
Adding Distribution and Fault Tolerance to Jason

Álvaro Fernández Dı́az Clara Benac Earle Lars-Åke Fredlund
Babel group, DLSIIS, Facultad de Informática, Universidad Politécnica de Madrid

{avalor,cbenac,fred}@babel.ls.fi.upm.es

Abstract
In this paper we describe an extension of the multiagent system pro-
gramming language Jason with constructs for distribution and fault
tolerance. The standard Java-based Jason implementation already
does provide a distribution mechanism, which is implemented us-
ing the JADE library, but to use it effectively some Java program-
ming is often required. Moreover, there is no support for fault tol-
erance. In contrast this paper develops constructs for distribution
and fault tolerance wholly integrated in Jason, permitting the Jason
programmer to implement complex distributed systems entirely in
Jason itself. The fault tolerance techniques implemented allow the
agents to detect, and hence react accordingly, when other agents
have stopped working for some reason (e.g., due to a software or
a hardware failure) or cannot anymore by reached due to a com-
munication link failure. The introduction of distribution and fault
tolerance in Jason represent a step forward towards the coherent
integration of successful distributed software techniques, into the
agent based software paradigm. The proposed extension to Jason
has been implemented in eJason, an Erlang-based implementation
of Jason. In fact, in this work we essentially import the distribu-
tion and fault tolerance mechanisms from the Erlang programming
language into Jason, a task which requires adaptation of the basic
primitives due to the difference between a process based functional
programming language (Erlang) and a language for programming
BDI (Belief-Desire-Intention) agent based systems (Jason).

1. Introduction
The increasing interest in multiagent systems (MAS) is resulting
in the development of new programming languages and tools capa-
ble of supporting complex MAS development. One such languages
is Jason [6]. Some of the more difficult challenges faced by the
multiagent systems community, i.e., how to develop scalable and
fault tolerant systems, are the same fundamental challenges that any
concurrent and distributed system face. Consequently, the agent-
oriented programming languages provide mechanisms to address
these issues, typically borrowing from more mainstream frame-
works for developing distributed systems. For instance, Jason al-
lows the development of distributed multiagent systems by inter-
facing with JADE [4, 5]. However, Jason does not provide specific
mechanisms to implement fault-tolerant systems.

MAS and the actor model [2] have many characteristics in com-
mon. The key difference is that agents normally impose extra re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop on Programming based on Actors, Agents, and Decentralized Control 21-
22 October, Tucson, Arizona
Copyright c© 2012 ACM [to be supplied]. . . $10.00

quirements upon the actors, typically a rational and motivational
component such as the Belief-Desire-Intention architecture[10,
11].

Some programming languages based on the actor model are
very effective in addressing the aforesaid challenges of distributed
system. Erlang [3, 7], in particular, provides excellent support
for concurrency, distribution and fault tolerance. However, Erlang
lacks some of the concepts, like the Belief-Desire-Intention archi-
tecture, which are central to the development of MAS.

This article forms part of a research programme to evalu-
ate whether the BDI architecture provides useful programming
paradigms which can improve the design of (non AI-based) com-
plex distributed systems too. However, to be able to do such an
evaluation we found that it was first necessary to improve the sup-
port for programming distributed systems available in Jason imple-
mentations (which is the topic of this article).

In recent work [8], we presented eJason, an open source im-
plementation of a significant subset of Jason in Erlang, with very
encouraging results in terms of efficiency and scalability. More-
over, some characteristics common to Jason and Erlang (e.g. both
having their syntactical roots in Prolog) made the implementation
quite straightforward. However, the first eJason prototype did not
permit the programming of distributed or fault-tolerant multiagent
systems.

In this paper, we propose a distribution model and a fault toler-
ance mechanism for Jason closely inspired by Erlang. This exten-
sion of Jason has been implemented in eJason, thus making it pos-
sible to develop complex distributed systems fully in Jason itself.
Our implementation of eJason and the sample multiagent systems
described in this and previous documents can be downloaded at:

git : //github.com/avalor/eJason.git

The rest of the paper is organized as follows: Section 2 provides
background material introducing Jason, Erlang and eJason. Sec-
tions 3 and 4 describe the proposed distribution model and fault
tolerance mechanisms for Jason programs, respectively. Some de-
tails on the implementation in eJason of these extensions can be
found in Section 5. An example that illustrates in detail the use of
the proposed extension is included in Section 6. Finally, Section 7
presents the conclusions and future lines of work.

2. Background
In this section we briefly introduce Jason, Erlang and eJason. Some
previous knowledge of both Jason and Erlang is assumed.

2.1 Jason
Jason is an agent-oriented programming language which is an ex-
tension of AgentSpeak [9]. The standard implementation of Jason
is an interpreter written in Java.

2.1.1 The Jason Programming Language
The Jason programming language is based on the Belief-Desire-
Intention (BDI) architecture[10, 11] which is highly influential on
the development of multiagent systems. The first-class constructs
of the language are: beliefs, goals (desires) and plans (intentions).
This approach allows the implementation of the rational part of
agents by the definition of their “know-how”, i.e., how each agent
should act in order to achieve its goals, based on its subjective
knowledge.

The Jason language also follows an environment-oriented phi-
losophy, i.e., an agent exists in an environment which it can per-
ceive and with which it can interact using so called external actions.
In addition, Jason allows the execution of internal actions. These
actions allow the interaction with other agents (communication) or
to carry out some useful tasks such as e.g. string concatenation and
printing on the standard output, among others.

