, call-by-value and the lambda calculus. Theoretical
Computer Science 1, 125–159.

Plotkin, G. (1981). A structural approach to operational semantics. Tech. Rep. DAIMI
FN-19, Department of Computer Science, Aarhus University, Denmark.

Quine, W. V. O. (1940). Mathematical Logic. Boston, MA: Harvard University Press.

Reynolds, J. C. (1998). Definitional interpreters for higher-order programming lan-
guages. Higher-Order and Symbolic Computation 11(4), 363–397. Reprinted from the
proceedings of the 25th ACM National Conference (1972).

Ronchi Della Rocca, S. & Paolini, L. (2004). The Parametric Lambda Calculus.
Springer Verlag.

Scholz, H. & Hasenjaeger, G. (1961). Grundzuege der mathematischen Logik.
Springer.

Scott, D. (1970). Outline of a mathematical theory of computation. In: Proceedings of
the 4th Annual Princeton Conference on Information Sciences and Systems.

Scott, D. & Strachey, C. (1971). Toward a mathematical semantics for computer lan-
guages. Programming Research Group Technical Monograph PRG-6, Oxford University
Computing Laboratory.

Sestoft, P. (2002). Demonstrating lambda calculus reduction. In: The Essence of
Computation, Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones,
vol. 2566 of Lecture Notes in Computer Science. Springer.

Siek, J. G. & Garcia, R. (2012). Interpretations of the gradually-typed lambda calculus.
In: Proceedings of the Scheme and Functional Programming Workshop.

Siek, J. G., Garcia, R. & Taha, W. (2009). Exploring the design space of higher-order
casts. In: Proceedings of the 18th European Symposium on Programming Languages and
Systems.

213

Bibliography

Siek, J. G. & Taha, W. (2006). Gradual typing for functional languages. In: Proceedings
of the Workshop on Scheme and Functional Programming.

Stoy, J. E. (1979). Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. Cambridge, Massachusetts: The MIT Press.

Swierstra, W. (2012). From mathematics to abstract machine: a formal derivation of
an executable Krivine machine. In: Proceedings of the 4th Workshop on Mathematically
Structured Functional Programming.

TeReSe (2003). Term Rewriting Systems, vol. 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press.

Turing, A. M. (1937). On computable numbers, with an application to the Entschei-
dungsproblem, A correction. Procedings of the London Mathematical Society 43(2),
544–546.

Van Oostrom, V. (2008). Z. Slides available on http://www.phil.uu.nl/~oostrom/
publication/talk/lix010208.pdf.

Wadsworth, C. (1976). The relation between computational and denotational properties
for Scott’s D∞ models. Siam J. Comput. 5(3), 488–521.

214

http://www.phil.uu.nl/~oostrom/publication/talk/lix010208.pdf
http://www.phil.uu.nl/~oostrom/publication/talk/lix010208.pdf

