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» Reduction strategies for the pure (untyped) lambda calculus. . .

>

vVYyVvYVvVVvYy

Normal Order, Applicative (Standard) Order [Barendregt 1984].
Call-by-name, Call-by-value [Plotkin 1975] [Sestoft 2002].

Head spine (he) [Sestoft 2002] (headNF in [Paulson 1996]).
Hybrid applicative order (ha) [Sestoft 2002].

Hybrid normal order (hn) [Sestoft 2002].

Head reduction (hr) [Barendregt 1984].

> ...defined by sets of big-step rules.
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Subsidiary

Normal order (nor):

nor
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Pure lambda calculus reduction strategies (big-step)

Call-by-name (cbn): Normal order (nor):
X ‘29 X x 2 x
B B
Ax.B % \x.B Mx.B ™% \x.B'
MM =B [N/XBHS (MM =xx.B) [N/X]B™XS
MN s MN™S
ML M £ Mx.B MM £X.B) MM NN
MN LM N MN ™ M N"
Subsidiary Hybrid

Hybrid reduces in more places than subsidiary!
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Pure lambda calculus reduction strategies (big-step)

Rule Template (cbv):

x by x Ax.B by A\x.B
- MCL"{MIE)\X.B N'ﬂ’N/ [N’/X]Bcg’s
M N <by S
Mcg’M’gé)\x.B M'ﬂM' Nﬂ/N'
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Pure lambda calculus reduction strategies (big-step)

Rule Template (aor):

!
X 3% x Ax.B aor Ax.B’

M M =x.B NN [N/x]BaS
MN 2 S

RED

Mar M #Xx.B M & M NN

APP or 7 7
MN 2 M N
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Pure lambda calculus reduction strategies (big-step)

Rule Template (nor):

!
X "oy x Ax.B nor Ax.B’

Meo M = x.B NN [N/xBS

RED MN’E;S

o MEM ZAB MM N N
M N ner M7 N/

Use of op; and op, to accomodate hybrid strategies!

5/29



The Beta Cube

Parameters /a, arl and ar2 are either recursive calls or identity.
Interpreted as boolean switches:

6/29



The Beta Cube

Parameters /a, arl and ar2 are either recursive calls or identity.
Interpreted as boolean switches:

la
AOR <—— CBVY

NN
(E) 101<T001 \

110=<-|—010
Targ

NN

HE <—— CBN

6/29



The Beta Cube

Parameters /a, arl and ar2 are either recursive calls or identity.
Interpreted as boolean switches:

la

AOR <— CBY < 0 weakness 1 strength
AN AN
( ) 101=<=——001 0 non-strictness 1 strictness
110=<-|—010
\ \ Tarz 0 headness 1 non-headness

HE <—— CBN



The Beta Cube

Parameters /a, arl and ar2 are either recursive calls or identity.
Interpreted as boolean switches:

la

AOR <— CBY < 0 weakness 1 strength
\ T \ . | |
( ) 101l=<=——001 0 non-strictness 1 strictness
110=<-|—010

\ \ Tafz 0 headness 1 non-headness

HE <—— CBN

nf <—— wnf

hnf <=— whnf



Axis of eval

VAR

™ AB
X <bn x
*>

M by M’ = \x.B
RED — X

S b,
Ax.B o Ax.B

[N /x]B <0 S

M N by S

M cbo M # Ax.B
APP - ¢ x

M N <o M’ N

la

AOR <—— CBVY I —

NN
| N

110=<-|—010
Targ

N

He ~——(CE)

strength

strictness

non-headness
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Axis of eval

VAR

b ABS e o "\ B
x by x Ax.B by Ax.B
MC_b‘;M’E)\x.B Ncg/N/ [N’/X]BC_b‘;S

RED MNCE‘{S

My M' #£Ax.B N by N/

A MN by M N’

I
AOR CBV 2 strength
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Axis of eval

B 22 B
VAR a0r ABS 7
X 3% x Ax.B 3 Ax.B

M2 M" = Ax.B N aor N’ [N'/x]B 2 S

RED MN‘E;S

M2 M' #£Ax.B N N/
MN 22 M N

SLE strength

ar .
\1 strictness

110=<-|—010
Targ

N

He ~——(CE)

non-headness
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Absorption

» Applying s, before applying s; doesn’'t change the result of s;:
sy absorpts s, iff 51(t) =4 s1(s2(2))-
> s; absorpts s; iff s, is a left identity of s;.

