
Rule formats for bounded nondeterminism in
Nominal SOS

Álvaro García-Pérez
(Joint work with Luca Aceto, Ignacio Fábregas and

Anna Ingólfsdóttir.)

Reykjavík University

October 23th, 2015

1 / 20

Motivation

2 / 20

SOS and rule formats for bounded nondeterminism

I Process algebrae and SOS for providing semantics of concurrent
programming:
A transition system specification (TSS) consists of inference rules
that induce a labelled transition system (LTS).

p l−→ p′

I Finiteness of the number of transitions from a given process.
Finite branching: an LTS is finite branching iff for every p, the set
{(l , p′) | p l−→ p′} is finite.

I Rule format: easy-to-cehck conditions on a TSS that guarantee a
property of the associated LTS.

I Nominal SOS: nominal techniques to deal with binders and scopes in
a nice way.
Require arbitrary terms as labels!

3 / 20

SOS and rule formats for bounded nondeterminism

I Process algebrae and SOS for providing semantics of concurrent
programming:
A transition system specification (TSS) consists of inference rules
that induce a labelled transition system (LTS).

p l−→ p′

I Finiteness of the number of transitions from a given process.
Finite branching: an LTS is finite branching iff for every p, the set
{(l , p′) | p l−→ p′} is finite.

I Rule format: easy-to-cehck conditions on a TSS that guarantee a
property of the associated LTS.

I Nominal SOS: nominal techniques to deal with binders and scopes in
a nice way.
Require arbitrary terms as labels!

3 / 20

SOS and rule formats for bounded nondeterminism

I Process algebrae and SOS for providing semantics of concurrent
programming:
A transition system specification (TSS) consists of inference rules
that induce a labelled transition system (LTS).

p l−→ p′

I Finiteness of the number of transitions from a given process.
Finite branching: an LTS is finite branching iff for every p, the set
{(l , p′) | p l−→ p′} is finite.

I Rule format: easy-to-cehck conditions on a TSS that guarantee a
property of the associated LTS.

I Nominal SOS: nominal techniques to deal with binders and scopes in
a nice way.
Require arbitrary terms as labels!

3 / 20

SOS and rule formats for bounded nondeterminism

I Process algebrae and SOS for providing semantics of concurrent
programming:
A transition system specification (TSS) consists of inference rules
that induce a labelled transition system (LTS).

p l−→ p′

I Finiteness of the number of transitions from a given process.
Finite branching: an LTS is finite branching iff for every p, the set
{(l , p′) | p l−→ p′} is finite.

I Rule format: easy-to-cehck conditions on a TSS that guarantee a
property of the associated LTS.

I Nominal SOS: nominal techniques to deal with binders and scopes in
a nice way.
Require arbitrary terms as labels!

3 / 20

Rule format for finite branching [Fokkink and Vu, 2003]

Theorem (Finite branching)
Let R be a TSS. The LTS associated to R is finite branching if the
following holds:
(i) All variables in R are source-dependent (bounded nondeterminism

format).
(ii) R has no unguarded recursion (strict stratification).
(iii) R is bounded (uniformity and finitely inhabited η-types).

Definition (η-type)
Let η be a map from terms to finite sets of terms. We say η(t) is the
support for t.
A rule H/t l−→ t ′ has η-type 〈t, ψ〉 iff

ψ(u) = {m | u ∈ η(t) ∧ ∃u′. u m−→ u′ ∈ H} is a finite set of labels.

4 / 20

Rule format for finite branching [Fokkink and Vu, 2003]

Theorem (Finite branching)
Let R be a TSS. The LTS associated to R is finite branching if the
following holds:
(i) All variables in R are source-dependent (bounded nondeterminism

format).
(ii) R has no unguarded recursion (strict stratification).
(iii) R is bounded (uniformity and finitely inhabited η-types).

Definition (η-type)
Let η be a map from terms to finite sets of terms. We say η(t) is the
support for t.
A rule H/t l−→ t ′ has η-type 〈t, ψ〉 iff

ψ(u) = {m | u ∈ η(t) ∧ ∃u′. u m−→ u′ ∈ H} is a finite set of labels.

