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SOS and rule formats for bounded nondeterminism

I Process algebrae and SOS for providing semantics of concurrent
programming:
A transition system specification (TSS) consists of inference rules
that induce a labelled transition system (LTS).

p l−→ p′

I Finiteness of the number of transitions from a given process.
Finite branching: an LTS is finite branching iff for every p, the set
{(l , p′) | p l−→ p′} is finite.

I Rule format: easy-to-cehck conditions on a TSS that guarantee a
property of the associated LTS.

I Nominal SOS: nominal techniques to deal with binders and scopes in
a nice way.
Require arbitrary terms as labels!
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Rule format for finite branching [Fokkink and Vu, 2003]

Theorem (Finite branching)
Let R be a TSS. The LTS associated to R is finite branching if the
following holds:
(i) All variables in R are source-dependent (bounded nondeterminism

format).
(ii) R has no unguarded recursion (strict stratification).
(iii) R is bounded (uniformity and finitely inhabited η-types).

Definition (η-type)
Let η be a map from terms to finite sets of terms. We say η(t) is the
support for t.
A rule H/t l−→ t ′ has η-type 〈t, ψ〉 iff

ψ(u) = {m | u ∈ η(t) ∧ ∃u′. u m−→ u′ ∈ H} is a finite set of labels.
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Example (Rules for choice in BPA)

x0
c−→ x ′0

x0 + x1
c−→ x ′0 + x1

x1
c−→ x ′1

x0 + x1
c−→ x0 + x ′1

Bounded nondeterminism format:η
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x0
c−→ x ′0

x0 + x1
c−→ x ′0 + x1

x1
c−→ x ′1

x0 + x1
c−→ x0 + x ′1

Strict stratification:η

S(c) = 0
S(p0 + p1) = 1+ S(p0) + S(p1)
S(p0 · p1) = 1+ S(p0) + S(p1)
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The problem

I With the existing rule format junk rules may produce false negatives:

g(l1)
l1−→ g(l1)

g i (x) li−→ y

f (x) li−→ y
, i ∈ N

I Exsiting solution only for ground actions. Nominal SOS requires
terms as labels.
Early π-calculus [Cimini, Mousavi, Reniers and Gabbay, 2012]
(excerpt):

x
y T7→z−→ x ′ a#z a#y

[a]x
y T7→x−→ [a]x ′

x b T7→c−→ y

in(a, [b]x)
in(a,c)−→ y

x1
out(a,b)−→ y1 x2

in(a,b)−→ y2

x1||x2
τ−→ y1||y2

ψ-calculus, CHOCS, . . .
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Filtering junk rules
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Detection of junk rules

g(l1)
l1−→ g(l1)

g i (x) li−→ y

f (x) li−→ y
, i ∈ N

η(g(l1) = ∅
η(f (x)) = {g(x)}

〈g(x), ∅〉 〈f (x), {g(x) 7→ {l1}}〉 (i = 1)
〈f (x), {g(x) 7→ ∅}〉 (i 6= 1)

The TSS is not in the format!

But for i 6= 1, {g i (x)} 6⊆ η(f (x)) = {g(x)}.

Observation 1
A rule H/t l−→ t ′ should not have valid η-type if H 6⊆ η(t).
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The TSS is not in the format!

But each instantiation of the rule template has a different li as target.

Observation 2
The map ψ of an η-type should also keep track of the targets of
premisses.
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Arbitrary terms as labels
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Dyadic transformations

Reminiscent of commitments in [Milner, 1993] and residual datatypes in
[Bengtson, 2010].

D(

t l−→ t ′

) = t −→ (l , t ′)
= (t, l) −→ t ′

. . .
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Dyadic transformations

Definition (Dyadic transformations)
The Dk -dyadic transformations (1 ≤ k ≤ 6) are given by:

I D1(t
l−→ t ′) = t −→ (l , t ′).

I D2(t
l−→ t ′) = t ′ ←− (l , t).

I D3(t
l−→ t ′) = l ↑ (t, t ′).

I D4(t
l−→ t ′) = (t, l) −→ t ′.

I D5(t
l−→ t ′) = (t ′, l)←− t.

I D6(t
l−→ t ′) = (t, t ′) ↓ l .

Definition (Dyadic projections)
The Dprj

k -dyadic projections (1 ≤ k ≤ 3 and prj ∈ {π1, π2}) are given by:
I Dπ1

1 (t l−→ t ′) = t −→ l .

