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Abstract9

Some of the recent blockchain proposals, such as Stellar and Ripple, aim to make trust assump-10

tions flexible: they allow each node to select which other nodes it trusts. Unfortunately, the11

theoretical foundations underlying such blockchains have not been thoroughly investigated. To12

close this gap, in this paper we study the mechanism of specifying trust assumptions by means of13

federated Byzantine quorum systems (FBQS), used by Stellar. We rigorously prove the correct-14

ness of basic constructions over FBQS and demonstrate that they can be used to implement a15

Byzantine-fault-tolerant atomic register. We furthermore relate FBQS to the classical Byzantine16

quorum systems studied in distributed computing theory.17
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1 Introduction23

Blockchains are distributed databases that maintain a ledger over a set of potentially Byzan-24

tine nodes. The nodes use a Byzantine fault-tolerant consensus protocol to agree on a total25

order in which transactions are stored in the ledger. Blockchains usually come in two26

flavours. Permissionless blockchains allow anyone to participate, and are often based on27

consensus protocol such as proof-of-work and proof-of-stake. Permissioned blockchains as-28

sume a known set of participants, and are often based on classical BFT consensus protocols,29

such as PBFT [4]. However, some of the new permissioned blockchains, such as Stellar [13]30

and Ripple [14], have intriguing designs that use quorum-like structures typical for BFT31

consensus, yet allow the system to be open to participants. This is achieved by allowing32

each protocol participant to choose its trust assumptions separately. In particular, in Stellar33

these trust assumptions are specified using a federated Byzantine quorum system1 (FBQS34

for short): each node participating in the blockchain can select a set of quorum slices: sets35

of nodes each of which would convince the node to accept a validity of a given statement.36

A set of nodes U such that each node in U has some quorum slice fully within U forms a37

quorum—a set of nodes that can potentially reach an agreement. The agreement on the38

blockchain is then maintained by a fairly intricate protocol, the core of which is federated39

voting, essentially solving a form of binary consensus.40

1 Called federated Byzantine agreement systems in the original [13]. The name used in this paper em-
phasises that their purpose is not restricted to solve consensus.
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23:2 Federated Byzantine Quorum Systems

Even though Stellar has been deployed as a functioning blockchain, its theoretical foun-41

dations remain shaky in several ways. First, the core protocols used in Stellar lack rigorous42

proofs of correctness or, for that matter, even useful statements of what correctness means.43

Second, even though Stellar is based on some general concepts for distributing trust, these44

concepts have only been applied in the context of a complete blockchain. This leaves it45

unclear whether the concepts are applicable more widely. Finally, as observed in [3], the46

quorums arising in Stellar are similar to well-studied Byzantine quorum systems [11], which47

can be used to solve problems beyond consensus, e.g., safe, regular or atomic register [9].48

However, so far the relationship between these has not been investigated.49

In this paper, we aim to close these gaps and perform a rigorous theoretical study of50

concepts underlying the Stellar blockchain. To this end, we make the following contributions.51

First, we rigorously state and prove the correctness of the federated voting protocol used52

by Stellar (Section 3.2). Stating correctness in a federated setting is nontrivial. Unlike in53

the classical Byzantine setting, where nodes can be correct of faulty, here correct nodes54

subdivide into two classes: befouled and intact [13]. Befouled nodes correctly follow the55

protocol, but choose their quorum slices in a way that allows faulty nodes to convince them56

of wrong statements; without due care in the protocol, this may lead befouled nodes to57

compute wrong results. Intact nodes are correct nodes that are not befouled. We prove that58

Stellar’s federated voting protocol ensures that any pair of correct nodes, either befouled or59

intact, cannot report contradictory consensus results, except for the pathological situation60

where all nodes choose their slices in such a bad way that no node is intact (Theorem 5).61

This correctness statement is stronger than the one given in the Stellar proposal, which only62

provided such a guarantee for intact nodes. The difference is significant in practice: whereas,63

as a rule of thumb, one may assume a bound on the number of nodes that can be faulty at64

a time, such a bound cannot be easily given for befouled nodes. Hence, with a correctness65

statement restricting only the behaviour of intact nodes a client cannot easily ensure it gets66

correct results by querying a representative set of nodes. Unlike the existing correctness67

statement, ours additionally allows for faulty nodes to lie to others about their selection of68

quorum slices. We show that, even though this does affect the computation performed by69

other nodes, this may only hurt the node who lied and not others (Section 4).70

Second, to demonstrate that the concept of FBQS is more generally applicable, we show71

how to implement a read/write register over an FBQS, whose safety is formalised by Byzan-72

tine fault-tolerant linearisability [10] and liveness by finite-write termination [1] (Section 5.3).73

Our protocol is inspired by federated voting and, as part of its proof, we show that executions74

it produces correspond to executions of federated voting.75

Finally, we study the relationship between the FBQSs and the Byzantine quorum systems76

of [11]. We introduce a correspondence between an FBQS and the variant of a Byzantine77

quorum system called dissemination quorum system (DQS for short) in Section 5 of [11]. A78

DQS consists of a set of quorums, together with a system that characterises the failure sce-79

narios that the DQS is tolerant to, called a fail-prone system. The correspondence between80

FBQSs and DQSs is one-to-many. An FBQS determines uniquely the set of quorums, and a81

collection of fail-prone systems that are compatible with the FBQS—i.e., they characterise82

failure scenarios that the FBQS is also tolerant to. Off-the-shelf DQS algorithms can be run83

on an FBQS by fixing a fail-prone system from the ones compatible with the FBQS.84

The full proofs of the theorems and lemmas in the paper are collected in the appendix.85
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2 System Model86

The system consists of a set of client processes C and a set of server processes V. We87

assume a Byzantine failure model—i.e., faulty processes can deviate arbitrarily from their88

specification. We let C = Cok ∪Cbad where Cok is the set of correct clients and Cbad the89

set of faulty clients.90

We assume an asynchronous distributed system where nodes are connected by a network91

that may delay messages and deliver them out of order. For simplicity, we assume the92

network eventually delivers all the messages, and it does not corrupt nor duplicate them.93

Clients use unforgeable signatures to authenticate communication. We denote a datum94

d signed by client c as 〈d〉c. We assume with probability one that no process in the system95

other than c can send 〈d〉c, unless the process is repeating a signed datum that it received96

before (we assume clients do not leak private keys). These signatures can be verified with97

public keys that are known to every process.98

Clients tag certain messages with random nonces that are unique. We assume with99

probability one that every two nonces that are ever picked—by the same or different clients—100

are different.101

3 Federated Byzantine Quorum Systems102

We consider federated Byzantine quorum systems (FBQS for short) from [13], which aim to103

make the trust assumptions of each node flexible. In Section 3.1 we rephrase the definitions104

and results from [13], and in Section 3.2 we introduce an implementation of federated voting105

that we will use as a reference for the implementation of the read/write register of Section 5.106

At the end of Section 3.2 we rigorously state our novel safety result (Theorem 5).107

3.1 FBQSs Overview108

An FBQS is a pair 〈V, Q〉 where V is a set of nodes and Q : V → 22V \ {∅} is a quorum109

function specifying one or more quorum slices for each node, where a node belongs to all of110

its own quorum slices—i.e., ∀v ∈ V. ∀q ∈ Q(v). v ∈ q.111

Our FBQSs have the set of servers V as nodes, and from now on we will always refer112

to FBQS’s nodes as ‘servers’. Federated voting enforces flexible trust, since in an FBQS the113

servers have the freedom to trust any combination of parties that they see fit. The function114

Q for quorum slices reflects the choice of trust of each server. In the FBQSs of [13], servers115

do not lie about quorum slices and thus every server knows every other server’s choice of116

trust. This situation is unrealistic because Byzantine servers may fail arbitrarily, and we117

address the issue of servers that lie about their quorum slices in Section 4.118

A set of servers U ⊆ V in FBQS 〈V, Q〉 is a quorum iff U 6= ∅ and U contains a slice119

for each member—i.e., ∀v ∈ U. ∃q ∈ Q(v) such that q ⊆ U . A property that quorums must120

have in order to preserve safety is that of quorum intersection, which states that any two121

quorums share a server—i.e., for all quorums U1 and U2, U1 ∩ U2 6= ∅. Another interesting122

property is that of quorum availability, which states that some quorum exists. Quorum123

availability is trivially met since the set V of servers is a quorum. An FBQS 〈V, Q〉 that124

enjoys quorum intersection induces a quorum system Q à la Malkhi and Reiter [11] where125

