The Beta Cube

2 2

Alvaro Garcial: Pablo Nogueira Emilio Jesiis Gallego Arias?

IMDEA Software Institute

2Babel Research Group, Universidad Politécnica de Madrid

ITU 2011, Kobenham

Context

» Reduction strategies for the pure (untyped) lambda calculus. . .

2/29

Context

» Reduction strategies for the pure (untyped) lambda calculus. . .
> Normal Order, Applicative (Standard) Order [Barendregt 1984].

Context

» Reduction strategies for the pure (untyped) lambda calculus. . .

> Normal Order, Applicative (Standard) Order [Barendregt 1984].
> Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].

Context

» Reduction strategies for the pure (untyped) lambda calculus. . .
> Normal Order, Applicative (Standard) Order [Barendregt 1984].
> Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].
> Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).

Context

» Reduction strategies for the pure (untyped) lambda calculus. . .

> Normal Order, Applicative (Standard) Order [Barendregt 1984].
> Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].

> Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).

» Hybrid applicative order (ha) [Sestoft 2002].

Context

» Reduction strategies for the pure (untyped) lambda calculus. . .

> Normal Order, Applicative (Standard) Order [Barendregt 1984].
> Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].

Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).
Hybrid applicative order (ha) [Sestoft 2002].

Hybrid normal order (hn) [Sestoft 2002].

vyvyy

Context

» Reduction strategies for the pure (untyped) lambda calculus. . .

>

vVvYyvVvVVvyvy

Normal Order, Applicative (Standard) Order [Barendregt 1984].
Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].

Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).
Hybrid applicative order (ha) [Sestoft 2002].

Hybrid normal order (hn) [Sestoft 2002].

Head reduction (hr) [Barendregt 1984].

Context

» Reduction strategies for the pure (untyped) lambda calculus. . .

>

vVYyVvYVvVVvYy

Normal Order, Applicative (Standard) Order [Barendregt 1984].
Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].

Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).
Hybrid applicative order (ha) [Sestoft 2002].

Hybrid normal order (hn) [Sestoft 2002].

Head reduction (hr) [Barendregt 1984].

Context

» Reduction strategies for the pure (untyped) lambda calculus. . .

>

vVYyVvYVvVVvYy

Normal Order, Applicative (Standard) Order [Barendregt 1984].
Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].

Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).
Hybrid applicative order (ha) [Sestoft 2002].

Hybrid normal order (hn) [Sestoft 2002].

Head reduction (hr) [Barendregt 1984].

> ...defined by sets of big-step rules.

What are strategies useful for?

» Program optimization via partial evaluation.

3/29

What are strategies useful for?

» Program optimization via partial evaluation.

» [-equivalence testers for typing rules in dependent types.

3/29

What are strategies useful for?

» Program optimization via partial evaluation.
» [-equivalence testers for typing rules in dependent types.

» Interpreting universes in structural generic programming with
dependent types.

3/29

What are strategies useful for?

v

Program optimization via partial evaluation.

v

(B-equivalence testers for typing rules in dependent types.

v

Interpreting universes in structural generic programming with
dependent types.

3/29

Pure lambda calculus reduction strategies (big-step)

Call-by-name (cbn):

cbn
X — X

Ax.B % Ax.B

MM =)xB [N/XBHS
MN s

ML M £ Mx.B
MN L M N

4/29

Pure lambda calculus reduction strategies (big-step)

Call-by-name (cbn):

cbn
X — X

Ax.B % Ax.B

MM =B [N/XBHS

MN% s

ML M £ Mx.B
MN L M N

Subsidiary

Normal order (nor):

nor
X — X

B B
Ax.B™X \x.B'

WML M =ax.B) [N/x]B™X'S

MNXS

MM £X.B) MM NN

MN ™ M N
Hybrid

4/29

Pure lambda calculus reduction strategies (big-step)

Call-by-name (cbn): Normal order (nor):
X ‘29 X x 2 x
B B
Ax.B % \x.B Mx.B ™% \x.B'
MM =B [N/XBHS (MM =xx.B) [N/X]B™XS
MN s MN™S
ML M £ Mx.B MM £X.B) MM NN
MN LM N MN ™ M N"
Subsidiary Hybrid

Hybrid reduces in more places than subsidiary!