2.1.2 The Java Implementation of Jason
A complete description of the Java implementation of Jason can be
found in [6]. This implementation of Jason allows the programming
of distributed multiagent systems by interfacing with the well-
known third-party software JADE [4, 5], which is compliant to
FIPA recommendations [1]. JADE implements a distribution model
where the agents are grouped in agent containers, which are in turn
grouped again to compose agent platforms.

The distribution of a Jason system using JADE is not transpar-
ent from the programmer’s perspective as he/she must declare the
architecture of the system (centralised and JADE being the ones
provided by default), and, most likely, execute some actions that
rely on the third-party software used to distribute the system.

The Java interpreter of Jason provides mechanisms to detect
and react to the failure of a plan of an agent. However, there are
no mechanisms to detect and react to the failure of an entire agent.
That is, there are no constructs which permit to detect if some agent
has stopped working (has died) or has become isolated. One can
of course program a “monitor agent” to continuously interact with
the agent that should stay alive according to some pre-established
communication protocol, in order to detect if the monitored agent
fails. However, having to program such monitors by hand is an error
prone and a tedious task.

2.2 Erlang
Erlang [3, 7] is a functional concurrent programming language
created by Ericsson in the 1980s which follows the actor model.
The chief strength of the language is that it provides excellent
support for concurrency, distribution and fault tolerance on top of
a dynamically typed and strictly evaluated functional programming
language. It enables programmers to write robust and clean code
for modern multiprocessor and distributed systems.

An Erlang system (see Fig. 1) is a collection of Erlang nodes.
An Erlang node (or Erlang Run-time System) is a collection of
processes (actors), with a unique node name. These processes run
independently from each other and do not share memory. They
interact via communication. Communication is asynchronous and
point-to-point, with one process sending a message to a second
process identified by its process identifier (pid). Messages sent to a
process are put in its message queue, also referred to as a mailbox.

As an alternative to addressing a process using its pid, there is
a facility for associating a symbolic name with a pid. The name,
which must be an atom, is automatically unregistered when the
associated process terminates. Message passing between processes
in different nodes is transparent when pids are used, i.e., there is
no syntactical difference between sending a message to a process
in the same node, or to a remote node. However, the node must
be specified when sending messages using registered names, as the

Node 1
Node 2

Proc B Proc C

Proc A

mailbox

process
dictionary

registry registry

Figure 1. An Erlang multi-node system

pid registry is local to a node. For instance, in Fig. 1 let the process
Proc C be registered with the symbolic name procC. Then, if the
process Proc B wants to send a message to the process procC, the
message will be addressed to procC@Node2.

A unique feature of Erlang that greatly facilitates building fault-
tolerant systems is that one process can monitor another process in
order to detect and recover from abnormal process termination. If a
process P1 monitors another process P2, and P2 terminates with a
fault, process P1 is automatically informed by the Erlang runtime
of the failure of P2. It is possible to monitor processes at remote
nodes. This functionality is provided by an Erlang function named
erlang:monitor.

2.3 eJason
eJason is our Erlang implementation of the Jason programming lan-
guage which exploits the support for efficient distribution and con-
currency provided by the Erlang runtime system to make a MAS
more robust and performant. It is interesting to note the similarities
between Jason and Erlang; both are inspired by Prolog, and both
support asynchronous communication among computational inde-
pendent entities (agents/processes), which makes the implementa-
tion of Jason in Erlang rather straightforward.

The first prototype of eJason was described in [8]. This proto-
type supported a significant subset of Jason. This subset included
the main functionality: the reasoning cycle, the inference engine
used by test goals and plan contexts, and the knowledge base. We
continue developing eJason by increasing the Jason subset sup-
ported (which now includes plan annotation and an improved in-
ference engine that generates matching values for the variables in
the queries upon request, instead of unnecessarily computing all
matching values), and by improving the design and implementa-
tion of eJason.

Probably the most relevant fact of the implementation of eJa-
son is the one-to-one correspondence between an agent and an Er-
lang process (a lightweight entity), enabling the eJason implemen-
tation to execute multiagent systems composed of up to hundreds of
thousands of concurrently executing agents with few performance
problems. This compares very favorably with the Java based stan-
dard Jason implementation which has problems in executing sys-
tems with no more than thousands of concurrent agents (even if
executed using a pool of threads) on comparable hardware (see [8]
for benchmarks).

3. Distribution
In this section we describe the proposed agent distribution model
extension to Jason, which has been implemented in eJason. It is in-
spired by the distribution model of Erlang, as, in our opinion, it is a

Figure 2. Sample eJason Distributed System

sound and efficient one. The distribution model has been designed
with three goals in mind: distribution transparency (i.e., ensuring
that distributed agents can communicate), efficiency, and minimiz-
ing the impact on the syntax of Jason programming language.

3.1 Distribution Schema
Below we introduce the terminology used to describe the distribu-
tion model.

• A multiagent system is composed by one or more agent con-
tainers.

• Each (agent) container1 is comprised of a set of agents, and
is located on a computing host. It is given a name that is
unique in the whole system. Concretely the name has the
shape NickName@HostName, where NickName is an arbi-
trary short name given to the container when it is started and
HostName is the full name of the host in which the container
runs. For instance, home@avalor-laptop.fi.upm.es cor-
responds to a container that runs in a host whose name is
avalor-laptop.fi.upm.es.

• Each agent is present in a single container. At the moment of
agent creation, it is given a symbolic name that is unique within
the container. A single agent is uniquely identified in the system
by the combination of its own symbolic name and the name of
its container. Using the unique name of an agent, agents can
communicate with each other irrespectively of the containers
they reside in.

