
Rule formats for bounded nondeterminism in
structural operational semantics

Luca Aceto Álvaro García-Pérez Anna Ingólfsdóttir

Reykjavík University

Lyngby, January 8th, 2016

1 / 11



Motivation

2 / 11



Structural operational semantics and bounded
nondeterminism

A transition system specification (TSS) consists of inference rules that
induce a labelled transition system (LTS) {p a−→ p′}

Exercises 3.3 and 3.4 in Semantics with Applications: An
Appetizer [Nielson and Nielson, 2007]
While language with nondeterminisitc choice and statement random(x).

x:=-1; while x<=0 do (x:=x-1 or x:=(-1)*x)

An LTS is finite branching iff for every p, the set {(a, p′) | p a−→ p′} is
finite.

Rule formats for finite branching: statically checkable (ideally)
conditions on TSSs that guarantee continuous Scott-Strachey
semantics ([Apt and Plotkin, 1986]).

3 / 11



Structural operational semantics and bounded
nondeterminism

A transition system specification (TSS) consists of inference rules that
induce a labelled transition system (LTS) {p a−→ p′}

Exercises 3.3 and 3.4 in Semantics with Applications: An
Appetizer [Nielson and Nielson, 2007]
While language with nondeterminisitc choice and statement random(x).

x:=-1; while x<=0 do (x:=x-1 or x:=(-1)*x)

An LTS is finite branching iff for every p, the set {(a, p′) | p a−→ p′} is
finite.

Rule formats for finite branching: statically checkable (ideally)
conditions on TSSs that guarantee continuous Scott-Strachey
semantics ([Apt and Plotkin, 1986]).

3 / 11



Structural operational semantics and bounded
nondeterminism

A transition system specification (TSS) consists of inference rules that
induce a labelled transition system (LTS) {p a−→ p′}

Exercises 3.3 and 3.4 in Semantics with Applications: An
Appetizer [Nielson and Nielson, 2007]
While language with nondeterminisitc choice and statement random(x).

x:=-1; while x<=0 do (x:=x-1 or x:=(-1)*x)

An LTS is finite branching iff for every p, the set {(a, p′) | p a−→ p′} is
finite.

Rule formats for finite branching: statically checkable (ideally)
conditions on TSSs that guarantee continuous Scott-Strachey
semantics ([Apt and Plotkin, 1986]).

3 / 11



Existing rule format for finite branching
[Fokkink and Vu, 2003]

Theorem (Correctness of rule format)
Let R be a TSS. The LTS associated to R is finite branching if the
following conditions hold:
(i) R has no unguarded recursion (strict stratification).
(ii) Each rule in R gives rise to finitely many transitions from each

process (bounded nondeterminism format).
(iii) Only finitely many rules in R can give rise to transitions from each

process (uniformity and finitely inhabited η-types).

4 / 11



Example (Rules for merge in BPA)

. . .
x0

c−→ x ′0
x0‖x1

c−→ x ′0‖x1

x1
c−→ x ′1

x0‖x1
c−→ x0‖x ′1

. . .

Strict stratification:η

5 / 11



Example (Rules for merge in BPA)

. . .
x0

c−→ x ′0
x0‖x1

c−→ x ′0‖x1

x1
c−→ x ′1

x0‖x1
c−→ x0‖x ′1

. . .

Strict stratification:η

S(c) = 0
S(p0‖p1) = 1 + S(p0) + S(p1)

. . .

5 / 11



Example (Rules for merge in BPA)

. . .
x0

c−→ x ′0
x0‖x1

c−→ x ′0‖x1

x1
c−→ x ′1

x0‖x1
c−→ x0‖x ′1

. . .

Bounded nondeterminism format:η

t
a

t ′

uk

{ bk
u′

k

}

5 / 11



Example (Rules for merge in BPA)

. . .
x0

c−→ x ′0
x0‖x1

c−→ x ′0‖x1

x1
c−→ x ′1

x0‖x1
c−→ x0‖x ′1

. . .

Uniformity and finitely inhabited η-types:

〈x0‖x1, {x0 7→ {c}, x1 7→ ∅}〉 〈x0‖x1, {x0 7→ ∅, x1 7→ {c}}〉

η(x0‖x1) = {x0, x1}

5 / 11



Example (Rules for merge in BPA)

. . .
x0

c−→ x ′0
x0‖x1

c−→ x ′0‖x1

x1
c−→ x ′1

x0‖x1
c−→ x0‖x ′1

. . .

