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Context

I Reduction strategies for the pure (untyped) lambda calculus. . .

I Normal Order, Applicative (Standard) Order [Barendregt 1984].
I Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].
I Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).
I Hybrid applicative order (ha) [Sestoft 2002].
I Hybrid normal order (hn) [Sestoft 2002].
I Head reduction (hr) [Barendregt 1984].
I . . .

I . . . defined by sets of big-step rules.
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What are strategies useful for?

I Program optimization via partial evaluation.

I β-equivalence testers for typing rules in dependent types.

I Interpreting universes in structural generic programming with
dependent types.

I . . .
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Pure lambda calculus reduction strategies (big-step)

Call-by-name (cbn):

Normal order (nor):

x
cbn→ x

x
nor→ x

λx .B
cbn→ λx .B

B
nor→ B ′

λx .B
nor→ λx .B ′

76 5401 23M
cbn→ M ′ ≡ λx .B [N/x ]B

cbn→ S

M N
cbn→ S

76 5401 23M
cbn→ M ′ ≡ λx .B [N/x ]B

nor→ S

M N
nor→ S

76 5401 23M
cbn→ M ′ 6≡ λx .B

M N
cbn→ M ′ N

76 5401 23M
cbn→ M ′ 6≡ λx .B M ′ nor→ M ′′ N

nor→ N ′′

M N
nor→ M ′′ N ′′

Subsidiary Hybrid

Hybrid reduces in more places than subsidiary!
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Pure lambda calculus reduction strategies (big-step)

Rule Template:

var
x st→ x

abs
B la→ B ′

λx .B st→ λx .B ′

red
M op1→ M ′ ≡ λx .B N ar1→ N ′ [N ′/x ]B su→ S

M N st→ S

app
M op1→ M ′ 6≡ λx .B M ′ op2→ M ′′ N ar2→ N ′

M N st→ M ′′N ′

Use of op1 and op2 to accomodate hybrid strategies!
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Pure lambda calculus reduction strategies (big-step)

Rule Template (cbv):
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Pure lambda calculus reduction strategies (big-step)
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The Beta Cube

Parameters la, ar1 and ar2 are either recursive calls or identity.
Interpreted as boolean switches:

(v)

AOR CBVoo

1 0 1

__????
0 0 1oo

__????

1 1 0

OO

0 1 0oo

OO

HE

__????

OO

CBNoo

__????

OO

laoo

0 weakness 1 strength

ar1
__??????

0 non-strictness 1 strictness

ar2

OO

0 headness 1 non-headness

nf wnfoo

hnf

OO

whnfoo

OO
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Axis of eval

var
x cbn→ x

abs

B aor→ B ′

λx .B cbn→ λx .B

red
M cbn→ M ′ ≡ λx .B

N cbn→ N ′

[N /x ]B cbn→ S

M N cbn→ S

app
M cbn→ M ′ 6≡ λx .B

N cbn→ N ′

M N cbn→ M ′ N

AOR CBVoo

1 0 1

__????
0 0 1oo

__????

1 1 0

OO

0 1 0oo

OO

HE

__????

OO

'& %$ ! "#CBNoo

__????

OO

laoo strength

ar1
__?????? strictness

ar2

OO
non-headness
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Absorption

I Applying s2 before applying s1 doesn’t change the result of s1:

s1 absorpts s2 iff s1(t) =α s1(s2(t)).

I s1 absorpts s2 iff s2 is a left identity of s1.

t
s1→ t ′ iff t

s2→ t ′′
s1→ t ′

t
s19 iff


t

s29
or

t
s2→ t ′′

s19
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Absorption among uniform strategies
I We analyse the pairs of strategies in the order relation.

I Counterexamples:

I Any strict sts and non-strict st strategies (differing at least in ar1 ):

(sts ◦ st)((λx .λy .x) x Ω) 6=α sts((λx .λy .x) x Ω).

I Any strong non-head strategy st and its weak or head (or
weak-head) counterpart stwh (differing in la or ar2 or both):

(st ◦ stwh)((λk.k Ω) (λx .y)) 6=α st((λk.k Ω) (λx .y)).

