
Deconstructing 
Stellar Consensus
Álvaro García-Pérez and Maria A. Schett



The Byzantine consensus challenge

Permissionless blockchains (decentralised protocols like PoW and PoS):
• do not require to know participants a priori
• but have asymptotic guarantees and big latency and energy consumption

Permissioned blockchains (classical quorum-based protocols like PBFT):
• hard guarantees and small latency and energy consumption
• but require to know participants a priori



The Byzantine consensus challenge

Permissionless blockchains (decentralised protocols like PoW and PoS):
• do not require to know participants a priori
• but have asymptotic guarantees and big latency and energy consumption

Permissioned blockchains (classical quorum-based protocols like PBFT):
• hard guarantees and small latency and energy consumption
• but require to know participants a priori

The recent federated Byzantine agreement by Stellar and Ripple
combines features of the two worlds above:
• each participant individually chooses who to trust, no central authority
• quorums arise from individual choices, and participants operate with local 

information
• hard guarantees and small latency and energy consumption



Motivation and contribution

However, federated Byzantine agreement is poorly understood, and its
correctness has not been investigated as thoroughly as other classical
solutions for BFT based on quorums.



Motivation and contribution

However, federated Byzantine agreement is poorly understood, and its
correctness has not been investigated as thoroughly as other classical
solutions for BFT based on quorums.

Our contribution:
• We focus on the Stellar consensus protocol (SCP), 

as described in Stellar's whitepaper at www.stellar.org and in 
David Mazières's blog at www.scs.stanford.edu.

• Prove SCP correct by reusing proof of core component federated voting, 
previously investigated.

http://www.stellar.org/
http://www.scs.stanford.edu


Byzantine 
Consensus



What is Byzantine consensus?

Abstraction for distributed systems in which honest nodes can only fail by
stopping, and malicious nodes fail by deviating arbitrarily from the protocol
specification.

Each correct node proposes some value x, and eventually all correct nodes
decide one and the same value y.



What is Byzantine consensus?

Abstraction for distributed systems in which honest nodes can only fail by
stopping, and malicious nodes fail by deviating arbitrarily from the protocol
specification.

Each correct node proposes some value x, and eventually all correct nodes
decide one and the same value y.

Formally, Byzantine consensus enjoys the following properties:
Safety

(Agreement) No two correct nodes decide differently.
(Validity) If every node is correct, then a node can only decide 
a value that was proposed by some node.

Liveness
(Termination) Every correct node eventually decides a value.



What do we prove about SCP?

Assume a partially synchronous system in which a reliable network delivers
messages in bounded time after global stabilisation time (GST).

Properties are relative to disjoint fragments of the system that are internally
consistent and contain only correct nodes, called intact sets:

Given any maximal intact set I:
Safety

(Agreement) No two nodes in I decide differently.
(Validity) If every node is honest, then a node in I can only decide a value
that was proposed by some node.

Liveness
(Non-blocking) If a node v in I has not decided a value yet, then in every
continuation of the run in which malicious nodes stop, the node v

eventually decides some value.



Federated 
Byzantine 
Quorum 
Systems
(FBQS)



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

Nodes choose trust independently by
selecting quorum slices.



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕍2



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2}}

𝕍2



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕍2



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕍2



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2

The quorums arise from these 
independent choices of trust.



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U1



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U2



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ
U3



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U4



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ
U5



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ

U6 = {3,4} ∈ ℚU6



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ

U6 = {3,4} ∈ ℚ

U7 = {1,2,4} ∈ ℚ

U7



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ

U6 = {3,4} ∈ ℚ

U7 = {1,2,4} ∈ ℚ

U8 = {2,3,4} ∈ ℚ

U8



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ

U6 = {3,4} ∈ ℚ

U7 = {1,2,4} ∈ ℚ

U8 = {2,3,4} ∈ ℚ

U9 = {1,2,3,4} ∈ ℚ

U9



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ

U6 = {3,4} ∈ ℚ

U7 = {1,2,4} ∈ ℚ

U8 = {2,3,4} ∈ ℚ

U9 = {1,2,3,4} ∈ ℚ

U9A node trusts each of the quorums that
contain the node itself.