4 / 20

Example (Rules for choice in BPA)

x0
c−→ x ′0

x0 + x1
c−→ x ′0 + x1

x1
c−→ x ′1

x0 + x1
c−→ x0 + x ′1

Bounded nondeterminism format:η

5 / 20

Example (Rules for choice in BPA)

x0
c−→ x ′0

x0 + x1
c−→ x ′0 + x1

x1
c−→ x ′1

x0 + x1
c−→ x0 + x ′1

Bounded nondeterminism format:η

t
l

t ′

uk

{ mk
u′

k

}

5 / 20

Example (Rules for choice in BPA)

x0
c−→ x ′0

x0 + x1
c−→ x ′0 + x1

x1
c−→ x ′1

x0 + x1
c−→ x0 + x ′1

Strict stratification:η

S(c) = 0
S(p0 + p1) = 1+ S(p0) + S(p1)
S(p0 · p1) = 1+ S(p0) + S(p1)

5 / 20

Example (Rules for choice in BPA)

x0
c−→ x ′0

x0 + x1
c−→ x ′0 + x1

x1
c−→ x ′1

x0 + x1
c−→ x0 + x ′1

Uniformity and finitely inhabited η-types:

〈x0 + x1, {x0 7→ {c}, x1 7→ ∅}〉 〈x0 + x1, {x0 7→ ∅, x1 7→ {c}}〉

η(x0 + x1) = {x0, x1}

5 / 20

Example (Rules for choice in BPA)

x0
c−→ x ′0

x0 + x1
c−→ x ′0 + x1

x1
c−→ x ′1

x0 + x1
c−→ x0 + x ′1

Uniformity and finitely inhabited η-types:

〈x0 + x1, {x0 7→ {c}, x1 7→ ∅}〉

〈x0 + x1, {x0 7→ ∅, x1 7→ {c}}〉

η(x0 + x1) = {x0, x1}

5 / 20

Example (Rules for choice in BPA)

x0
c−→ x ′0

x0 + x1
c−→ x ′0 + x1

x1
c−→ x ′1

x0 + x1
c−→ x0 + x ′1

Uniformity and finitely inhabited η-types:

〈x0 + x1, {x0 7→ {c}, x1 7→ ∅}〉 〈x0 + x1, {x0 7→ ∅, x1 7→ {c}}〉

η(x0 + x1) = {x0, x1}

5 / 20

The problem

I With the existing rule format junk rules may produce false negatives:

g(l1)
l1−→ g(l1)

g i (x) li−→ y

f (x) li−→ y
, i ∈ N

I Exsiting solution only for ground actions. Nominal SOS requires
terms as labels.
Early π-calculus [Cimini, Mousavi, Reniers and Gabbay, 2012]
(excerpt):

x
y T7→z−→ x ′ a#z a#y

[a]x
y T7→x−→ [a]x ′

x b T7→c−→ y

in(a, [b]x)
in(a,c)−→ y

x1
out(a,b)−→ y1 x2

in(a,b)−→ y2

x1||x2
τ−→ y1||y2

ψ-calculus, CHOCS, . . .

6 / 20

The problem
I With the existing rule format junk rules may produce false negatives:

g(l1)
l1−→ g(l1)

g i (x) li−→ y

f (x) li−→ y
, i ∈ N

I Exsiting solution only for ground actions. Nominal SOS requires
terms as labels.
Early π-calculus [Cimini, Mousavi, Reniers and Gabbay, 2012]
(excerpt):

x
y T7→z−→ x ′ a#z a#y

[a]x
y T7→x−→ [a]x ′

x b T7→c−→ y

in(a, [b]x)
in(a,c)−→ y

x1
out(a,b)−→ y1 x2

in(a,b)−→ y2

x1||x2
τ−→ y1||y2

ψ-calculus, CHOCS, . . .

