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Abstract

We define a big-step-style template for reduction strategies that can be instantiated to the foremost
(and more) reduction strategies of the pure lambda calculus. We implement the template in Haskell
as a parametric monadic reducer whose fixed points are reduction strategies. The resulting code
is clean and abstracts away from the machinery required to guarantee semantics preservation for all
strategies in lazy Haskell. By interpreting some parameters as boolean switches we obtain a reduction
strategy lattice or beta cube which captures the strategy space neatly and systematically. We define a
hybridisation function that generates hybrid strategies by composing a base and a subsidiary strategy
from the cube. We prove an absorption theorem which states that subsidiaries are left-identities of
their hybrids. More properties from the cube remain to be explored.

1 Introduction

Sestoft [Ses02] defines the big-step operational semantics of various reduction strategies for the pure
lambda calculus, including call-by-value (cbv), call-by-name (cbn), applicative order (aor), normal order
(nor), hybrid applicative order (ha), hybrid normal order (hn), and head spine (he), the latter identical to
headNF in [Pau96] but different from head reduction (hr) in [Bar84]. One of his motivations is to clarify
the meaning in the pure lambda calculus of strategies used in programming languages, where there are
no free variables nor evaluation under lambda. He finds, for example, varying and innacurate definitions
of cbn by several authors, including [Plo75]. He implements each strategy as a reducer function in ML
using a deep embedding of lambda terms. He does not discuss the paramount implementation issue, first
noted by Reynolds [Rey98] in the context of interpretation, of semantics preservation or independence
from the evaluation strategy of the implementation language: implementing nor in an eager language,
aor in a lazy language, etc. Sestoft employs standard tricks (thunks, etc) to defer evaluation in strict ML.
Reynolds showed that continuation-passing style is enough for semantics preservation, but it has a cost
in code readability.

We take Sestoft’s programme much further.
First, we define a big-step-style template for reduction strategies that can be instantiated to all the

aforementioned strategies and more (including Barendregt’s hr). We implement the template in Haskell
as a higher-order monadic function whose fixed points are reduction strategies. We like to think of this
function as a generic reducer although technically it is a functional. The resulting code is readable, clean,
and abstracts away from the machinery required to guarantee semantics preservation for all strategies in
lazy Haskell.

Second, by interpreting some parameters of the generic reducer as boolean switches, we obtain a
reduction strategy lattice we call the β -cube (after Barendregt’s λ -cube). The β -cube captures neatly
and systematically many reduction strategies of the pure lambda calculus. It contains eight uniform
strategies: aor, cbv, cbn, he, and four new ones. We define a hybridisation function that generates up to
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ten hybrid strategies (including nor, ha, hn, and hr) by appropriately composing a base and a subsidiary
strategy taken from the cube. We prove an absorption theorem which states that subsidiaries are left-
identities of their hybrids. More properties from the cube remain to be explored.

2 Technical preliminaries

We consider the pure (untyped or λKβ ) lambda calculus [Bar84]. We write Λ for the set of lambda terms
over a set of variables V . We use lowercase letters (x,y,z, . . .) as meta-variables for variables in V and
uppercase letters (B,M,N,M′,N′, . . .) as meta-variables for terms in Λ. The syntax of lambda terms is
given by M ::= x |(λx.M) |(M M) but we use parenthesis-dropping conventions. We also assume capture-
avoiding substitution M[N/x]. A reduction strategy (or reduction order) is a partial function r : Λ→ Λ

such that r x = y =⇒ x→β
? y. We borrow this definition and relations ≡,→β ,→β

? and =β (syntactic
identity, β -reduction, its transitive closure, β -equality) from [Bar84]. Following [Ses02, Plo81] we write
M r→N for the big-step reduction of M to N using r. We also follow their style in the definition of r’s big-
step operational semantics. We use ‘reducer’ in the spirit of [Ses02]. Some readers prefer ‘normaliser’
when a normal form is always reached but others (e.g. the normalisation by evaluation community) are
untroubled. We rather avoid sterile controversy.