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ

U6 = {3,4} ∈ ℚ

U7 = {1,2,4} ∈ ℚ

U8 = {2,3,4} ∈ ℚ

U9 = {1,2,3,4} ∈ ℚ



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ

U6 = {3,4} ∈ ℚ

U7 = {1,2,4} ∈ ℚ

U8 = {2,3,4} ∈ ℚ

U9 = {1,2,3,4} ∈ ℚ

A node v cannot contradict any set that
intersects all of its quorum slices, what is

called a v-blocking set.



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ

U6 = {3,4} ∈ ℚ

U7 = {1,2,4} ∈ ℚ

U8 = {2,3,4} ∈ ℚ

U9 = {1,2,3,4} ∈ ℚ

{1,3} is 2-blocking



2

3

4

𝕍 = {1,2,3,4}

1

Federated Byzantine quorum systems (FBQS)

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ

U6 = {3,4} ∈ ℚ

U7 = {1,2,4} ∈ ℚ

U8 = {2,3,4} ∈ ℚ

U9 = {1,2,3,4} ∈ ℚ

{1,3} is 2-blocking

Which fragments of the system can 
operate correctly under Byzantine

failures?



2

3

4

𝕍 = {1,2,3,4}

1

Characterising intact sets

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ

U6 = {3,4} ∈ ℚ

U7 = {1,2,4} ∈ ℚ

U8 = {2,3,4} ∈ ℚ

U9 = {1,2,3,4} ∈ ℚ



2

3

4

𝕍 = {1,2,3,4}

1

Characterising intact sets

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2}}

𝕊(2) = {{1,2},{2,3}}

𝕊(3) = {{3}}

𝕊(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ

U2 = {2,3} ∈ ℚ

U3 = {3} ∈ ℚ

U4 = {4} ∈ ℚ

U5 = {1,2,3} ∈ ℚ

U6 = {3,4} ∈ ℚ

U7 = {1,2,4} ∈ ℚ

U8 = {2,3,4} ∈ ℚ

U9 = {1,2,3,4} ∈ ℚ



2

3

4

𝕍 = {1,2,3,4}

1

Characterising intact sets

𝕊|{1,2,4} : 𝕍 → 2

𝕊|{1,2,4}(1) = {{1,2}}

𝕊|{1,2,4}(2) = {{1,2},{2}}

𝕊|{1,2,4}(4) = {{4}}

𝕍2



2

3

4

𝕍 = {1,2,3,4}

1

Characterising intact sets

𝕊|{1,2,4} : 𝕍 → 2

𝕊|{1,2,4}(1) = {{1,2}}

𝕊|{1,2,4}(2) = {{1,2},{2}}

𝕊|{1,2,4}(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ|{1,2,4}

U2' = {2} ∈ ℚ|{1,2,4}

U4 = {4} ∈ ℚ|{1,2,4}

U7 = {1,2,4} ∈ ℚ|{1,2,4}



2

3

4

𝕍 = {1,2,3,4}

1

Characterising intact sets

𝕊|{1,2,4} : 𝕍 → 2

𝕊|{1,2,4}(1) = {{1,2}}

𝕊|{1,2,4}(2) = {{1,2},{2}}

𝕊|{1,2,4}(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ|{1,2,4}

U2' = {2} ∈ ℚ|{1,2,4}

U4 = {4} ∈ ℚ|{1,2,4}

U7 = {1,2,4} ∈ ℚ|{1,2,4}

Liveness requires𝕍|{1,2,4} to enjoy
quorum availability.



U7

2

3

4

𝕍 = {1,2,3,4}

1

Characterising intact sets

𝕊|{1,2,4} : 𝕍 → 2

𝕊|{1,2,4}(1) = {{1,2}}

𝕊|{1,2,4}(2) = {{1,2},{2}}

𝕊|{1,2,4}(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ|{1,2,4}

U2' = {2} ∈ ℚ|{1,2,4}

U4 = {4} ∈ ℚ|{1,2,4}

U7 = {1,2,4} ∈ ℚ|{1,2,4}

𝕍|{1,2,4} = U7 ∈ ℚ ✓

Liveness requires𝕍|{1,2,4} to enjoy
quorum availability.



U7

2

3

4

𝕍 = {1,2,3,4}

1

Characterising intact sets

𝕊|{1,2,4} : 𝕍 → 2

𝕊|{1,2,4}(1) = {{1,2}}

𝕊|{1,2,4}(2) = {{1,2},{2}}

𝕊|{1,2,4}(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ|{1,2,4}

U2' = {2} ∈ ℚ|{1,2,4}

U4 = {4} ∈ ℚ|{1,2,4}

U7 = {1,2,4} ∈ ℚ|{1,2,4}

𝕍|{1,2,4} = U7 ∈ ℚ ✓

Safety requires ℚ|{1,2,4} to enjoy
quorum intersection.



