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Abstract—Sound criteria for partial order reduction for prob-
abilistic concurrent systems have been presented in the literature.
Their realization relies on a depth-first search-based approach
for generating the reduced model. The drawback of this dynamic
approach is that it can hardly be combined with other techniques
to tackle the state explosion problem, e.g., symbolic probabilistic
model checking with multi-terminal variants of binary decision
diagrams. Following the approach presented by Kurshan et al.
for non-probabilistic systems, we study partial order reduction
techniques for probabilistic concurrent systems that can be
realized by a static analysis. The idea is to inject the reduction
criteria into the control flow graphs of the processes of the system
to be analyzed. We provide the theoretical foundations of static
partial order reduction for probabilistic concurrent systems and
present algorithms to realize them. Finally, we report on some
experimental results.

I. INTRODUCTION

The state space explosion problem is known to be one of
the major limitations for the application of model checking as
a formal verification technique for complex systems. Even for
finite-state abstractions the exploration of the full state space
of a system model M can be intractable due to computational
and storage restrictions. Along the years, several approaches
have been proposed to ease this problem, e.g. symbolic model
checking [1], where the verification process does not deal with
states individually but with groups of them. This symbolic
approach is known to outperform enumerative approaches, also
known as explicit model checking, in terms of the size of the
state spaces that can be verified.

Other techniques that try to alleviate state space explosion
are known as partial order reductions (POR), see e.g. [2], [3],
[4], [5]. These techniques try to avoid the generation of the
complete state space of a system model M by identifying
redundant interleavings and generate a reduced system model
with fewer transitions and states. The rough idea is to use
the commutativity of independent actions and to ensure that
the reduced model covers all possible behaviors of the full
model up to permutations of independent actions. There are
several desirable conditions for the reduced model M. First of
all, the partial order reduction techniques should be property-
preserving, which means that M |= ¢ if and only if M |= ¢
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where ¢ is the property to be checked for M. Second, the time
and memory requirements for generating M and checking ¢
for M should be less than those for analyzing M against ¢
directly. The realization of partial order reduction techniques
typically relies on a static analysis of the concurrent processes
of M to derive information on the (in)dependency of actions
and to apply several heuristics to ensure global conditions on
the topology of the underlying directed graphs of M and M.
The latter are needed to ensure the equivalence of M and M
for the given property ¢. The classical partial order reduction
approach, as e.g. realized in the prominent model checker
SPIN [6], uses an approach based on a depth-first search (DFS)
for the explicit on-the-fly generation and verification of the
reduced model. We will refer to this approach as dynamic
partial order reduction. Static partial order reduction [7], [8]
completely relies on a preprocessing step that operates on the
control flow graphs of the processes running in parallel. The
idea is to inject the reduction criteria in the control graphs.
In this way, the realization of the partial order reduction
is completely static. The clear separation of partial order
reduction techniques and the generation and analysis of M
yields the advantage that other techniques to tackle the state
explosion problem for M are directly applicable. For instance,
the modified control flow graphs can serve as input for a
symbolic model checker.

This is of particular interest for systems where the explicit
model checking approach is known to be less powerful than
advanced symbolic verification techniques. Indeed this applies
for probabilistic concurrent systems modeled by Markov de-
cision processes where the quantitative analysis with model
checking techniques relies on a combination of graph algo-
rithms and linear programming techniques.

Partial order reduction criteria for probabilistic concurrent
systems have been proposed for next-free linear temporal logic
[9], [10] and for branching-time properties specified by next-
free formulas of probabilistic computation tree logic [11]. The
former have been realized in the model checker LiQuor using
a dynamic DFS-based approach for an on-the-fly generation of
the reduced model [12]. Although the criteria are stronger than
in the non-probabilistic case, empirical results have shown that
the reductions in states and transitions are in the same order
as for non-probabilistic transition systems. However, the major
bottleneck is the linear program which then has to be solved



for an explicit representation of the reduced system.

The goal of this paper is to overcome this limitation
by proposing a static partial order reduction approach for
probabilistic concurrent systems. Following the concept of
static partial order reduction developed for non-probabilistic
transition systems by Kurshan et al [7], [8], we first provide
a generic framework for the static partial order reduction in
probabilistic concurrent systems modeled by Markov decision
processes. For this purpose, we present reduction criteria
that guarantee the preservation of quantitative stutter-invariant
linear and branching time properties. We then present an algo-
rithm for realizing these criteria by analyzing and modifying
probabilistic control flow graphs. For evaluating the achieved
degree of reduction, we considered a randomized version
of the dining philosophers [13] and a randomized mutual
exclusion protocol [14] and used the symbolic model checker
PRISM [15] for comparing the number of states, transitions
and the MTBDD-size of the full and the reduced model.

QOutline. Section II presents our notations for probabilistic
concurrent systems and recalls the partial order reduction
criteria of [9], [11]. Our main contribution is contained in Sec-
tion III where we provide the foundations of static partial order
reduction for probabilistic concurrent systems and present
algorithms for the static realization of the reduction criteria.
Section IV reports on our experiments, while Section V
contains some concluding remarks.

II. PRELIMINARIES

If S is a countable set then Distr(S) denotes the set of
probabilistic distributions on S, i.e., functions p : S — [0,1]
such that ) __¢ p(s) = 1. The support of 1, denoted Supp(u),
consists of all elements s € S such that u(s) > 0.