4/29

Pure lambda calculus reduction strategies (big-step)

Rule Template:

B & B’
VAR —— ABS ——————
x st x /\X.B_> Ax.B

Mo M =x.B Na N [N/xBsS

RED MN = S
M op: M" #£ Ax.B M ope M N arz N
APP —— Gl —

MN st M" N

5/29

Pure lambda calculus reduction strategies (big-step)

Rule Template:

B & B’
VAR —— ABS ——————
x st x /\X.B_> Ax.B

Mo M =x.B Na N [N/x]BsS

RED MN = S
M op: M" #£ Ax.B M ope M N arz N
APP —— Gl —

MN st M" N

5/29

Pure lambda calculus reduction strategies (big-step)

Rule Template (cbn):

x bo x Ax.B <bp A\x.B
Mebo M =Ax.B N4 N [N /x]BebrS
RED
"’ MN by S
Mebo M £ A\x.B M 4 M N N

APP bn 7
MN o M N

5/29

Pure lambda calculus reduction strategies (big-step)

Rule Template (cbv):

x by x Ax.B by A\x.B
- MCL"{MIE)\X.B N'ﬂ’N/ [N’/X]Bcg’s
M N <by S
Mcg’M’gé)\x.B M'ﬂM' Nﬂ/N'

A MN b M N

5/29

Pure lambda calculus reduction strategies (big-step)

Rule Template (aor):

!
X 3% x Ax.B aor Ax.B’

M M =x.B NN [N/x]BaS
MN 2 S

RED

Mar M #Xx.B M & M NN

APP or 7 7
MN 2 M N

5/29

Pure lambda calculus reduction strategies (big-step)

Rule Template (nor):

!
X "oy x Ax.B nor Ax.B’

Meo M = x.B NN [N/xBS

RED MN’E;S

o MEM ZAB MM N N
M N ner M7 N/

Use of op; and op, to accomodate hybrid strategies!

5/29

The Beta Cube

Parameters /a, arl and ar2 are either recursive calls or identity.
Interpreted as boolean switches:

6/29

The Beta Cube

Parameters /a, arl and ar2 are either recursive calls or identity.
Interpreted as boolean switches:

la
AOR <—— CBVY

NN
(E) 101<T001 \

110=<-|—010
Targ

NN

HE <—— CBN

6/29

The Beta Cube

Parameters /a, arl and ar2 are either recursive calls or identity.
Interpreted as boolean switches:

la

AOR <— CBY < 0 weakness 1 strength
AN AN
() 101=<=——001 0 non-strictness 1 strictness
110=<-|—010
\ \ Tarz 0 headness 1 non-headness

HE <—— CBN

The Beta Cube

Parameters /a, arl and ar2 are either recursive calls or identity.
Interpreted as boolean switches:

la

AOR <— CBY < 0 weakness 1 strength
\ T \ . | |
() 101l=<=——001 0 non-strictness 1 strictness
110=<-|—010

\ \ Tafz 0 headness 1 non-headness

HE <—— CBN

nf <—— wnf

hnf <=— whnf

Axis of eval

VAR

™ AB
X <bn x
*>

M by M’ = \x.B
RED — X

S b,
Ax.B o Ax.B

[N /x]B <0 S

M N by S

M cbo M # Ax.B
APP - ¢ x

M N <o M’ N

la

AOR <—— CBVY I —

NN
| N

110=<-|—010
Targ

N

He ~——(CE)

strength

strictness

non-headness

7/29

Axis of eval

VAR

b ABS e o "\ B
x by x Ax.B by Ax.B
MC_b‘;M’E)\x.B Ncg/N/ [N’/X]BC_b‘;S

RED MNCE‘{S

My M' #£Ax.B N by N/

A MN by M N’

I
AOR CBV 2 strength

N

ar .
101<——001 \1 strictness

110=<-|—010
Tarz non-headness

N

He ~——(CE)

