The Beta Cube

Álvaro García ${ }^{1,2}$ Pablo Nogueira ${ }^{2}$ Emilio Jesús Gallego Arias ${ }^{2}$
${ }^{1}$ IMDEA Software Institute
${ }^{2}$ Babel Research Group, Universidad Politécnica de Madrid

ITU 2011, Kobenham

Context

- Reduction strategies for the pure (untyped) lambda calculus...

Context

- Reduction strategies for the pure (untyped) lambda calculus...
- Normal Order, Applicative (Standard) Order [Barendregt 1984].

Context

- Reduction strategies for the pure (untyped) lambda calculus...
- Normal Order, Applicative (Standard) Order [Barendregt 1984].
- Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].

Context

- Reduction strategies for the pure (untyped) lambda calculus. . .
- Normal Order, Applicative (Standard) Order [Barendregt 1984].
- Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].
- Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).

Context

- Reduction strategies for the pure (untyped) lambda calculus. . .
- Normal Order, Applicative (Standard) Order [Barendregt 1984].
- Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].
- Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).
- Hybrid applicative order (ha) [Sestoft 2002].

Context

- Reduction strategies for the pure (untyped) lambda calculus. . .
- Normal Order, Applicative (Standard) Order [Barendregt 1984].
- Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].
- Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).
- Hybrid applicative order (ha) [Sestoft 2002].
- Hybrid normal order (hn) [Sestoft 2002].

Context

- Reduction strategies for the pure (untyped) lambda calculus. . .
- Normal Order, Applicative (Standard) Order [Barendregt 1984].
- Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].
- Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).
- Hybrid applicative order (ha) [Sestoft 2002].
- Hybrid normal order (hn) [Sestoft 2002].
- Head reduction (hr) [Barendregt 1984].

Context

- Reduction strategies for the pure (untyped) lambda calculus. . .
- Normal Order, Applicative (Standard) Order [Barendregt 1984].
- Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].
- Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).
- Hybrid applicative order (ha) [Sestoft 2002].
- Hybrid normal order (hn) [Sestoft 2002].
- Head reduction (hr) [Barendregt 1984].
- ...

Context

- Reduction strategies for the pure (untyped) lambda calculus. . .
- Normal Order, Applicative (Standard) Order [Barendregt 1984].
- Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].
- Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).
- Hybrid applicative order (ha) [Sestoft 2002].
- Hybrid normal order (hn) [Sestoft 2002].
- Head reduction (hr) [Barendregt 1984].
- ... defined by sets of big-step rules.

What are strategies useful for?

- Program optimization via partial evaluation.

What are strategies useful for?

- Program optimization via partial evaluation.
- β-equivalence testers for typing rules in dependent types.

What are strategies useful for?

- Program optimization via partial evaluation.
- β-equivalence testers for typing rules in dependent types.
- Interpreting universes in structural generic programming with dependent types.

What are strategies useful for?

- Program optimization via partial evaluation.
- β-equivalence testers for typing rules in dependent types.
- Interpreting universes in structural generic programming with dependent types.

Pure lambda calculus reduction strategies (big-step)

Call-by-name (cbn):

$$
x \xrightarrow{c b n} x
$$

$\lambda x . B \xrightarrow{c b n} \lambda x . B$
$\frac{M \xrightarrow{c b n} M^{\prime} \equiv \lambda x \cdot B \quad[N / x] B \xrightarrow{c b n} S}{M N \xrightarrow{c b n} S}$

$$
\frac{M \xrightarrow{c b n} M^{\prime} \not \equiv \lambda x \cdot B}{M N \xrightarrow{c b n} M^{\prime} N}
$$

Pure lambda calculus reduction strategies (big-step)

$$
\begin{gathered}
\frac{\text { Call-by-name (cbn): }}{x \xrightarrow{c b n} x} \\
\frac{M x \cdot B \xrightarrow{c b n} \lambda x \cdot B}{M \xrightarrow{c b n} M^{\prime} \equiv \lambda x \cdot B \quad[N / x] B \xrightarrow{c b n} S} \\
M N \xrightarrow{c b n} S \\
M \xrightarrow{c b n} M^{\prime} \not \equiv \lambda x \cdot B \\
M N \xrightarrow{c b n} M^{\prime} N
\end{gathered}
$$

Subsidiary

Normal order (nor):

$$
\overline{x \xrightarrow{\text { nor }} x}
$$

$$
\frac{B \xrightarrow{\text { nor }} B^{\prime}}{\lambda x \cdot B \xrightarrow{\text { nor }} \lambda x \cdot B^{\prime}}
$$

$$
\frac{M \xrightarrow{c b n} M^{\prime} \equiv \lambda x \cdot B \quad[N / x] B \xrightarrow{\text { nor }} S}{M N \xrightarrow{\text { nor }} S}
$$

$$
\frac{\left(M \xrightarrow{c b n} M^{\prime} \not \equiv \lambda x . B \quad M^{\prime} \xrightarrow{\text { nor }} M^{\prime \prime} \quad N \xrightarrow{\text { nor }} N^{\prime \prime}\right.}{M N \xrightarrow{\text { nor }} M^{\prime \prime} N^{\prime \prime}}
$$