Markov decision processes (MDP). Markov decision pro-
cesses (MDP) [16], [17] and variants thereof are widely used
as operational model for probabilistic concurrent systems. The
rough idea is that in each state s several actions (possibly of
different processes) can be enabled. Each action can have a
probabilistic effect on the program variables. The selection of
an action for the current state is supposed to be nondeter-
ministic. In this paper, we deal with finite-state MDPs with
action labels and state labels for formalizing the properties to
be verified. Formally, an MDP M is a tuple

M = (S, Act, P, $;nit, AP, L) where

e S is a finite set of states,

e Act is a finite set of actions,

e P:Sx Act — Distr(S) is a partial function, called the
transition probability function,

o Sinit € S is the initial state,

o AP is a finite set of atomic propositions,

o L:S — 247 is the labeling function.

We write P(s,«a) = L to denote that P(s, ) is undefined.
Action o € Act is called enabled in state s if P(s, ) is
defined. In this case, the distribution P(s, ) specifies the

probabilities for the successor states of s when executing a.
Act(s) denotes the set of actions that are enabled in state s:

Act(s) = {a € Act: P(s,a) # L}.

Transitions, successors. We write P(s,«,t) rather than
P(s,a)(t). If P(s,a,t) > 0 then state ¢ is called an «-
successor of s. In this case, the triple (s,a,t) is called a
transition of M and often written in the form s — ¢. If
o € Act(s) then Post[a](s) = Supp(P(s,«)) denotes the set
of a-successors of state s.

Stutter and visible actions. Action « is called a stutter action
or invisible if its execution does not affect the truth value of
the atomic propositions, i.e., if L(s) = L(¢) for all s,t € S
such that o € Act(s) and t € Post[a](s). Otherwise « is
called visible. Let Vis denote the set of visible actions.

Probabilistic/nonprobabilistic actions. Action « is called
probabilistic if there exists a state s with o € Act(s) and
| Post[a](s)| = 2. Otherwise « is called non-probabilistic. In
this case, the effect of taking action « is deterministic, i.e.,
each state s where « is enabled has a unique a-successor.

Paths, cycles. Notions like paths or cycles of M refer to the
underlying labeled graph of M. For example, a path in M is
a sequence of consecutive transitions, i.e., it has the form

aq a2 ag
T = Sg —> 81 —> S —> ...

A path is called maximal if it is either infinite or finite ending
up in a terminal state, i.e., a state s with Act(s) = @.

End components. An end component of an MDP M is a
tuple £ = (T, A) where T is a nonempty subset of S and
A: T — 24¢ a function such that
o @ # A(t) C Act(t) and Supp(P(t,«)) C T for all states
t € T and actions o € A(t)
o the underlying digraph is strongly connected, i.e., when-
ever t,u € T then there exists a finite path
soihslﬂ%..ﬂ)sm
with sg = t, 8, = u and «; € A(s;—1) for 1 < i < m.

Independence of actions. Two different actions «, 8 € Act
are called independent in M if for all states s € S where
a, B € Act(s):

1. for all states t: P(s,«,t) >0 implies 5 € Act(t)

2. for all states u: P(s,3,u) > 0 implies a € Act(u)

3. for all states w:

Z P(Svaat) 'P(taﬁaw) = Z P(s,B,u)~P(u,a,w)

tes ueS
Action « is said to depend on some action set A if (1) a ¢ A
and (2) there exists 5 € A such that actions « and (3 are
dependent, i.e., not independent.

Probabilistic control graphs (PCG). As specification for-
malism for probabilistic concurrent systems consisting of n
concurrent processes, we use probabilistic control graphs
(PCG for short) that specify the operational behavior of the
processes. The PCG for the processes can then be put in



parallel and unfolded into an MDP that models the stepwise
interleaving behavior of the composite system. To ease the
notations, we consider here only communication via shared
variables. Communication over synchronous or asynchronous
channels could be added, but is omitted here.

Formally, we fix a finite set V' of typed variables. The types,
also called domains, of the variables (Boolean, integers of a
bounded interval, and so on) are irrelevant for the purposes
of the paper. The only requirement is that all variables have
a finite domain. Let Eval( V) denote the set of evaluations
7 that assign to each variable v € V an element of its
domain. Cond(V) denotes the set of Boolean conditions
for the variables, i.e., propositional formula over atoms that
refer to the values of the variables in V. For instance,
(x > 5—y) Az € Cond(V) if x,y are integer variables and
z is a Boolean variable. For n € Eval(V) and g € Cond(V),
we write ) = ¢ to denote that 7 satisfies condition g. An event
e on V is a list of assignments

V1 1= eTPTy; ... ; U = eIpry
where vq,...,v; are pairwise distinct variables in V' and
expry, ... expr; type-consistent expressions built by constants

and variables and operators (e.g., arithmetic operators for
integers and Boolean connectives for Boolean variables). Let
written(e) = {v1,...,v;} be the set of variables for which
e contains an assignment, and read(e) the set of variables
that appear in one of the expressions expr; for 1 < ¢ < k.
For instance, if x,y are integer variables and z, v, w Boolean
variables then an event e might consist of the three assignments
r = 2x+y; y = 5, z := —w V v. In this example,
written(e) = {z,y,z} and read(e) = {z,y,w,v}. The
assignments of an event are executed simultaneously in one
atomic step. The effect of events is formalized by a function

Effect : Events(V) x Eval(V) — Eval(V).

where Events( V') denotes the set of events over V (assuming
fixed sets of constants and operators for the domains of the
variables). If e is as above and 7 € FEwal(V), then we
have Effect(e,n)(x) = n(x) if v € V \ {v1,...,vx} and
Effect(e,n)(v;) = |expr;|, where |expr], denotes the value
that is obtained by evaluating expr under variable valuation
n. A probabilistic control graph (PCG) over V is a tuple

P = (Loc, Edges, £;n;t) where

e Loc is a finite set of locations (i.e., control states),

o Edges is a finite subset of Loc x Cond(V) x
Distr(Fvents( V') x Loc), called the edge relation,

o Linit € Loc is the initial location.