6 / 20

The problem
I With the existing rule format junk rules may produce false negatives:

g(l1)
l1−→ g(l1)

g i (x) li−→ y

f (x) li−→ y
, i ∈ N

I Exsiting solution only for ground actions. Nominal SOS requires
terms as labels.
Early π-calculus [Cimini, Mousavi, Reniers and Gabbay, 2012]
(excerpt):

x
y T7→z−→ x ′ a#z a#y

[a]x
y T7→x−→ [a]x ′

x b T7→c−→ y

in(a, [b]x)
in(a,c)−→ y

x1
out(a,b)−→ y1 x2

in(a,b)−→ y2

x1||x2
τ−→ y1||y2

ψ-calculus, CHOCS, . . .

6 / 20

The problem
I With the existing rule format junk rules may produce false negatives:

g(l1)
l1−→ g(l1)

g i (x) li−→ y

f (x) li−→ y
, i ∈ N

I Exsiting solution only for ground actions. Nominal SOS requires
terms as labels.
Early π-calculus [Cimini, Mousavi, Reniers and Gabbay, 2012]
(excerpt):

x
y T7→z−→ x ′ a#z a#y

[a]x
y T7→x−→ [a]x ′

x b T7→c−→ y

in(a, [b]x)
in(a,c)−→ y

x1
out(a,b)−→ y1 x2

in(a,b)−→ y2

x1||x2
τ−→ y1||y2

ψ-calculus, CHOCS, . . .
6 / 20

Filtering junk rules

7 / 20

Detection of junk rules

g(l1)
l1−→ g(l1)

g i (x) li−→ y

f (x) li−→ y
, i ∈ N

η(g(l1) = ∅
η(f (x)) = {g(x)}

〈g(x), ∅〉 〈f (x), {g(x) 7→ {l1}}〉 (i = 1)
〈f (x), {g(x) 7→ ∅}〉 (i 6= 1)

The TSS is not in the format!

But for i 6= 1, {g i (x)} 6⊆ η(f (x)) = {g(x)}.

Observation 1
A rule H/t l−→ t ′ should not have valid η-type if H 6⊆ η(t).

8 / 20

Detection of junk rules

g(l1)
l1−→ g(l1)

g i (x) li−→ y

f (x) li−→ y
, i ∈ N η(g(l1) = ∅

η(f (x)) = {g(x)}

〈g(x), ∅〉 〈f (x), {g(x) 7→ {l1}}〉 (i = 1)
〈f (x), {g(x) 7→ ∅}〉 (i 6= 1)

The TSS is not in the format!

But for i 6= 1, {g i (x)} 6⊆ η(f (x)) = {g(x)}.

Observation 1
A rule H/t l−→ t ′ should not have valid η-type if H 6⊆ η(t).

8 / 20

Detection of junk rules

g(l1)
l1−→ g(l1)

g i (x) li−→ y

f (x) li−→ y
, i ∈ N η(g(l1) = ∅

η(f (x)) = {g(x)}

〈g(x), ∅〉 〈f (x), {g(x) 7→ {l1}}〉 (i = 1)
〈f (x), {g(x) 7→ ∅}〉 (i 6= 1)

The TSS is not in the format!

But for i 6= 1, {g i (x)} 6⊆ η(f (x)) = {g(x)}.

Observation 1
A rule H/t l−→ t ′ should not have valid η-type if H 6⊆ η(t).

8 / 20

Detection of junk rules

g(l1)
l1−→ g(l1)

g i (x) li−→ y

f (x) li−→ y
, i ∈ N η(g(l1) = ∅

η(f (x)) = {g(x)}

〈g(x), ∅〉 〈f (x), {g(x) 7→ {l1}}〉 (i = 1)
〈f (x), {g(x) 7→ ∅}〉 (i 6= 1)

The TSS is not in the format!

But for i 6= 1, {g i (x)} 6⊆ η(f (x)) = {g(x)}.

Observation 1
A rule H/t l−→ t ′ should not have valid η-type if H 6⊆ η(t).

8 / 20

Detection of junk rules

g(l1)
l1−→ g(l1)

g(x) l1−→ li

f (x) l1−→ li
, i ∈ N

η(g(l1) = ∅
η(f (x)) = {g(x)}

〈g(x), ∅〉 〈f (x), {g(x) 7→ {l1}}〉 (i ∈ N)

The TSS is not in the format!

But each instantiation of the rule template has a different li as target.