I Any strict strong strategy st and any strict weak strategy stw
(differing at least in la, with ar1 = True):

(st ◦ stw )(Z RecF Input d) 6=α st(Z RecF Input d).

I The strategies cbv and 0 1 0 (weak strict strategies differing in ar2 ):

(cbv ◦ 0 1 0)((λx .λy .x) x (x Ω)) 6=α cbv((λx .λy .x) x (x Ω))

I Proofs:

I 0 0 1 absorpts cbn. By induction on the structure of the derivations.
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Absorption among uniform strategies

I We still don’t know if he absorpts cbn.
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Hybridisation: motivation

I Uniform strategies are not normalising (to NF).

I Standard reduction is neccesary for normalisation [Curry and Feys
1958]: Never reduce to the left of the residual of an already-reduced
redex.

I A way to standardise: operators and operands in applications should
be reduced to values (à la Plotkin).

I Hybridisation: produce new strategies that modify uniform strategies
on this very point.

11 / 29



Hybridisation template
Hybrid strategy from subsidiary S and base B:

x
sub→ x

x
hyb→ x

B
sub−−→
S.la

B ′

λx .B
sub→ λx .B ′

B
hyb−−→
B.la

B ′

λx .B
hyb→ λx .B ′

76 5401 23M
sub→ λx .B N

sub−−−→
S.ar1

N ′ [N ′/x ]B
sub→ S

M N
sub→ S

76 5401 23M
sub→ λx .B N

sub−−−→
B.ar1

N ′
[N ′/x ]B

hyb→ S

M N
hyb→ S

76 5401 23M
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Hybridisation and the Beta Cube
cbn:

nor ≡ hybridise(cbn,1 0 1):

var
x cbn→ x

abs

B nor→ B ′

λx .B cbn→ λx .B

red

76 5401 23M
cbn→ M ′ ≡ λx .B [N/x ]B cbn→ S

M N cbn→ S

app

76 5401 23M
cbn→ M ′ 6≡ λx .B

M ′ nor→ M ′′ N
nor→ N ′

M N cbn→ M ′ N

AOR CBVoo

1 0 1

__????
0 0 1oo

__????

1 1 0

OO

0 1 0oo

OO

HE

__????

OO

'& %$ ! "#CBNoo

__????

OO

laoo strength

ar1
__?????? strictness

ar2

OO
non-headness
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Absorption theorem

Theorem
Let S and B be respectively a subsidiary and a base strategy considered
as points in the cube which satisfy S v B and S.ar1 = B.ar1 .

Let
sub→ and

hyb→ be the resulting instantiated strategies. Then

(hyb ◦ sub)(t) = hyb(t)

for any term t.

Proof.
By induction on the structure of the derivations.
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Sestoft’s hibrydisation

I hybridiseSestoft uses hyb for the selection of ar1 .

I Consider ha = hybridiseSestoft(cbv , aor).

I ha reduces to normal form.
I The operands of applications are reduced to normal forms before

substitution.

I Standard reduction: never reduce to the left of the residual of an
already-reduced redex, but. . .

. . . operands are reduced by the hybrid:
I If the operand is not a value then we still don’t have a redex.
I We reduce the operand to a value. Now the application is a redex.
I We keep reducing the operand up to a normal form.

The value in the operand position is reduced before reducing the
redex itself!

I Consequently:

I ha does not absorb cbv [Garcia et al. 2010].
I ha is not a standard βV -reduction.
I ha is not normalising in λV .
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Implementations in OCaML and Haskell

I Rule Template:
I Generic reducer: higher-order.
I (Haskell) Monadic reducer: strict monads for strict semantics.
I Particular strategies are fixed points.

I Beta Cube:
I Boolean triple.
I cube2red delivers a reducer from a point in the cube.

I Hybridisation:

I hybridise delivers a hybrid reducer from subsidiary and base from
the cube.
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Contributions

I Rule template generalises pure lambda calculus reduction strategies.
(introducing op1 and op2 to accommodate hybrids)

I Beta Cube + Hybridise systematise the strategy space.