7/29

Axis of eval

B 22 B
VAR a0r ABS 7
X 3% x Ax.B 3 Ax.B

M2 M" = Ax.B N aor N’ [N'/x]B 2 S

RED MN‘E;S

M2 M' #£Ax.B N N/
MN 22 M N

SLE strength

ar .
\1 strictness

110=<-|—010
Targ

N

He ~——(CE)

non-headness

7/29

Absorption

» Applying s, before applying s; doesn’'t change the result of s;:

sy absorpts s, iff 51(t) =4 s1(s2(2))-

8/29

Absorption

» Applying s, before applying s; doesn’'t change the result of s;:
sy absorpts s, iff 51(t) =4 s1(s2(2))-
> s; absorpts s; iff s, is a left identity of s;.

5 /

t = iff t3¢t

//5 /

5 // 51

8/29

Absorption among uniform strategies

» We analyse the pairs of strategies in the order relation.

9/29

Absorption among uniform strategies

» We analyse the pairs of strategies in the order relation.
» Counterexamples:

9/29

Absorption among uniform strategies

» We analyse the pairs of strategies in the order relation.
» Counterexamples:

> Any strict sts and non-strict st strategies (differing at least in ar;):

(sts o st)((Ax.Ay.x) x Q) #a sts((Ax.Ay.x) x Q).

9/29

Absorption among uniform strategies

» We analyse the pairs of strategies in the order relation.
» Counterexamples:

> Any strict sts and non-strict st strategies (differing at least in ar;):

(sts o st)((Ax.Ay.x) x Q) #a sts((Ax.Ay.x) x Q).

> Any strong non-head strategy st and its weak or head (or
weak-head) counterpart st (differing in /a or ar> or both):

(st o stwn)((Ak.k Q) (Ax.y)) #a st((Ak.k Q) (Ax.y)).

9/29

Absorption among uniform strategies

» We analyse the pairs of strategies in the order relation.
» Counterexamples:

> Any strict sts and non-strict st strategies (differing at least in ar;):

(sts o st)((Ax.Ay.x) x Q) #a sts((Ax.Ay.x) x Q).

> Any strong non-head strategy st and its weak or head (or
weak-head) counterpart st (differing in /a or ar> or both):

(st o stwn)((Ak.k Q) (Ax.y)) #a st((Ak.k Q) (Ax.y)).

> Any strict strong strategy st and any strict weak strategy st,,
(differing at least in la, with ar; = True):

(st o stw)(Z RecF Input d) #4 st(Z RecF Input d).

Absorption among uniform strategies

» We analyse the pairs of strategies in the order relation.
» Counterexamples:
> Any strict sts and non-strict st strategies (differing at least in ar;):

(sts o st)((Ax.Ay.x) x Q) #a sts((Ax.Ay.x) x Q).

> Any strong non-head strategy st and its weak or head (or
weak-head) counterpart st (differing in /a or ar> or both):

(st o stwn)((Ak.k Q) (Ax.y)) #a st((Ak.k Q) (Ax.y)).

> Any strict strong strategy st and any strict weak strategy st,,
(differing at least in la, with ar; = True):

(st o stw)(Z RecF Input d) #4 st(Z RecF Input d).

> The strategies cbv and 0 1 0 (weak strict strategies differing in ar»):

(ebv o0 1 0)((Ax.-Ay.x)x (xQ)) #a chbv((Ax.Ay.x) x (xQ))

Absorption among uniform strategies

» We analyse the pairs of strategies in the order relation.
» Counterexamples:
> Any strict sts and non-strict st strategies (differing at least in ar;):

(sts o st)((Ax.Ay.x) x Q) #a sts((Ax.Ay.x) x Q).

> Any strong non-head strategy st and its weak or head (or
weak-head) counterpart st (differing in /a or ar> or both):

(st o stwn)((Ak.k Q) (Ax.y)) #a st((Ak.k Q) (Ax.y)).

> Any strict strong strategy st and any strict weak strategy st,,
(differing at least in la, with ar; = True):

(st o stw)(Z RecF Input d) #4 st(Z RecF Input d).