5 /

t = iff t3¢t

//5 /

5 // 51
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» We analyse the pairs of strategies in the order relation.
» Counterexamples:
> Any strict sts and non-strict st strategies (differing at least in ar;):

(sts o st)((Ax.Ay.x) x Q) #a sts((Ax.Ay.x) x Q).

> Any strong non-head strategy st and its weak or head (or
weak-head) counterpart st (differing in /a or ar> or both):

(st o stwn)((Ak.k Q) (Ax.y)) #a st((Ak.k Q) (Ax.y)).

> Any strict strong strategy st and any strict weak strategy st,,
(differing at least in la, with ar; = True):

(st o stw)(Z RecF Input d) #4 st(Z RecF Input d).

> The strategies cbv and 0 1 0 (weak strict strategies differing in ar»):

(ebv o0 1 0)((Ax.-Ay.x)x (xQ)) #a chbv((Ax.Ay.x) x (xQ))

» Proofs:

> 00 1 absorpts cbn. By induction on the structure of the derivations.



Absorption among uniform strategies

» We still don't know if he absorpts cbn.
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Hybridisation: motivation

» Uniform strategies are not normalising (to NF).

» Standard reduction is neccesary for normalisation [Curry and Feys
1958]: Never reduce to the left of the residual of an already-reduced
redex.

» A way to standardise: operators and operands in applications should
be reduced to values (a la Plotkin).

» Hybridisation: produce new strategies that modify uniform strategies
on this very point.
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Hybridisation template
Hybrid strategy from subsidiary S and base B:

sub

X — X

sub

B =B’
S.la
sub

Ax.B 2 2x.B’

M xx.B N —>55”" N [N'/x]B*%s
.arg

sub

MN =S

MM £Xx.B N —>;”" N
.arp

MNZ M N



Hybridisation template
Hybrid strategy from subsidiary S and base B:

sub

X — X

B sub B/
S.la

Ax.B % \x.B'

M xx.B N ﬁf“b N [N'/x]B*%s
.arg

sub

MN =S

MM £Xx.B N\

S.arp

sub

MNZ= M N



Hybridisation template

Hybrid strategy from subsidiary S and base B:

sub

hyb

X —= X X —= X
B 2B ERLLNY
_ Sk Bl
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Hybridisation template

Hybrid strategy from subsidiary S and base B:

sub

hyb

X —= X X —= X
B sub B/ B hyb B/
S.la B.la
Ax.B 2 Ax.B' Ax.B ™ \x.B
M AxB NN [N'/x]B*%S NN INxB 2 s
S.ar; -arn
MN%s MN™ s
M S_ut; M % Ax.B N sub N/ M S_Ul; M’ 7—é Ax.B M/ '11; M// N hyb N//
S.ary B.ary
MNZ M N MN™ M N

hyb or sub for the operand?




Hybridisation template

Hybrid strategy from subsidiary S and base B:

sub

hyb

X — X X —= X
B 2B ERLNY
_ Sk Bl
Ax.B % \x.B' Ax.B ™ \x.B
MZxB NN [N'/x]B*%S W [V'/x]B ™S
S.ar; .ary
MNZ2S MN™ s

MM £Xx.B N\

S.arp

sub

MNZ= M N

hyb or sub for the operand?

MM £x.B) M ™M

Y hyb N
B.arp

MN™ M N

» Standardisation [Curry and Feys 1958] and absorption [Garcia et al.

2010] issues.



Hybridisation and the Beta Cube

cbn:

VAR ABS —————mX—
x bn x Ax.B b0 \x.B
MEM =B  [N/X]BS
RED

M N by S

ML M £ Ax.B

APP pr 7
MN o M N

la
AOR <—— CBV -~ strength

NN

ar .
101<—— 001 \1 strictness

110<-|—010

N

HE CBN

non-headness
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Hybridisation and the Beta Cube
nor = hybridise(cbn,1 0 1):

B nor B’
VAR ABS —
X mor x Ax.B nr Ax.B
MM =xx.B)  [N/x]BrrS
RED MN S

MM £XM\x.B) MM NN

MN e M\

APP

AOR <—— CBV <~ strength

ar .
\1 strictness

Tarz non-headness
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Absorption theorem

Theorem

Let § and B be respectively a subsidiary and a base strategy considered
as points in the cube which satisfy S C B and S.ar; = B.ary.

b hyb L . .
Let 2% and 25 be the resulting instantiated strategies. Then

(hyb o sub)(t) = hyb(t)

for any term t.

Proof.