Observation 2
The map ψ of an η-type should also keep track of the targets of
premisses.

9 / 20

Detection of junk rules

g(l1)
l1−→ g(l1)

g(x) l1−→ li

f (x) l1−→ li
, i ∈ N η(g(l1) = ∅

η(f (x)) = {g(x)}

〈g(x), ∅〉 〈f (x), {g(x) 7→ {l1}}〉 (i ∈ N)

The TSS is not in the format!

But each instantiation of the rule template has a different li as target.

Observation 2
The map ψ of an η-type should also keep track of the targets of
premisses.

9 / 20

Detection of junk rules

g(l1)
l1−→ g(l1)

g(x) l1−→ li

f (x) l1−→ li
, i ∈ N η(g(l1) = ∅

η(f (x)) = {g(x)}

〈g(x), ∅〉 〈f (x), {g(x) 7→ {l1}}〉 (i ∈ N)

The TSS is not in the format!

But each instantiation of the rule template has a different li as target.

Observation 2
The map ψ of an η-type should also keep track of the targets of
premisses.

9 / 20

Detection of junk rules

g(l1)
l1−→ g(l1)

g(x) l1−→ li

f (x) l1−→ li
, i ∈ N η(g(l1) = ∅

η(f (x)) = {g(x)}

〈g(x), ∅〉 〈f (x), {g(x) 7→ {l1}}〉 (i ∈ N)

The TSS is not in the format!

But each instantiation of the rule template has a different li as target.

Observation 2
The map ψ of an η-type should also keep track of the targets of
premisses.

9 / 20

Arbitrary terms as labels

10 / 20

Dyadic transformations

Reminiscent of commitments in [Milner, 1993] and residual datatypes in
[Bengtson, 2010].

D(

t l−→ t ′

) = t −→ (l , t ′)
= (t, l) −→ t ′

. . .

11 / 20

Dyadic transformations

Reminiscent of commitments in [Milner, 1993] and residual datatypes in
[Bengtson, 2010].

D(t l−→ t ′)

= t −→ (l , t ′)
= (t, l) −→ t ′

. . .

11 / 20

Dyadic transformations

Reminiscent of commitments in [Milner, 1993] and residual datatypes in
[Bengtson, 2010].

D(t l−→ t ′) = t −→ (l , t ′)

= (t, l) −→ t ′

. . .

11 / 20

Dyadic transformations

Reminiscent of commitments in [Milner, 1993] and residual datatypes in
[Bengtson, 2010].

D(t l−→ t ′) = t −→ (l , t ′)
= (t, l) −→ t ′

. . .

11 / 20

Dyadic transformations

Reminiscent of commitments in [Milner, 1993] and residual datatypes in
[Bengtson, 2010].

D(t l−→ t ′) = t −→ (l , t ′)
= (t, l) −→ t ′

. . .

11 / 20

Dyadic transformations

Definition (Dyadic transformations)
The Dk -dyadic transformations (1 ≤ k ≤ 6) are given by:

I D1(t
l−→ t ′) = t −→ (l , t ′).

I D2(t
l−→ t ′) = t ′ ←− (l , t).

I D3(t
l−→ t ′) = l ↑ (t, t ′).

I D4(t
l−→ t ′) = (t, l) −→ t ′.

I D5(t
l−→ t ′) = (t ′, l)←− t.

I D6(t
l−→ t ′) = (t, t ′) ↓ l .

Definition (Dyadic projections)
The Dprj

k -dyadic projections (1 ≤ k ≤ 3 and prj ∈ {π1, π2}) are given by:
I Dπ1

1 (t l−→ t ′) = t −→ l .

I Dπ1
2 (t l−→ t ′) = t ′ ←− l .

I Dπ1
3 (t l−→ t ′) = l ↑ t.

I Dπ2
3 (t l−→ t ′) = l ↑ t ′.

I Dπ2
2 (t l−→ t ′) = t ′ ←− t.

I Dπ2
1 (t l−→ t ′) = t −→ t ′.

We write Dprj
k (where prj ∈ {id , π1, π2}) for any of the above.