> The strategies cbv and 0 1 0 (weak strict strategies differing in ar»):

(ebv o0 1 0)((Ax.-Ay.x)x (xQ)) #a chbv((Ax.Ay.x) x (xQ))

» Proofs:

Absorption among uniform strategies

» We analyse the pairs of strategies in the order relation.
» Counterexamples:
> Any strict sts and non-strict st strategies (differing at least in ar;):

(sts o st)((Ax.Ay.x) x Q) #a sts((Ax.Ay.x) x Q).

> Any strong non-head strategy st and its weak or head (or
weak-head) counterpart st (differing in /a or ar> or both):

(st o stwn)((Ak.k Q) (Ax.y)) #a st((Ak.k Q) (Ax.y)).

> Any strict strong strategy st and any strict weak strategy st,,
(differing at least in la, with ar; = True):

(st o stw)(Z RecF Input d) #4 st(Z RecF Input d).

> The strategies cbv and 0 1 0 (weak strict strategies differing in ar»):

(ebv o0 1 0)((Ax.-Ay.x)x (xQ)) #a chbv((Ax.Ay.x) x (xQ))

» Proofs:

> 00 1 absorpts cbn. By induction on the structure of the derivations.

Absorption among uniform strategies

» We still don't know if he absorpts cbn.

10/29

Hybridisation: motivation

» Uniform strategies are not normalising (to NF).

» Standard reduction is neccesary for normalisation [Curry and Feys
1958]: Never reduce to the left of the residual of an already-reduced
redex.

» A way to standardise: operators and operands in applications should
be reduced to values (a la Plotkin).

» Hybridisation: produce new strategies that modify uniform strategies
on this very point.

11/29

Hybridisation template
Hybrid strategy from subsidiary S and base B:

sub

X — X

sub

B =B’
S.la
sub

Ax.B 2 2x.B’

M xx.B N —>55”" N [N'/x]B*%s
.arg

sub

MN =S

MM £Xx.B N —>;”" N
.arp

MNZ M N

Hybridisation template
Hybrid strategy from subsidiary S and base B:

sub

X — X

B sub B/
S.la

Ax.B % \x.B'

M xx.B N ﬁf“b N [N'/x]B*%s
.arg

sub

MN =S

MM £Xx.B N\

S.arp

sub

MNZ= M N

Hybridisation template

Hybrid strategy from subsidiary S and base B:

sub

hyb

X —= X X —= X
B 2B ERLLNY
_ Sk Bl
Ax.B 2 Ax.B' Ax.B ™ \x.B
MHAxE NN (NS NN N /XE S
S.ar; .arg
MNZ2S MN™ s

MM £Xx.B N\

S.arp

sub

MNZ= M N

MM £Ax.B) M ™M N —>B”y" N
.arp

MN™ M N

Hybridisation template

Hybrid strategy from subsidiary S and base B:

sub

hyb

X —= X X —= X
B 2B ERLNY
_ Sk Bl
Ax.B % \x.B' Ax.B ™ \x.B
MHAxE NN (NS NN N XB S
S.ar; .ary
MNZ2S MN™ s

MM £Xx.B N\

S.arp

sub

MNZ= M N

MM £Ax.B) M ™M N —>B”y" N
.arp

MN™ M N

Hybridisation template

Hybrid strategy from subsidiary S and base B:

sub

hyb

X —= X X —= X
B sub B/ B hyb B/
S.la B.la
Ax.B 2 Ax.B' Ax.B ™ \x.B
M AxB NN [N'/x]B*%S NN INxB 2 s
S.ar; -arn
MN%s MN™ s
M S_ut; M % Ax.B N sub N/ M S_Ul; M’ 7—é Ax.B M/ '11; M// N hyb N//
S.ary B.ary
MNZ M N MN™ M N

hyb or sub for the operand?

Hybridisation template

Hybrid strategy from subsidiary S and base B:

sub

hyb

X — X X —= X
B 2B ERLNY
_ Sk Bl
Ax.B % \x.B' Ax.B ™ \x.B
MZxB NN [N'/x]B*%S W [V'/x]B ™S
S.ar; .ary
MNZ2S MN™ s

MM £Xx.B N\

S.arp

sub

MNZ= M N

hyb or sub for the operand?