Hybrid

Pure lambda calculus reduction strategies (big-step)

Call-by-name (cbn):

$$
\overline{x \xrightarrow{c b n} x}
$$

$$
\overline{\lambda x . B \xrightarrow{c b n} \lambda x . B}
$$

$$
\frac{M \xrightarrow{c b n} M^{\prime} \equiv \lambda x \cdot B \quad[N / x] B \xrightarrow{c b n} S}{M N \xrightarrow{c b n} S}
$$

$$
\frac{M \xrightarrow{c b n} M^{\prime} \not \equiv \lambda x . B}{M N \xrightarrow{c b n} M^{\prime} N}
$$

Subsidiary

Normal order (nor):
$x \xrightarrow{\text { nor } x}$

$$
\frac{B \xrightarrow{\text { nor }} B^{\prime}}{\lambda x \cdot B \xrightarrow{\text { nor }} \lambda x \cdot B^{\prime}}
$$

$\frac{M \xrightarrow{c b n} M^{\prime} \equiv \lambda x \cdot B[N / x] B \xrightarrow{\text { nor }} S}{M N \xrightarrow{\text { nor }} S}$

$$
\frac{M \xrightarrow{\text { cbn }} M^{\prime} \not \equiv \lambda x . B M^{\prime} \xrightarrow[\rightarrow]{\text { nor }} M^{\prime \prime} N \xrightarrow{\text { nor }} N^{\prime \prime}}{M N \xrightarrow{\text { nor }} M^{\prime \prime} N^{\prime \prime}}
$$

Hybrid

Pure lambda calculus reduction strategies (big-step)

Rule Template:

$$
\begin{aligned}
& \operatorname{VAR} \frac{\mathrm{ABS}}{x \xrightarrow[\rightarrow]{\text { st }} x} \frac{B \xrightarrow{\text { la }} B^{\prime}}{\lambda x \cdot B \xrightarrow{\text { st }} \lambda x \cdot B^{\prime}} \\
& \operatorname{RED} \xrightarrow{M \xrightarrow{o p_{1}} M^{\prime} \equiv \lambda x \cdot B \quad N \xrightarrow{\text { art }} N^{\prime} \quad\left[N^{\prime} / x\right] B \xrightarrow{\text { su }} S}(M N \xrightarrow{\text { st }} S
\end{aligned}
$$

Pure lambda calculus reduction strategies (big-step)

Rule Template:

$$
\begin{aligned}
& \operatorname{VAR} \frac{}{x \xrightarrow[\rightarrow]{\text { st }} x} \quad \text { ABS } \frac{B \xrightarrow{\text { 鸟 } B^{\prime}}}{\lambda x \cdot B \xrightarrow{\text { st }} \lambda x \cdot B^{\prime}} \\
& R E D \xrightarrow[\rightarrow]{M \xrightarrow{o p_{1}} M^{\prime} \equiv \lambda x \cdot B \quad N \xrightarrow[\rightarrow]{\text { ar }} N^{\prime} \quad\left[N^{\prime} / x\right] B \xrightarrow{\text { su }} S} \underset{M N \xrightarrow{\text { st }} S}{ } \\
& \operatorname{APP} \xrightarrow{M \xrightarrow{o p_{1}} M^{\prime} \not \equiv \lambda x \cdot B \quad M^{\prime} \xrightarrow{o p_{2}} M^{\prime \prime} \quad N \xrightarrow{\text { ar2 }} N^{\prime}}\left(M N \xrightarrow{\text { st }} M^{\prime \prime} N^{\prime}\right.
\end{aligned}
$$

Pure lambda calculus reduction strategies (big-step)

Rule Template (cbn):

$$
\begin{aligned}
& \operatorname{VAR} \frac{}{x \xrightarrow{c b n} x} \quad \text { ABS } \frac{B \xrightarrow{\text { id }} B}{\lambda x \cdot B \xrightarrow{c b r} \lambda x \cdot B} \\
& \operatorname{RED} \xrightarrow{M \xrightarrow{c b n} M^{\prime} \equiv \lambda x \cdot B \quad N \xrightarrow{\text { id }} N \quad[N / x] B \xrightarrow{\text { cbn } S} S} \underset{M N \xrightarrow{c b n} S}{ }
\end{aligned}
$$

Pure lambda calculus reduction strategies (big-step)