I Dπ1
2 (t l−→ t ′) = t ′ ←− l .

I Dπ1
3 (t l−→ t ′) = l ↑ t.

I Dπ2
3 (t l−→ t ′) = l ↑ t ′.

I Dπ2
2 (t l−→ t ′) = t ′ ←− t.

I Dπ2
1 (t l−→ t ′) = t −→ t ′.

We write Dprj
k (where prj ∈ {id , π1, π2}) for any of the above.

For a triadic TSS R, we say R is Dprj
k -finite iff R ′ = Dprj

k (R) and R ′ is
finite branching.
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Bounded nondeterminism properties
Definition
(i) Did

1 -finite: ∀p. {(l , p′) | p l−→ p′} is finite.

(Finite branching)

(ii) Did
2 -finite: ∀p′. {(p, l) | p l−→ p′} is finite.

(Finite folding)

(iii) Did
3 -finite: ∀l . {(p, p′) | p l−→ p′} is finite.

(Finite bundling)

(iv) Did
4 -finite: ∀p.∀l . {p′ | p l−→ p′} is finite.

(Image finiteness)

(v) Did
5 -finite: ∀l .∀p′. {p | p l−→ p′} is finite.

(Source finiteness)

(vi) Did
6 -finite: ∀p.∀p′. {l | p l−→ p′} is finite.

(Label finiteness)

(vii) Dπ1
1 -finite: ∀p. {l | ∃p′.p l−→ p′} is finite.

(Initials finiteness)

(viii) Dπ1
2 -finite: ∀p′. {l | ∃p.p l−→ p′} is finite.

(Finals finiteness.)

(ix) Dπ1
3 -finite: ∀l . {p | ∃p′.p l−→ p′} is finite.

(Heads finiteness)

(x) Dπ2
3 -finite: ∀l . {p′ | ∃p.p l−→ p′} is finite.

(Tails finiteness)

(xi) Dπ2
2 -finite: ∀p′. {p | ∃l .p l−→ p′} is finite.

(Antecedents finiteness)

(xii) Dπ2
1 -finite: ∀p. {p′ | ∃l .p l−→ p′} is finite.

(Consequents finiteness)

12 / 20



Bounded nondeterminism properties
Definition
(i) Did

1 -finite: ∀p. {(l , p′) | p l−→ p′} is finite. (Finite branching)

(ii) Did
2 -finite: ∀p′. {(p, l) | p l−→ p′} is finite. (Finite folding)

(iii) Did
3 -finite: ∀l . {(p, p′) | p l−→ p′} is finite. (Finite bundling)

(iv) Did
4 -finite: ∀p.∀l . {p′ | p l−→ p′} is finite. (Image finiteness)

(v) Did
5 -finite: ∀l .∀p′. {p | p l−→ p′} is finite. (Source finiteness)

(vi) Did
6 -finite: ∀p.∀p′. {l | p l−→ p′} is finite. (Label finiteness)

(vii) Dπ1
1 -finite: ∀p. {l | ∃p′.p l−→ p′} is finite. (Initials finiteness)

(viii) Dπ1
2 -finite: ∀p′. {l | ∃p.p l−→ p′} is finite. (Finals finiteness.)

(ix) Dπ1
3 -finite: ∀l . {p | ∃p′.p l−→ p′} is finite. (Heads finiteness)

(x) Dπ2
3 -finite: ∀l . {p′ | ∃p.p l−→ p′} is finite. (Tails finiteness)

(xi) Dπ2
2 -finite: ∀p′. {p | ∃l .p l−→ p′} is finite. (Antecedents finiteness)

(xii) Dπ2
1 -finite: ∀p. {p′ | ∃l .p l−→ p′} is finite. (Consequents finiteness)

12 / 20



Bounded nondeterminism properties
Definition
(i) Did

1 -finite: ∀p. {(l , p′) | p l−→ p′} is finite. (Finite branching)

(ii) Did
2 -finite: ∀p′. {(p, l) | p l−→ p′} is finite. (Finite folding)

(iii) Did
3 -finite: ∀l . {(p, p′) | p l−→ p′} is finite. (Finite bundling)

(iv) Did
4 -finite: ∀p.∀l . {p′ | p l−→ p′} is finite. (Image finiteness)

(v) Did
5 -finite: ∀l .∀p′. {p | p l−→ p′} is finite. (Source finiteness)

(vi) Did
6 -finite: ∀p.∀p′. {l | p l−→ p′} is finite. (Label finiteness)

(vii) Dπ1
1 -finite: ∀p. {l | ∃p′.p l−→ p′} is finite. (Initials finiteness)

(viii) Dπ1
2 -finite: ∀p′. {l | ∃p.p l−→ p′} is finite. (Finals finiteness.)