MM £x.B) M ™M

Y hyb N
B.arp

MN™ M N

» Standardisation [Curry and Feys 1958] and absorption [Garcia et al.

2010] issues.

Hybridisation and the Beta Cube

cbn:

VAR ABS —————mX—
x bn x Ax.B b0 \x.B
MEM =B [N/X]BS
RED

M N by S

ML M £ Ax.B

APP pr 7
MN o M N

la
AOR <—— CBV -~ strength

NN

ar .
101<—— 001 \1 strictness

110<-|—010

N

HE CBN

non-headness

13/29

Hybridisation and the Beta Cube
nor = hybridise(cbn,1 0 1):

B nor B’
VAR ABS —
X mor x Ax.B nr Ax.B
MM =xx.B) [N/x]BrrS
RED MN S

MM £XM\x.B) MM NN

MN e M\

APP

AOR <—— CBV <~ strength

ar .
\1 strictness

Tarz non-headness

13/29

Absorption theorem

Theorem

Let § and B be respectively a subsidiary and a base strategy considered
as points in the cube which satisfy S C B and S.ar; = B.ary.

b hyb L . .
Let 2% and 25 be the resulting instantiated strategies. Then

(hyb o sub)(t) = hyb(t)

for any term t.

Proof.

By induction on the structure of the derivations. O

14 /29

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.

15 /29

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.
» Consider ha = hybridiseSestoft(cbv, aor).

15/29

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.

» Consider ha = hybridiseSestoft(cbv, aor).
> ha reduces to normal form.

15/29

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.

» Consider ha = hybridiseSestoft(cbv, aor).
> ha reduces to normal form.
> The operands of applications are reduced to normal forms before
substitution.

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.

» Consider ha = hybridiseSestoft(cbv, aor).

> ha reduces to normal form.
> The operands of applications are reduced to normal forms before
substitution.

» Standard reduction: never reduce to the left of the residual of an
already-reduced redex, but. ..

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.

» Consider ha = hybridiseSestoft(cbv, aor).

> ha reduces to normal form.
> The operands of applications are reduced to normal forms before
substitution.

» Standard reduction: never reduce to the left of the residual of an
already-reduced redex, but. ..
...operands are reduced by the hybrid:

15/29

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.

» Consider ha = hybridiseSestoft(cbv, aor).

> ha reduces to normal form.
> The operands of applications are reduced to normal forms before
substitution.

» Standard reduction: never reduce to the left of the residual of an

already-reduced redex, but. ..
...operands are reduced by the hybrid:

> If the operand is not a value then we still don't have a redex.

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.

» Consider ha = hybridiseSestoft(cbv, aor).

> ha reduces to normal form.
> The operands of applications are reduced to normal forms before
substitution.

» Standard reduction: never reduce to the left of the residual of an

already-reduced redex, but. ..
...operands are reduced by the hybrid:

> If the operand is not a value then we still don't have a redex.

> We reduce the operand to a value. Now the application is a redex.

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.
» Consider ha = hybridiseSestoft(cbv, aor).

> ha reduces to normal form.
> The operands of applications are reduced to normal forms before
substitution.

» Standard reduction: never reduce to the left of the residual of an

already-reduced redex, but. ..
...operands are reduced by the hybrid:

> If the operand is not a value then we still don't have a redex.

> We reduce the operand to a value. Now the application is a redex.

> We keep reducing the operand up to a normal form.
The value in the operand position is reduced before reducing the
redex itself!

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.
» Consider ha = hybridiseSestoft(cbv, aor).
» ha reduces to normal form.
> The operands of applications are reduced to normal forms before
substitution.
» Standard reduction: never reduce to the left of the residual of an
already-reduced redex, but. ..
...operands are reduced by the hybrid:
> If the operand is not a value then we still don't have a redex.

> We reduce the operand to a value. Now the application is a redex.