Rule Template (cbv):

$$
\begin{aligned}
& \operatorname{VAR} \frac{}{x \xrightarrow{c b v} x} \quad \operatorname{ABS} \frac{B \xrightarrow{\text { id }} B}{\lambda x \cdot B \xrightarrow{c b v} \lambda x \cdot B} \\
& \operatorname{RED} \xrightarrow{M \xrightarrow{c b v} M^{\prime} \equiv \lambda x \cdot B \quad N \xrightarrow{c b v} N^{\prime} \quad\left[N^{\prime} / x\right] B \xrightarrow{\text { cbv } S}} \underset{M N \xrightarrow{\text { cbv }} S}{ } \\
& \operatorname{APP} \xrightarrow{M \xrightarrow{\text { cbv }} M^{\prime} \not \equiv \lambda x . B \xrightarrow[\rightarrow]{M^{\prime}} \xrightarrow{\text { id }} M^{\prime} \quad N \xrightarrow{\text { cbv }} N^{\prime}}
\end{aligned}
$$

Pure lambda calculus reduction strategies (big-step)

Rule Template (aor):

$$
\begin{gathered}
\text { VAR } \frac{\text { ABS } \frac{B \xrightarrow{\text { aor }} B^{\prime}}{\lambda x \cdot B \xrightarrow{\text { aor }} \lambda x \cdot B^{\prime}}}{M} \begin{array}{l}
M \xrightarrow{\text { aor }} M^{\prime} \equiv \lambda x \cdot B \quad N \text { aor } N^{\prime} \quad\left[N^{\prime} / x\right] B \xrightarrow{\text { aor } S} S \\
\operatorname{RED} S \\
\text { APP } \xrightarrow{M \xrightarrow{\text { aor }} M^{\prime} \not \equiv \lambda x \cdot B \quad M^{\prime} \xrightarrow{\text { id }} M^{\prime} \quad N \text { aor } N^{\prime}} \\
M N \xrightarrow{\text { aor }} N^{\prime}
\end{array}
\end{gathered}
$$

Pure lambda calculus reduction strategies (big-step)

Rule Template (nor):

$$
\begin{aligned}
& \operatorname{VAR} \frac{}{x \xrightarrow{\text { nor }} x} \quad \text { ABS } \frac{B \xrightarrow[\rightarrow]{\text { nor }} B^{\prime}}{\lambda x \cdot B \xrightarrow{\text { nor }} \lambda x \cdot B^{\prime}} \\
& \operatorname{RED} \xrightarrow{M \xrightarrow{\text { cbn }} M^{\prime} \equiv \lambda x \cdot B \quad N \xrightarrow{\text { id }} N \quad[N / x] B \xrightarrow{\text { nor }} S} \underset{M N \text { nor } S}{ } \\
& \operatorname{APP} \xrightarrow{M \xrightarrow{\text { cbn }} M^{\prime} \not \equiv \lambda x \cdot B \xrightarrow[\longrightarrow]{M^{\prime}} \xrightarrow{\text { nor }} M^{\prime \prime} N \xrightarrow{\text { nor }} N^{\prime}}
\end{aligned}
$$

Use of $o p_{1}$ and $o p_{2}$ to accomodate hybrid strategies!

The Beta Cube

Parameters la, ar1 and ar2 are either recursive calls or identity. Interpreted as boolean switches:

The Beta Cube

Parameters la, ar1 and ar2 are either recursive calls or identity. Interpreted as boolean switches:

The Beta Cube

Parameters la, ar1 and ar2 are either recursive calls or identity. Interpreted as boolean switches:

The Beta Cube

Parameters la, ar1 and ar2 are either recursive calls or identity. Interpreted as boolean switches:

Axis of eval

Axis of eval

Axis of eval

$$
\begin{aligned}
& \mathrm{ABS} \frac{B \xrightarrow[\rightarrow]{\text { aor }} B^{\prime}}{\lambda x \cdot B \xrightarrow{\text { aor }} \lambda x \cdot B^{\prime}} \\
& \operatorname{RED} \xrightarrow{M \xrightarrow{\operatorname{aor}} M^{\prime} \equiv \lambda x \cdot B \quad N \xrightarrow{\text { aor }} N^{\prime} \quad\left[N^{\prime} / x\right] B \xrightarrow{\text { aor } S}} \underset{M N \text { aor } S}{ } \\
& \text { APP } \xrightarrow{M \text { aor } M^{\prime} \not \equiv \lambda x \cdot B \quad N \xrightarrow{\text { aor }} N^{\prime}} \underset{M N \xrightarrow{\text { aor }} M^{\prime} N^{\prime}}{ } \\
& \stackrel{l a}{\longleftarrow} \text { strength } \\
& \uparrow \text { ar } \quad \text { non-headness }
\end{aligned}
$$

Absorption

- Applying s_{2} before applying s_{1} doesn't change the result of s_{1} :
s_{1} absorpts s_{2} iff $s_{1}(t)={ }_{\alpha} s_{1}\left(s_{2}(t)\right)$.