3 Rule Template and Generic Reducer

We define a big-step-style template for reduction strategies
p→ that is parametric on strategies la→,

op1→, ar1→,
su→,

op2→, and ar2→:

VAR
x

p→ x
ABS

B la→ B′

λx.B
p→ λx.B′

RED
M

op1→M′ ≡ λx.B N ar1→ N′ B[N′/x] su→ E

M N
p→ E

APP
M

op1→M′ 6≡ λx.B M
op2→M′′ N ar2→ N′′

M N
p→M′′ N′′

Rule ABS leaves to la reduction under lambda. Rule RED relies on op1 to find the redex’s abstraction, on
ar1 to reduce the operand, and on su to reduce after substitution. Rule APP describes what to do when
op1 delivers a variable or a non-op1-reducible application. The result is the application with subterms
reduced by op2 and ar2. The shape of terms M′,N′,E, etc, depends on what sort of normal form the
parameter strategies deliver (if they terminate). For example, nor is p with la,su,op2 = p, op1 = cbn,
and ar1,op2 = id, whereas cbv is p with op1,ar1,su,op2,ar2 = p and la = id.

If the left-hand-sides of conclusions are non-overlapping then the rules are deterministic [BN98].
This is the case after the computation of the leftmost premise in the APP and RED rules. The template can
therefore be interpreted as a syntax-directed partial function in which a term matching the left-hand-side
of the conclusion is recursively reduced by strategies in the premises from left to right. Infinite derivation
accounts for non-termination. We implement this function in Haskell as a monadic higher-order function
shown in Figure 1 (colours explained in Section 4). The monad constraint m must be instantiated to a
monad that guarantees semantics preservation (e.g., CPS or strict monad). Specific reducers are fixed
points of the function. In the monadic code return corresponds to the identity strategy.
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type Red = Monad m => Term -> m Term

genred :: Red -> Red -> Red -> Red -> Red -> Red -> Red

genred la op1 ar1 su op2 ar2 t =

case t of v@(Var _) -> return v

(Lam v b) -> do b’ <- la b

return (Lam v b’)

(App m n) -> do m’ <- op1 m

case m’ of

(Lam v b) -> do n’ <- ar1 n

su (subst b n’ x)

_ -> do m’’ <- op2 m

n’’ <- ar2 n

return (App m’’ n’’)

aor = genred aor aor aor aor aor aor

cbv = genred return cbv cbv cbv cbv cbv

cbn = genred return cbn return cbn cbn return

he = genred he he return he he return

...

Figure 1: Generic reducer in Haskell. Colours explained in Section 4.

4 The β -cube

The generic reducer genred has six parameters. We decrease the number of parameters by focusing
on uniform strategies, which are those where op1, op2, and su are recursive calls. So-called hybrid
strategies rely on other strategies for op1. For example, nor and hr rely on cbn, hn relies on he, and
ha relies on cbv [Ses02]. Uniform strategies differ on whether la, ar1 and ar2 are either recursive
calls or return. We can encode this variability using the cartesian product of three booleans. The
obvious partial order relation on them induces a lattice we call the β -cube (Figure 2). Function cube2red
delivers a uniform reducer from a vertex in the cube. Some vertices correspond to novel strategies
we call head-aor (haor), head-cbv (hcbv), non-head spine (nhe) and non-head cbn (ncbn). Indeed, the
boolean parameters (la, ar1 and ar2) respectively specify non-weakness (whether abstraction bodies
are reduced), strictness (whether arguments are reduced), and non-headness (whether operands with
non-reducible applications as operators are reduced). Unsurprisingly, the front and back faces of the
cube describe the informal inclusion relation between normal forms (‘less reducible form’) along the
non-headness and non-weakness axes.