As an example, consider the distributed Jason multiagent
system in Figure 2. This system is composed by four agents
distributed over two different hosts. The agents with the
names owner, robot and fridge reside in a container named
home@avalor-laptop.fi.upm.es. The agent supermarket
runs in the container shopping_mall@babel.ls.fi.upm.es, lo-
cated on a different host.

3.2 Distribution API
Recall that Jason agents communicate with each other using inter-
nal actions. Thus, to support distribution, we add support for com-
municating in existing internal actions such as, e.g., .send, as well
as adding a few new internal actions. In practice, most of the new
internal actions are just an extension of existing ones to allow the

1 we use the name container to emphasize the similarities with a JADE
container

inclusion of the name of the container where the agent receiving the
effect of the internal action (e.g. receiving a message) runs. This
name is added as an annotation. A complete example showing how
the new API is used in practice is included in Section 6.

3.2.1 Agent Communication
The communication between agents in Jason requires the use of the
internal action

a) .send(AgentName,Performative,Message
[Reply,Timeout]),

where the parameters in brackets are optional and AgentName is the
symbolic name of the agent receiving the message. The parameters
Reply and Timeout can only be used when the performative is
of type ask. We omit the exact description of their meaning from
this article as they are present with the same semantics in “non-
distributed Jason”; see [6] for details.

In the Java implementation of Jason, the symbolic name must
uniquely identify one agent within the system, while, as mentioned
above, the distributed extension guarantees only that agent names
are unique in a container. Thus the above internal action can be used
only to communicate between agents located in the same container
(intra-container communications).

Therefore, to permit communication between agents located
in different containers (inter-container communication) the dis-
tributed extension of Jason provides a new internal action

b) .send(Address,Performative,Message,
[Reply,Timeout])

where the parameter Address is an annotated atom with the struc-
ture AgentName[container(Container)] and Container is
the name of the container in which the agent with symbolic name
AgentName runs. Most internal actions similarly accept such an
address structure to specify an agent; in the following we will not
list these variant internal actions.

The guarantees2 provided by the aforementioned internal ac-
tions differ:

• If the execution of a) succeeds, the reception of the message by
the receiver is guaranteed. However, it does not ensure that the
receiving agent considers the message socially acceptable (i.e.
considered suitable for processing, cf. not socially acceptable
messages are automatically discarded and do not generate any
event, see [6]) nor that it has a plan which can be triggered by
the reception of the message. The execution will fail if there
is no agent in the same container whose symbolic name is
AgentName.

• The execution of b) always succeeds. This internal action, thus,
provides no guarantees regarding the successful delivery of the
message.

3.2.2 Agent Creation and Destruction
Agents can create agents in a named container using the internal
action

• .create_agent(AgentName, Source,[InitialBeliefs])

where the parameter in brackets is optional. If Container is not
provided, using an Address structure, the new agent is created
in the same container as the agent executing the internal action.
As in [6], the parameter Source indicates the implementation

2 We encourage the reader to read the content at
http://www.erlang.org/faq/academic.html#id54296 to get a feel of how
useless and inefficient the imposition of strong guarantees on message
delivery can be for distributed systems.

of the agent (its plans, initial goals and initial beliefs). Finally,
InitialBeliefs is a list of beliefs that should be added to the
set of initial beliefs of the new agent upon creation. This internal
action will succeed if (1) the named container exists in the system,
and (2) there is no other agent with symbolic name AgentName al-
ready in Container, and (3) Source correctly identifies an agent
implementation.

An agent can also explicitly kill other agents. The following
internal action allows this:

• .kill_agent(AgentName).

The parameters and the meaning of their absence are analogous to
those above. The execution of this internal action does not fail, even
if the agent to terminate does not exist.

3.2.3 Container Name Discovery
An agent can discover the name of its own container by executing
the internal action

• .my_container(Var)

If the variable Var is unbound, the execution of the internal action
does not fail and, as a result, Var will be bound to the name of the
container of the agent. If Var is bound to any value different from
the name of the container of the agent executing it, the internal
action will fail, otherwise it succeeds.

An agent can discover the name of the agent and container (the
complete address) from which it has received a message. Every
belief and goal generated from a communication is labeled with
the annotation

• source(AgentName[container(Container)])

Notice that this extension guarantees backwards compatibility
with Jason legacy code. The arity of the annotation source, see
[6], is maintained and the Address structure can be used to identify
the sender agent, e.g. in a .send internal action that represents the
reply to the message received.

4. Fault Tolerance
The fault detection extension that we describe in this section en-
ables an agent to express its desire to be notified when another agent
terminates or becomes unreachable. As we describe later, this noti-
fication is carried out by the runtime system by adding a new belief
to the belief base of the agent being notified.

4.1 Agent failures
The reasons why an agent may stop working are numerous. For
instance, the host in which the agent runs has been shut down, the
agent itself has been stopped or has crashed due to some error in the
source code, or the host in which the agent runs may have become
isolated from the rest of agents in the system.

4.2 Monitoring agents
Agents are not informed about failures in each other by default.
Instead, a (monitoring) agent interested in the state of a (monitored)
agent must explicitly request to be notified when the status of
the monitored agent worsens. This request is implemented as the
internal action:

• .monitor(AgentName)

where the parameter AgentName is the symbolic name of the mon-
itored agent in the desired container. This action is executed by the
monitoring agent. The execution of this internal action never fails.