The second component g € Cond( V') of an edge (¢,g,d) €
Edges is called the guard. For the last component d €
Distr(Events( V) x Loc) we require that the support of d is
finite. The edge relation specifies conditional transitions. An
edge (¢, g,d) can be taken provided that ¢ is the current loca-
tion of P and the guard g € Cond( V') holds for the current
variable evaluation. Taking edge (¢, g,d) has a randomized

effect according to distribution d, i.e., with probability d(e, ¢')
event e will fire and the target location is £'.

Probabilistic concurrent system (PCS). A probabilistic con-
current system is a tuple

S = (V7P17-'~7Pn,7ninit) where

o V is a finite set of (global) variables,

e Pi,...,P, are probabilistic control graphs over V, say
P; = (Loc;, Edges;, li,..),

e Ninit € Fval(V) is an initial evaluation for the variables.

The MDP M = Ms = (S, Act, P, Sinit, AP, L) modeling
the stepwise interleaving behavior of S has the state space

S = Locy X ...x Locy, x Eval(V).

That is, the states in M are tuples (¢1,...,¢,,n) where {; is
the current location in the PCG P; and 7 the current evaluation
for the program variables. The action set Act of M is the
disjoint union of the set of the edges in the PCG Py,..., P,.
The transition probability function P of M is defined as
follows. Suppose s € (¢1,...,4;,...,Ly,m) is a state in M.
Action a = (¢, g,d) € Edges, is enabled in state s if and only
if £ =¢; and 7 = ¢. In this case, if ¢ is a state of the form
t=(ly,...,0,... .4y, n) that differs from s at most in the
location ¢’ of P; and the variable evaluation 7’ then

P(s,a,t) = > d(e,l')

where e ranges over all events such that ' = Effect(e,n),
otherwise P(s,a,t) = 0 The initial state of M is s, =
() s 0 Minit). The set AP of atomic propositions in
M can be an arbitrary finite subset of Loci U ... U Loc, U
Cond (V) with the obvious labeling function. One might
assume that A P consists of the atomic propositions that appear

in the formula to be checked.

Quantitative properties. For reasoning about measurable sets
of maximal paths and their worst- or best-case probabilities
we use standard concepts, such as maximal or minimal proba-
bilities for stutter-invariant measurable path events formalized
by linear temporal formulas that do not use the operator next
(LTL\-formulas) or branching-time formulas formalized in
the fragment of PCTL or PCTL* without next operator. Details
can be found e.g. in [17], [18], [19], [20].

Partial order reduction. Partial order reduction [3], [4], [2]
has proven to be a successful technique in order to cope
with the state explosion problem for concurrent systems. In
this paper, we deal with the ample-set method that has been
originally proposed by Peled for non-probabilistic systems and
LTL\ -formulas [3]. Extensions for dealing with branching-
time properties have been presented in [22]. For verifying
quantitative properties of probabilistic concurrent systems, the
ample-set approach has been studied independently in [9] and
[10] for next-free LTL-formulas and later for branching-time
properties specified by PCTL?O—formulas [11]. The idea of
the ample-set method is to identify for state s a small subset
ample(s) of Act(s) and to perform the analysis with the



(A0)
(A1)

(A2)
(A3)

(Ad)

Emptiness condition: ample(s) = @ iff Act(s) =@

2 Qm,

Dependence condition: For each finite path s — 51 —2 ... 2% 5. 2% ¢ in the complete

model M such that m > 1 and § depends on ample(s) then there exists an index ¢ € {1,...,m}

with a; € ample(s).

Stutter condition: If state s in M is not fully expanded then all actions in ample(s) are invisible.

End component condition: For each end component (7, A) in M: () Act(t) C |J ample(t)
teT teT

Probabilistic condition: If s € S and there exists a finite path s —% s; =2 ... 2% 5 LI

in the complete model M such that m > 0 and {aq,..

probabilistic then |ample(s) = 1.

Fig. 1.

submodel M of the original model M obtained by expanding
s only via the actions « € ample(s) (but ignoring the actions
a € Act(s)\ ample(s)). Soundness of the reduction is relative
to the type of properties to be verified and requires that M
and M satisfy the same properties of the chosen type.

Suppose that the system model is an MDP, say M =
(S, Act, P, $init, AP, L). Given a function ample : S — 24¢t
with ample(s) C Act(s) for all s € S then the reduced model
is the following sub-MDP of M:

M = (8, Act, P, $40i1, AP, L)

The state space S of M is the smallest subset of S such
that (1) Sy € S and (2) Post[a)(s) C S for each state
s € S and a € ample(s). The transition probability function
of M is given by P(s,a,t) = P(s,a,t) if a € ample(s)
and P(-) = 0 otherwise. The labeling function of M is the
restriction of M’s labeling function to the states in S, ie.,
L(s) = L(s) for all s € S. If ample(s) = Act(s) then state
s is said to be fully expanded.

Soundness of M for quantitative LTT\ -properties means
that M and M have the same extremal (i.e., maximal or
minimal) probabilities for all LTL\ -formulas. Soundness for
PCTL{ means that for all PCTL{-state formulas ®:

Sinit ':./\/l o iff Sinit ':M .