By induction on the structure of the derivations. O
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> hybridiseSestoft uses hyb for the selection of ar;.
» Consider ha = hybridiseSestoft(cbv, aor).
» ha reduces to normal form.
> The operands of applications are reduced to normal forms before
substitution.
» Standard reduction: never reduce to the left of the residual of an
already-reduced redex, but. ..
...operands are reduced by the hybrid:
> If the operand is not a value then we still don't have a redex.

> We reduce the operand to a value. Now the application is a redex.

> We keep reducing the operand up to a normal form.
The value in the operand position is reduced before reducing the
redex itself!

» Consequently:

> ha does not absorb cbv [Garcia et al. 2010].
> hais not a standard SBy-reduction.
> hais not normalising in Av.
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Implementations in OCaML and Haskell

» Rule Template:
> Generic reducer: higher-order.
> (Haskell) Monadic reducer: strict monads for strict semantics.
> Particular strategies are fixed points.
> Beta Cube:
» Boolean triple.
> cube2red delivers a reducer from a point in the cube.
» Hybridisation:
> hybridise delivers a hybrid reducer from subsidiary and base from
the cube.
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Contributions

Rule template generalises pure lambda calculus reduction strategies.

(introducing op; and op, to accommodate hybrids)
Beta Cube 4 Hybridise systematise the strategy space.

» Studied absorption among vertices in the lattice.
» Hybridisation operator:

1. Operands in applications reduced by hybrid: may not deliver strict
normalising strategies.
2. Operands in applications reduced by subsidiary: may deliver strict
normalising strategies.
Absorption among hybrids and their subsidiaries (Absorption
theorem).

Implementation in OCaML and Haskell.
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Future work

Head strategies: using hnf instead of wnf as the notion of value.
> Head thunks (reduction stops at the right of a free variable)
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Strategies and CPS transformation.

Implementing efficient -testers for typing rules in dependent types
systems.

Strategies to interpret universes in structural generic programming
for dependent types.
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Generic reducer in OCaML

let genred la opl arl su op2 ar2 = function
| Var _ as v ->v
| Lam (x, b) -> Lam (x, la b)
| App (m, n) -> let m’ = opl m in match m’ with
| Lam (x, b) -> su (subst (arl n) x b)
| _ -> App (op2 m’ , ar2 n)



Strategies are fixed point
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Beta Cube implementation

let sel p red = if p then red else id

let cube2red = function (la, arl, ar2) ->
let rec red x
= (genred
(sel la red) red (sel arl red) red red (sel ar2 red)) x
in red

N
N
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Hybridisation operator

let hybridise s = function (la, arl, ar2) ->
let sub = cube2red s in
let rec hyb x
= (genred
(sel la hyb) sub (sel arl sub) hyb hyb (sel ar2 hyb)) x
in hyb



Sestoft's hibrydisation

let hybridiseSestoft s = function (la, arl, ar2) ->
let sub = cube2red s in
let rec hyb x
= (genred
(sel la hyb) sub (sel arl hyb) hyb hyb (sel ar2 hyb)) x
in hyb



Generic reducer in Haskell

data Term = Var String | Lam String Term | App Term Term
type Red = Monad m => Term -> m Term

genred :: Red -> Red -> Red -> Red -> Red -> Red -> Red
genred la opl arl su op2 ar2 t =
case t of
v@(Var _) -> return v
(Lam x b) -> do b’ <- la b
return (Lam x b’)
(App m n) -> do m’ <- opl m
case m’ of
(Lam x b) -> do n’ <- arl n
su (subst b n’ x)
_ -> do m’’ <- op2 m’
n’’ <- ar2 n
return (App m’’ n’’)



Strategies are fixed points
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Beta Cube implementation

data BCube = BC Bool Bool Bool

cube2red :: Monad m => BCube -> Red m
cube2red (BC la arl ar2) =
let red = genred
(sel la red) red (sel arl red) red red (sel ar2 red)
in red
where sel par red = if par then red else return



Hibrydisation operator

hybridise ::

hybridise
let s =
h =

in h

(BetaCube, BetaCube) -> Red

(sub, (BC lab arlb ar2b)) =

cube2red sub

genred (sel lab h) s (sel arlb s) h h (sel ar2b h)



Sestoft's hibrydisation operator

hybridiseSestoft :: (BetaCube, BetaCube) -> Red
hybridiseSestoft (sub, (BC lab arlb ar2b)) =
let s = cube2red sub
h = genred (sel lab h) s (sel arlb h) h h (sel ar2b h)
in h
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