For a triadic TSS R, we say R is Dprj
k -finite iff R ′ = Dprj

k (R) and R ′ is
finite branching.

11 / 20

Dyadic transformations

Definition (Dyadic transformations)
The Dk -dyadic transformations (1 ≤ k ≤ 6) are given by:

I D1(t
l−→ t ′) = t −→ (l , t ′).

I D2(t
l−→ t ′) = t ′ ←− (l , t).

I D3(t
l−→ t ′) = l ↑ (t, t ′).

I D4(t
l−→ t ′) = (t, l) −→ t ′.

I D5(t
l−→ t ′) = (t ′, l)←− t.

I D6(t
l−→ t ′) = (t, t ′) ↓ l .

Definition (Dyadic projections)
The Dprj

k -dyadic projections (1 ≤ k ≤ 3 and prj ∈ {π1, π2}) are given by:
I Dπ1

1 (t l−→ t ′) = t −→ l .

I Dπ1
2 (t l−→ t ′) = t ′ ←− l .

I Dπ1
3 (t l−→ t ′) = l ↑ t.

I Dπ2
3 (t l−→ t ′) = l ↑ t ′.

I Dπ2
2 (t l−→ t ′) = t ′ ←− t.

I Dπ2
1 (t l−→ t ′) = t −→ t ′.

We write Dprj
k (where prj ∈ {id , π1, π2}) for any of the above.

For a triadic TSS R, we say R is Dprj
k -finite iff R ′ = Dprj

k (R) and R ′ is
finite branching.

11 / 20

Dyadic transformations

Definition (Dyadic transformations)
The Dk -dyadic transformations (1 ≤ k ≤ 6) are given by:

I D1
id(t l−→ t ′) = t −→ (l , t ′).

I D2
id(t l−→ t ′) = t ′ ←− (l , t).

I D3
id(t l−→ t ′) = l ↑ (t, t ′).

I D4
id(t l−→ t ′) = (t, l) −→ t ′.

I D5
id(t l−→ t ′) = (t ′, l)←− t.

I D6
id(t l−→ t ′) = (t, t ′) ↓ l .

Definition (Dyadic projections)
The Dprj

k -dyadic projections (1 ≤ k ≤ 3 and prj ∈ {π1, π2}) are given by:
I Dπ1

1 (t l−→ t ′) = t −→ l .

I Dπ1
2 (t l−→ t ′) = t ′ ←− l .

I Dπ1
3 (t l−→ t ′) = l ↑ t.

I Dπ2
3 (t l−→ t ′) = l ↑ t ′.

I Dπ2
2 (t l−→ t ′) = t ′ ←− t.

I Dπ2
1 (t l−→ t ′) = t −→ t ′.

We write Dprj
k (where prj ∈ {id , π1, π2}) for any of the above.

For a triadic TSS R, we say R is Dprj
k -finite iff R ′ = Dprj

k (R) and R ′ is
finite branching.

11 / 20

Bounded nondeterminism properties
Definition
(i) Did

1 -finite: ∀p. {(l , p′) | p l−→ p′} is finite.

(Finite branching)

(ii) Did
2 -finite: ∀p′. {(p, l) | p l−→ p′} is finite.

(Finite folding)

(iii) Did
3 -finite: ∀l . {(p, p′) | p l−→ p′} is finite.

(Finite bundling)

(iv) Did
4 -finite: ∀p.∀l . {p′ | p l−→ p′} is finite.

(Image finiteness)

(v) Did
5 -finite: ∀l .∀p′. {p | p l−→ p′} is finite.

(Source finiteness)

(vi) Did
6 -finite: ∀p.∀p′. {l | p l−→ p′} is finite.

(Label finiteness)

(vii) Dπ1
1 -finite: ∀p. {l | ∃p′.p l−→ p′} is finite.

(Initials finiteness)

(viii) Dπ1
2 -finite: ∀p′. {l | ∃p.p l−→ p′} is finite.

(Finals finiteness.)

(ix) Dπ1
3 -finite: ∀l . {p | ∃p′.p l−→ p′} is finite.

(Heads finiteness)

(x) Dπ2
3 -finite: ∀l . {p′ | ∃p.p l−→ p′} is finite.