U1

U4

2

3

4

𝕍 = {1,2,3,4}

1

Characterising intact sets

𝕊|{1,2,4} : 𝕍 → 2

𝕊|{1,2,4}(1) = {{1,2}}

𝕊|{1,2,4}(2) = {{1,2},{2}}

𝕊|{1,2,4}(4) = {{4}}

𝕍2
U1 = {1,2} ∈ ℚ|{1,2,4}

U2' = {2} ∈ ℚ|{1,2,4}

U4 = {4} ∈ ℚ|{1,2,4}

U7 = {1,2,4} ∈ ℚ|{1,2,4}

𝕍|{1,2,4} = U7 ∈ ℚ ✓
U1 ∩U4 = ∅ ✗

Safety requires ℚ|{1,2,4} to enjoy
quorum intersection.



U1

2

3

4

𝕍 = {1,2,3,4}

1

Characterising intact sets

𝕊|{1,2} : 𝕍 → 2

𝕊|{1,2}(1) = {{1,2}}

𝕊|{1,2}(2) = {{1,2},{2}}

𝕍2
U1 = {1,2} ∈ ℚ|{1,2}

U2' = {2} ∈ ℚ|{1,2}

𝕍|{1,2} = U1 ∈ ℚ ✓
U1 ∩ U2' ≠ ∅✓

{1,2} is an intact set which can operate 
correctly!

U2'



U4

2

3

4

𝕍 = {1,2,3,4}

1

Characterising intact sets

𝕊|{4} : 𝕍 → 2

𝕊|{4}(4) = {{4}}

𝕍2
U4 = {4} ∈ ℚ|{4}

𝕍|{4} = U4 ∈ ℚ ✓
U4 ∩ U4 ≠ ∅✓

{4} is an intact set which can operate 
correctly!



U4

2

3

4

𝕍 = {1,2,3,4}

1

Characterising intact sets

𝕊|{4} : 𝕍 → 2

𝕊|{4}(4) = {{4}}

𝕍2
U4 = {4} ∈ ℚ|{4}

𝕍|{4} = U4 ∈ ℚ ✓
U4 ∩ U4 ≠ ∅✓

Both {1,2} and {4} are
maximal intact sets.



Cardinality-based quorum systems 3f + 1

1 2 3 4

𝕊 : 𝕍 → 2

𝕊(1) = {{1,2,3},{1,2,4},{1,3,4}}

𝕊(2) = {{1,2,3},{1,2,4},{2,3,4}}

𝕊(3) = {{1,2,3},{1,3,4},{2,3,4}}

𝕊(4) = {{1,2,4},{1,3,4},{2,3,4}}

𝕍2

U1 = {1,2,3} ∈ ℚ

U2 = {1,2,4} ∈ ℚ

U3 = {1,3,4} ∈ ℚ

U4 = {2,3,4} ∈ ℚ



Cardinality-based quorum systems 3f + 1

1 2 3 4

U1' = {1,2} ∈ ℚ|{1,2,4}

U2 = {1,2,4} ∈ ℚ|{1,2,4}

U3' = {1,4} ∈ ℚ|{1,2,4}

U4' = {2,4} ∈ ℚ|{1,2,4}

𝕍2𝕊|{1,2,4} : 𝕍 → 2

𝕊|{1,2,4}(1) = {{1,2},{1,2,4},{1,4}}

𝕊|{1,2,4}(2) = {{1,2},{1,2,4},{2,4}}

𝕊|{1,2,4}(4) = {{1,2,4},{1,4},{2,4}}



Cardinality-based quorum systems 3f + 1

1 2 3 4

U1' = {1,2} ∈ ℚ|{1,2,4}

U2 = {1,2,4} ∈ ℚ|{1,2,4}

U3' = {1,4} ∈ ℚ|{1,2,4}

U4' = {2,4} ∈ ℚ|{1,2,4}

𝕍2𝕊|{1,2,4} : 𝕍 → 2

𝕊|{1,2,4}(1) = {{1,2},{1,2,4},{1,4}}

𝕊|{1,2,4}(2) = {{1,2},{1,2,4},{2,4}}

𝕊|{1,2,4}(4) = {{1,2,4},{1,4},{2,4}}{1,2,4} is the maximal intact set.
Every two correct nodes block the other correct node.