> We keep reducing the operand up to a normal form.
The value in the operand position is reduced before reducing the
redex itself!

» Consequently:

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.
» Consider ha = hybridiseSestoft(cbv, aor).
> ha reduces to normal form.
> The operands of applications are reduced to normal forms before
substitution.
» Standard reduction: never reduce to the left of the residual of an

already-reduced redex, but. ..
...operands are reduced by the hybrid:

> If the operand is not a value then we still don't have a redex.

> We reduce the operand to a value. Now the application is a redex.

> We keep reducing the operand up to a normal form.
The value in the operand position is reduced before reducing the
redex itself!
» Consequently:
> ha does not absorb cbv [Garcia et al. 2010].

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.
» Consider ha = hybridiseSestoft(cbv, aor).
» ha reduces to normal form.
> The operands of applications are reduced to normal forms before
substitution.
» Standard reduction: never reduce to the left of the residual of an
already-reduced redex, but. ..
...operands are reduced by the hybrid:
> If the operand is not a value then we still don't have a redex.

> We reduce the operand to a value. Now the application is a redex.

> We keep reducing the operand up to a normal form.
The value in the operand position is reduced before reducing the
redex itself!
» Consequently:

> ha does not absorb cbv [Garcia et al. 2010].
> hais not a standard SBy-reduction.

Sestoft's hibrydisation

> hybridiseSestoft uses hyb for the selection of ar;.
» Consider ha = hybridiseSestoft(cbv, aor).
» ha reduces to normal form.
> The operands of applications are reduced to normal forms before
substitution.
» Standard reduction: never reduce to the left of the residual of an
already-reduced redex, but. ..
...operands are reduced by the hybrid:
> If the operand is not a value then we still don't have a redex.

> We reduce the operand to a value. Now the application is a redex.

> We keep reducing the operand up to a normal form.
The value in the operand position is reduced before reducing the
redex itself!

» Consequently:

> ha does not absorb cbv [Garcia et al. 2010].
> hais not a standard SBy-reduction.
> hais not normalising in Av.

Implementations in OCaML and Haskell

» Rule Template:

> Generic reducer: higher-order.
> (Haskell) Monadic reducer: strict monads for strict semantics.
> Particular strategies are fixed points.

16 /29

Implementations in OCaML and Haskell

» Rule Template:
> Generic reducer: higher-order.
> (Haskell) Monadic reducer: strict monads for strict semantics.
> Particular strategies are fixed points.
> Beta Cube:
» Boolean triple.
> cube2red delivers a reducer from a point in the cube.

16 /29

Implementations in OCaML and Haskell

» Rule Template:

> Generic reducer: higher-order.
> (Haskell) Monadic reducer: strict monads for strict semantics.
> Particular strategies are fixed points.

» Beta Cube:

» Boolean triple.
> cube2red delivers a reducer from a point in the cube.

» Hybridisation:

16 /29

Implementations in OCaML and Haskell

» Rule Template:
> Generic reducer: higher-order.
> (Haskell) Monadic reducer: strict monads for strict semantics.
> Particular strategies are fixed points.
> Beta Cube:
» Boolean triple.
> cube2red delivers a reducer from a point in the cube.
» Hybridisation:
> hybridise delivers a hybrid reducer from subsidiary and base from
the cube.

16 /29

Contributions

Rule template generalises pure lambda calculus reduction strategies.

(introducing op; and op, to accommodate hybrids)
Beta Cube 4 Hybridise systematise the strategy space.

» Studied absorption among vertices in the lattice.
» Hybridisation operator:

1. Operands in applications reduced by hybrid: may not deliver strict
normalising strategies.
2. Operands in applications reduced by subsidiary: may deliver strict
normalising strategies.
Absorption among hybrids and their subsidiaries (Absorption
theorem).

Implementation in OCaML and Haskell.

Future work

» Head strategies: using hnf instead of wnf as the notion of value.
> Head thunks (reduction stops at the right of a free variable)

Future work

» Head strategies: using hnf instead of wnf as the notion of value.
> Head thunks (reduction stops at the right of a free variable)

» Strategies and CPS transformation.