(Tails finiteness)

(xi) Dπ2
2 -finite: ∀p′. {p | ∃l .p l−→ p′} is finite.

(Antecedents finiteness)

(xii) Dπ2
1 -finite: ∀p. {p′ | ∃l .p l−→ p′} is finite.

(Consequents finiteness)

12 / 20

Bounded nondeterminism properties
Definition
(i) Did

1 -finite: ∀p. {(l , p′) | p l−→ p′} is finite. (Finite branching)

(ii) Did
2 -finite: ∀p′. {(p, l) | p l−→ p′} is finite. (Finite folding)

(iii) Did
3 -finite: ∀l . {(p, p′) | p l−→ p′} is finite. (Finite bundling)

(iv) Did
4 -finite: ∀p.∀l . {p′ | p l−→ p′} is finite. (Image finiteness)

(v) Did
5 -finite: ∀l .∀p′. {p | p l−→ p′} is finite. (Source finiteness)

(vi) Did
6 -finite: ∀p.∀p′. {l | p l−→ p′} is finite. (Label finiteness)

(vii) Dπ1
1 -finite: ∀p. {l | ∃p′.p l−→ p′} is finite. (Initials finiteness)

(viii) Dπ1
2 -finite: ∀p′. {l | ∃p.p l−→ p′} is finite. (Finals finiteness.)

(ix) Dπ1
3 -finite: ∀l . {p | ∃p′.p l−→ p′} is finite. (Heads finiteness)

(x) Dπ2
3 -finite: ∀l . {p′ | ∃p.p l−→ p′} is finite. (Tails finiteness)

(xi) Dπ2
2 -finite: ∀p′. {p | ∃l .p l−→ p′} is finite. (Antecedents finiteness)

(xii) Dπ2
1 -finite: ∀p. {p′ | ∃l .p l−→ p′} is finite. (Consequents finiteness)

12 / 20

Bounded nondeterminism properties
Definition
(i) Did

1 -finite: ∀p. {(l , p′) | p l−→ p′} is finite. (Finite branching)

(ii) Did
2 -finite: ∀p′. {(p, l) | p l−→ p′} is finite. (Finite folding)

(iii) Did
3 -finite: ∀l . {(p, p′) | p l−→ p′} is finite. (Finite bundling)

(iv) Did
4 -finite: ∀p.∀l . {p′ | p l−→ p′} is finite. (Image finiteness)

(v) Did
5 -finite: ∀l .∀p′. {p | p l−→ p′} is finite. (Source finiteness)

(vi) Did
6 -finite: ∀p.∀p′. {l | p l−→ p′} is finite. (Label finiteness)

(vii) Dπ1
1 -finite: ∀p. {l | ∃p′.p l−→ p′} is finite. (Initials finiteness)

(viii) Dπ1
2 -finite: ∀p′. {l | ∃p.p l−→ p′} is finite. (Finals finiteness.)

(ix) Dπ1
3 -finite: ∀l . {p | ∃p′.p l−→ p′} is finite. (Heads finiteness)

(x) Dπ2
3 -finite: ∀l . {p′ | ∃p.p l−→ p′} is finite. (Tails finiteness)

(xi) Dπ2
2 -finite: ∀p′. {p | ∃l .p l−→ p′} is finite. (Antecedents finiteness)

(xii) Dπ2
1 -finite: ∀p. {p′ | ∃l .p l−→ p′} is finite. (Consequents finiteness)

12 / 20

Bounded nondeterminism properties

(i) (iii) (ii) derived

(x) (ix)

(xii) (xi) complementary

(vii) (viii)

(iv) (vi) (v) elementary

d ⇐⇒ e ∧ c

(i.e., finite branching ⇐⇒ image finiteness ∧ initials finiteness)

13 / 20

Bounded nondeterminism properties

(i) (iii) (ii) derived

(x) (ix)

(xii) (xi) complementary

(vii) (viii)

(iv) (vi) (v) elementary

d ⇐⇒ e ∧ c

(i.e., finite branching ⇐⇒ image finiteness ∧ initials finiteness)

