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Motivation
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Structural operational semantics and bounded
nondeterminism

A transition system specification (TSS) consists of inference rules that
induce a labelled transition system (LTS) {p a−→ p′}

Exercises 3.3 and 3.4 in Semantics with Applications: An
Appetizer [Nielson and Nielson, 2007]
While language with nondeterminisitc choice and statement random(x).

x:=-1; while x<=0 do (x:=x-1 or x:=(-1)*x)

An LTS is finite branching iff for every p, the set {(a, p′) | p a−→ p′} is
finite.

Rule formats for finite branching: statically checkable (ideally)
conditions on TSSs that guarantee continuous Scott-Strachey
semantics ([Apt and Plotkin, 1986]).
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Existing rule format for finite branching
[Fokkink and Vu, 2003]

Theorem (Correctness of rule format)
Let R be a TSS. The LTS associated to R is finite branching if the
following conditions hold:
(i) R has no unguarded recursion (strict stratification).
(ii) Each rule in R gives rise to finitely many transitions from each

process (bounded nondeterminism format).
(iii) Only finitely many rules in R can give rise to transitions from each

process (uniformity and finitely inhabited η-types).
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Example (Rules for merge in BPA)

. . .
x0

c−→ x ′0
x0‖x1

c−→ x ′0‖x1

x1
c−→ x ′1

x0‖x1
c−→ x0‖x ′1

. . .

Strict stratification:η
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Strict stratification:η

S(c) = 0
S(p0‖p1) = 1 + S(p0) + S(p1)

. . .
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The problem

I Mechanising the proof of correctness of the rule format?

Claim [Fokkink and Vu, 2003]
For every term t there are finitely many maps ψ such that there
exists a rule r of η-type 〈t, ψ〉 which gives rise to transitions.

Proof: by assuming that the set of different maps ψ is infinite and
deriving a contradiction.

Reasoning by contradiction here is not constructive!

I Bounded-nondeterminism properties other than finite branching?

An LTS is image finite iff for every p and a the set {p′ | p a−→ p′} is
finite.
An LTS is initials finite iff for every p the set {a | ∃p′.p a−→ p′} is
finite.
Rule formats for initials finiteness and for finite branching?
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Our contribution
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Constructive proof of correcteness of the rule format

For each process p = σ(t), the ψ maps such that there exists a rule r of
η-type 〈t, ψ〉 which gives rise to transitions are dependent functions of
type ψ : Πv∈η(t){a | σ(v)

a−→ q}.

Constructivity enables the mechanisation of the proof with a
state-of-the-art proof assistant (work in progress).
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Rule formats for image finiteness and initials finiteness

Definition (Image finiteness and initials finiteness)
An LTS is image finite iff for every p and a the set {p′ | p a−→ p′} is
finite.
An LTS is initials finite iff for every p the set {a | ∃p′.p a−→ p′} is finite.

The properties require modified η-types that either ignore the
targets or keep track of both actions and targets in transitions.

Example (Statement random(x))

〈random(x); S , s〉 n−→ 〈S , s[x 7→ n]〉
, n ∈ N.
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Related and Future work

I Generalise the rule formats to other bounded-nondeterminism
properties [Aceto et al., 2016].

I Extend the rule formats to SOS with terms as labels
[Aceto et al., 2016].

I Modify the rule formats to cover cases that we are aware are not
covered yet.

I Extend the rule formats to many sorted signatures and Nominal
SOS.
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Summary

I Rule formats for bounded nondeterminism are useful to check
whether a language admits a standard continuous semantics a la
Scott-Strachey.

I We provide a constructive proof of correctness of the rule format for
finite branching in [Fokkink and Vu, 2003].

I We provide rule formats for initials finiteness and image finiteness.

Happy Birthday to Hanne and
Flemming!
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