V is the universe and Q = {U | U is a quorum in 〈V, Q〉}.126

I Example 1. Consider the FBQS depicted below, where each server has only one slice,127

which is represented by the arrows departing from the server.128

CVIT 2016
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1 2

3 4 5

Q(1) = Q(2) = {{1, 2}}
Q(3) = {{1, 3}}
Q(4) = {{1, 2, 4}}
Q(5) = {{4, 5}}

129

The FBQS meets quorum intersection—i.e., all the quorums intersect at {1, 2}—and130

quorum availability—i.e., {1, 2, 3, 4, 5} is a quorum—and thus it induces the quorum system131

Q = {{1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}, {1, 2, 4, 5}, {1, 2, 3, 4, 5}}.132

I Example 2. Consider the FBQS with 3f + 1 servers, where f is the threshold of fault133

tolerance, and were every server has a slice for each set of 2f +1 servers. The FBQS induces134

a quorum system in which any set of 2f + 1 servers is a quorum.135

Given a set B ⊆ V of servers, to delete B from 〈V, Q〉, written 〈V, Q〉B , means to136

compute the modified FBQS 〈V \B, QB〉 where QB(v) = {q \B | q ∈ Q(v)}.137

The notion of dispensable set defined below captures the tolerance of the system in the138

presence of a given set of faulty servers. Broadly, a dispensable set is a set of servers that can139

be deleted from the system while preserving quorum intersection and quorum availability.140

Let B ⊆ V be a set of servers. We say B is a dispensable set (DSet for short) iff141

(i) (quorum intersection despite B) 〈V, Q〉B enjoys quorum intersection, and142

(ii) (quorum availability despite B) either V \B is a quorum in 〈V, Q〉 or B = V.143

The inclusion of the trivial DSet V is justified in the cases where the failure of any server144

befouls the whole system, regardless of whether quorum intersection is preserved or not.145

For instance, the set of DSets in the FBQS from Example 1 is146

D = {∅, {3}, {4, 5}, {5}, {3, 4, 5}, {1, 2, 3, 4, 5}}.147

and the DSets in the FBQS from Example 2 consist of every set of f servers, together with148

the set V of all servers.149

The DSets of an FBQS are determined a priori given each server’s quorum slices, but150

which servers are correct or faulty depends on runtime behaviour. The DSets we care about151

are those that contain all faulty servers. The befouled servers are either faulty or they are152

correct but surrounded by too many befouled servers, which may convince them of wrong153

statements. The rest of the servers are intact. Formally, a server v is intact iff there exists154

a DSet B containing all faulty servers and such that v 6∈ B. Otherwise, v is befouled.155

Assume that, in the FBQS from Example 1, server 4 is faulty and all the other servers are156

correct. Since 4 could, single-handedly, convince 5 to accept any statement, then 5 is correct157

but befouled. The DSets that contain all faulty servers are {4, 5}, {3, 4, 5} and {1, 2, 3, 4, 5}.158

The servers in {1, 2, 3} are intact and the ones in {4, 5} are befouled.159

Now consider the FBQS from Example 2. If f or less servers are faulty, then the set of160

befouled servers coincides with the set of faulty ones, and all the correct servers are intact.161

If more than f servers are faulty, then no intact server exists in the system—i.e., V is the162

set of befouled servers.163

The property of being a quorum is preserved by deleting DSets.164

I Proposition 3 ([13]). Let U be a quorum in FBQS 〈V, Q〉, let B ⊆ V be a set of servers,165

and let U ′ = U \B. If U ′ 6= ∅ then U ′ is a quorum in 〈V, Q〉B.166
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1 process server(v ∈ V)
2 var voted← ⊥ ∈ {tt, ff };
3 when received PROPOSE(a) from some client
4 if voted 6= a then
5 voted← a; send VOTE(a) to every server;

6 when exists U ∈ Q such that v ∈ U and received VOTE(a) or ACCEPT(a) from
every u ∈ U

7 send ACCEPT(a) to every server;

8 when exists B ∈ 2V \ {∅} such that received ACCEPT(a) from every u ∈ B

and for every q ∈ Q(v), q ∩B 6= ∅
9 voted← a; send ACCEPT(a) to every server;

10 when exists U ∈ Q such that v ∈ U and received ACCEPT(a) from every
u ∈ U

11 send CONFIRM(a) to every client;

Figure 1 Protocol for binary federated voting in FBQS 〈V, Q〉.

The set of befouled servers coincides with the intersection of every DSet that contains167

all faulty servers.168

I Proposition 4 ([13]). In an FBQS with quorum intersection, the set of befouled servers169

is a DSet.170

A set of servers B may prevent progress of a server v if B overlaps every one of v’s171

slices—i.e., ∀q ∈ Q(v). q ∩ B 6= ∅. We say that such B is v-blocking. If B is a v-blocking172

set of befouled nodes, then v is befouled too. The intact servers enjoy the property that173

faulty servers cannot befoul them, since the DSet of befouled servers is not v-blocking for174

any intact v.175

3.2 Federated voting176

We consider the case of federated voting from [13] where the system agrees upon one of177

the two statements tt or ff , which are contrary to each other—i.e., tt = ff and ff = tt.178

Binary federated voting solves consensus over Boolean values. The protocol guarantees the179

safety properties of integrity—i.e., every correct server decides at most one value, and if180

it decides, the value must have been proposed by some client—and agreement—i.e., every181

correct server must agree on the same value. Although distributed, asynchronous consensus182

lacks the liveness property of termination [6], in the setting of the read/write register that we183

will introduce in Section 5 we achieve some liveness properties by other means (Section 5.3).184

Figure 1 implements the server protocol. A client proposes a statement a by sending185

PROPOSE(a) messages to every server, and a server decides the statement a when it confirms186

a, after which the server notifies the clients by sending CONFIRM(a) messages to all of them.187

The following paragraphs explain the three phases of the protocol: voting, accepting, and188

confirming.189

After receiving a PROPOSE(a) message from some client, a server votes for statement190

a—provided it did not vote for a before—when it broadcasts the message VOTE(a) to every191

server (lines 3–5). For simplicity, we assume that servers send messages to themselves.192

CVIT 2016
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A server v accepts a statement a iff it determines that either193

(i) there exist a quorum U such that v ∈ U and each member of U either votes for a or194

accepts a (lines 6–7 of Figure 1), or195

(ii) each member of a v-blocking set accepts a (lines 8–9 of Figure 1).196

After accepting a statement a, the server broadcasts the message ACCEPT(a) to every server.197

A quorum U confirms a statement a iff every server in U accepts a. A server confirms198

a iff it is in such a quorum. After receiving ACCEPT(a) messages from every server in the199

quorum U , a server broadcasts the message CONFIRM(a) to every client (lines 10–11).200

Now we comment on the need of the three phases of the protocol. We say that a quorum201

U ratifies a statement a iff every member of U votes for a. A server v ratifies a iff v is202

a member of a quorum U that ratifies a. Ratifying guarantees safety to correct servers,203

but it can only guarantee liveness to a server v if Q(v) contains at least one quorum slice204

comprising only correct servers. A set B of faulty servers can violate this property if B is205

v-blocking. Ratifying is a sufficient condition to accept the statement, but it is not necessary.206

On the other hand, accepting allows a well-behaved server that voted for a wrong state-207

ment a to later accept a. Accepting guarantees safety to correct servers, but it still yields208

sub-optimal liveness guarantees, since an intact server may accept some statement that other209

intact servers could be unable to accept. (see Figure 10 and Section 5.4 of [13] for an exam-210

ple). An intact server needs a way to ensure that every other intact server can eventually211

accept a before acting on it.212

Last, confirming requires ratifying the fact that intact servers accepted some statement,213

which guarantees agreement. We say the system agrees on a statement a iff an intact server214

confirms a statement a. Once an intact server confirms a, then, eventually, every intact215

server will confirm a.216

Theorem 5 below is our novel safety result, which ensures that any pair of correct servers,217

either befouled or intact, cannot confirm contradictory statements, except for the patholog-218

ical situation where all servers choose their slices in such a bad way that no server is intact.219

This correctness statement is stronger than the one given in the Stellar proposal, which only220

provided such a guarantee for intact servers (Theorem 9 of [13]).221

I Theorem 5. Consider the protocol in Figure 1 for federated voting over an FBQS 〈V, Q〉222

that enjoys quorum intersection. If two correct servers v1 and v2 confirm statements a and223

a respectively, then no intact server exists in 〈V, Q〉.224

Correct servers are not guaranteed to enjoy liveness, unless they are intact. Theorem 6225

below is the known liveness property for intact servers from [13].226

I Theorem 6 ([13]). Consider the protocol in Figure 1 for federated voting over an FBQS227