In [9], [21] it has been shown that if the ample sets satisfy
the five conditions (A0), (A1), (A2), (A3) and (A4) shown in
Figure 1 then M is sound for quantitative LTy ~-properties.
The emptiness condition (A0), the dependence condition (A1)
and the stutter condition (A2) are the same as in the ample-
set approach proposed by Peled for non-probabilistic systems
[3]. Condition (A3) can be understood as the probabilistic
counterpart to the cycle condition requiring that each action
that is enabled in all states of a cycle in the reduced model
is contained in the ample set of some state of that cycle.
The cycle condition in combination with (A0), (Al), (A2)
preserves LTL\-properties for non-probabilistic transition
systems. The implementations of the ample-set method in
SPIN or the probabilistic model checker LiQuor deal with a
stronger condition than (A3), namely:

S Qm, B} N ample(s) = @ and B is

Conditions for the ample sets presented in [9], [21] to preserve quantitative LTL\O—properties

(A3’) Strong cycle condition: On each cycle in the

reduced model there is a fully expanded state.

Since all end components are cyclic, (A3’) is stronger than
(A3) for MDPs. The probabilistic condition (A4) is specific
to the probabilistic setting. (A4) cannot be dropped since the
independence of a probabilistic action S from two actions «
and ~y does not imply the commutativity of action § and the
nondeterministic choice between « and 7. (A4) is a global
condition on M and can be replaced with the following
stronger, local condition (A4’):

(A4’) Branching condition: For each state s € S:
If ample(s) # Act(s) then |ample(s)| = 1.

The implementation of the partial order reduction for MDPs
in LiQuor [12] relies on conditions (A0), (A1), (A2), (A3’)
and (A4’). Similar to the techniques that have been realized
in the SPIN model checker [6], [5], [23], LiQuor first per-
forms a static analysis to derive an underapproximation of
the independence relation and uses a dynamic DFS-based
approach to generate the reduced MDP. In each expanded
state s = ({1,...,4,,n), the set of enabled actions of each
process (i.e., edges in the PCG emanating from location ¢;
where the guard holds for n) serves as candidate for the
ample set. Instead of the dependence condition (A1), LiQuor
checks a stronger condition by analyzing the PCG [12]. Stutter
condition (A2) and branching condition (A4’) are obvious
to check. Cycle condition (A3’) is treated on-the-fly using
the standard cycle detection algorithm that searches for DFS-
backward edges. As soon as a DFS-backward edge pointing
to state s is encountered, state s will be fully expanded.

Although conditions (A0), (Al), (A2), (A3’) and (A4’)
are sound for non-probabilistic systems and next-free CTL*-
formulas [22], (A0), (Al), (A2), (A3’) and (A4’) are
not sufficient to ensure the equivalence of M and M
for PCTL\O-formulas [9], [10]. However, soundness for
PCTL?O-formulas is guaranteed when replacing (A4’) with
the following condition (A4”) [11]:

(A4”) Strong branching condition: For each state s € S:
If ample(s) # Act(s) then ample(s) = {8}
for some non-probabilistic action /3.



III. STATIC PARTIAL ORDER REDUCTION

As sketched in the end of Section II, the DFS-based on-the-
fly generation of the reduced model M as in SPIN or LiQuor
fits very well with the cycle condition (A3’) that imposes a
condition on the cycles in M. However, this dynamic approach
for ensuring the partial order reduction criteria can hardly be
combined with other techniques that aim to combat the state-
explosion problem. To use, e.g., the efficient MDP-engine
of the symbolic probabilistic model checker PRISM [15], a
translation from the explicit representation of M obtained
by the dynamic DFS-based approach into PRISM’s guarded
command input language would be required.

For non-probabilistic systems, Kurshan et al [7], [8] pre-
sented alternatives for the global condition (A3’) that can be
realized by analyzing and modifying the control graphs. The
modified control graphs constitute a symbolic representation
of the reduced system and provide a good starting point for
the application of symbolic or other advanced model checking
techniques to the reduced model. The approach proposed by
[7], [8] assumes an appropriate choice of an action set Sticky
consisting of so-called sticky action. For the set of sticky
actions, it is required that all visible actions are contained in
Sticky and that each cycle in the reduced model contains at
least one sticky action. See conditions (S1) and (S2) in Figure
2. [7], [8] use these conditions together with a condition that
imposes a constraint on both the sticky actions and the ample
sets as basis for static partial order reduction:

Theorem 1 (see [7], [8]). Conditions (S1), (S2) and (ASI) in
Figure 2 imply the stutter condition (A2) and the strong cycle
condition (A3’).

In the probabilistic setting where the goal is to preserve
quantitative properties, conditions (S1), (S2), (A0), (Al) and
(AS1) are not sufficient because of the additional constraints
imposed by (A4), (A4’) or (A4”). However, (AS1) can be
replaced with slightly stronger conditions (AS2) or (AS3) in
Figure 2 to ensure soundness for quantitative properties:

Theorem 2 (Basic SPOR for MDP). Let M be an MDP
with state space S and action set Act, Sticky a subset of Act
such that (S1) and (S2) are satisfied and ample : S — 24 q
Sunction that assigns to each state s a subset of Act(s).

(a) If (AO), (Al) and (AS2) hold then M and M have the
same extremal probabilities for all LTLy\ ~-formulas.

(b) If (A0), (Al) and (AS3) hold then M and M satisfy the
same PCTL\ -formulas.