Federating 
Voting



Federated voting over 3f + 1

1 2 3 4



Federated voting over 3f + 1

vote(✓) vote(✓) vote(✗)

1 2 3 4



Federated voting over 3f + 1

vote(✓) vote(✓) vote(✗)

VOTE(✓) VOTE(✓) VOTE(✗)

1 2 3 4



Federated voting over 3f + 1

vote(✓) vote(✓) vote(✗)

VOTE(✓) VOTE(✓) VOTE(✓) VOTE(✗)

1 2 3 4



Federated voting over 3f + 1

vote(✓) vote(✓) vote(✗)

VOTE(✓) VOTE(✓) VOTE(✓) VOTE(✗)

READY(✓) READY(✓)

1 2 3 4



Federated voting over 3f + 1

vote(✓) vote(✓) vote(✗)

VOTE(✓) VOTE(✓) VOTE(✓) VOTE(✗)

READY(✓) READY(✓)

READY(✓)

1 2 3 4

{1,2} is a 4-blocking set.



Federated voting over 3f + 1

vote(✓) vote(✓) vote(✗)

VOTE(✓) VOTE(✓) VOTE(✓) VOTE(✗)

READY(✓) READY(✓)

READY(✓)

deliver(✓) deliver(✓) deliver(✓)

1 2 3 4



Federated voting over 3f + 1

vote(✓) vote(✓) vote(✗)

VOTE(✓) VOTE(✓) VOTE(✓) VOTE(✗)

READY(✓) READY(✓)

READY(✓)

deliver(✓) deliver(✓) deliver(✓)

1 2 3 4

Node v can compute quorums to 
which v belongs and v-blocking sets with 

only local information!



Guarantess of federated voting

Federated voting ensures propeties similar to those of Bracha broadcast 
[Bra87], but relative to intact sets.

Given a maximal intact set I:
Safety

(Consistency) No two nodes in I deliver different values.
Liveness

(Totality) If a node in I delivers a value, then every node in I eventually 
delivers a value.



Stellar
Consensus
Protocol
(SCP)



Ballots

• Ballots from Paxos [Lam98] to neutralise stuck values:

A ballot ⟨n, x⟩ attaches a round counter n ∈ ℕ+ to the value x.



Ballots

• Ballots from Paxos [Lam98] to neutralise stuck values:

A ballot ⟨n, x⟩ attaches a round counter n ∈ ℕ+ to the value x.

• Ballots are alphabetically ordered on their counter and value:

The special null ballot ⟨0,⊥⟩ is below any other ballot.



Ballots

• Ballots from Paxos [Lam98] to neutralise stuck values:

A ballot ⟨n, x⟩ attaches a round counter n ∈ ℕ+ to the value x.

• Ballots are alphabetically ordered on their counter and value: 

The special null ballot ⟨0,⊥⟩ is below any other ballot.

• Less and incompatible than relation:

⟨n, x⟩ ⋦ ⟨m, y⟩ iff ⟨n, x⟩ < ⟨m, y⟩ and x ≠ y.



Stages of SCP

Each node considers a candidate ballot b = ⟨n, x⟩ and proceeds in two stages:

Prepare stage: try to abort every ballotb' ⋦ b, i.e., vote✗ on every b' ⋦ b.

Commit stage: once b is prepared, try to commit b, i.e., vote✓ on b.



Stages of SCP

Each node considers a candidate ballot b = ⟨n, x⟩ and proceeds in two stages:

Prepare stage: try to abort every ballotb' ⋦ b, i.e., vote✗ on every b' ⋦ b.

Commit stage: once b is prepared, try to commit b, i.e., vote✓ on b.

In order to ensure liveness:
• Start a timer after receiving a quorum of messages with a new round n.
• After timeout, take as candidate ballot the highest ballot prepared so far 

with round increased by one, and retry prepare and commit stages.