Absorption

- Applying s_{2} before applying s_{1} doesn't change the result of s_{1} :

$$
s_{1} \text { absorpts } s_{2} \text { iff } s_{1}(t)={ }_{\alpha} s_{1}\left(s_{2}(t)\right) .
$$

- s_{1} absorpts s_{2} iff s_{2} is a left identity of s_{1}.

$$
\begin{array}{rlll}
t \xrightarrow{s_{1}} t^{\prime} & \text { iff } & t \xrightarrow{s_{2}} t^{\prime \prime} \xrightarrow{s_{1}} t^{\prime} \\
t \stackrel{s_{1}}{\rightarrow} & \text { iff } & \begin{cases} & \\
& \\
& \\
& t \xrightarrow{s_{2}} \\
& t^{\prime \prime}\end{cases}
\end{array}
$$

Absorption among uniform strategies

- We analyse the pairs of strategies in the order relation.

Absorption among uniform strategies

- We analyse the pairs of strategies in the order relation.
- Counterexamples:

Absorption among uniform strategies

- We analyse the pairs of strategies in the order relation.
- Counterexamples:
- Any strict $s t_{s}$ and non-strict st strategies (differing at least in $a r_{1}$):

$$
\left(s t_{s} \circ s t\right)((\lambda x . \lambda y . x) \times \Omega) \neq{ }_{\alpha} s t_{s}((\lambda x . \lambda y . x) \times \Omega) .
$$

Absorption among uniform strategies

- We analyse the pairs of strategies in the order relation.
- Counterexamples:
- Any strict $s t_{s}$ and non-strict st strategies (differing at least in $a r_{1}$):

$$
\left(s t_{s} \circ s t\right)((\lambda x \cdot \lambda y \cdot x) \times \Omega) \neq{ }_{\alpha} s t_{s}((\lambda x \cdot \lambda y \cdot x) \times \Omega)
$$

- Any strong non-head strategy st and its weak or head (or weak-head) counterpart $s t_{w h}$ (differing in la or $a r_{2}$ or both):

$$
\left(s t \circ s t_{w h}\right)((\lambda k \cdot k \Omega)(\lambda x \cdot y)) \neq \alpha \operatorname{st}((\lambda k \cdot k \Omega)(\lambda x \cdot y)) .
$$

Absorption among uniform strategies

- We analyse the pairs of strategies in the order relation.
- Counterexamples:
- Any strict $s t_{s}$ and non-strict st strategies (differing at least in $a r_{1}$):

$$
\left(s t_{s} \circ s t\right)((\lambda x . \lambda y \cdot x) \times \Omega) \neq \alpha s t_{s}((\lambda x \cdot \lambda y \cdot x) \times \Omega)
$$

- Any strong non-head strategy st and its weak or head (or weak-head) counterpart $s t_{w h}$ (differing in la or $a r_{2}$ or both):

$$
\left(s t \circ s t_{w h}\right)((\lambda k \cdot k \Omega)(\lambda x \cdot y)) \neq \alpha \operatorname{st}((\lambda k \cdot k \Omega)(\lambda x \cdot y)) .
$$

- Any strict strong strategy st and any strict weak strategy $s t_{w}$ (differing at least in la, with $a r_{1}=$ True):

$$
\left(s t \circ s t_{w}\right)(Z \operatorname{Rec} F \operatorname{Input} d) \neq \alpha \text { st }(Z \operatorname{Rec} F \operatorname{Input} d)
$$

Absorption among uniform strategies

- We analyse the pairs of strategies in the order relation.
- Counterexamples:
- Any strict $s t_{s}$ and non-strict st strategies (differing at least in $a r_{1}$):

$$
\left(s t_{s} \circ s t\right)((\lambda x . \lambda y \cdot x) \times \Omega) \neq \alpha s t_{s}((\lambda x \cdot \lambda y \cdot x) \times \Omega)
$$

- Any strong non-head strategy st and its weak or head (or weak-head) counterpart $s t_{w h}$ (differing in la or $a r_{2}$ or both):

$$
\left(s t \circ s t_{w h}\right)((\lambda k \cdot k \Omega)(\lambda x \cdot y)) \neq \alpha \operatorname{st}((\lambda k \cdot k \Omega)(\lambda x \cdot y)) .
$$

- Any strict strong strategy st and any strict weak strategy $s t_{w}$ (differing at least in la, with $a r_{1}=$ True):

$$
\left(s t \circ s t_{w}\right)(Z \operatorname{Rec} F \operatorname{Input} d) \neq \alpha \text { st }(Z \operatorname{Rec} F \text { Input } d)
$$

- The strategies cbv and 010 (weak strict strategies differing in $a r_{2}$):

$$
(c b v \circ 010)((\lambda x \cdot \lambda y \cdot x) x(x \Omega)) \neq{ }_{\alpha} \operatorname{cbv}((\lambda x \cdot \lambda y \cdot x) x(x \Omega))
$$

Absorption among uniform strategies

- We analyse the pairs of strategies in the order relation.
- Counterexamples:
- Any strict $s t_{s}$ and non-strict st strategies (differing at least in $a r_{1}$):

$$
\left(s t_{s} \circ s t\right)((\lambda x . \lambda y \cdot x) \times \Omega) \neq \alpha s t_{s}((\lambda x \cdot \lambda y \cdot x) \times \Omega)
$$