After the execution of the .monitor internal action, the moni-
toring agent will be informed about failures in the monitored agent

at most once, i.e. after one error in the monitored agent is detected.
Nevertheless, the .monitor internal action can be called again af-
ter the notification. If the monitored agent fails, the monitoring
agent will receive the following new belief:

• +agent_down(AgentName[container(Container)])
[reason(RType)]

along with the corresponding belief addition event. The pos-
sible values of RType are unknown_agent, dead_agent and
unreachable_agent. Their meaning is as follows:

• unknown agent. There is no agent whose symbolic name is
AgentName in the container Container as specified in the
invocation of the internal action .monitor.

• dead agent. The monitored agent with the symbolic name
AgentName has stopped working.

• unreachable agent. The containers of the monitored and mon-
itoring agent are not connected, e.g. caused by a network prob-
lem, or by a problem with the container host, or by a failure in
the container itself. The reconnection of the containers, which
renders the monitored agent reachable again if it is still alive,
may happen but it is not notified to the monitoring agent.

Clearly these errors are not mutually exclusive. For instance,
an unreachable agent (unreachable agent) may be dead as well
(dead agent).

In Section 6 we illustrate how this fault detection mechanism is
used to detect and help recover from different agent failures.

5. Implementation
In this section, we provide some details about the implementation
in eJason of the proposed extensions to Jason. We do not intend to
give a low-level description of how every single element has been
implemented. Instead, we describe the correspondence between the
elements introduced and their Erlang counterparts (recall that the
extensions are inspired by the distribution and fault tolerance mech-
anism of Erlang). A very basic knowledge about Erlang constructs
and their semantics suffices to understand the contents of this sec-
tion.

5.1 Distribution
The new concept introduced by our distribution model is the agent
container. It is implemented using an Erlang node. Therefore, each
container must be given a symbolic name unique in its host, as it is
not possible to have two Erlang nodes with the same name running
in the same host (Erlang nodes can be given short- or full-names.
For convenience, eJason only considers the latter possibility). For
each agent container in a system, a new Erlang node is started.
Besides, in eJason each agent is represented by a different Erlang
process. Therefore, given an agent with symbolic name AgentName
running in a container with symbolic name NickName in host
Host, there exists an Erlang process running in the Erlang node
NickName@Host. This process is locally registered as AgentName.

The guarantees for the message exchange achieved by executing
the internal action .send, described in Section 3, derive from the
Erlang semantics of their implementation:

• When internal action .send(AgentName,Performative,
Message,[Reply,Timeout]) is executed, a message is sent
to the Erlang process locally registered as AgentName. This
operation fails if there is no process registered as AgentName.

• When the internal action executed is .send(Address,
Performative,Message,[Reply,Timeout]), where the pa-
rameter Address is the annotated atom described in Sec-
tion 3.2.1, a message is sent to the Erlang process that runs

in the Erlang node with name Container and that is registered
as AgentName in that same node. This operation cannot fail
even if the Erlang node does not exist (which does not ensure
the correct delivery of the message).

5.2 Faul Tolerance
The internal action .monitor is implemented by the Erlang func-
tion: erlang:monitor. Consider the case where an agent A mon-
itors another agent B. When A executes the .monitor internal ac-
tion, the Erlang process corresponding to A invokes the function
erlang:monitor giving among its parameters the identifier of the
Erlang process corresponding to B (either its registered name alone
or along with the name of its Erlang node).

If there is a failure on the agent B, the Erlang process of agent A
receives a so-called message ’DOWN’ message, which provides,
among others, information about the failure. Depending on that
information, which is represented by an Erlang construct (atom or
tuple), one of the different failures considered is generated:

• If the information received is the atom noproc, the Erlang
process corresponding to the agent B cannot be found while the
Erlang node it should be running in can. Therefore, a failure of
type unknown_agent is detected.

• If the information received is the atom noconnection, the
Erlang node corresponding to the container of agent B cannot
be found. A failure of type unreachable_agent is detected.

• The reception of any other kind of information (e.g. the atom
killed meaning that the Erlang process of agent B has been
killed or a tuple providing information about the reason why
that process has crashed) means that the monitored agent has
died. Therefore, a failure of type dead_agent is detected.

6. Example
In this section we illustrate the Jason extensions using a sample
multiagent system that is distributed and which makes use of the
fault tolerance mechanisms described in Sections 3 and 4. The ex-
ample is inspired by a similar one provided with the Jason distribu-
tion and also described in [6]. The example runs unchanged under
eJason.

6.1 The system
The system is composed by the following agents:

• Agent owner: this agent monitors a robot (another agent) and is
continuously avid for beer. It asks the robot for cans of beer. If
it gets a beer, it drinks it whole sip by sip, then asks for another
beer. If the robot agent reports that there are no more beers in
the fridge, the owner takes a short nap and, immediately after
waking up, starts asking for a beer again. Upon reception of a
message from the robot informing that it is not allowed to give
any more beer to the owner, it disconnects the robot. The owner
monitors the robot, so if it dies (because the owner disconnects
it or otherwise), the former is immediately aware of it and starts
the robot again. Finally, if this agent drinks more beer than its
physical limit can bear, it collapses (the agent owner dies).

• Agent robot: this agent fulfills the owner’s requests for beer.
Upon reception of a request from the owner, it goes to the fridge
and checks whether it contains some beer or is empty. In the
first case, it grabs one beer, goes to the location of the owner
and gives him the beer. The second case is again split in two,
depending on whether the supermarket (represented by another
agent) is open (the supermarket agent is not dead and is reach-
able) or closed (the supermarket agent is dead or is unreach-
able). If the fridge is empty and the supermarket is open, the

Start

New
event?