〈V, Q〉 that enjoys quorum intersection. If an intact server confirms statement a, then,228

eventually, every intact server will confirm a.229

4 FBQSs with Fallacious Slices230

In a setup phase before running federated voting, servers communicate their choice of trust231

to each other. We study FBQSs with faulty servers that may lie about their quorum slices.232

Lying about quorum slices may affect computation, since each server computes a quorum233

system Q from the other servers’s slices, which is later used in the protocol for federated234

voting (lines 6 and 10 of Figure 1). We extend the definition of FBQS by considering a family235

of quorum functions (Qv)v∈V indexed by servers such that 〈V, Qv〉 is an FBQS for every236
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v ∈ V. The indexed family (Qv)v∈V reflects each server’s subjective view of the choices of237

trust of other servers. We say that 〈V, (Qv)v∈V〉 is an FBQS with fallacious slices.238

The notions in Section 3 can be duly adapted to FBQSs with fallacious slices. We say239

that u’s slice q is known by v iff q ∈ Qv(u). We say that U is a quorum known by v iff U is240

a quorum in FBQS 〈V, Qv〉. A set B ⊆ V is v-blocking iff it overlaps every one of v’s slices241

known by v itself—i.e., ∀q ∈ Qv(v). q ∩B 6= ∅.242

An FBQS with fallacious slides 〈V, (Qv)u∈V〉 satisfies quorum intersection iff 〈V, Qv〉243

satisfies quorum intersection for every v ∈ V. Given a set of servers B, to delete B from244

〈V, (Qv)v∈V〉, written 〈V, (Qv)v∈V〉B , means to compute the modified FBQS with fallacious245

slices 〈V \ B, (QB
v )v∈V\B〉, where QB

v (u) = {q \ B | q ∈ Qv(u)} for every v ∈ V \ B. A set246

B of servers is a DSet iff:247

(i) (quorum intersection despite B) 〈V, (Qv)v∈V〉B enjoys quorum intersection, and248

(ii) (quorum availability despite B) either V \ B is a quorum in 〈V, (Qv)v∈V〉 known by249

every server v ∈ V, or B = V.250

A server v is intact iff there exists a DSet B containing all faulty servers and such that251

v 6∈ B. Otherwise, v is befouled.252

The protocol for binary federated voting over FBQSs with fallacious slices coincides with253

the one in Figure 1, where in line 8 a server v uses the quorum function Qv, and where in254

lines 6 and 10 a server v uses the quorum system Q that is induced by 〈V, Qv〉. We say a255

quorum U known by v ratifies, accepts or confirms a statement a iff U respectively ratifies,256

accepts or confirms a in FBQS 〈V, Qv〉. A server v ratifies, accepts or confirms a statement257

a iff v respectively ratifies, accepts or confirms a in FBQS 〈V, Qv〉.258

It turns out that lying about quorum slices may hurt the server who lied, but no others,259

and the FBQSs with fallacious slices enjoy properties similar to those of the FBQSs of260

Section 3. In particular, they satisfy the analogous of Theorem 5 and of Proposition 6.261

I Theorem 7. Consider the protocol for federated voting in Figure 1 over an FBQS with262

fallacious slices 〈V, (Qv)v∈V〉 enjoying quorum intersection. If two correct servers v1 and263

v2 confirm statements a and a respectively, then no intact server exists in 〈V, (Qv)v∈V〉.264

I Theorem 8. Consider the protocol for federated voting in Figure 1 over an FBQS with265

fallacious slices 〈V, (Qv)v∈V〉 enjoying quorum intersection. If an intact server confirms266

statement a, then, eventually, every intact server will confirm a.267

In Section 5 we present our read/write register over an FBQS. For simplicity, we will use268

the plain FBQSs from Section 3.269

5 Read/Write Register over an FBQS270

To demonstrate that the concept of FBQS is applicable to purposes more general than271

implementing consensus, we introduce a protocol for a read/write register over an FBQS,272

which has been inspired by federated voting explained in Section 3.2. Before presenting273

the read/write register and proving its safety and liveness properties, we comment on the274

execution model, which resembles those of [12] and [10].275

5.1 Execution model and specification276

The values that the register stores come from a set Val ∪ {⊥}. Clients interact with the277

read/write register by issuing read and write operations.278

CVIT 2016
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In order to state properties in the presence of faulty clients, we follow [12] and [10] and279

allow that a faulty client will stop its execution, at which point it becomes inactive forever.280

Such a stopping action may be performed for instance by some intrusion detection system281

that quarantines a process or a machine. The aim of this stopping mechanism is to minimise282

the effect that faulty clients have on the system. Correct clients could read spurious writes283

coming from the faulty clients, which would compromise safety for correct clients.284

We assume that there is a single object name for the read/write register, and thus we285

omit it. A history is a sequence of invocation and response events, and of stop events. An286

invocation by a client c is written 〈c : op〉, where op is an operation name possibly including287

arguments, which ranges over write(x ∈ Val) and read(). A response to c is written 〈c : rtval〉288

where rtval is the return value—i.e., some x ∈ Val in response to a read, an a void value289

() in response to a write. A response matches an invocation if their client names agree. A290

stop event by client c is written 〈c : stop〉, after which client c stops execution.291

An operation o in a history is a pair consisting of an invocation inv(o) and the next292

matching response resp(o). A history H induces an irreflexive partial order <H on the293

operations and stop events in H as follows: o1 <H o2 iff resp(o1) precedes inv(o2) in H;294

o1 <H 〈c : stop〉 iff resp(o) precedes 〈c : stop〉; 〈c : stop〉 <H o2 iff 〈c : stop〉 precedes inv(o2);295

and 〈c1 : stop〉 <H 〈c2 : stop〉 iff 〈c1 : stop〉 precedes 〈c2 : stop〉. We say that <H is the296

real-time order.297

A history is sequential iff it begins with an invocation, every response is immediately298

followed by an invocation, or a stop, or no event, and every invocation is followed by an299

immediate matching response. A client sub-history H|c of a history H is the sub-sequence300

of all events in H whose client names are c. A history H is well-formed iff for each client c,301

H|c is sequential. We use H to denote the set of well-formed histories.302

A sequential specification for the read/write register is a prefix-closed set of sequential303

histories. A sequential history H is legal iff it belongs to the sequential specification of the304

read/write register. The sequential specification of our read/write register enforces that a305

read operation always returns the value written by the last preceding write operation.306

A register that meets this sequential specification implements an atomic register, since307

it ensures that for any execution of the system, there is some way of totally ordering the308

reads and writes so that the values returned by the reads are the same as if the operations309

had been performed in that order [9].310

As an intermediate step to proving safety, in our concrete histories we consider writes311

that come from faulty clients but which may be visible to correct clients. These writes312

correspond to the lurking writes of [10]. We prove that, in the presence of lurking writes,313

our read/write register is linearisable [8, 5] with respect to the specification of an atomic314

register (Lemma 14 in Section 5.3).315

Our main correctness condition is that of Byzantine fault-tolerant linearisability2 (BFT-316

linearisability for short) [10]. BFT-linearisability considers verifiable histories, which are317

histories whose invocation and response events come only from correct clients.318

I Definition 9. A verifiable history H ∈ H is BFT-linearisable iff there exists some legal319

sequential abstract history H ′ ∈ H such that320

(i) H|p = H ′|p, for every p ∈ Cok ,321

2 Our BFT-linearisability has been inspired by the property with the same name in [10], but differs
from it in that the number of visible operations after a faulty client is stopped is finite, instead of
bounded by a constant. The strength of our notion of BFT-linearisability lies in between the strengths of
Byznearisability from [12] and the original BFT-linearisability from [10] (see Section 7 for a discussion).
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(ii) <H⊆<H′ , and322

(iii) for every c ∈ Cbad , if 〈c : stop〉 ∈ H then there exist sub-histories H1 and H2 such that323