- Any strong non-head strategy st and its weak or head (or weak-head) counterpart $s t_{w h}$ (differing in la or $a r_{2}$ or both):

$$
\left(s t \circ s t_{w h}\right)((\lambda k \cdot k \Omega)(\lambda x \cdot y)) \neq{ }_{\alpha} \operatorname{st}((\lambda k \cdot k \Omega)(\lambda x \cdot y))
$$

- Any strict strong strategy st and any strict weak strategy $s t_{w}$ (differing at least in la, with $a r_{1}=$ True):

$$
\left(s t \circ s t_{w}\right)(Z \operatorname{Rec} F \operatorname{Input} d) \neq \alpha \text { st }(Z \operatorname{Rec} F \text { Input } d)
$$

- The strategies cbv and 010 (weak strict strategies differing in $a r_{2}$):

$$
(c b v \circ 010)((\lambda x \cdot \lambda y \cdot x) x(x \Omega)) \neq{ }_{\alpha} \operatorname{cbv}((\lambda x \cdot \lambda y \cdot x) \times(x \Omega))
$$

- Proofs:

Absorption among uniform strategies

- We analyse the pairs of strategies in the order relation.
- Counterexamples:
- Any strict $s t_{s}$ and non-strict st strategies (differing at least in $a r_{1}$):

$$
\left(s t_{s} \circ s t\right)((\lambda x \cdot \lambda y \cdot x) \times \Omega) \neq{ }_{\alpha} s t_{s}((\lambda x \cdot \lambda y \cdot x) \times \Omega)
$$

- Any strong non-head strategy st and its weak or head (or weak-head) counterpart $s t_{w h}$ (differing in la or $a r_{2}$ or both):

$$
\left(s t \circ s t_{w h}\right)((\lambda k \cdot k \Omega)(\lambda x \cdot y)) \neq{ }_{\alpha} \operatorname{st}((\lambda k \cdot k \Omega)(\lambda x \cdot y))
$$

- Any strict strong strategy st and any strict weak strategy $s t_{w}$ (differing at least in la, with $a r_{1}=$ True):

$$
\left(s t \circ s t_{w}\right)(Z \operatorname{Rec} F \operatorname{Input} d) \neq \alpha \text { st }(Z \operatorname{Rec} F \text { Input } d)
$$

- The strategies cbv and 010 (weak strict strategies differing in $a r_{2}$):

$$
(c b v \circ 010)((\lambda x \cdot \lambda y \cdot x) x(x \Omega)) \neq{ }_{\alpha} \operatorname{cbv}((\lambda x \cdot \lambda y \cdot x) x(x \Omega))
$$

- Proofs:
- 001 absorpts cbn. By induction on the structure of the derivations.

Absorption among uniform strategies

- We still don't know if he absorpts cbn.

Hybridisation: motivation

- Uniform strategies are not normalising (to NF).
- Standard reduction is neccesary for normalisation [Curry and Feys 1958]: Never reduce to the left of the residual of an already-reduced redex.
- A way to standardise: operators and operands in applications should be reduced to values (à la Plotkin).
- Hybridisation: produce new strategies that modify uniform strategies on this very point.

Hybridisation template

Hybrid strategy from subsidiary \mathcal{S} and base \mathcal{B} :

$$
\begin{aligned}
& \overline{x \xrightarrow{\text { su }} x} \\
& \frac{B \xrightarrow[\text { sub }]{\text { S.ab }} B^{\prime}}{\lambda x \cdot B \xrightarrow{\text { sub }} \lambda x \cdot B^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& M \xrightarrow{\text { sub }} M^{\prime} \not \equiv \lambda \lambda . B \quad N \xrightarrow[\text { s.ar }]{\text { sub }} N^{\prime} \\
& M N \xrightarrow{\text { sub }} M^{\prime} N^{\prime}
\end{aligned}
$$

Hybridisation template

Hybrid strategy from subsidiary \mathcal{S} and base \mathcal{B} :

$$
\begin{aligned}
& \overline{x \xrightarrow{\text { su }} x} \\
& \frac{B \xrightarrow[\text { sub }]{\text { Sal }} B^{\prime}}{\lambda x \cdot B \xrightarrow{\text { sub }} \lambda x \cdot B^{\prime}} \\
& M \xrightarrow{\text { sub }} \lambda x . B \quad N \xrightarrow[\text { s.ar }]{\text { sub }} N^{\prime} \quad\left[N^{\prime} / x\right] B \xrightarrow{\text { sub }} S \\
& M N \xrightarrow{\text { sub }} S \\
& M \xrightarrow{M \xrightarrow{\text { sub }} M^{\prime} \not \equiv \lambda x . B \quad N \xrightarrow[\mathcal{S} . \text { ar2 }]{\text { sub }} N^{\prime}} \\
& M N \xrightarrow{\text { sub }} M^{\prime} N^{\prime}
\end{aligned}
$$