SCP over 3f + 1

1 2 3 4



SCP over 3f + 1

⟨0,⊥⟩
⟨0,⊥⟩

cand:
prep:

⟨0,⊥⟩
⟨0,⊥⟩

cand:
prep:

⟨0,⊥⟩
⟨0,⊥⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

propose(3) propose(3) propose(1)

⟨1,1⟩
⟨0,⊥⟩

cand:
prep:

⟨1,3⟩
⟨0,⊥⟩

cand:
prep:

⟨1,3⟩
⟨0,⊥⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

propose(3) propose(3) propose(1)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)

VOTE(✗,⟨0,⊥⟩)

⟨1,1⟩
⟨0,⊥⟩

cand:
prep:

⟨1,3⟩
⟨0,⊥⟩

cand:
prep:

⟨1,3⟩
⟨0,⊥⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

propose(3) propose(3) propose(1)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)

VOTE(✗,⟨0,⊥⟩)

start-timer(F(1)) start-timer(F(1)) start-timer(F(1))

⟨1,1⟩
⟨0,⊥⟩

cand:
prep:

⟨1,3⟩
⟨0,⊥⟩

cand:
prep:

⟨1,3⟩
⟨0,⊥⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

propose(3) propose(3) propose(1)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)

VOTE(✗,⟨0,⊥⟩)

start-timer(F(1)) start-timer(F(1)) start-timer(F(1))

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)

⟨1,1⟩
⟨0,⊥⟩

cand:
prep:

⟨1,3⟩
⟨0,⊥⟩

cand:
prep:

⟨1,3⟩
⟨0,⊥⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

propose(3) propose(3) propose(1)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)

VOTE(✗,⟨0,⊥⟩)

start-timer(F(1)) start-timer(F(1)) start-timer(F(1))

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)

prepared(⟨1,1⟩) prepared(⟨1,1⟩) prepared(⟨1,1⟩)

⟨1,1⟩
⟨1,1⟩

cand:
prep:

⟨1,3⟩
⟨1,1⟩

cand:
prep:

⟨1,3⟩
⟨1,1⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

propose(3) propose(3) propose(1)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)

VOTE(✗,⟨0,⊥⟩)

start-timer(F(1)) start-timer(F(1)) start-timer(F(1))

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)

prepared(⟨1,1⟩) prepared(⟨1,1⟩) prepared(⟨1,1⟩)

VOTE(✓,⟨1,1⟩)

⟨1,1⟩
⟨1,1⟩

cand:
prep:

⟨1,3⟩
⟨1,1⟩

cand:
prep:

⟨1,3⟩
⟨1,1⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

propose(3) propose(3) propose(1)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)

VOTE(✗,⟨0,⊥⟩)

start-timer(F(1)) start-timer(F(1)) start-timer(F(1))

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)

prepared(⟨1,1⟩) prepared(⟨1,1⟩) prepared(⟨1,1⟩)

VOTE(✓,⟨1,1⟩)

READY(✗,⟨1,1⟩)

⟨1,1⟩
⟨1,1⟩

cand:
prep:

⟨1,3⟩
⟨1,1⟩

cand:
prep:

⟨1,3⟩
⟨1,1⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

propose(3) propose(3) propose(1)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)

VOTE(✗,⟨0,⊥⟩)

start-timer(F(1)) start-timer(F(1)) start-timer(F(1))

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)

prepared(⟨1,1⟩) prepared(⟨1,1⟩) prepared(⟨1,1⟩)

VOTE(✓,⟨1,1⟩)

READY(✗,⟨1,1⟩)

prepared(⟨1,2⟩) prepared(⟨1,2⟩) prepared(⟨1,2⟩)

⟨1,1⟩
⟨1,2⟩

cand:
prep:

⟨1,3⟩
⟨1,2⟩

cand:
prep:

⟨1,3⟩
⟨1,2⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

propose(3) propose(3) propose(1)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)

VOTE(✗,⟨0,⊥⟩)

start-timer(F(1)) start-timer(F(1)) start-timer(F(1))

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)

prepared(⟨1,1⟩) prepared(⟨1,1⟩) prepared(⟨1,1⟩)

VOTE(✓,⟨1,1⟩)

READY(✗,⟨1,1⟩)

prepared(⟨1,2⟩) prepared(⟨1,2⟩) prepared(⟨1,2⟩)

VOTE(✓,⟨1,2⟩)

⟨1,2⟩
⟨1,2⟩

cand:
prep:

⟨1,3⟩
⟨1,2⟩

cand:
prep:

⟨1,3⟩
⟨1,2⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

propose(3) propose(3) propose(1)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)
VOTE(✗,⟨1,2⟩)

VOTE(✗,⟨0,⊥⟩)
VOTE(✗,⟨1,1⟩)

VOTE(✗,⟨0,⊥⟩)

start-timer(F(1)) start-timer(F(1)) start-timer(F(1))

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)
READY(✗,⟨1,1⟩)

READY(✗,⟨0,⊥⟩)

prepared(⟨1,1⟩) prepared(⟨1,1⟩) prepared(⟨1,1⟩)

VOTE(✓,⟨1,1⟩)

READY(✗,⟨1,1⟩)

prepared(⟨1,2⟩) prepared(⟨1,2⟩) prepared(⟨1,2⟩)

VOTE(✓,⟨1,2⟩)

⋮ ⋮ ⋮ ⋮

⟨1,2⟩
⟨1,2⟩

cand:
prep:

⟨1,3⟩
⟨1,2⟩

cand:
prep:

⟨1,3⟩
⟨1,2⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

⋮ ⋮ ⋮ ⋮

⟨1,2⟩
⟨1,2⟩

cand:
prep:

⟨1,3⟩
⟨1,2⟩

cand:
prep:

⟨1,3⟩
⟨1,2⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

⋮ ⋮ ⋮ ⋮

timeout timeout timeout

⟨1,2⟩
⟨1,2⟩

cand:
prep:

⟨1,3⟩
⟨1,2⟩

cand:
prep:

⟨1,3⟩
⟨1,2⟩

cand:
prep:1 2 3 4

Eventually the timer for round 1 of each node will timeout...



SCP over 3f + 1

⋮ ⋮ ⋮ ⋮

timeout timeout timeout

⟨2,2⟩
⟨1,2⟩

cand:
prep:

⟨2,2⟩
⟨1,2⟩

cand:
prep:

⟨2,2⟩
⟨1,2⟩

cand:
prep:1 2 3 4

Eventually the timer for round 1 of each node will timeout...



SCP over 3f + 1

⋮ ⋮ ⋮ ⋮

timeout timeout timeout

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

⟨2,2⟩
⟨1,2⟩

cand:
prep:

⟨2,2⟩
⟨1,2⟩

cand:
prep:

⟨2,2⟩
⟨1,2⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

⋮ ⋮ ⋮ ⋮

timeout timeout timeout

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

start-timer(F(2)) start-timer(F(2)) start-timer(F(2))

⟨2,2⟩
⟨1,2⟩

cand:
prep:

⟨2,2⟩
⟨1,2⟩

cand:
prep:

⟨2,2⟩
⟨1,2⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

⋮ ⋮ ⋮ ⋮

timeout timeout timeout

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

start-timer(F(2)) start-timer(F(2)) start-timer(F(2))

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

⟨2,2⟩
⟨1,2⟩

cand:
prep:

⟨2,2⟩
⟨1,2⟩

cand:
prep:

⟨2,2⟩
⟨1,2⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

⋮ ⋮ ⋮ ⋮

timeout timeout timeout

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

start-timer(F(2)) start-timer(F(2)) start-timer(F(2))

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

prepared(⟨2,2⟩) prepared(⟨2,2⟩) prepared(⟨2,2⟩)

⟨2,2⟩
⟨2,2⟩

cand:
prep:

⟨2,2⟩
⟨2,2⟩

cand:
prep:

⟨2,2⟩
⟨2,2⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

⋮ ⋮ ⋮ ⋮

timeout timeout timeout

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

start-timer(F(2)) start-timer(F(2)) start-timer(F(2))

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

prepared(⟨2,2⟩) prepared(⟨2,2⟩) prepared(⟨2,2⟩)

VOTE(✓,⟨2,2⟩) VOTE(✓,⟨2,2⟩) VOTE(✓,⟨2,2⟩)

⟨2,2⟩
⟨2,2⟩

cand:
prep:

⟨2,2⟩
⟨2,2⟩

cand:
prep:

⟨2,2⟩
⟨2,2⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

⋮ ⋮ ⋮ ⋮

timeout timeout timeout

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

start-timer(F(2)) start-timer(F(2)) start-timer(F(2))

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

prepared(⟨2,2⟩) prepared(⟨2,2⟩) prepared(⟨2,2⟩)