Proof: Obviously, (AS2) and (AS3) are stronger than
(AS1). Hence, in part (a) and (b) conditions (A2) and (A3’)
hold by Theorem 1. In part (a), (A4) and even branching
condition (A4’) is a consequence of (AS2). In part (b),
(AS3) implies the strong branching condition (A4”). Thus, the
sufficient conditions are fulfilled for each case and the results
in [9], [11] yield the claim. [ |

A. Realization of the basic SPOR

We now address the task how to implement the reduction
criteria of the basic SPOR in part (a) or (b) of Theorem
2. Our starting point is a probabilistic concurrent system
S=(V,P1,...,Pn,Ninit) consisting of probabilistic control
graphs Py, ..., P, over some finite variable set V. As before,
M = (S, Act, P, Sinit, AP, L) denotes the MDP associated
with S. The goal is to transform P4, ..., P, into probabilistic
control graphs Py, ..., P, over some finite extension V of
V such that the MDP M of the composite probabilistic
concurrent system

S=(V,Pr,..s PuNinit)
can be viewed as a submodel of M obtained by an ample
function such that part (a) or (b) or Theorem 2 holds for some
action set Sticky.

Static preprocessing. We first explain how to derive the
formal ingredients (set of visible actions, dependence rela-
tion, and so on) from the syntax of the probabilistic control
graphs. Actually, it suffices to deal with safe approxima-
tions (i.e., overapproximations) of the set of visible actions
or the dependence relations. In what follows, let P; =
(Loc;, Edges;, t%,.,). Recall that the last component d of an
edge (¢, g,d) in P; is a distribution over pairs (e, £') consisting
of an event e, i.e., a list of assignments that is executed
atomically, and a location ¢’ € Loc;. We write Events(«)
for the set of events e such that (e, ') € Supp(d) for some
¢ € Loc; and o = (I, 9,d) € Act. Say a = (¢, g,d) € Edges,,
let
written(a) = U
e€ Events(a)

written(e)

and read(«) the set of variables v € V' \ written(«) such that
v appears in an atom of the guard g of « or v € read(e) for
some e € Events(a). Moreover, we define

accessed(a) = written(o) U read (o).

For the preservation result in Theorem 2 we deal with formulas
where the atomic propositions are taken from AP. We write
V]ap for the subset of V consisting of variables that appear
in the atomic propositions contained in AP. The set Vis of
visible actions is then defined as the set consisting of all
actions « € Act that might modify some variable that appears
in the atomic propositions of the formulas under consideration:

Vis = {a € Act : written(a) N V]ap # @}

Here, Vis is an overapproximation that can be computed only
having information obtained statically. Let s = (¢1,...,4,,7)
be a state in the MDP M. We write Act;(s) for the set of
actions of process ¢ that are enabled in state s, i.e., the edges
a = (¢4, ¢g,d) in P; where the guard of « holds for the variable
valuation 7 of s:

Acti(s) = {(&:,g,d) € Edges; :n 9}

The sets written(«) and read(a) can be used to derive an
underapproximation of the independence relation over Act as



(S1) Visibility condition:  Vis C Sticky

(S2)  Cycle-breaking condition: For each cycle sg —% s1 —2 ... <™ s, = 50 in M:
Sticky N{a1,a2,...,an} # &
(AS1) Sticky condition: If ample(s) # Act(s) then ample(s) N Sticky = &.
(AS2) Combined sticky and branching condition:
If ample(s) # Act(s) then ample(s) = {a} for some action a € Act(s) \ Sticky.
(AS3) Combined sticky and strong branching condition:

If ample(s) # Act(s) then ample(s) = {a} for some non-probabilistic action o € Act(s)\ Sticky.

Fig. 2. Conditions (S1), (S2) for the set of sticky actions and combined conditions (AS1), (AS2), (AS3) for sticky actions and ample sets

the complement of the following binary relation D on Act.
Relation D C Act x Act is defined as the smallest reflexive,
symmetric relation such that for all actions o« € Act;, § €
ACth

If written(a) N accessed(B) # & then («, B) € D.

Then, (a,3) € Act> \ D, a # B and i # j implies the
independence of v and /3. Relation D is central to SPOR, as
establishes the dependency between actions appearing in (Al).

Computation of the set of sticky actions. To compute a set
Sticky satisfying the visibility condition (S1) and the cycle-
breaking condition (S2) we can apply a similar technique as
proposed in [7], [8]. The idea is to analyze the probabilistic
control graphs Py, ..., P,. For this purpose, we run a depth-
first-search (DFS) in the labeled directed graph G; where the
node-set is Loc; U Edges, and the edges in G; are derived from
the edges in P; as follows. If & = (¢, ¢,d) is an edge in P;
then G; contains edges from ¢ to v and from « to each location
¢ where d(e, £") > 0 for some e € Fvents. Let BB; be the set
of actions « that belong to some backward edge (either the
edge starts in « and points to some previously visited location
in the DFS-stack or the edge points to «) detected by the DFS
in G; . Since each cycle in M induces a cycle in each of the
graphs G; that perform at least one action along that cycle in
M, the action set

Sticky = VisUB,U...UB,
satisfies conditions (S1) and (S2) in Figure 2.

Reduced probabilistic concurrent system S. To construct
the reduced system S satisfying (A0), (Al) and (AS2) we
adapt the procedure to modify the probabilistic control graphs
proposed in [7], [8]. (Condition (AS3) will be addressed in
the end of Section III-A.)

Definition 3 (Ample location). Location ¢ of P; is called
ample if the following conditions (i), (ii) and (iii) hold:
(i) For each edge o = (¢, g,d) in 'P; emanating from {:
o a ¢ Sticky
o for all edges B in Py,...
have: («, 8) ¢ D.