Hybridisation template

Hybrid strategy from subsidiary \mathcal{S} and base \mathcal{B} :

$$
\begin{aligned}
& \overline{x \xrightarrow{\text { su }} x} \\
& \frac{B \xrightarrow[\text { sub }]{\text { Sal }} B^{\prime}}{\lambda x \cdot B \xrightarrow{\text { sub }} \lambda x \cdot B^{\prime}} \\
& \begin{array}{c}
M \xrightarrow{\text { sub }} \lambda x . B \quad N \xrightarrow{\text { sub }} \stackrel{\text { sur }}{S} N^{\prime} \quad\left[N^{\prime} / x\right] B \xrightarrow{\text { sub }} S \\
M N \xrightarrow{\text { sub }} S
\end{array} \\
& M \xrightarrow{\text { sub }} M^{\prime} \not \equiv \lambda x . B \quad N \xrightarrow[\text { s.ar }]{\text { sub }} N^{\prime} \\
& M N \xrightarrow{\text { sub }} M^{\prime} N^{\prime}
\end{aligned}
$$

Hybridisation template

Hybrid strategy from subsidiary \mathcal{S} and base \mathcal{B} :

$$
\begin{aligned}
& \overline{x \xrightarrow{\text { su }} x} \\
& \frac{B \xrightarrow[\text { sub }]{\text { Sal }} B^{\prime}}{\lambda x \cdot B \xrightarrow{\text { sub }} \lambda x \cdot B^{\prime}} \\
& \begin{array}{c}
M \xrightarrow{\text { sub }} \lambda x . B \quad N \xrightarrow[S . a r_{1}]{\text { sub }} N^{\prime} \quad\left[N^{\prime} / x\right] B \xrightarrow{\text { sub }} S \\
M N \xrightarrow{\text { sub }} S
\end{array} \\
& M \xrightarrow{\text { sub }} M^{\prime} \not \equiv \lambda x . B \quad N \xrightarrow[\text { s.ar }]{\text { sub }} N^{\prime} \\
& M N \xrightarrow{\text { sub }} M^{\prime} N^{\prime}
\end{aligned}
$$

Hybridisation template

Hybrid strategy from subsidiary \mathcal{S} and base \mathcal{B} :

$$
\begin{aligned}
& \overline{x \xrightarrow{s u b} x} \\
& \frac{B \xrightarrow[S . l a]{\text { sub }} B^{\prime}}{\lambda x \cdot B \xrightarrow{\text { sub }} \lambda x \cdot B^{\prime}} \\
& \begin{array}{c}
M \xrightarrow{\text { sub }} \lambda x \cdot B \quad N \xrightarrow[\mathcal{S} \cdot a r_{1}]{\text { sub }} N^{\prime} \quad\left[N^{\prime} / x\right] B \xrightarrow{\text { sub }} S \\
M N \xrightarrow{\text { sub }} S
\end{array} \\
& M \xrightarrow{\text { sub }} M^{\prime} \not \equiv \lambda x . B \quad N \xrightarrow[\mathcal{S} . a r_{2}]{\text { sub }} N^{\prime} \\
& M N \xrightarrow{\text { sub }} M^{\prime} N^{\prime}
\end{aligned}
$$

hyb or sub for the operand?

Hybridisation template

Hybrid strategy from subsidiary \mathcal{S} and base \mathcal{B} :
hyb or sub for the operand?

- Standardisation [Curry and Feys 1958] and absorption [Garcia et al. 2010] issues.

Hybridisation and the Beta Cube

 cbn:$$
\begin{aligned}
& \operatorname{VAR} \overline{x \xrightarrow{c b n} x} \quad \text { ABS } \overline{\lambda x \cdot B \xrightarrow{c b n} \lambda x \cdot B} \\
& \operatorname{RED} \frac{M \xrightarrow{c b n} M^{\prime} \equiv \lambda x \cdot B \quad[N / x] B \xrightarrow{c b n} S}{M N \xrightarrow{c b n} S} \\
& \operatorname{APP} \frac{M \xrightarrow{c b n} M^{\prime} \not \equiv \lambda x . B}{M N \xrightarrow{c b n} M^{\prime} N}
\end{aligned}
$$

Hybridisation and the Beta Cube

nor \equiv hybridise(cbn, 101):

Absorption theorem

Theorem
Let \mathcal{S} and \mathcal{B} be respectively a subsidiary and a base strategy considered as points in the cube which satisfy $\mathcal{S} \sqsubseteq \mathcal{B}$ and $\mathcal{S} . a r_{1}=\mathcal{B} . a r_{1}$.
Let $\xrightarrow{\text { sub }}$ and $\xrightarrow{\text { hyb }}$ be the resulting instantiated strategies. Then

$$
(h y b \circ s u b)(t)=\operatorname{hyb}(t)
$$

for any term t.
Proof.
By induction on the structure of the derivations.

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of $a r_{1}$.

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of $a r_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of $a r_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).
- ha reduces to normal form.

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of $a r_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).
- ha reduces to normal form.
- The operands of applications are reduced to normal forms before substitution.