VOTE(✓,⟨2,2⟩) VOTE(✓,⟨2,2⟩) VOTE(✓,⟨2,2⟩)

READY(✓,⟨2,2⟩) READY(✓,⟨2,2⟩) READY(✓,⟨2,2⟩)

⟨2,2⟩
⟨2,2⟩

cand:
prep:

⟨2,2⟩
⟨2,2⟩

cand:
prep:

⟨2,2⟩
⟨2,2⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

⋮ ⋮ ⋮ ⋮

timeout timeout timeout

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

start-timer(F(2)) start-timer(F(2)) start-timer(F(2))

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

prepared(⟨2,2⟩) prepared(⟨2,2⟩) prepared(⟨2,2⟩)

VOTE(✓,⟨2,2⟩) VOTE(✓,⟨2,2⟩) VOTE(✓,⟨2,2⟩)

READY(✓,⟨2,2⟩) READY(✓,⟨2,2⟩) READY(✓,⟨2,2⟩)

committed(⟨2,2⟩) committed(⟨2,2⟩) committed(⟨2,2⟩)

⟨2,2⟩
⟨2,2⟩

cand:
prep:

⟨2,2⟩
⟨2,2⟩

cand:
prep:

⟨2,2⟩
⟨2,2⟩

cand:
prep:1 2 3 4



SCP over 3f + 1

⋮ ⋮ ⋮ ⋮

timeout timeout timeout

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

VOTE(✗,⟨1,3⟩)

...
VOTE(✗,⟨2,1⟩)

start-timer(F(2)) start-timer(F(2)) start-timer(F(2))

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

READY(✗,⟨1,3⟩)

...
READY(✗,⟨2,1⟩)

prepared(⟨2,2⟩) prepared(⟨2,2⟩) prepared(⟨2,2⟩)

VOTE(✓,⟨2,2⟩) VOTE(✓,⟨2,2⟩) VOTE(✓,⟨2,2⟩)

READY(✓,⟨2,2⟩) READY(✓,⟨2,2⟩) READY(✓,⟨2,2⟩)

committed(⟨2,2⟩) committed(⟨2,2⟩) committed(⟨2,2⟩)

decide(2) decide(2) decide(2)

⟨2,2⟩
⟨2,2⟩

cand:
prep:

⟨2,2⟩
⟨2,2⟩

cand:
prep:

⟨2,2⟩
⟨2,2⟩

cand:
prep:1 2 3 4



SCP and federated voting

Abstract version of SCP:
Uses federated voting as a black box on each ballot:
• Not directly implementable because of infinity of ballots considered.
• Needs to exchange batches of messages instead of individual messages.

Concrete version of SCP:
Uses a variation of federated voting on statements PRE b ≡ {(✗, b') | b' ⋦ b}

and CMT b ≡ (✓, b):
• Directly implementable because of finiteness of statements considered.
• Does not use federated voting as a black box.



SCP and federated voting

Abstract version of SCP:
Uses federated voting as a black box on each ballot:
• Not directly implementable because of infinity of ballots considered.
• Needs to exchange batches of messages instead of individual messages.

Concrete version of SCP:
Uses a variation of federated voting on statements PRE b ≡ {(✗, b') | b' ⋦ b}

and CMT b ≡ (✓, b):
• Directly implementable because of finiteness of statements considered.
• Does not use federated voting as a black box.

Modular proof of correctness:
• Prove abstract SCP correct using previous results on federated voting.
• Show that concrete SCP observationally refines abstract SCP.



Conclusions

• Decentralised trust via FBQS, typical of permissionless blockchains.
• Hard guarantees and low latency and energy consumption, typical of

permissioned blockchains.
• SCP implements a variant of Byzantine consensus where properties are 

relative to disjoint fragments with internal consistency:
• Safety within the intact set.
• Liveness for intact sets after malicious nodes stop.

• Correctness of SCP proved modularly by using results of federated voting 
previously investigated, and by refinement.



Conclusions

• Decentralised trust via FBQS, typical of permissionless blockchains.
• Hard guarantees and low latency and energy consumption, typical of

permissioned blockchains.
• SCP implements a variant of Byzantine consensus where properties are 

relative to disjoint fragments with internal consistency:
• Safety within the intact set.
• Liveness for intact sets after malicious nodes stop.

• Correctness of SCP proved modularly by using results of federated voting 
previously investigated, and by refinement.

Thank you!