nf wnfoo

hnf

OO

whnfoo

OO

5 Hybridisation

Recall from Section 4 that hybrid strategies rely on a uniform strategy (let us call it subsidiary) for
the op1 argument (the op1 strategy in the template). Interestingly, hybrid strategies can be obtained by
composing their subsidiary with another uniform strategy from the cube (let us call it base) that specifies
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aor cbvoo

nhe

__????

ncbnoo

__???

haor

OO

hcbvoo

OO

he

__???

OO

cbnoo

__???

OO

laoo non-weakness

ar1
__?????? strictness

ar2

OO
non-headness

data BetaCube = BC Bool Bool Bool

sel :: Bool -> Red -> Red

sel b r = if b then r else return

cube2red :: BetaCube -> Red

cube2red (BC la ar1 ar2) = let r = genred (sel la r) r (sel ar1 r) r r (sel ar2 r)

in r

cbn = cube2red (BC False False False)

cbv = cube2red (BC False True True )

...

Figure 2: The β -cube and cube2red.

the behaviour for la, ar1, and ar2. The subsidiary is in general expected to perform less reduction
than the base because the former is only used to locate the redex. The following hybridisation function
delivers a hybrid strategy from a subsidiary and a base:

hybridise :: (BetaCube, BetaCube) -> Red

hybridise (sub, (BC lab ar1b ar2b)) =

let s = cube2red sub

h = genred (sel lab h) s (sel ar1b s) h (s >=> h) (sel ar2b h)

in h

Notice that the Kleisli composition s >=> h is the monadic implementation of the relational composition
h ◦ s and therefore op2 reduces at least as much as op1. For illustration, we show nor as a fixed point
of genred, using Kleisli composition for the op2 argument, and as a hybrid of cbn (subsidiary) and nhe
(base):

nor = genred nor cbn return nor (cbn >=> nor) nor

nor = hybridise (BC False False False) (BC True False True)

The other cases are: hr is a hybrid of cbn and he, hn of he and nhe, and ha of cbv and aor. Our ha differs
from the one in [Ses02] because in the back face of the cube (strictness) the choice is between return

or the subsidiary (not the hybrid) for ar1. This has consequences for our absorption theorem.

6 The Absorption Theorem

Theorem 1 (Absorption Theorem). Let s and b be respectively a subsidiary and a base strategy that have
the same ar1 argument and that considered as points in the cube satisfy sv b. Let h = hybridise s b

be the hybrid strategy obtained from them. Then s is a left identity of h, that is, s >=> h = h. [Proof
omitted for the extended abstract]
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7 Conclusions and Future Work

The β -cube captures neatly and systematically the foremost reduction strategies of the pure lambda
calculus by means of its uniform strategies and of a hybridisation function that completes the space. The
cube helps uncover properties of strategies. Our absorption theorem is one example, but more remain
to be explored. The reduction-strategy template suggests itself naturally as a generalisation of the rules
of all the well- and less-well-known strategies collected by [Ses02]. The need for op1 and op2 in rule
APP to accommodate hybrids is perhaps the only subtlety. We are surprised that generic reduction for
the pure lambda calculus has, to our knowledge, not been considered before nor its consequences been
investigated (e.g., hybrid strategies can be defined in terms of two uniform strategies). The Haskell
implementation is deceivingly straightforward. It requires careful attention to semantics preservation
and deployment of some advanced Haskell programming. The beta cube is one way of focusing on a
subspace of the generic reducer, that of uniform strategies, from which we can obtain more (even new)
strategies and state properties.

It is possible to construct versions of our generic reducer for other calculi (simply typed, System F,
etc.) and for other representations (de Bruijn indices, nominal terms, explicit substitutions, etc). It is
also possible to carry the idea to evaluators (interpreters as in [Rey98] or normalisation by evaluation
[Dan96, FR04]). In the typed case we think there is a relation between hybrid strategies and going under
lambda during on-the-fly evaluation of abstractions (e.g., aren’t evaluators using ha instead of cbv?).
We also wish to formalise the cube and prove properties like absorption in terms of reduction strategies
as mathematical functions on the set of lambda terms. A first-order inductive representation (which
alleviates the pain of α-equivalence) will surely help simplify the number of lemmas and proofs.
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