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of ar $_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).
- ha reduces to normal form.
- The operands of applications are reduced to normal forms before substitution.
- Standard reduction: never reduce to the left of the residual of an already-reduced redex, but. . .

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of ar $_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).
- ha reduces to normal form.
- The operands of applications are reduced to normal forms before substitution.
- Standard reduction: never reduce to the left of the residual of an already-reduced redex, but...
... operands are reduced by the hybrid:

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of $a r_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).
- ha reduces to normal form.
- The operands of applications are reduced to normal forms before substitution.
- Standard reduction: never reduce to the left of the residual of an already-reduced redex, but...
... operands are reduced by the hybrid:
- If the operand is not a value then we still don't have a redex.

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of $a r_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).
- ha reduces to normal form.
- The operands of applications are reduced to normal forms before substitution.
- Standard reduction: never reduce to the left of the residual of an already-reduced redex, but...
... operands are reduced by the hybrid:
- If the operand is not a value then we still don't have a redex.
- We reduce the operand to a value. Now the application is a redex.

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of $a r_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).
- ha reduces to normal form.
- The operands of applications are reduced to normal forms before substitution.
- Standard reduction: never reduce to the left of the residual of an already-reduced redex, but. . .
... operands are reduced by the hybrid:
- If the operand is not a value then we still don't have a redex.
- We reduce the operand to a value. Now the application is a redex.
- We keep reducing the operand up to a normal form.

The value in the operand position is reduced before reducing the redex itself!

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of $a r_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).
- ha reduces to normal form.
- The operands of applications are reduced to normal forms before substitution.
- Standard reduction: never reduce to the left of the residual of an already-reduced redex, but. . .
... operands are reduced by the hybrid:
- If the operand is not a value then we still don't have a redex.
- We reduce the operand to a value. Now the application is a redex.
- We keep reducing the operand up to a normal form.

The value in the operand position is reduced before reducing the redex itself!

- Consequently:

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of $a r_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).
- ha reduces to normal form.
- The operands of applications are reduced to normal forms before substitution.
- Standard reduction: never reduce to the left of the residual of an already-reduced redex, but. . .
... operands are reduced by the hybrid:
- If the operand is not a value then we still don't have a redex.
- We reduce the operand to a value. Now the application is a redex.
- We keep reducing the operand up to a normal form.

The value in the operand position is reduced before reducing the redex itself!

- Consequently:
- ha does not absorb cbv [Garcia et al. 2010].

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of $a r_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).
- ha reduces to normal form.
- The operands of applications are reduced to normal forms before substitution.
- Standard reduction: never reduce to the left of the residual of an already-reduced redex, but. . .
... operands are reduced by the hybrid:
- If the operand is not a value then we still don't have a redex.
- We reduce the operand to a value. Now the application is a redex.
- We keep reducing the operand up to a normal form.

The value in the operand position is reduced before reducing the redex itself!

- Consequently:
- ha does not absorb cbv [Garcia et al. 2010].
- ha is not a standard β_{V}-reduction.

Sestoft's hibrydisation

- hybridiseSestoft uses hyb for the selection of $a r_{1}$.
- Consider ha = hybridiseSestoft(cbv, aor).
- ha reduces to normal form.
- The operands of applications are reduced to normal forms before substitution.
- Standard reduction: never reduce to the left of the residual of an already-reduced redex, but. . .
... operands are reduced by the hybrid:
- If the operand is not a value then we still don't have a redex.
- We reduce the operand to a value. Now the application is a redex.
- We keep reducing the operand up to a normal form.

The value in the operand position is reduced before reducing the redex itself!

- Consequently:
- ha does not absorb cbv [Garcia et al. 2010].
- ha is not a standard β_{V}-reduction.
- ha is not normalising in λ_{v}.

Implementations in OCaML and Haskell

- Rule Template:
- Generic reducer: higher-order.
- (Haskell) Monadic reducer: strict monads for strict semantics.
- Particular strategies are fixed points.

Implementations in OCaML and Haskell

- Rule Template:
- Generic reducer: higher-order.
- (Haskell) Monadic reducer: strict monads for strict semantics.
- Particular strategies are fixed points.
- Beta Cube:
- Boolean triple.
- cube2red delivers a reducer from a point in the cube.

Implementations in OCaML and Haskell

- Rule Template:
- Generic reducer: higher-order.
- (Haskell) Monadic reducer: strict monads for strict semantics.
- Particular strategies are fixed points.
- Beta Cube:
- Boolean triple.
- cube2red delivers a reducer from a point in the cube.
- Hybridisation:

Implementations in OCaML and Haskell

- Rule Template:
- Generic reducer: higher-order.
- (Haskell) Monadic reducer: strict monads for strict semantics.
- Particular strategies are fixed points.
- Beta Cube:
- Boolean triple.
- cube2red delivers a reducer from a point in the cube.
- Hybridisation:
- hybridise delivers a hybrid reducer from subsidiary and base from the cube.