7Pi71773i+1)"'77>n we

(ii) If a1 = (¢, 91,d1) and ag = (¢, g2, d2) are different edges
from location ¢ in P; then the guards are disjoint, i.e.,
g1 N\ g2 = false.

(iii) The disjunction of all guards of all edges emanating from
£ is a tautology.

The purpose of the three conditions is as follows. Suppose
s={...,4;,...,n) is a state of the original MDP M = Mg
where /; is ample. Then, the action set of process i is viewed
as a candidate for the ample set of state s. By the first part
of condition (i), Act;(s) does not contain a sticky action (as
required in (S1)). The second part of condition (i) ensures
that all actions of other processes, i.e., edges in PCG P; for
some j # 14, are independent from the actions in Act;(s).
This is a crucial prequisite for the cycle-breaking (S2) and
the dependence condition (A2). Condition (ii) guarantees that
Act;(s) is a singleton as required in (AS2). The purpose of
condition (iii) is to ensure the emptiness condition (AO).

The variable set V of S extends the variable set V of the
original system S by n Boolean variables ay, ..., a,. Variable
a; will be used to indicate whether the current location of P;
is ample. Let A; = a; and for 2 < i < n:

Ai:ai/\ /\ —aj K: —ay
1<j<i 1<j<n

and

The probabilistic control graph P; results from P; by modi-
fying the edges in P; as follows. Edge o = (¢, g,d) in P; is

replaced with & = (¢;, §, d) where guard ¢ and distribution d
are defined as follows.

e § =g A guard({;) where guard(¢;) = A; if ¢; is ample
and guard(¢;) = A if £; is not ample.

« Distribution d results from d by adding an assignment for
variable a; to the events in the support of d. The purpose
of these additional assignments is to indicate whether or

not the target location is ample. Formally:
- if d(e,¢') > 0 and ¢’ is ample then
d(e;a; == true, ') = d(e, 0).
- if d(e,¢') > 0 and ¢’ is not ample then
d(e;a; := false, 0') = d(e, l").
In all other cases, dA() =0.
The initial variable evaluation 7);,;; of S extends S’s initial

variable evaluation 7;,;: by 7init(a;) = true if the initial



location £% ., of P; is ample. Otherwise it (a;) = false.

Lemma 4. For each reachable state § = ({1, ..
MDP M for the modified system S, we have:

sEa; iff N(ay) =

As the formulas A1, ..., A, are pairwise disjoint and A is their
complement, for each state s of M we have:

A, M) in the

true iff £; is ample

o if some location of s is ample then s = A; for exactly
one index 1 B
« if none of the locations of s is ample then s = A.

For each action & = (/;,§,d) that is enabled in state § =
(b1, ..., 0n,n) of M, the original action a@ = (¢;, g, d) belongs
to Act;(s) where s = <€1, e ”’77’\/ Thus, the reachable
fragment of the MDP M assomated with S can be viewed as a
sub-MDP of the MDP M associated with the original system
S. Up to isomorphism, the reachable fragment of M results
from M by using as ample sets the set of enabled actions in
M, i.e., ample(s) consists of the edges a = (£, g, d) such that
& = (¢, §,d) is enabled in state § of M.

Theorem 5 (Soundness of the reduction). S provides a
sound specification of a reduced MDP where soundness is
understood with respect to quantitative LTLy -properties.

Proof: By part (a) of Theorem 2 it suffices to show that
conditions (AO0), (Al) and (AS2) hold. In what follows, we
consider the states and actions (i.e., edges in the PCGs) in
the reachable fragment of S as states and actions of S. As
before, Act;(s) denotes the set of actions of process P; that are
enabled in state s of the full MDP M, while ample(s) is the
set of actions that are enabled in state s of the reduced MDP.
For each reachable state s = (¢1,...,4,,n) in M, exactly one
of the following cases applies:

(1) If ¢; is ample, while ¢1,...,¢;_1 are not ample, then
s = A; and s [~ A. In this case, the guard of each edge
(45,9, ) in P for j 7é ¢ is violated, while the edges
emanating from ¢; in P; that are enabled in state s of
M are precisely the edges that emanating from /¢; in P;
that are enabled in state s of M. Hence, ample(s) =
Act;(s). Since ¢; is ample, conditions (i), (ii) and (iii) in
Definition 3 hold for ¢;. But then Act;(s) is a singleton,
say Act;(s) = {a}. By the first part of condition (i), we
get that o ¢ Sticky.

(2) If none of the locations /1, ..., ¢, is ample, then s = A
In this case, ample(s) = Act(s).

In particular, if ample(s) # Act(s) then case (1) applies and

we obtain ample(s) = {a} for some action o € Act \ Sticky

as required in condition (AS2) in Figure 2. The emptiness
condition (AO) is obvious by requirement (iii) of Definition

3 for ample locations. The remaining task is to establish the

dependence condition (Al). Suppose

Qm

=8 L g 22 %sm—w

is a path in M such that m >
Assume by contradiction that {aq, ...,

1 and g depends on ample(s).
am} Nample(s) = &.

This is only possible if s is not fully expanded, i.e., case
(1) applies for state s. Without loss of generality, m is
minimal, i.e., aq,...,q,, are independent from each action
in ample(s).