H ′ = H1 〈c : stop〉H2 and the number of events by the faulty client c in H2, this is,324

|{o ∈ H2 | o = 〈c : op〉}|, is finite.325

Theorem 15 in Section 5.3 states that our read/write register over an FBQS is BFT-326

linearisable. Clauses (i) and (ii) of Definition 9 match similar requirements for the correctness327

notion of linearisability [5]. They ensures that a verifiable history looks plausible to correct328

clients. Clause (iii) ensures that once a faulty client is stopped, its subsequent effect on the329

system is limited [10].330

We state some liveness properties for the correct operations. In particular, we consider331

finite-write termination [1] (FW -termination for short). A protocol is FW -terminating iff332

the writes always terminate and the reads are guaranteed to terminate unless there are333

infinitely many writes in the execution. Theorem 16 in Section 5.3 states that correct writes334

are wait-free [7]—i.e., they are guaranteed to terminate—and Theorem 17 in the same section335

states that the read/write register over an FBQS is FW -terminating after every faulty client336

has been stopped—i.e., the correct writes terminate, and, after every faulty client has been337

stopped, either there are infinitely many correct writes in the execution, or the correct reads338

are guaranteed to terminate.339

5.2 Implementation340

We assume that the set C of clients is totally ordered, and that each client c ∈ C uses341

a copy of the same totally ordered set T of timestamps, and we write Tc for c’s copy of342

this set. For simplicity, we assume that the set T of timestamps is unbounded, such that343

a faulty client cannot exhaust the timestamp space by issuing writes with a very large344

timestamp. (Practical solutions to this problem when assuming a finite set of timestamps345

are described in [10].) We let t0 be a timestamp that is smaller than every t ∈ T, and let346

T = {t0}∪
⊎

(c∈C) Tc be the set of global timestamps, which consists of t0 together with the347

disjoint union of each client’s copy of T. Any timestamp (except t0) determines uniquely the348

client that uses it. The set T of global timestamps is totally ordered where two timestamps349

t ∈ Tc and t′ ∈ Tc′ are in lexicographical order when considered as the pairs (t, c) and350

(t′, c′).351

Clients issue reads and writes, and the protocol runs a round of federated voting for each352

write. A write statement (a statement, for short) consists of a pair (x, t) where x ∈ Val and353

t is a timestamp from the set of global timestamps T .354

Figure 2 introduces a protocol for a read/write register over an FBQS. Each server con-355

tains fields acc and conf—both initially set to (⊥, t0)—which store respectively the statement356

with the biggest timestamp that was accepted by the server and the statement with the big-357

est timestamp that was confirmed by the server. Each server also contains the arrays indexed358

by clients prop_client[c] and conf_client[c], which store respectively the latest statement pro-359

posed by c and the latest statement from c that the server confirmed. If c’s proposed and360

confirmed statements are different, this signals that client c has issued a pending write that361

the server never confirmed yet. As we will see below, the server uses these fields to determine362

whether a newly proposed statement is valid before voting for it.363

After receiving a QUERY_A(nonce) or a QUERY_C(nonce) message, a server respectively364

sends a response RES_A(acc, nonce) or RES_C(conf, nonce) with the accepted statement, or365

the confirmed statement, respectively, stored at the server (lines 6–9 in Figure 1). If the366

server never accepted or confirmed anything yet, it sends the statement (⊥, t0), which we367
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1 process server(v ∈ V)
2 var acc← (⊥, t0) ∈ Val× T ;
3 var conf ← (⊥, t0) ∈ Val× T ;
4 var prop_client[c ∈ C]← (⊥, t0) ∈ Val× T ;
5 var conf_client[c ∈ C]← (⊥, t0) ∈ Val× T ;
6 when received QUERY_A(nonce) from c

7 send RES_A(acc, nonce) to c;

8 when received QUERY_C(nonce) from c

9 send RES_C(conf, nonce) to c;

10 when received PROPOSE(〈x, t〉c) from c and t ∈ Tc

11 if (conf_client[c] = prop_client[c] ∧ t > prop_client[c].snd) then
12 prop_client[c]← (x, t); send VOTE(〈x, t〉c) to every server;

13 when exists U ∈ Q such that v ∈ U and received VOTE(〈x, t〉c) or
ACCEPT(〈x, t〉c) from every v′ ∈ U and t ∈ Tc

14 if t > acc.snd then acc← (x, t);
15 send ACCEPT(〈x, t〉c) to every server;

16 when exists B ∈ 2V \ {∅} such that received ACCEPT(〈x, t〉c) from every
v′ ∈ B and for every q ∈ Q(v), q ∩B 6= ∅ and t ∈ Tc

17 if t > acc.snd then acc← (x, t);
18 send ACCEPT(〈x, t〉c) to every server;

19 when exists U ∈ Q such that v ∈ U and received ACCEPT(〈x, t〉c) from every
v′ ∈ U and t ∈ Tc

20 if t > conf.snd then conf ← (x, t);
21 conf_client[c]← (x, t); send CONFIRM(〈x, t〉c) to c;

Figure 2 Protocol for read/write register over FBQS 〈V, Q〉.

call the init statement. To avoid replay attacks, the query messages are tagged with a unique368

nonce, that the server sends back in its response. Nonces do not need to be signed.369

After receiving a PROPOSE(〈x, t〉c) message from client c (lines 10–12) the server first370

authenticates the signed statement 〈x, t〉c against c’s public key, and then it validates the371

statement by checking that c has no pending writes—i.e., prop_client[c] = conf_client[c])—372

and that the proposed statement has a bigger timestamp than the last statement pro-373

posed by that client—i.e., t > prop_client[c].snd. This second condition prevents the server374

from voting for contradictory statements, and also makes the protocol reliable to dupli-375

cated PROPOSE(〈x, t〉c) messages, which will be ignored. If the statement is valid, the server376

updates prop_client[c] and votes for it by broadcasting the message VOTE(〈x, t〉c) to every377

server. The servers repeat the signed statement 〈x, t〉c, but they cannot forge spurious state-378

ments. Thanks to the conditions of the if sentence in lines 11–12, a server will vote for each379

statement only once.380

After receiving either a VOTE(〈x, t〉c) or an ACCEPT(〈x, t〉c) message from every server in a381

quorum U such that v ∈ U—or after receiving an ACCEPT(〈x, t〉c) message from every server382

in a v-blocking set B—the server v accepts (x, t) and sends ACCEPT(〈x, t〉c) to every server383

(lines 13-18). If the timestamp t is bigger than that of the accepted statement stored by384
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1 function read() ∈ Val
2 pick unique nonce;
3 repeat
4 send QUERY_C(nonce) to every server; wait timeout;
5 until exist U ∈ Q, x ∈ Val, and t ∈ T such that received RES_C(x, t, nonce)

from every v ∈ U ;
6 return x;

7 function write(x ∈ Val)
8 assume x 6= ⊥;
9 var t, tmax ∈ T ;

10 pick unique nonce;
11 send QUERY_A(nonce) to every server;
12 wait until exists U ∈ Q such that received RES_A(_,_, nonce) from every

v ∈ U ;
13 tmax ← max{t | received RES_A(_, t, nonce) from some v ∈ U};
14 t← min{t | t ∈ Tc ∧ t > tmax} where c is the current client;
15 send PROPOSE(〈x, t〉c) to every server;
16 wait until exists U ′ ∈ Q such that received CONFIRM(〈x, t〉c) from every

v ∈ U ′;

Figure 3 Client’s interface for read/write register over FBQS 〈V, Q〉.

the server, then it updates acc with (x, t). Storing the accepted statement with the biggest385

timestamp is crucial for the safety conditions of the write operation (see Lemma 11 below).386

After receiving an ACCEPT(〈x, t〉c) message from every server in a quorum U such that387

v ∈ U (lines 19–21) the server v updates both conf and conf_client[c], and confirms the388

statement by sending CONFIRM(〈x, t〉c) to c. Storing the confirmed statement with the biggest389

timestamp is crucial for the safety conditions of the read operation (see Lemma 12 below).390

Only a single value can be written on the register for each timestamp. Two statements391

(x1, t1) and (x2, t2) such that t1 = t2 are contradictory iff x1 6= x2. Since the servers store the392

current statement proposed by each client (line 4 of Figure 2) and the protocol guarantees393

that well-behaved servers only vote for each statement once (lines 10–12), it is therefore394

impossible that well-behaved servers vote for contradictory statements. Therefore, each of395

the phases of the protocol (voting, accepting, confirming) can be projected into the phases396

with the same name in federated voting.397

I Lemma 10. Consider the protocol for read/write register in Figures 2 and 3. For every398

execution of the protocol and every statement (x, t) that is ever voted in that execution,399

there exists an execution of binary federated voting on a statement a such that if (x, t) is400

confirmed and/or accepted in the protocol, then the statement a is respectively confirmed401

and/or accepted in federated voting.402

Figure 3 depicts the client’s interface of our read/write register over 〈V, Q〉. Method403

read() picks a unique nonce (line 2), and then enters a repeat loop that queries the servers404

for their confirmed statements (lines 3–5). The loop uses a timeout, and repeats until a405

quorum U exists such that every server in it returns the same statement (x, t). The loop406

and the timeout are needed to ensure that intact servers that may still be in the process of407

confirming some statement have a chance to do so. The read will then return x.408
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Method write(x) picks a unique nonce, queries the servers for their accepted statements,409

and waits until a quorum U answers (lines 10–12). The write then picks the maximum410

timestamp returned by the servers in U , increments it, and assigns t to it (lines 13–14).411