Contributions

- Rule template generalises pure lambda calculus reduction strategies. (introducing $o p_{1}$ and $o p_{2}$ to accommodate hybrids)
- Beta Cube + Hybridise systematise the strategy space.
- Studied absorption among vertices in the lattice.
- Hybridisation operator:

1. Operands in applications reduced by hybrid: may not deliver strict normalising strategies.
2. Operands in applications reduced by subsidiary: may deliver strict normalising strategies.

- Absorption among hybrids and their subsidiaries (Absorption theorem).
- Implementation in OCaML and Haskell.

Future work

- Head strategies: using hnf instead of wnf as the notion of value.
- Head thunks (reduction stops at the right of a free variable)

Future work

- Head strategies: using hnf instead of wnf as the notion of value.
- Head thunks (reduction stops at the right of a free variable)
- Strategies and CPS transformation.

Future work

- Head strategies: using hnf instead of wnf as the notion of value.
- Head thunks (reduction stops at the right of a free variable)
- Strategies and CPS transformation.
- Implementing efficient β-testers for typing rules in dependent types systems.

Future work

- Head strategies: using hnf instead of wnf as the notion of value.
- Head thunks (reduction stops at the right of a free variable)
- Strategies and CPS transformation.
- Implementing efficient β-testers for typing rules in dependent types systems.
- Strategies to interpret universes in structural generic programming for dependent types.

Backup slides

Backup slides

Generic reducer in OCaML

let genred la op1 ar1 su op2 ar2 = function
| Var _ as v \rightarrow v
| Lam (x, b) \rightarrow Lam (x, la b)
| App (m, n) -> let m' = op1 m in match m' with
| Lam (x, b) \rightarrow su (subst (ar1 n) x b)
l _ $\quad->$ App (op2 m' , ar2 n)

Strategies are fixed point

(********************** la op1 ar1 su op2 ar2 *) let rec cbn $\mathrm{x}=$ (genred id cbn id cbn id id) x let rec cbv $\mathrm{x}=$ (genred id cbv cbv cbv id cbv) x let rec nor $\mathrm{x}=$ (genred nor cbn id nor nor nor) x let rec aor $\mathrm{x}=$ (genred aor aor aor aor id aor) x

Beta Cube implementation

let sel p red = if p then red else id
let cube2red $=$ function (la, ar1, ar2) ->
let rec red x
= (genred
(sel la red) red (sel ar1 red) red red (sel ar2 red)) x
in red

Hybridisation operator

```
let hybridise \(s=\) function (la, ar1, ar2) ->
    let \(s u b=\) cube2red \(s\) in
    let rec hyb x
        \(=\) (genred
                            (sel la hyb) sub (sel ar1 sub) hyb hyb (sel ar2 hyb)) x
    in hyb
```


Sestoft's hibrydisation

```
let hybridiseSestoft \(s=\) function (la, ar1, ar2) ->
    let \(s u b=\) cube2red \(s\) in
    let rec hyb x
        \(=\) (genred
                            (sel la hyb) sub (sel ar1 hyb) hyb hyb (sel ar2 hyb)) x
    in hyb
```


Generic reducer in Haskell

```
data Term = Var String | Lam String Term | App Term Term
type Red = Monad m => Term -> m Term
genred :: Red -> Red -> Red -> Red -> Red -> Red -> Red
genred la op1 ar1 su op2 ar2 t =
    case t of
    v@(Var _) -> return v
    (Lam x b) -> do b' <- la b
    return (Lam x b')
    (App m n) -> do m' <- op1 m
        case m' of
            (Lam x b) -> do n' <- ar1 n
                            su (subst b n' x)
            _ -> do m'' <- op2 m'
                        n', <- ar2 n
                        return (App m'' n'')
```


Strategies are fixed points

| la op1 ar1 su op2 ar2 | | | |
| :--- | :--- | :--- | :--- | :--- |
| cbn $=$ genred return cbn return | cbn return return | | |
| cbv $=$ genred return cbv cbv | cbv return | cbv | |
| aor $=$ genred aor | aor aor | aor return | aor |
| nor $=$ genred nor | cbn return nor nor | return | |

Beta Cube implementation

```
data BCube = BC Bool Bool Bool
cube2red :: Monad m => BCube -> Red m
cube2red (BC la ar1 ar2) =
    let red = genred
    (sel la red) red (sel ar1 red) red red (sel ar2 red)
    in red
    where sel par red = if par then red else return
```


Hibrydisation operator

```
hybridise :: (BetaCube, BetaCube) -> Red
hybridise (sub, (BC lab ar1b ar2b)) =
    let s = cube2red sub
        h = genred (sel lab h) s (sel ar1b s) h h (sel ar2b h)
    in h
```


Sestoft's hibrydisation operator

```
hybridiseSestoft :: (BetaCube, BetaCube) -> Red
hybridiseSestoft (sub, (BC lab ar1b ar2b)) =
    let s = cube2red sub
        h = genred (sel lab h) s (sel ar1b h) h h (sel ar2b h)
    in h
```