13 / 20

Bounded nondeterminism properties

(i) (iii) (ii) derived

(x) (ix)

(xii) (xi) complementary

(vii) (viii)

(iv) (vi) (v) elementary

d ⇐⇒ e ∧ c

(i.e., finite branching ⇐⇒ image finiteness ∧ initials finiteness)

13 / 20

Bounded nondeterminism properties

(i) (iii) (ii) derived

(x) (ix)

(xii) (xi) complementary

(vii) (viii)

(iv) (vi) (v) elementary

d ⇐⇒ e ∧ c

(i.e., finite branching ⇐⇒ image finiteness ∧ initials finiteness)

13 / 20

Bounded nondeterminism properties

(i) (iii) (ii) derived

(x) (ix)

(xii) (xi) complementary

(vii) (viii)

(iv) (vi) (v) elementary

d ⇐⇒ e ∧ c

(i.e., finite branching ⇐⇒ image finiteness ∧ initials finiteness)

13 / 20

Bounded nondeterminism properties

(i) (iii) (ii) derived

(x) (ix)

(xii) (xi) complementary

(vii) (viii)

(iv) (vi) (v) elementary

(i) ⇐⇒ (xii) ∧ (vi)

(i.e., finite branching ⇐⇒ image finiteness ∧ initials finiteness)

13 / 20

Bounded nondeterminism properties

(i) (iii) (ii) derived

(x) (ix)

(xii) (xi) complementary

(vii) (viii)

(iv) (vi) (v) elementary

(i) ⇐⇒ (iv) ∧ (vii)

(i.e., finite branching ⇐⇒ image finiteness ∧ initials finiteness)

13 / 20

Bounded nondeterminism properties

(i) (iii) (ii) derived

(x) (ix)

(xii) (xi) complementary

(vii) (viii)

(iv) (vi) (v) elementary

(i) ⇐⇒ (iv) ∧ (vii)

(i.e., finite branching ⇐⇒ image finiteness ∧ initials finiteness)

13 / 20

Our rule format

14 / 20

S-restricted support
Remember Dprj

k (t l−→ t ′) = s −→ r

Definition (Partial strict stratification)
Let R be a dyadic TSS. S is a partial strict stratification of R iff the
following conditions hold:
(i) S(σ(s)) 6= ⊥, for every rule in R with source s and for every

substitution σ that closes s,
(ii) For every rule in R with source s and set of premisses H, and for

every v −→ w ∈ H, for each substitution σ that closes s and v such
that S(σ(v)) 6= ⊥, then S(σ(v)) < S(σ(s)).

Definition (S-restricted support)
Let R be a dyadic TSS and S be a partial strict stratification of R. Let η
be the map

η(s) = {v | ∃σ. S(σ(v)) 6= ⊥ ∧ v −→ w is a premiss in a rule with source s}.

We say η is the S-restricted support map iff η(s) is a finite set for each
source s.

15 / 20

S-restricted support
Remember Dprj

k (t l−→ t ′) = s −→ r

Definition (Partial strict stratification)
Let R be a dyadic TSS. S is a partial strict stratification of R iff the
following conditions hold:
(i) S(σ(s)) 6= ⊥, for every rule in R with source s and for every

substitution σ that closes s,
(ii) For every rule in R with source s and set of premisses H, and for

every v −→ w ∈ H, for each substitution σ that closes s and v such
that S(σ(v)) 6= ⊥, then S(σ(v)) < S(σ(s)).

Definition (S-restricted support)
Let R be a dyadic TSS and S be a partial strict stratification of R. Let η
be the map

η(s) = {v | ∃σ. S(σ(v)) 6= ⊥ ∧ v −→ w is a premiss in a rule with source s}.

We say η is the S-restricted support map iff η(s) is a finite set for each
source s.

15 / 20

S-types and main theorem

Definition (S-types)
Let R be a dyadic TSS, S be a partial strict stratification of R, η be the
associated S-restricted support map.
A rule ρ = H/s −→ r has S-type 〈s, ψ〉 iff {vi | i ∈ I} ⊆ η(s) and

ψ(v) = {w | v ∈ η(s) ∧ ∃w . v −→ w ∈ H} is a finite set.