Then the write signs the statement (x, t) and sends a PROPOSE(〈x, t〉c) message to every412

server in the system, thus initiating federated voting on (x, t). The write waits until a413

quorum U ′ of servers answers with CONFIRM(〈x, t〉c) (line 17) and returns.414

5.3 Correctness415

A correct client that invokes write(x) will initiate federated voting on the statement (x, t)416

where t is some timestamp. We associate such a statement with its corresponding write417

operation. From now on we may use ‘write’ to refer to both the statement and the operation.418

A faulty client c could single-handedly send some PROPOSE(〈x′, t′〉c) message and initiate419

federated voting on some statement (x′, t′) as well, and we will say that (x′, t′) is a faulty420

write.421

We distinguish the write (correct or faulty) with the biggest timestamp among the ones422

that have been agreed. We say t is the current timestamp iff t is the biggest timestamp of423

any write that has been agreed. We say v is the current value iff (x, t) was agreed and t is424

the current timestamp. For uniformity, if no statement has been agreed yet we say that t0425

is the current timestamp and ⊥ is the current value.426

We are specially interested in the visible writes—i.e., those that could potentially affect427

a subsequent read. The visible writes include all the correct ones, since these always have428

a timestamp that is bigger than the current timestamp at the moment when the associated429

operation starts (see Lemma 11 below), and also the faulty writes that have a timestamp430

bigger than the current timestamp at the moment when they are agreed. A correct write431

(x, t) becomes visible when it is agreed. A faulty write (x′, t′) becomes visible when it is432

agreed iff t′ is bigger than the current timestamp at that moment. The visible, faulty writes433

correspond to the lurking writes of [10]. Since lurking writes do not follow the protocol, it434

is impossible, in general, to ascertain when a lurking write begins and ends [12]. We let a435

lurking write start and end instantaneously before and after the moment when it becomes436

visible. Two visible writes (correct or faulty) clash iff one of the writes starts in between437

the moments when the other starts and becomes visible. Since a correct write (x, t) ends438

when a quorum U confirms the statement (x, t) then, trivially, every visible write becomes439

visible in between the moments when it starts and it ends, and two visible writes that are440

in real-time order do not clash.441

Since reads do not alter the abstract state of the register, we need only consider the442

reads by correct clients (we say correct reads for short). We are only interested in the reads443

that terminate. We distinguish the moment when a terminating read picks up a value. A444

read picks up a write (x, t) when the read receives (x, t) as the confirmed statement from a445

quorum of servers. Trivially, every correct and terminating read picks up a visible write—or446

the init statement (⊥, t0)—in between the moments when it starts and ends.447

Lemmas 11 and 12 below state useful safety properties of visible writes and correct reads.448

I Lemma 11. Consider the protocol in Figures 2 and 3 over an FBQS 〈V, Q〉 enjoying449

quorum intersection and with some intact server. Let (x, t) be a visible write and let t′ be450

the current timestamp at the moment when (x, t) starts. Then t > t′.451

I Lemma 12. Consider the protocol in Figures 2 and 3 over an FBQS 〈V, Q〉 enjoying452

quorum intersection and with some intact server. If a correct read r picks up a write (x, t),453
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then either (x, t) is the init statement and no intact server ever confirmed any write by the454

time that r picks (x, t) up, or otherwise (x, t) became visible before r picked it up.455

Given a verifiable history H ∈ H, we construct a sequential abstract history H ′ which456

help us to prove Clauses (i)–(iii) in Definition 9, thus proving that our protocol is BFT-457

linearisable. In an intermediate step, we extend H by inserting every lurking write that458

is seen by correct clients. For each lurking write (x, t), we insert a pair of consecutive459

invocation and response events in H at the point where the write (x, t) becomes visible. We460

call the history Hex so obtained an extended history.461

Our next step is to prove that an extended history Hex is linearisable with respect to the462

specification of an atomic register. Operator seq defined below takes an extended history463

and turns it into a sequential one.464

I Definition 13. Let Hex ∈ H be an extended history. The history seq(Hex) is the sequential465

history that is constructed recursively as follows:466

(i) If Hex does not contain any writes, let seq(Hex) contain each read operation from Hex467

in the same order as the reads pick up the current statement (x, t). Insert in seq(Hex)468

each stop event from Hex before the invocation of the operation that succeeded the469

stop event in the original history Hex—i.e., as late as possible while preserving <Hex .470

(ii) Otherwise, let (x, t) be the last write in Hex that becomes visible. Let W + be the471

subset of writes in Hex that clash with (x, t) and that have a timestamp bigger than t.472

(Notice that W + would be empty if no write clashes (x, t), or if all the clashing writes473

have a timestamp less than t.) Assume that (x′, t′)—not necessarily different from474

(x, t)—is the write in W + ∪ {(x, t)} with the maximum timestamp. Let R contain the475

reads in H that pick (x′, t′) up. Let S contain the stop events in Hex that do not happen476

before any operation in R∪W +∪{(x, t)}. Construct seq(Hex \(S∪R∪W +∪{(x, t)}))477

recursively, and append to it in timestamp order a write operation for each write (x′′, t′′)478

in W + ∪ {(x, t)}. Append a read operation for each read in R in the same order as479

they pick (x′, t′) up. Insert in seq(Hex) each stop event from S before the invocation480

of the operation that succeeded the stop event in the original history Hex—i.e., as late481

as possible while preserving <Hex .482

For any extended history Hex , the operator seq delivers a linearisation of Hex .483

I Lemma 14. Let Hex ∈ H be an extended history that contains every lurking write that is484

seen by correct clients. Then, seq(Hex) is a linearisation of Hex with respect to the sequential485

specification of an atomic register—i.e., seq(Hex) is a legal history that respects <Hex .486

Our main safety result is that the read/write register over 〈V, Q〉 is BFT-linearisable.487

I Theorem 15. The protocol in Figures 2 and 3 over an FBQS 〈V, Q〉 enjoying quorum488

intersection and with some intact server is BFT-linearisable.489

We now present our liveness results. As an intermediate step to prove FW -termination490

we show that correct writes always terminate.491

I Theorem 16. Consider the protocol in Figures 2 and 3 over an FBQS 〈V, Q〉 enjoying492

quorum intersection and with some intact server. Then, every correct write terminates.493

The read operation queries the servers for their confirmed statements, and uses a timeout494

to repeat the query and to give the opportunity for an intact server to confirm the current495

statement, in case the server did not confirm the current statement yet. An infinite series of496
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consecutive visible writes that are concurrent with the read operation could become visible497

and preempt termination of the read. However, correct reads are guaranteed to terminate498

if we assume that the history contains finitely many visible writes.499

I Theorem 17. Consider the protocol in Figures 2 and 3 over an FBQS 〈V, Q〉 enjoying500

quorum intersection and with some intact server. If every faulty server has been stopped,501

then the protocol is FW -terminating—i.e., every correct write terminates, and moreover,502

either every correct read terminates, or the history contains infinitely many correct writes.503

6 FBQSs and Byzantine Quorum Systems504

In this section we state the relation between the FBQSs and the classical Byzantine quorum505

systems from [11]. Together with a quorum system Q, in [11] they consider a fail-prone506

system B, which is a non-empty set of subsets of V such that none of its elements is contained507

in another, and some B ∈ B contains all the faulty servers. A fail-prone system characterises508

the failure scenarios that can occur. In [11] they present three variants of Byzantine quorum509

systems, which are characterised by the properties that Q and B satisfy. We focus on the510

dissemination quorum systems of Section 5 of [11]. A quorum system Q is a dissemination511

quorum system (DQS for short) with respect to a fail-prone system B iff the following512

properties hold:513

(i) (D-consistency) ∀U1, U2 ∈ Q. ∀B ∈ B. U1 ∩ U2 6⊆ B, and514

(ii) (D-availability) ∀B ∈ B ∃Q ∈ Q. B ∩Q = ∅.515

These two properties resemble the properties of DSets in an FBQS, namely quorum516

intersection despite any DSet and quorum availability despite any DSet. Theorem 18 below517

formalises the connection between FBQSs and DQSs.518

I Theorem 18. Let 〈V, Q〉 be an FBQS enjoying quorum intersection and such that some519

intact server exists. Let D be the set of its DSets. Then, the quorum system Q induced by520

〈V, Q〉 is a DQS with respect to any set B 6= {V} that is a subset of D and such that none of521

B’s elements is a subset of another, and that some B ∈ B contains all the befouled servers.522