Supply beer
Order received

Figure 3. Flowchart for agent “supermarket”

robot orders some beer, which will be delivered directly to the
fridge, and tells the owner that the fridge is empty. Otherwise, if
the fridge is empty and the supermarket is closed, the robot just
tells the owner that the fridge is empty, without trying to make
any order. In order to know whether the supermarket is open or
not, the robot monitors the supermarket agent. Depending on
the type of failure detected in the supermarket agent, the robot
emits a different speech (prints a different message on the stan-
dard output). Finally, the robot also monitors the owner and, if
it dies, emits a short speech and waits, idly, for future requests.

• Agent fridge: this agent receives requests for beer from the
robot. If it is not empty, it gives a beer to the robot, hence
decrementing its current stock by one unit. If it is empty, it does
not hand out any beer to the robot and just reports back this fact.
Finally, anytime it receives a delivery from the supermarket, it
updates its contents.

• Agent supermarket: the behaviour of this agent is the simplest
in the system. It waits for a delivery order from any agent (the
robot in this case) and fulfills it.

The eJason code for each of these agents is included in Ap-
pendix A, Figures 7, 8, 9, and 10.

For the sake of clarity, we also include a series of flowcharts in
Figures 3, 4, 5, and 6 that provide the diagrammatic representation
of the behaviour of each of the agents, respectively.

Note that the environment entity is not implemented in eJason
yet, hence not allowing the execution of external actions or the
gathering of information through perception. Therefore, some ac-
tions of the system, like the displacement of the robot or checking
the contents of the fridge, have been assumed to be always success-
ful and do not require any interaction with the environment.

6.2 Code Excerpts
In this section we provide some brief code excerpts showing agent
plans, to illustrate the new features introduced in Jason (and imple-
mented in eJason).

6.2.1 Communication
Consider the following plan from the agent robot, where both intra-
and inter-container communication take place:

+no_more(beer) : //Trigger
(not closed(supermarket)) & //Context
address(supermarket,SupContainer) <- //_____
-no_more(beer); //Body
.print("Fridge is empty."); //
.send(supermarket //

[container(SupContainer)], //
achieve, order(beer,5)); //

.send(owner,tell,no_more(beer)); //

Start

Get beer Monitor
Robot

New
event?

Restart
robot

Take a nap

Disconnect
robot

Drink

More beer
in can?

robot dies

Message from robot

No more beer

Got beer

no

yes

Figure 4. Flowchart for agent “owner”

Start

New
event?

Print
message

Go to
fridge

Beers in
fridge?

Go to
owner

Give beer
to owner

Is super-
market
open?

Order
beer from

supermarket

Report
owner

Which
failure?

unknown
agent

unreachable
agent

dead agent

Owner dies

Owner requests beer

no

yes

yes

no
Failure in supermarket

Figure 5. Flowchart for agent “robot”

Start

New
event?

Beers in
fridge? Give beer Report no

more beersBeer requested yes

no

Figure 6. Flowchart for agent “fridge”

!at(robot,fridge). //_____

This plan is triggered when the robot notices that the fridge
is empty. The context requires the supermarket not to be closed
(i.e. the agent supermarket must be alive and reachable) and
the address of that agent to be known. When the plan is trig-
gered and the context is met, the robot executes, in appear-
ance order, the actions in the body of the plan. The first action
deletes the belief that states that the fridge is empty while the
second makes the robot print a message on the standard out-
put. The third action is a .send action of type b) according to
Section 3.2.1, where AgentName is supermarket, Container
has the value of the variable SupContainer (which in this case
is shopping_mall@babel.ls.fi.upm.es), Performative is
achieve and Message is order(beer). By executing this action,
the robot is ordering beer from the supermarket agent, which runs
in a different container. The fourth action is a .send action of type
a) and does not include any reference to the container in which the
agent owner runs, as it is the same one for robot agent. Finally, the
last action represents an achievement goal that requires the robot to
go to the location of the owner.

6.2.2 Monitoring an agent
The code for the agent robot also shows how an agent can monitor
another agent. Consider the following excerpt:

+!monitor(Agent):
address(Agent,Container) <-
-closed(supermarket);
.monitor(Agent[container(Container)]).

+!monitor(owner): true <-
.monitor(owner).

The first plan can only be executed if the full address of the
monitored agent is known.

The second plan will only be executed if the monitored agent
is the owner agent. Notice that, this time, the container of the
monitoring and monitored is the same, hence being omitted from
the parameters of the .monitor action.

6.2.3 Detecting different failures
Finally, consider these four plans, again from the source of the
robot agent:

+agent_down(supermarket)
[reason(unknown_agent)]: true <-

+closed(supermarket);
.print("I cannot find the supermarket

in the shopping mall").

+agent_down(supermarket)
[reason(unreachable_agent)]: true <-
+closed(supermarket);
.print("I cannot find the shopping mall").

+agent_down(supermarket)
[reason(dead_agent)]: true <-
+closed(supermarket);
.print("The supermarket has just closed").

+agent_down(owner): true <-
.print("Oh, oh. My master has passed out.").

The first plan is triggered when a failure of type unknown_agent
is detected on the supermarket agent. This can only happen if the
container shopping_mall@babel.ls.fi.upm.es is reachable
but does not contain any supermarket agent. A possible reaction
from the robot agent could have been starting that agent, but we did
not consider reasonable the option of allowing the robot to “open”
the supermarket.