Theorem (Dprj
k -finiteness)

Let R be a TSS with terms as labels and R ′ = Dprj
k (R). The LTS

associated to R is Dprj
k -finite if the following holds:

(i) R ′ is in bounded nondeterminism format.
(ii) R ′ has a partial strict stratification S.
(iii) R ′ is uniform and has finitely inhabitted S-types.

16 / 20

S-types and main theorem

Definition (S-types)
Let R be a dyadic TSS, S be a partial strict stratification of R, η be the
associated S-restricted support map.
A rule ρ = H/s −→ r has S-type 〈s, ψ〉 iff {vi | i ∈ I} ⊆ η(s) and

ψ(v) = {w | v ∈ η(s) ∧ ∃w . v −→ w ∈ H} is a finite set.

Theorem (Dprj
k -finiteness)

Let R be a TSS with terms as labels and R ′ = Dprj
k (R). The LTS

associated to R is Dprj
k -finite if the following holds:

(i) R ′ is in bounded nondeterminism format.
(ii) R ′ has a partial strict stratification S.
(iii) R ′ is uniform and has finitely inhabitted S-types.

16 / 20

Applicability (CHOCS [Mousavi, Gabbay and Reniers, 2005])
p, q ::= 0 | a | c!x .p | c?a.p | (p | q) | τ.p

p−→/a
a z−→/a z

a 6= b

b z−→/a b

x0
z−→/a y0 x1

z−→/a y1

c!x0.x1
z−→/a c!y0.y1

x z−→/a y a 6= b

c?b.x z−→/a c?b.y

x0
z−→/a y0 x1

z−→/a y1

(x0 | x1)
z−→/a (y0 | y1)

p−→c!
c!x0.x1

x0−→c! x1

x0
z−→c! y0

(x0 | x1)
z−→c! (y0 | x1)

a−→c?
x1

z−→/a y1

c?a.x1
a−→c? y1

x0
z−→c? y0

(x0 | x1)
z−→c? (y0 | x1)

−→τ x0
z−→c! y0 x1

z−→c? y1

(x0 | x1) −→τ (y0 | y1)

x0 −→τ y0

(x0 | x1) −→τ (y0 | x1) τ.x −→τ x
17 / 20

Future work

I Refine the partial strict stratification by propagating the ⊥ to the
conclusions of the rules.

I Refine the bounded nondeterminism format to cover cases in which
variables are discarded at some point.

I Extend the rule format to many-sorted signatures.

18 / 20

Summary

I Partial strict stratification and restricted support map for detecting
more junk rules.

I Targets are important too.
I Dyadic transformations turn labels into a part of sources or targets.
I Space of bounded nondeterminism properties with rich structure.

Thanks!

19 / 20

Summary

I Partial strict stratification and restricted support map for detecting
more junk rules.

I Targets are important too.
I Dyadic transformations turn labels into a part of sources or targets.
I Space of bounded nondeterminism properties with rich structure.

Thanks!

19 / 20

References I

Bengtson, J. (2010).
Formalising process calculi.
PhD thesis, Faculty of Science and Technology, Uppsala Universitet.

Cimini, M., Mousavi, M. R., Reniers, M. A., and Gabbay, M. J.
(2012).
Nominal SOS.
Electronic Notes in Theoretical Computer Science, 286:103–116.

Fokkink, W. and Vu, T. D. (2003).
Structural operational semantics and bounded nondeterminism.
Acta Informatica, 39(6-7):501–516.

Milner, R. (1993).
The polyadic π-calculus: A tutorial.
In Bauer, F. L., Brauer, W., and Schwichtenberg, H., editors, Logic
and Algebra of Specification, pages 203–246. Springer-Verlag.

19 / 20

References II

Mousavi, M. R., Gabbay, M., and Reniers, M. A. (2005).
SOS for higher order processes.
In Abadi, M. and de Alfaro, L., editors, 16th International
Conference in Concurrency Theory, volume 3653 of Lecture Notes in
Computer Science (LNCS), pages 308–322. Springer-Verlag.

20 / 20

	Appendix