Theorem 18 defines a one-to-many correspondence between an FBQS and a DQS, where523

the quorum system Q is uniquely determined by Q, and the fail-prone system has to be524

fixed from the subsets B of D\V that satisfy the conditions of the theorem. Such sets B are525

indeed fail-prone systems since they contain some element B that contains all the befouled526

servers, which implies that B contains all the faulty servers. We say that such a fail-prone527

system is compatible with the FBQS. A DQS provides more information than an FBQS (in528

particular, the choice of fail-prone system). On the other hand, an FBQS generalises a529

quorum system Q that is a DQS with respect to the range of fail-prone systems B that are530

compatible with the FBQS, and makes the fail-prone system opaque to the client’s interface.531

Consider the FBQS 〈V, Q〉 from Example 1. The fail-prone systems B1 = {{4, 5}},532

B2 = {{3, 4, 5}}, and B3 = {{3}, {4, 5}} are compatible with 〈V, Q〉. Arguably, the most533

expressive of them is B3, which has been picked using the following rule of thumb: pick534

the smallest elements in the set-inclusion order of ℘(D \ {V})—i.e., {3} and {4, 5}—whose535

union gives the union of the maximal elements in ℘(D \ {V})—i.e., {3, 4, 5}.536

The correspondence stated by Theorem 18 warrants that any existing protocol for DQSs537

can be run on a FBQS, by fixing a fail-prone system that is compatible with the FBQS.538
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7 Related Work539

In [2] they explore realistic modelling for distributing trust on the internet, and they pro-540

pose general failure patterns for Byzantine fault-tolerant systems that go beyond threshold541

models. Their generalised adversary structures resemble the fail-prone systems of [11] and542

the DSets of [13] and ours.543

Our read/write register over an FBQS addresses faulty clients and allows servers to544

choose their trust sets independently. The protocol in [10] works with faulty clients, but it545

uses 3f + 1 servers, with f the threshold for fault-tolerance, and the choice of trust is fixed546

to any set of 2f + 1 servers. The protocol in Section 6 of [11] also supports faulty clients,547

but it does so by resorting to the variant of BQSs in Section 4 of [11] called masking quorum548

systems, whose axioms are stronger than those of the DQSs, which are similar in strength549

to FBQSs’s axioms. Furthermore, in an FBQS the failure scenarios emerge from the choices550

of trust of each server, and therefore they are opaque to the protocol, in contrast with the551

solution in Section 6 of [11], which requires the protocol to be aware of the fail-prone system.552

In [12], they assume that faulty clients could leak private keys, and their correctness553

condition of Byznearisability requires that the number of faulty operations that are seen by554

correct clients after all the faulty clients have been stopped is finite. On the other hand, in555

[10] they assume the use of cryptographic coprocessors that allow signing without exposing556

the private key, and their correctness condition of BFT-linearisability is stronger in that it557

requires that the number of operations from a faulty client c that are seen by correct clients558

after c has been stopped is bounded by a constant. Our correctness condition in Section 9559

builds upon those in [12] and [10]. As in [10], we assume that faulty clients do not leak560

private keys, but we only require that the number of visible operations from a faulty client561

c after it has been stopped is finite. The strength of our BFT-linearisability lies in between562

Byznearisability from [12] and the original BFT-linearisability from [10].563

8 Conclusions and Future Work564

In this paper, we have rigorously studied the theoretical foundations of the federated voting565

protocol in Stellar. In particular, we proved a correctness statement for correct servers,566

which strengthens the one given in the Stellar proposal that only applies to intact servers.567

Our correctness statement additionally allows for faulty servers to lie to others about their568

choice of trust. Furthermore, our read/write register shows how federated voting can be used569

to solve problems beyond consensus. We have also connected the FBQSs to the well-studied570

DQSs, which opens up the possibility of running DQS’s protocols on top of FBQSs.571

The correctness of most constructions on top of FBQSs rely on basic properties of FBQSs572

that also hold with fallacious slices. It would be routine to implement a read/write register573

over an FBQS with fallacious slices and prove its correctness as stated by Theorems 15–17.574

In Section 18 we explore the relation between FBQSs and the DQSs of [12], and we575

provide a one-to-many correspondence between an FBQS and a DQS. We believe a corre-576

spondence in the other direction (between a DQS and an FBQS) can be defined. Such a577

correspondence would first consider, for each server v, one slice for each quorum U ∈ Q such578

that v ∈ U . Alas, this straightforward correspondence does not preserve the failure scenarios579

captured by the fail-prone system B, since B might not be compatible with the resulting580

FBQS. In order to preserve the failure scenarios, the information provided by B should be581

used to trim each of the servers’s slices until the resulting set of DSets contains every element582

of B. A two-way correspondence between FBQSs and DQSs may help in transferring lower583

bounds on the number of rounds in register emulations [1], which we leave as future work.584
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A Federated Byzantine Quorum Systems617

I Lemma 19. Let 〈V, Q〉 be an FBQS enjoying quorum intersection. If an intact server v618

exists, then every quorum contains some intact server.619

Proof. By Lemma 4, the set of befouled servers is a DSet, and since there is at least one620

intact server and by quorum availability, then the set of intact servers I is a quorum. Since621

〈V, Q〉 enjoys quorum intersection, then for every quorum U , the intersection U ∩ I, which622

only contains intact servers, is non-empty. J623

Proof of Theorem 5. Since v1 confirmed a, there exists a quorum U1 that accepts a such624

that v1 ∈ U1. And similarly for v2, there exists a quorum U2 that accepts a such that v2625

in U2. Assume towards a contradiction that there exists an intact server v′, not necessarily626

different from v1 or v2. By Lemma 19, there is some intact server in U1 that accepted a,627

and also there is some intact server in U2 that accepted a, but by Theorem 8 in [13] this628

results in a contradiction and we are done. J629

B FBQSs with Fallacious Slices630

I Lemma 20. Let U be a quorum know by v in FBQS with fallacious slices 〈V, (Qv)v∈V〉,631

let B ⊆ V be a set of servers such that v 6∈ B, and let U ′ = U \ B. If U ′ 6= ∅ then U ′ is a632

quorum in 〈V, (Qv)v∈V〉B known by every server.633

Proof. U ′ being a quorum in 〈V, (Qv)v∈V〉B known by every server means that for every634

v′ ∈ V \B, U ′ is a quorum in 〈V \B, QB
v′〉. Since, for every v′ ∈ V \B, both 〈V, Qv′〉 and635

〈V \B, QB
v′〉 are FBQSs, the lemma follows by Theorem 1 in [13]. J636

I Lemma 21. Let 〈V, (Qv)v∈V〉 be an FBQS with fallacious slices enjoying quorum inter-637

section. If B1 and B2 are DSets, then B = B1 ∩B2 is a DSet, too.638

Proof. Let U1 = V \ B1 and U2 = V \ B2. If U1 = ∅ or U2 = ∅ then the lemma follows639

trivially because B1 = V and B = B2, or respectively B2 = V and B = B1, and both B1 and640

B2 are DSets. Otherwise, by quorum availability, U1 and U2 are quorums in 〈V, (Qv)v∈V〉641

known by every server. Since, for any server v, the union of two quorums known by v is a642

quorum known by v, it follows that V \ B = U1 ∪ U2 is a quorum known by every server,643

and we have quorum availability despite B.644

In order to show quorum intersection despite B, we fix a server v ∈ V \ B. Let Ua645

and Ub be any two quorums known by v in 〈V, (Qv)v∈V〉. Let U = U1 ∪ U2 = U2 \ B.646

By quorum intersection of 〈V, (Qv)v∈V〉, U = U1 ∩ U2 6= ∅. But then by Lemma 20,647

U = U2 \ B must be a quorum in 〈V, (Qv)v∈V〉B . Now consider that Ua \ B1 and Ua \B2648

cannot both be empty, or else Ua \ B = Ua would be. Hence, by Lemma 20, either649

Ua \ B1 is a quorum in (〈V, (Qv)v∈V〉B)B1 = 〈V, (Qv)v∈V〉B1 , or Ua \ B is a quorum in650

(〈V, (Qv)v∈V〉B)B2 = 〈V, (Qv)v∈V〉B2 , or both. In the former case, note that if Ua \B1 is a651

quorum in (Ua \B1) ∩ U = (Ua\B1)\B2, it follows that Ua\B2 6= ∅, making Ua\B2 a quorum652

in 〈V, (Qv)v∈V〉B2 . By a similar argument, Ub \ B2 must be a quorum in 〈V, (Qv)v∈V〉B2 .653