I Studied absorption among vertices in the lattice.

I Hybridisation operator:

1. Operands in applications reduced by hybrid: may not deliver strict
normalising strategies.

2. Operands in applications reduced by subsidiary: may deliver strict
normalising strategies.

I Absorption among hybrids and their subsidiaries (Absorption
theorem).

I Implementation in OCaML and Haskell.
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Future work

I Head strategies: using hnf instead of wnf as the notion of value.
I Head thunks (reduction stops at the right of a free variable)

I Strategies and CPS transformation.

I Implementing efficient β-testers for typing rules in dependent types
systems.

I Strategies to interpret universes in structural generic programming
for dependent types.
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Backup slides

Backup slides
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Generic reducer in OCaML

let genred la op1 ar1 su op2 ar2 = function

| Var _ as v -> v

| Lam (x, b) -> Lam (x, la b)

| App (m, n) -> let m’ = op1 m in match m’ with

| Lam (x, b) -> su (subst (ar1 n) x b)

| _ -> App (op2 m’ , ar2 n)
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Strategies are fixed point

(********************** la op1 ar1 su op2 ar2 *)

let rec cbn x = (genred id cbn id cbn id id ) x

let rec cbv x = (genred id cbv cbv cbv id cbv) x

let rec nor x = (genred nor cbn id nor nor nor) x

let rec aor x = (genred aor aor aor aor id aor) x

...
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Beta Cube implementation

let sel p red = if p then red else id

let cube2red = function (la, ar1, ar2) ->

let rec red x

= (genred

(sel la red) red (sel ar1 red) red red (sel ar2 red)) x

in red
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Hybridisation operator

let hybridise s = function (la, ar1, ar2) ->

let sub = cube2red s in

let rec hyb x

= (genred

(sel la hyb) sub (sel ar1 sub) hyb hyb (sel ar2 hyb)) x

in hyb
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Sestoft’s hibrydisation

let hybridiseSestoft s = function (la, ar1, ar2) ->

let sub = cube2red s in

let rec hyb x

= (genred

(sel la hyb) sub (sel ar1 hyb) hyb hyb (sel ar2 hyb)) x

in hyb
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Generic reducer in Haskell

data Term = Var String | Lam String Term | App Term Term

type Red = Monad m => Term -> m Term

genred :: Red -> Red -> Red -> Red -> Red -> Red -> Red

genred la op1 ar1 su op2 ar2 t =

case t of

v@(Var _) -> return v

(Lam x b) -> do b’ <- la b

return (Lam x b’)

(App m n) -> do m’ <- op1 m

case m’ of

(Lam x b) -> do n’ <- ar1 n

su (subst b n’ x)

_ -> do m’’ <- op2 m’

n’’ <- ar2 n

return (App m’’ n’’)
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Strategies are fixed points

la op1 ar1 su op2 ar2

cbn = genred return cbn return cbn return return

cbv = genred return cbv cbv cbv return cbv

aor = genred aor aor aor aor return aor

nor = genred nor cbn return nor nor return

...
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Beta Cube implementation

data BCube = BC Bool Bool Bool

cube2red :: Monad m => BCube -> Red m

cube2red (BC la ar1 ar2) =

let red = genred

(sel la red) red (sel ar1 red) red red (sel ar2 red)

in red

where sel par red = if par then red else return
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Hibrydisation operator

hybridise :: (BetaCube, BetaCube) -> Red

hybridise (sub, (BC lab ar1b ar2b)) =

let s = cube2red sub

h = genred (sel lab h) s (sel ar1b s) h h (sel ar2b h)

in h
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Sestoft’s hibrydisation operator

hybridiseSestoft :: (BetaCube, BetaCube) -> Red

hybridiseSestoft (sub, (BC lab ar1b ar2b)) =

let s = cube2red sub

h = genred (sel lab h) s (sel ar1b h) h h (sel ar2b h)

in h
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