(ix) Dπ1
3 -finite: ∀l . {p | ∃p′.p l−→ p′} is finite. (Heads finiteness)

(x) Dπ2
3 -finite: ∀l . {p′ | ∃p.p l−→ p′} is finite. (Tails finiteness)

(xi) Dπ2
2 -finite: ∀p′. {p | ∃l .p l−→ p′} is finite. (Antecedents finiteness)

(xii) Dπ2
1 -finite: ∀p. {p′ | ∃l .p l−→ p′} is finite. (Consequents finiteness)

12 / 20



Bounded nondeterminism properties

(i) (iii) (ii) derived

(x) (ix)

(xii) (xi) complementary

(vii) (viii)

(iv) (vi) (v) elementary

d ⇐⇒ e ∧ c

(i.e., finite branching ⇐⇒ image finiteness ∧ initials finiteness)
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Our rule format
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S-restricted support
Remember Dprj

k (t l−→ t ′) = s −→ r

Definition (Partial strict stratification)
Let R be a dyadic TSS. S is a partial strict stratification of R iff the
following conditions hold:
(i) S(σ(s)) 6= ⊥, for every rule in R with source s and for every

substitution σ that closes s,
(ii) For every rule in R with source s and set of premisses H, and for

every v −→ w ∈ H, for each substitution σ that closes s and v such
that S(σ(v)) 6= ⊥, then S(σ(v)) < S(σ(s)).

Definition (S-restricted support)
Let R be a dyadic TSS and S be a partial strict stratification of R. Let η
be the map

η(s) = {v | ∃σ. S(σ(v)) 6= ⊥ ∧ v −→ w is a premiss in a rule with source s}.

We say η is the S-restricted support map iff η(s) is a finite set for each
source s.
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S-types and main theorem

Definition (S-types)
Let R be a dyadic TSS, S be a partial strict stratification of R, η be the
associated S-restricted support map.
A rule ρ = H/s −→ r has S-type 〈s, ψ〉 iff {vi | i ∈ I} ⊆ η(s) and

ψ(v) = {w | v ∈ η(s) ∧ ∃w . v −→ w ∈ H} is a finite set.

Theorem (Dprj
k -finiteness)

Let R be a TSS with terms as labels and R ′ = Dprj
k (R). The LTS

associated to R is Dprj
k -finite if the following holds:

(i) R ′ is in bounded nondeterminism format.
(ii) R ′ has a partial strict stratification S.
(iii) R ′ is uniform and has finitely inhabitted S-types.
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Applicability (CHOCS [Mousavi, Gabbay and Reniers, 2005])
p, q ::= 0 | a | c!x .p | c?a.p | (p | q) | τ.p

p−→/a
a z−→/a z

a 6= b

b z−→/a b

x0
z−→/a y0 x1

z−→/a y1

c!x0.x1
z−→/a c!y0.y1

x z−→/a y a 6= b

c?b.x z−→/a c?b.y

x0
z−→/a y0 x1

z−→/a y1

(x0 | x1)
z−→/a (y0 | y1)

p−→c!
c!x0.x1

x0−→c! x1

x0
z−→c! y0

(x0 | x1)
z−→c! (y0 | x1)

a−→c?
x1

z−→/a y1

c?a.x1
a−→c? y1

x0
z−→c? y0

(x0 | x1)
z−→c? (y0 | x1)

−→τ x0
z−→c! y0 x1

z−→c? y1

(x0 | x1) −→τ (y0 | y1)

x0 −→τ y0

(x0 | x1) −→τ (y0 | x1) τ.x −→τ x
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Future work

I Refine the partial strict stratification by propagating the ⊥ to the
conclusions of the rules.

I Refine the bounded nondeterminism format to cover cases in which
variables are discarded at some point.

I Extend the rule format to many-sorted signatures.
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Summary

I Partial strict stratification and restricted support map for detecting
more junk rules.

I Targets are important too.
I Dyadic transformations turn labels into a part of sources or targets.
I Space of bounded nondeterminism properties with rich structure.

Thanks!
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