The second plan is only triggered when a failure of type
unreachable_agent is detected on the supermarket agent. This
failure is generated when the connection to the container named
shopping_mall@babel.ls.fi.upm.es is lost, hence leaving the
agent supermarket unreachable.

The third plan is triggered when a failure of type dead_agent
is detected again on the supermarket agent, i.e. the Erlang process
corresponding to that agent is dead. Again, a possible reaction from
the robot agent could have been starting that agent.

The fourth plan is triggered by the detection of any kind of
failure on the owner agent, as the annotation of the event is ignored.
These four plans represent all the possible agent failure detections
that are possible in the example.

Notice that, in all four plans, the [container(Container)]
annotation corresponding to each AgentName has been ignored
in their triggers, as this information is not used neither in their
contexts nor in their bodies.

6.3 Experiments
In this section we report on some experiments that we performed
on the multiagent system described above. In all of them, the
distribution of the agents was organized in the following way,
which is also depicted in Figure 2:

• The agents owner, robot and fridge run in the same container
whose name is home@avalor-laptop.fi.upm.es.

• The agent supermarket runs in a different host and container.
The name of this container is shopping mall@babel.ls.fi.upm.es.
Checking Figure 10, one may notice that this address is hard-
coded as an initial belief of the robot agent. It is done this way
for convenience, as no service discovery is available for the
agents yet.

The experiments carried out were the following:

6.3.1 Experiment 1: distribution
The goal of this experiment is checking whether the implementa-
tion of the proposed distribution works correctly. To do it, we start
all the agents of the system but do not connect the two hosts until
some time after the start of the experiment. If the distribution works
properly, after emptying the fridge, the owner must not get more
beer until the robot can order more from the supermarket, which is
not possible while the hosts remain disconnected. Next, we list the
steps of the experiment (enumerated using letters) together with a
description of the observable behaviour of the agents that is rele-
vant to the experiment (presented between angle brackets).

a) Disconnect the hosts (isolating one of them suffices).

b) Start all the agents.

<The owner drinks all four beers in the fridge. The robot in-
forms that the fridge is empty, but does not attempt to order new
beers because it is aware of the fact that the supermarket is un-
reachable. The owner sleeps and wakes up periodically asking the
robot for more beer. The system does not evolve.>

c) Connect the hosts via internet or intranet

<The robot orders more beer from the supermarket. The fridge
gets refilled. The owner continues drinking.>

c) Terminate the experiment (kill all the agents).

The experiment shows that the distribution model implemented
works as expected in this case. Besides, note that the two varieties
of the internal action .send, described in Section 3.2.1, are suc-
cessfully used for both intra- and inter-container communication.

6.3.2 Experiment 2: intra-container fault tolerance
This experiment seeks to test the performance of the fault tolerance
mechanisms implemented when they involve agents running in the
same container. Briefly, it follows an execution flow in which the
agents owner and robot stop working (die) several times. Anytime
the robot is not alive, the owner must notice it and start it again
(even if the owner killed it). If the owner agent dies, the robot must
be aware of it and print a message. The steps and output of the
experiment are:

a) Connect the hosts and start all the agents but the robot.

< The owner immediately realizes that the robot agent is not
alive and starts it. The owner starts drinking beer. The robot refills
the fridge whenever it is empty. The sequence continues until the
robot tells the owner not to drink any more beer. Upon reception of
the message from the robot, the owner kills it. The owner becomes
immediately aware that the robot is dead and restarts it. The owner
continues drinking beer, killing and restarting the robot whenever
it refuses to bring more beer, until it surpasses its physical limit and
passes out (the agent dies). The robot notices the death of the owner
immediately after it happens and prints a message.>

b) Terminate the experiment (kill all the agents).

Note that the failures detected in this experiment are all of type
dead_agent. This experiment shows that the agents are immedi-
ately aware of the death of the agents they monitor, at least in the
same container, and react properly (the owner restarting the robot
and the robot printing a message).

6.3.3 Experiment 3: inter-container fault tolerance
This third experiment tests the performance of the fault tolerance
mechanisms when the system is distributed. In its execution flow
the three types of agent failures described before are generated.
The correct detection of these failures can be checked through
the reactions of the agent robot. If the agent supermarket is not
alive but its container is, the robot must say: “I cannot find the
supermarket in the shopping mall”. If the agent supermarket dies,
the robot says “The supermarket has just closed”.Finally, if the
agent supermarket becomes unreachable, the robot must say: “I
cannot find the shopping mall”. The steps followed and the relevant
observable behaviour of the agents are:

a) Connect the hosts and start all the agents but the supermarket.

<The robot is immediately aware that there is no agent with
symbolic name supermarket in the container shopping mall and
prints the message: “I cannot find the supermarket in the shopping
mall”. The owner drinks beer until the fridge is empty, then gets
asleep and wakes up periodically.>

b) Start the agent supermarket

<The fridge gets filled again and the owner continues drinking
beer.>

c) Disconnect the hosts

< The fridge becomes empty. Then, the robot tries to order beer
from the supermarket for a while. After about 60 seconds after the
disconnection of the hosts (due to Erlang implementation issues,
the disconnection of two nodes running in different hosts is de-
tected, by default, from 45 to 70 seconds after the network discon-
nection actually happened), the robot realizes that the supermarket
is unreachable and prints the message: “I cannot find the shopping
mall”.>

d) Reconnect the hosts.

<The fridge gets filled again and the owner continues drinking
beer.>

e) Kill the agent supermarket.

<The robot agent is immediately aware of the death of the agent
supermarket and prints the message: “The supermarket has just
closed”>

f) Start the agent supermarket.