Future work

» Head strategies: using hnf instead of wnf as the notion of value.
> Head thunks (reduction stops at the right of a free variable)
» Strategies and CPS transformation.
» Implementing efficient -testers for typing rules in dependent types
systems.

Future work

Head strategies: using hnf instead of wnf as the notion of value.
> Head thunks (reduction stops at the right of a free variable)

v

Strategies and CPS transformation.

Implementing efficient -testers for typing rules in dependent types
systems.

Strategies to interpret universes in structural generic programming
for dependent types.

v

v

v

Backup slides

Backup slides

Generic reducer in OCaML

let genred la opl arl su op2 ar2 = function
| Var _ as v ->v
| Lam (x, b) -> Lam (x, la b)
| App (m, n) -> let m’ = opl m in match m’ with
| Lam (x, b) -> su (subst (arl n) x b)
| _ -> App (op2 m’ , ar2 n)

Strategies are fixed point

(koK sk sk ok ok ok ok ok ook ok ok ok ok ok oK ok ok

let
let
let
let

rec
rec
rec
rec

cbn x
cbv x
nor x
aor x

(genred

(genred i

(genred
(genred

nor
aor

opl
cbn
cbv
cbn
aor

arl
id
cbv
id
aor

su
cbn
cbv
nor
aor

op2
id
id
nor
id

ar2 *)
id) x
cbv) x
nor) x
aor) x

Beta Cube implementation

let sel p red = if p then red else id

let cube2red = function (la, arl, ar2) ->
let rec red x
= (genred
(sel la red) red (sel arl red) red red (sel ar2 red)) x
in red

N
N
)

Hybridisation operator

let hybridise s = function (la, arl, ar2) ->
let sub = cube2red s in
let rec hyb x
= (genred
(sel la hyb) sub (sel arl sub) hyb hyb (sel ar2 hyb)) x
in hyb

Sestoft's hibrydisation

let hybridiseSestoft s = function (la, arl, ar2) ->
let sub = cube2red s in
let rec hyb x
= (genred
(sel la hyb) sub (sel arl hyb) hyb hyb (sel ar2 hyb)) x
in hyb

Generic reducer in Haskell

data Term = Var String | Lam String Term | App Term Term
type Red = Monad m => Term -> m Term

genred :: Red -> Red -> Red -> Red -> Red -> Red -> Red
genred la opl arl su op2 ar2 t =
case t of
v@(Var _) -> return v
(Lam x b) -> do b’ <- la b
return (Lam x b’)
(App m n) -> do m’ <- opl m
case m’ of
(Lam x b) -> do n’ <- arl n
su (subst b n’ x)
_ -> do m’’ <- op2 m’
n’’ <- ar2 n
return (App m’’ n’’)

Strategies are fixed points

cbn
cbv
aor
nor

genred
genred
genred
genred

la opl

return cbn

return cbv
aor aor
nor cbn

arl su

return cbn

cbv cbv
aor aor
return nor

op2 ar2
return return
return cbv
return aor
nor return

26 /29

Beta Cube implementation

data BCube = BC Bool Bool Bool

cube2red :: Monad m => BCube -> Red m
cube2red (BC la arl ar2) =
let red = genred
(sel la red) red (sel arl red) red red (sel ar2 red)
in red
where sel par red = if par then red else return

Hibrydisation operator

hybridise ::

hybridise
let s =
h =

in h

(BetaCube, BetaCube) -> Red

(sub, (BC lab arlb ar2b)) =

cube2red sub

genred (sel lab h) s (sel arlb s) h h (sel ar2b h)

Sestoft's hibrydisation operator

hybridiseSestoft :: (BetaCube, BetaCube) -> Red
hybridiseSestoft (sub, (BC lab arlb ar2b)) =
let s = cube2red sub
h = genred (sel lab h) s (sel arlb h) h h (sel ar2b h)
in h

	Context
	Reduction Strategies (Big Step)
	The Beta Cube
	Hybridisation
	Absorption Theorem
	Implementations
	Contributions
	Backup