Let s = ({1,...,4,,m) and ample(s) = Act;(s). Then,
location ¢; is ample. In particular, condition (i) in Definition
3 holds for location ¢;. By the second part of (i), («,y) ¢ D
for each action ~y of processes P, ..., Pi—1,Pit1,..., P and
each action o € ample(s). Since D is an overapproximation
of all pairs of dependent actions, 8 cannot be an action of
some process P; for j # i. Thus, 8 is an action of process
‘P;. Furthermore, the second part of condition (i) in Definition
3 ensures that the guard of any edge emanating from ¢; in
P; is not affected by the actions of P; for j # ¢. But then
Qq, ..., 0, must be edges in Py, ..., Pi—1,Pit1,...,Ppn and
£ must be enabled in state s. As a consequence, we obtain
B € Act;(s) = ample(s), contradicting the assumption that 3
depends on ample(s). [ |

Basic SPOR for branching-time properties. For the gener-
ation of probabilistic control graphs of a reduced system that
satisfies the same PCTLtO-formulaS, we can apply the same
procedure, except that we have to deal with a stronger notion
of ample locations. In this context a location ¢ is said to be
ample if conditions (i), (ii), (iii) in Definition 3 hold for ¢ and
the following condition (iv):

(iv) For each edge a = (¢, g,d) in P;, the support of d is a
singleton, i.e., action « is non-probabilistic.

Then, (AS3) holds. Hence, S and S are equivalent for
PCTLiO-properties by part (b) of Theorem 2.

B. Reachability-aware SPOR

We now present an alternative technique for modifying
the probabilistic control graphs P; such that the (reachable
fragment of the) reduced model M yields a better (i.e.,
smaller) abstraction. The idea is to switch back from the
branching condition (A4’) resp. its strong variant (A4”) to
the probabilistic condition (A4) in Figure 1. Actually, (A4)
leaves more freedom since it permits ample sets with two or
more actions for states that are not fully expanded. However,
the reduced systems obtained only maintain extremal proba-
bilities for linear time properties. The new algorithm, called
reachability-aware SPOR, attempts to improve the reduction
obtained by the algorithm presented in the previous section
when no location of some state s is ample. The idea is that
then the union of the action sets Act;(s) for those processes
‘P; where a probabilistic action is reachable along a control
path is a candidate for ample(s).

Static preprocessing. The computation of (an overapproxi-
mation of) the set Vis of visible actions and the dependence
relation D as well as the set Sticky is as before (Section
III-A). Then, (S1) and (S2) are satisfied. Additionally, we
perform a reachability analysis in the underlying directed
graphs G; associated with the PCG P; to identify all potentially
probabilistic locations, i.e., locations ¢ € Loc; that can reach



a location ¢’ € Loc; via some control path such that ¢ has an
outgoing edge representing a probabilistic action. Formally:

Definition 6 (Potentially probabilistic location). Location ¢
of P; is called potentially probabilistic if there is a sequence
(ko, go,do) (k1,91,d1) .. (km, Gm,dm) of edges in P; such
that m > 0, kg = £ and there are events eg,e1,...,€m_1 With
d;(ej, kjy1) >0 for 0 < j <m and |Supp(dm)| > 2.

Lemma 7. Ifs&sl g2 msm is a path in M such
that s = (1,..., Ly, n) and Act;(sy,) contains some proba-
bilistic action, then location {; is potentially probabilistic.

Definition 8 (Weakly ample locations). Location ¢ of PCG
P; is said to be weakly ample if it satifies conditions (i) and
(iii) in Definition 3.

Reduced probabilistic concurrent system S. To ensure that
the constructed probabilistic concurrent system S satisfies
conditions (AO0), (AS1) and (A4) we deal with a variant of
the technique presented in the previous section. The variable
set V of S extends the original variable set by three Boolean
variables a;,w;, p; for each probabilistic control graph P;.
The role of a; is as before (Section III-A). Variable w;
indicates whether the current location of P; is weakly ample,
while variable p; states whether the current location of P; is
potentially probabilistic. The initial variable evaluation 7);y,;;
of S extends Ningt DY:

finit(a;) = true iff ¢ ., is ample

Ninit(W;) = true iff ¢ ., is weakly ample

Ninit(ps) = true iff £ ., is potentially probabilistic
Suppose now that s = ({1,...,¢,,n) is a state in M

where none of the locations is ample. To ensure (A4), the
reachability-aware SPOR includes all actions in Act;(s) for
those processes P; where the current location ¢; in state s is
potentially probabilistic. The actions of all other processes P;
where location ¢; is not potentially probabilistic can be ignored
in state s, provided that all potentially probabilistic locations
¢; are weakly ample (this ensures (AS1)) and at least one such
index % exists (this ensures (A0)).

We first explain a simplified version where in the above
case the ample set of s contains the actions of all processes
where the current location is weakly ample. In the end of this
section, we present refinements of this approach.

Formulas A; and A are defined as before (Section III-A).
The following formula B characterizes those states s where
all potentially probabilistic locations are weakly ample, while
W asserts the existence of some weakly ample location.

1<ign

1<ign

where W = =W and B = —B. For ¢ € Loc;, we define

if ¢; i le,
quard(t;) = if ¢; is ample

A
{ AN ((BAw;)VC) otherwise.

Thanks to Lemma 9 below, guard(¢;) could be simplified to
A A Cif ¢; is not weakly ample.
To obtain P; from P; we replace each edge (¢;,g,d) in P;

with the edge (¢;, g, d) where the new guard is defined by
g =g A guard(£;).