But then quorum intersection despite B2 tells us that (Ua \ B2) ∩ (Ub \ B2) 6= ∅, which is654

only possible if Ua ∩ Ub 6= ∅. J655

I Lemma 22. In an FBQS with fallacious slices enjoying quorum intersection, the set of656

befouled servers is a DSet.657
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Proof. Let Bmin be the intersection of every DSet that contains all the faulty servers. It658

follows from the definition of intact that a server v is intact iff v 6∈ Bmin. Thus, Bmin is659

precisely the set of befouled servers. By Lemma 21, DSets are closed under intersection, so660

Bmin is a DSet. J661

I Lemma 23. Two intact servers in an FBQS with fallacious slices enjoying quorum inter-662

section cannot ratify contradictory statements.663

Proof. Let B be the set of befouled servers. By Lemma 22, B is a DSet, and by definition664

〈V, (Qv)v∈V〉 enjoys quorum intersection despite B. Assume towards a contradiction that665

v1 ratifies a and v2 ratifies a. By definition, there must exist a quorum U1 known by v1 and666

containing v1 that ratified a, and ther must exist a quorum U2 known by v2 and containing667

v2 that ratified a. By Lemma 20, since U\B 6= ∅ and U2 \B 6= ∅, both must be quorums in668

〈V, (Qv)v∈V〉B respectively known by v1 and v2, meaning that v1 ratified a and v2 ratified669

a in 〈V, (Qv)v∈V〉B . Since 〈V, (Qv)v∈V〉B contains only intact servers, all the servers must670

agree on the choices of quorum slices of each server, and every quorum is known to every671

server. By quorum intersection despite B, there exists v ∈ (U1 \ B) ∩ (U2 \ B). Such a v672

must have illegally voted for both a and a, which contradicts the fact that 〈V, (Qv)v∈V〉B673

contains only intact servers. J674

I Lemma 24. The DSet of befouled servers is not v-blocking for any intact v.675

Proof. Let B be the DSet of befouled servers. The statement “for all v ∈ V \ B, B is not676

v-blocking” is equivalent to “for all v ∈ V \B, there exists q ∈ Qv(v) such that q ⊆ V \B”.677

By the definition of a quorum known by v, the latter holds iff for all v ∈ V \ B, V \ B is a678

quorum known by v or B = V , which holds by quorum availability despite B. J679

I Lemma 25. Two intact servers in an FBQS with fallacious slices 〈V, (Qv)v∈V〉 enjoying680

quorum intersection cannot accept contradictory statements.681

Proof. Let B be the DSet of befouled servers in 〈V, (Qv)v∈V〉 (which exists by Lemma 22).682

Suppose an intact server accepts statement a. Let v be the first intact server to accept683

a. At the point v accepts a, only befouled servers in B can claim to accept it. Since by684

Lemma 24, B cannot be v-blocking, it must be that v accepted a through identifying a685

quorum U known by v such that every server voted for or accepted a. And since v is the686

first intact server to accept a, it must mean all servers in U \B voted for a. In other words,687

v ratified a in 〈V, (Qv)v∈V〉B . Any statement accepted by an intact server in 〈V, (Qv)v∈V〉688

will eventually be ratified in 〈V, (Qv)v∈V〉B . Because B is a DSet, 〈V, (Qv)v∈V〉B enjoys689

quorum intersection. Because, additionally, B contains all faulty servers, Lemma 23 rules690

out ratification of contradictory statements. J691

I Lemma 26. Let 〈V, (Qv)v∈V〉 be an FBQS with fallacious slices enjoying quorum inter-692

section. If an intact server exists, then for every server v ∈ V, every quorum known by v693

contains some intact server.694

Proof. By Lemma 22, the set of befouled servers is a DSet, and since there is at least one695

intact server and by quorum availability, then the set of intact servers I is a quorum known696

by every server. Since 〈V, (Qv)v∈V〉 enjoys quorum intersection, then for every quorum697

U known by any server, the intersection U ∩ I, which only contains intact servers, is non-698

empty. J699
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Proof of Theorem 7. Since v1 confirmed a, there exists a quorum U1 known by v1 and such700

that v1 ∈ U1 that accepts a. And similarly for v2, there exists a quorum U2 known by v2701

and such that v2 ∈ U2 that accepts a. Assume towards a contradiction that there exists702

an intact server v′, not necessarily different from v1 or v2. By Lemma 26 there exists some703

intact server in U1 that accepts a, and similarly, there exists some intact server in U2 that704

accepts a. But by Lemma 25 this results in a contradiction and we are done. J705

I Lemma 27. Let B be the set of befouled servers in an FBQS 〈V, (Qv)v∈V〉 with fallacious706

slices enjoying qourum intersection. Let U be a quorum known to some intact server that707

contains this intact server, and let S be any set such that U ⊆ S ⊆ V. Let S+ = S \ B be708

the set of intact servers in S, and let S− = (V \S) \B be the set of intact servers not in S.709

Either S− = ∅, or exists a server v in S− such that S+ is v-blocking.710

Proof. If S+ is v-blocking for some v ∈ S−, then we are done. Otherwise, we show that711

S− = ∅. If S+ is not v-blocking for any v ∈ S−, then, by Lemma 24, either S− = ∅ or712

S− is a quorum in 〈V, (Qv)v∈V〉B known to every server. In the former case we are done,713

while in the latter we get a contradiction: By Lemma 20, U \B is quorum in 〈V, (Qv)v∈V〉B714

known to every server. Since B is a DSet (by Lemma 22), 〈V, (Qv)v∈V〉B must enjoy715

quorum intersection, meaning S− ∩ (U \B) 6= ∅. This is impossible, since (U \B) ⊆ S and716

S− ∩ S = ∅. J717

Proof of Theorem 8. Let B be the DSet of beofuled servers and let U 6⊆ B be the quorum718

known by some intact server through which this intact server confirmed a. Let servers in719

U \B accept a and thus broadcast accept messages. By definition, any server v accepts a if720

it receives an accept message from every server in a v-blocking set. Hence, the messages sent721

by the servers in U \ B may convince additional servers to accept a. Let these additional722

servers also broadcast accept messages until a point is reached at which no further servers723

can accept a. At this point, let S be the servers that accept a (where U ⊆ S), let S+ be724

the set of intact servers in S, and let S− be the set of intact servers not in S. S+ cannot be725

v-blocking for any server in S−, or else more servers could come to accept a. By Lemma 27,726

then S− = ∅, meaning every intact server has accepted a. J727

C Read/Write Register over an FBQS728

Proof of Lemma 10. The guards in lines 10, 13, 16 and 19 of the protocol for read/write729

register in Figure 2 match the corresponding guards in lines 3, 6,8 and 10 of the protocol730

for federated voting in Figure 1. The additional event handlers in lines 6–9 of Figure 2731

correspond to query messages, which do not alter the abstract state of the register. The732

fields in lines 2–5 of Figure 2 record accepted and confirmed statements by the server, and733

proposed and confirmed statments from each client that the server heard of. These fields734

are used to implement the queries’s handlers and to enforce that a server never votes for735

contradictory statements. Each event in a run involving the read/write register can be736

proected into one event (or none) in a corresponding run of federated voting, and the lemma737

holds J738

All the remainig proofs in this appendx implicitly use Lemma 10, which lifts the results739

about the protocol for federated voting in Section 3 to the protocol of read/write register in740

Seciton 5.741

Proof of Lemma 11. If (x, t) is a lurking write then the lemma holds by definition. Now742

we show that it holds for correct writes. Since t′ is the current timestamp at the moment743
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when (x, t) starts, then either no statement was ever confirmed before and t′ = t0, or an744

intact server confirmed a write with timestamp t′, which means that a quorum U accepted745

a timestamp t′ (lines 13–18 of Figure 2). The write operation picks t such that it is bigger746

than the accepted timestamps queried from a quorum U ′ (lines 11–14 of Figure 3) before747

initiating federated voting on (x, t). (Since the query uses a unique nonce, there is no748

confusion between the answers from different queries.) If t′ = t0, then by lines 13–14 of749

Figure 3, t is bigger than t0, and the lemma holds. Otherwise, by quorum intersection750

U ∩ U ′ has some intact server v that accepted the timestamp t′. Since an intact server751

is corrrect by definition, and since a correct servers only update their accepted timestamp752

with one that is bigger than the one that they store (lines 14 and 17 of Figure 2) then the753

accepted timestamp stored by v is bigger or equal than t′. Therefore t is also bigger than754

t′. J755

Proof of Lemma 12. If r picks up the init statement (⊥, t0), then r received (⊥, t0) as the756

confirmed statement from a quorum U . We show that by that time no intact server ever757

confirmed any write. Assume towards a contradiction that some intact server confirmed758