<The fridge gets filled again and the owner continues drinking
beer.>

g) Destroy the container shopping_mall

<The robot agent is immediately aware of the death of the agent
supermarket and prints the message: “The supermarket has just
closed”>

h) Terminate the experiment (kill all the remaining agents).

The experiment shows that all the different failures are correctly
detected by the implementation of our proposed fault tolerance
system.

7. Conclusion and Future Work
In this paper we have described an extension to the Jason multia-
gent systems programming language, which provides a new distri-
bution model and constructs for fault detection and fault recovery.
Moreover, our implementation of Jason in Erlang – eJason – con-
tains a prototype implementation of the extension.

The addition of a proper, Jason based, distribution model to Ja-
son systems, removes the need of interfacing to third-party soft-
ware such as e.g. JADE. The addition of fault-detection and fault
tolerance mechanisms to Jason addresses one of the key issues in
the development of robust distributed systems. Concretely, these
mechanisms allow the detection of failures in a multiagent system
caused by malfunctioning hardware (computers, network links) or
software (agents).

The distribution model and fault-tolerant mechanisms are in-
spired by Erlang, an actor based language which is increasingly
used in industry to develop robust distributed systems, in part pre-
cisely because of the elegant approach to fault detection and fault
tolerance. Somewhat surprising, Erlang and Jason share many com-
mon features, and this has made the design and implementation of
the distribution model and the fault-tolerant mechanisms a rather
straightforward task.

The lines of future work are many. First we need to provide
higher-level agents (components) that ease the task of program-
ming fault tolerant systems. In Erlang this is accomplished, for ex-
ample, by providing a general component (the supervisor) to su-
pervise and, if need be, restart failing processes. In Jason this will
correspond to a monitoring agent. We expect to extend the usual
notion of supervision (responding to termination of agents) with
a notion of “semantic termination”, i.e., detecting when an agent
is still alive but no longer contributing useful results. In this same
line, we plan to elaborate use cases showing how higher-level fault-
tolerance properties could be implemented in eJason. Nevertheless,
some issues like the preservation of the state of an agent across
failures or the identification/development of useful high-level con-
structs must be dealt with first.

Second, we should develop at least a “semi-formal” semantics
for this extension of Jason, describing exactly the behaviour of the
internal actions (sending, monitoring, etc).

Third, we need to evaluate this extension on further examples,
to ensure that the new internal actions have sufficient expressive
power, and are integrated well enough in Jason, to permit us to
design distributed multiagent systems cleanly and succinctly, and
in the general spirit of BDI reasoning systems.

Considerably more speculative, we are not certain that the
model of distribution offered by this extension is sufficient to
model real-world multiagent system with respect to agent mobility.
It might be necessary, for instance, to permit an agent to migrate
between different process containers. This will complicate the im-
plementation, but should not be impossible

With respect to eJason, there is a need to complete the im-
plementation with regards to environment (perception of external
events, etc) handling, with all its related functionality. Moreover,
we plan to permit the interoperability between the agents running in
eJason and agents belonging to other (e.g., JADE based) agent plat-
forms. Therefore, we will study how to best interface eJason with a
FIPA based agent platform. For instance, the concept of Directory
Facilitator appears similar to the global registry service provided
by Erlang.

References
[1] Foundation for Intelligent Physical Agents, Agent Communication

Language. http://www.fipa.org/specs/fipa00061/SC00061G.html.

[2] G. Agha and C. Hewitt. Actors: A conceptual foundation for concur-
rent object-oriented programming. In Research Directions in Object-
Oriented Programming, pages 49–74. 1987.

[3] J. Armstrong. Programming Erlang: Software for a concurrent world).
The Pragmatic Bookshelf, 2007.

[4] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE - a Java
agent development framework. In R. H. Bordini, M. Dastani, J. Dix,
and A. E. Fallah-Seghrouchni, editors, Multi-Agent Programming,
volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, pages 125–147. Springer, 2005. ISBN 0-387-24568-5.

[5] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing
Multi-Agent Systems with JADE (Wiley Series in Agent Tech-
nology). Wiley, Apr. 2007. ISBN 0470057475. URL
http://www.worldcat.org/isbn/0470057475.

[6] R. H. Bordini, M. Wooldridge, and J. F. Hübner. Programming Multi-
Agent Systems in AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007. ISBN 0470029005.

[7] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly Media,
2009. ISBN 978-0-596-51818-9—ISBN 10:0-596-51818-8.

[8] Á. Fernández-Dı́az, C. Benac-Earle, and L.-A. Fredlund. ejason: an
implementation of jason in erlang. Proceedings of the 10th Inter-
national Workshop on Programming Multi-Agent Systems (ProMAS
2012), pages 7–22, 2012.

[9] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. Van de Velde and J. W. Perram, editors,
Agents Breaking Away, volume 1038 of LNCS, pages 42–55. Springer,
1996. ISBN 978-3-540-60852-3. doi: 10.1007/BFb0031845. URL
http://www.springerlink.com/content/5x727q807435264u/.
7th European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW’96), Eindhoven, The Netherlands,
22-25 Jan. 1996, Proceedings.

[10] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice.
In In Proceedings of the first Interntional Conference on Multi-Agent
Systems (ICMAS-95, pages 312–319, 1995.

[11] M. Wooldridge. Reasoning about rational agents. MIT Press, 2000.

A. Appendix A

contents(beer,4).