Uniformity and finitely inhabited η-types:

〈x0‖x1, {x0 7→ {c}, x1 7→ ∅}〉

〈x0‖x1, {x0 7→ ∅, x1 7→ {c}}〉

η(x0‖x1) = {x0, x1}

5 / 11



Example (Rules for merge in BPA)

. . .
x0

c−→ x ′0
x0‖x1

c−→ x ′0‖x1

x1
c−→ x ′1

x0‖x1
c−→ x0‖x ′1

. . .

Uniformity and finitely inhabited η-types:

〈x0‖x1, {x0 7→ {c}, x1 7→ ∅}〉 〈x0‖x1, {x0 7→ ∅, x1 7→ {c}}〉

η(x0‖x1) = {x0, x1}

5 / 11



The problem

I Mechanising the proof of correctness of the rule format?

Claim [Fokkink and Vu, 2003]
For every term t there are finitely many maps ψ such that there
exists a rule r of η-type 〈t, ψ〉 which gives rise to transitions.

Proof: by assuming that the set of different maps ψ is infinite and
deriving a contradiction.

Reasoning by contradiction here is not constructive!

I Bounded-nondeterminism properties other than finite branching?

An LTS is image finite iff for every p and a the set {p′ | p a−→ p′} is
finite.
An LTS is initials finite iff for every p the set {a | ∃p′.p a−→ p′} is
finite.
Rule formats for initials finiteness and for finite branching?

6 / 11



Our contribution

7 / 11



Constructive proof of correcteness of the rule format

For each process p = σ(t), the ψ maps such that there exists a rule r of
η-type 〈t, ψ〉 which gives rise to transitions are dependent functions of
type ψ : Πv∈η(t){a | σ(v)

a−→ q}.

Constructivity enables the mechanisation of the proof with a
state-of-the-art proof assistant (work in progress).

8 / 11



Rule formats for image finiteness and initials finiteness

Definition (Image finiteness and initials finiteness)
An LTS is image finite iff for every p and a the set {p′ | p a−→ p′} is
finite.
An LTS is initials finite iff for every p the set {a | ∃p′.p a−→ p′} is finite.

The properties require modified η-types that either ignore the
targets or keep track of both actions and targets in transitions.

Example (Statement random(x))

〈random(x); S , s〉 n−→ 〈S , s[x 7→ n]〉
, n ∈ N.

9 / 11



Rule formats for image finiteness and initials finiteness

Definition (Image finiteness and initials finiteness)
An LTS is image finite iff for every p and a the set {p′ | p a−→ p′} is
finite.
An LTS is initials finite iff for every p the set {a | ∃p′.p a−→ p′} is finite.

The properties require modified η-types that either ignore the
targets or keep track of both actions and targets in transitions.

Example (Statement random(x))

〈random(x); S , s〉 n−→ 〈S , s[x 7→ n]〉
, n ∈ N.

9 / 11



Related and Future work

I Generalise the rule formats to other bounded-nondeterminism
properties [Aceto et al., 2016].

I Extend the rule formats to SOS with terms as labels
[Aceto et al., 2016].

I Modify the rule formats to cover cases that we are aware are not
covered yet.

I Extend the rule formats to many sorted signatures and Nominal
SOS.

10 / 11



Summary

I Rule formats for bounded nondeterminism are useful to check
whether a language admits a standard continuous semantics a la
Scott-Strachey.

I We provide a constructive proof of correctness of the rule format for
finite branching in [Fokkink and Vu, 2003].

I We provide rule formats for initials finiteness and image finiteness.

Happy Birthday to Hanne and
Flemming!

11 / 11



Summary

I Rule formats for bounded nondeterminism are useful to check
whether a language admits a standard continuous semantics a la
Scott-Strachey.

I We provide a constructive proof of correctness of the rule format for
finite branching in [Fokkink and Vu, 2003].

I We provide rule formats for initials finiteness and image finiteness.

Happy Birthday to Hanne and
Flemming!

11 / 11



References I

Aceto, L., Fábregas, I., García-Pérez, A., and Ingólfsdóttir, A.
(2016).
A unified rule format for bounded nondeterminism in SOS with
terms as labels.
Submitted.

Apt, K. R. and Plotkin, G. D. (1986).
Countable nondeterminism and random assignment.
Journal of the ACM, 33(4):724–767.

Fokkink, W. and Vu, T. D. (2003).
Structural operational semantics and bounded nondeterminism.
Acta Informatica, 39(6-7):501–516.

Nielson, H. R. and Nielson, F. (2007).
Semantics with Applications: An Appetizer.
Springer-Verlag New York.

11 / 11


	Appendix