(x′, t′). Then, a quorum U ′ confirmed (x′, t′). But this gives a contradiction since by759

quorum intersection U ∩ U ′ contains some intact server.760

Otherwise, a quorum U confirmed statement (x, t) 6= (⊥, t0). by Lemma 19, U contains761

some intact server, which confirmed (x, t). If (x, t) comes from a correct client, then it762

has become visible and the lemma holds. Let t′ be the current timestamp at the time when763

(x, t) was agreed. Some intact server confirmed a write with timestamp t′, which means that764

some quorum U ′ accepted that write. If (x, t) comes from a faulty client, then by quorum765

intersection, U ∩ U ′ contains some intact server. Since intact servers are correct, and since766

correct servers only update their confirmed timestamp with one that is bigger than the one767

that they store (line 20 of Figure 2), then t > t′. Thus, the faulty write (v, t) was agreed768

at a time when the current timestamp t′ was smaller than t, and therefore the faulty write769

became visible and we are done. J770

I Lemma 28. Consider the protocol in Figures 2 and 3 over an FBQS 〈V, Q〉 enjoying771

quorum intersection and with some intact server. Let (x, t) and (x′, t′) be two visible writes772

with x 6= x′. Then t 6= t′.773

Proof. Each of (x, t) and (x′, t′) has been confirmed by some quorum. Since every quo-774

rum contains at least one intact server, then, by Lemma 5, (x, t) and (x′, t′) cannot be775

contradictory. Therefore, t 6= t′ and the lemma holds. J776

I Lemma 29. Let r be a read operation that picks up a write (x, t), and let t′ be the current777

timestamp at the moment when r starts. Then, t ≥ t′.778

Proof. If t′ = t0, then the lemma holds trivially. Otherwise, an intact server confirmed a779

write with timestamp t′ before the read r starts, which means that a quorum U accepted780

timestamp t′. If r picks up that write, then t = t′ and the lemma holds. Otherwise, by781

Lemma 12, r picks up some write that became visible after the write with timestamp t′—782

i.e., a quorum U ′ accepted timestamp t. By quorum intersection, U ∩ U ′ contains some783

intact server, and since intact servers only update their accepted timestamp with one which784

is bigger than the one that they store (line 20 of Figure 2), then t > t′ and we are done. J785

Proof of Lemma 14. We proceed by induction on the number of writes in Hex . If Hex does786

not contain any writes, then the result follows trivially by Definition 13.787
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Otherwise, assume that (x, t) is the last write that becomes visible in Hex , and let W +
788

be the subset of writes in Hex that clash with (x, t) and that have a timestamp bigger789

than t. Let (x′, t′) be the write in W + ∪ {(x, t)} with the biggest timestamp, and let790

R contain the reads in Hex that pick (x′, t′) up. Let S contain the stop events in Hex791

that do not happen before any operation R ∪W + ∪ {(x, t)}. By the induction hypothesis,792

seq(Hex \ (S ∪R∪W + ∪ {(x, t)})) is a linearisation of Hex \ (S ∪R∪W + ∪ {(x, t)}), and it793

only remains to show that the operations in R ∪W + ∪ {(x, t)} occur in seq(Hex) in a legal794

order, and that both the operations and the stop events in S ∪ R ∪W + ∪ {(x, t)} preserve795

<Hex , both with respect to the other operations in Hex \ (S ∪ R ∪W + ∪ {(x, t)}) and with796

respect to each other. By Lemmas 11 and 12, and Definition 13, the write (x′, t′) occurs797

in seq(Hex) after any other other operation with smaller timestamp, and all the reads in R798

pick (x′, t′) up and also occur in seq(Hex) after (x′, t′) does. Therefore, all the reads and799

writes in R ∪W + ∪ {(x, t)} occur in seq(Hex) in legal order. By Lemmas 11, 12, 28 and800

29, and by Definition 13, the writes in W + ∪{(x, t)} occur after any other operation in Hex801

that happens before them in real-time order, and the same is true for the reads in R. That802

the writes in W + ∪ {(x, t)} and the reads in R preserve <Hex is straightforward, because by803

Lemma 12 every read that picks up a write does so before the write has become visible. The804

stop events preserve <Hex by Definition 13, and we are done. J805

Proof of Theorem 15. Let Hex be an extended history that contains every lurking write806

that is seen by correct clients, and let H be the verifiable history that contains the correct807

operations and the stop events in Hex . We show that the verifiable history H and the abstract808

history H ′ = seq(Hex) meetq Conditions (i)–(iii) of Definition 9. Condition (i) holds since809

H contain only the correct operations from Hex , and Condition (ii) holds since, trivially,810

<H⊆<Hex and by Lemma 14. Since a faulty client c can only broadcast a finite number811

of PROPOSE(〈x, t〉c) messages before a stop event 〈c : stop〉, and since the statements 〈x, t〉c812

are signed by c and servers cannot forge them, then the maximum number of operations813

that could be visible after c is stopped is finite. Therefore, Condition (iii) holds and we are814

done. J815

Proof of Theorem 16. Let B be the set of befouled servers in 〈V, Q〉, which is a DSet. By816

quorum availability despite B, and since some intact server exists, the set of intact server817

constitute a quorum. Therfore, the query in lines 11–12 of the write method in Figure 3818

will eventually terminate, and the client will sign the statement (x, t) and initiate federating819

voting on it. By the use of signatures, servers cannot forge statements, and by Lemmas 10820

and 11, servers will never vote contradictory statements. Every intact server will eventually821

vote for (x, t), and by quorum availability despite B, every intact server v will eventually822

ratify and accept (x, t) if the server did not previously accept (x, t) trhough a v-blocking823

set. Thus, every intact server will eventually confirm (x, t) and the method is guaranteed to824

terminate by quorum availability (line 16 in Figure 3). J825

Proof of Theorem 17. By Theorem 15, the number of operations from a faulty client c826

that are seen by correct clients after c has been stopped is finite. In the remainder we prove827

that a correct read always terminates in the presence of finite visible writes. Let r be a828

correct read and W be the set of visible writes that are concurrent with r. We show that829

r terminates and picks up one of the writes in W . We proceed by induction on the size of830

W . Let (x, t) ∈W be the first write that becomes visible. Since (x, t) is visible, some intact831

server confirmed it, and by Lemma 6 every intact server will eventually confirm it. Let B832

be the set of befouled nodes in 〈V, Q〉. By quorum availability despite B, the set of intact833

server is a quorum, and therefore the read’s query in lines 3–5 either picks up (x, t) and834

CVIT 2016



23:22 Federated Byzantine Quorum Systems

terminates, or otherwise some other statement gets confirmed by some intact server before835

this intact node answers the client with the confirmed statement (x, t). In such case, the836

theorem holds by induction hypothesis on W \ {(x, t)}. If (x, t) is the only statement in W ,837

then the client will eventually pick (x, t) by quorum availability despite B. J838

D FBQSs and Byzantine Quorum Systems839

Let 〈V, Q〉 be an FBQS enjoying quorum intersection and such that some intact server840

exists. Let D be the set of its DSets. Then, the quorum system Q induced by 〈V, Q〉 is841

a DQS with respect to any set B 6= {V} that is a subset of D and such that none of B’s842

elements is a subset of another, and that some B ∈ B contains all the befouled servers.843

Proof of Theorem 18. Since no element of B is a subset of another, and since some element844

of B contains all the befouled servers—and thus all the faulty servers—it suffices to show845

that Q and B satisfy D-consistency and D-availability. Let us fix a B ∈ B. We first prove846

D-consistency—i.e., ∀U1, U2 ∈ Q. U1 ∩ U2 6⊆ B. By Theorem 1 of [13] we know that U1 \B847

and U2 \ B are quorums in 〈V \ B, QB〉. Since 〈V \ B, QB〉 has quorum intersection, then848

(U1 \ B) ∩ (U2 \ B) = (U1 ∩ U2) \ B 6= ∅, and therefore U1 ∩ U2 6⊆ B. Now we prove849

D-availability—i.e., ∃U ∈ Q. B ∩ U = ∅—which holds by letting U = V \ B since B 6= V850

and by quorum availability despite B. J851


	Introduction
	System Model
	Federated Byzantine Quorum Systems
	FBQSs Overview
	Federated voting

	FBQSs with Fallacious Slices
	Read/Write Register over an FBQS
	Execution model and specification
	Implementation
	Correctness

	FBQSs and Byzantine Quorum Systems
	Related Work
	Conclusions and Future Work
	Federated Byzantine Quorum Systems
	FBQSs with Fallacious Slices
	Read/Write Register over an FBQS
	FBQSs and Byzantine Quorum Systems