+!give(Item)[source(Who[container(Where)])]:
contents(Item,Stock) &
Stock > 0 <-
.print("Giving beer to ",Who,

" in ", Where);
NewStock = Stock + -1;
-+contents(Item,NewStock);
.print("Beers left: ",

NewStock);
.send(Who[container(Where)],tell,

holding(Item)).

+!give(Item)[source(Who)] :
contents(Item,Stock) &
Stock < 1 <-
send(Who,tell,

no_more(Item)).

+delivered(Item,Qtd, OrderId):
contents(Item,Stock)<-
-delivered(Item,Qtd,OrderId);
.print("Received ", Qtd,

" units of ", Item);
NewStock = Qtd + Stock;
-+contents(Item,NewStock).

Figure 7. Code for agent “fridge”

last_order_id(1).

+!order(Product,Qtd)[source(Ag[container(Container)])]:
last_order_id(N) &
OrderId = N +1<-
-+last_order_id(OrderId);
.print("Sending ", Qtd, " units of ",

Product, "to ", Container);
.send(fridge[container(Container)],tell,

delivered(Product,Qtd,OrderId)).

Figure 8. Code for agent “supermarket”

physical_limit(21).
beers_drunk(1).
inactive(robot).

!monitor(robot).

+!get(beer):
physical_limit(Limit) &
beers_drunk(Drunk) &
Drunk <= Limit &
not inactive(robot)<-

.send(robot, achieve,
has(owner,beer));

.print("Getting a beer").

+!get(beer):
physical_limit(Limit) &
beers_drunk(Drunk) &
Drunk >Limit &
not inactive(robot)<-

.print("I feel strangg..");

.kill_agent(owner).

+has(owner,beer) : true <-
?beers_drunk(Beers);
.print("I got my beer number ",

Beers, ". Yeepe!");
+remaining_sips(3);
!!drink(beer).

+!drink(beer) :
remaining_sips(Sips) &
Sips > 0 <-
NewSips = Sips + -1;
.print("Sip");
-+remaining_sips(NewSips);
?remaining_sips(X);
!!drink(beer).

+!drink(beer) :
remaining_sips(Sips) &
Sips < 1 <-
?beers_drunk(Beers);
NumBeers = Beers +1;
-+beers_drunk(NumBeers);
-has(owner,beer);
.print("Finished beer!");
!!get(beer).

+msg(M)[source(Ag)] : true <-
.print(Ag," says: ",M);
-msg(M);
.print("Unacceptable!");
.print("Let’s restart my ",

"mechanic friend.");
.kill_agent(Ag).

+closed(supermarket): true <-
-closed(supermarket);
!sleep.

+no_more(beer): true <-
-no_more(beer);
!sleep.

+!sleep: true <-
.print("No beer means nap ",

"time Zzz.");
-closed(supermarket);
.wait(2000);
!!get(beer).

+agent_down(robot): true <-
+inactive(robot);
-agent_down(robot);
.create_agent(robot,robot);
.print("robot has stopped ",

"working. Start anew!");
!monitor(robot).

+!monitor(robot):true <-
-inactive(robot);
.monitor(robot);
!!get(beer).

Figure 9. Code for agent “owner”

consumed(beer,0).
at(robot,owner).
limit(beer,10).
address(supermarket,

’shopping_mall@babel.ls.fi.upm.es’).

too_much(Beverage) :-
limit(Beverage,Limit) &
consumed(Beverage,Consumed) &
Consumed > Limit.

!monitor(supermarket).

+!has(owner,beer):
not too_much(beer) <-
!at(robot,fridge);
.send(fridge,achieve,give(beer)).

+!has(owner,beer):
too_much(beer)<-
?limit(beer,Y);
.print("The Department of Health ",

"does not allow me to give",
" you more than ",Y,
" beers a day! I am very ",
"sorry about that!");

?consumed(beer,X);
.print("Consumed ",X,

" beers when the limit is ",
Y, ".");

.send(owner,tell,
msg("I am very sorry!")).

+!has(owner, beer):
closed(supermarket) <-
.send(owner,tell,

closed(supermarket));
!monitor(supermarket).

+holding(beer) : true <-
-holding(beer);
!at(robot,owner);
?consumed(beer,X);
Y = X +1;
-+consumed(beer,Y);
.send(owner, tell, has(owner,beer)).

+no_more(beer) :(not
closed(supermarket)) &
address(supermarket,SupContainer) <-
-no_more(beer);
.print("Fridge is empty.");
.send(supermarket[container(SupContainer)],

achieve, order(beer,5));
.send(owner,tell,no_more(beer));
!at(robot,fridge).

+no_more(beer):
closed(supermarket)<-
-no_more(beer);
.print("Fridge is empty.

And supermarket is closed.");
.send(owner,tell,

closed(supermarket));
!monitor(supermarket);
!at(robot,fridge).

+!at(robot,P):
at(robot,P) <-
true.

+!at(robot,P):
not at(robot,P)<-
-+at(robot,P).

+!monitor(Agent):
address(Agent,Container) <-
-closed(supermarket);
.monitor(Agent[container(Container)]).

+!monitor(owner): true <-
.monitor(owner).

+agent_down(supermarket)
[reason(unknown_agent)]: true <-

+closed(supermarket);
.print("I cannot find the supermarket

in the shopping mall").

+agent_down(supermarket)
[reason(unreachable_agent)]: true <-
+closed(supermarket);
.print("I cannot find the shopping mall").

+agent_down(supermarket)
[reason(dead_agent)]: true <-
+closed(supermarket);
.print("The supermarket has just closed").

+agent_down(owner): true <-
.print("Oh, oh. My master has passed out.").

Figure 10. Code for agent “robot”