Distribution d results from d by replacing each pair (e, ') in
the support of d with (&, ¢') where é extends e by assignments
for the variable a;, w;, p; according to the mode of the target
location £':

- { true  if ¢’ is ample
* 7\ false otherwise
{ true  if £’ is weakly ample
w; = .
false  otherwise
L { true  if £’ is potentially probabilistic
Pi = false  otherwise

The choice of the initial variable evaluation and these addi-
tional assignments in the events of Py, ..., P, ensure:

Lemma 9. For each reachable state § = ({1, ..., Ly, 1) in the

MDP M for the modified system S, we have:

$Ea; iff n(a;) = true if €; is ample
s Ew; iff n(w;) = true iff £; is weakly ample
S$Ep; iff fn(p:) = true iff {; is potentially probabilistic

As in the previous section, this observation permits to consider
Sasa specification for a reduced MDP M obtained by the
ample function that assigns to each state s the set ample(s)
of actions that are enabled in s viewed as a state of the MDP
associated with S. (As before, Act;(s) is the set of actions
that are enabled in state s of the (full) MDP M for S.)

Lemma 10. For each i € {1,...,n} and each state s of M:
Act;(s) C ample(s) iff s = AV (AABAw;) V (AAC)

In particular, we can identify three cases for the ample set of
state s = (01, ...,0n,M):

(1) If some location of s is ample then s |= A; and
ample(s) = Act;(s) where ¢ is the smallest index such
that ¢; is ample. In this case,

(2) If no locations of s is ample, but all potentially prob-
abilistic locations ¢; are weakly ample and at least one
location ¢; is weakly ample then s = A A B AW and

U Acti(s)

1<i<n

skEw;

(3) If neither (1) nor (2) applies then s = A A C and state s
is fully expanded.

ample(s) =

Because of case (2), condition (AS2) cannot be guaranteed.
However, the constructed system Sis equivalent to the original
system S with respect to quantitative LTL\ -formulas as the
original conditions of [9] in Figure 1 hold:

Theorem 11 (Soundness of reachability-aware SPOR).
Conditions (A0), (A1), (A2), (A3’) and (A4) hold for the ample
sets induced by the constructed system S.



Several improvements of the presented version of reachability-
aware SPOR are possible. In the presented construction, if
s = AABAW then ample(s) has been defined as the
set of all actions in Act;(s) where i ranges over all indices
such that ¢; is weakly ample. However, it suffices to define
ample(s) as the union of the action sets Act;(s) where ¢;
is potentially probabilistic (in which case ¢; is weakly ample
as s = B), provided there is at least one such index 4. If
no location of s is potentially probabilistic, then we might
choose the smallest index ¢ such that ¢; is weakly ample and
define ample(s) = Act;(s). The latter corresponds to the non-
probabilistic approach of [7], [8].

These improvements can be achieved by redefining
guard(¢;) accordingly. We put

Wi = W; N /\ Wy
1<5<i
and redefine guard(¢;) for the case where ¢; is not ample by
the condition:

AAN((PAW;)V(PABAP;)VC)

This condition can be simplified according to the mode of /;.
For instance, the constraint P A W; could be dropped if ¢; is
not weakly ample or ¢; is potentially probabilistic.

IV. EXPERIMENTS

To obtain some empirical feedback regarding the potential
for reduction of the algorithms, we extended the modeling
engine of the tool LiQuor [24], [12] and applied the symbolic
model checker PRISM [15] to compare the time and mem-
ory requirements for analyzing the original and the reduced
model. LiQuor has been used to generate the reduced models
using the proposed algorithms of Sections III-A and III-B for
realizing the reduction criteria purely statically on the level the
probabilistic control graphs. Our extension of LiQuor supports
the generation of the modified probabilistic control graphs
by computing overapproximations of the dependence relation,
the action sets Vis and Sticky and by reporting on the new
location labelings (ample, weakly ample and potentially proba-
bilistic). This information provided by LiQuor has been used to
generate descriptions of the probabilistic control graphs of the
reduced system in PRISM’s input language. The translation of
LiQuor’s output into PRISM’s input has been done manually.

We considered two standard examples for randomized
protocols: the randomized dining philosophers [13] and the
randomised mutual exclusion proposed by Pnueli and Zuck
[14]. The results are presented in Figures 3 and 4. In both
systems, all locations are potentially probabilistic. Hence, the
reduction achieved by applying both proposed algorithms is
the same. The tables show that the number of states and
transitions is indeed reduced and that the reduction ratio
increases proportionally to the number of processes. In the
case of the randomized mutual exclusion protocol (Figure 4),
the reduction is obtained in both the number of nodes and
transitions. For the randomized dining philosophers (Figure 3),
the reduction leads to a blowup of the size of the MTBDD for

the transition probability function. Although the introduction
of new variables a;,w;, p; might be a possible explanation
of this phenomenon, we expect that additional heuristics to
find good variable orderings for the reduced systems might
avoid the blowup for the symbolic model representation. In
our experiments, it turned out to be beneficial to declare
the Boolean variables a;,w;, p; as (three groups of) global
variables rather than using them as local variables in the
PRISM modules.

The time required to generate the MTBDD-representations
for the original model M and the reduced MDP M was
very similar. E.g., it took 10 seconds to build the unreduced
model of the randomized mutual exclusion protocol with 10
processes, while it required 8.9 seconds to construct the re-
duced model. The time difference for model checking the same
property in both systems is of tenths of milliseconds. Finally,
we can also conclude that the algorithm is efficient, as the
difference of time to perform model checking of the properties
for both reduced and unreduced models was negligible, while
the memory requirements decreased.

As stated above, the probabilistic control graphs of both
examples have no locations that are not potentially probabilis-
tic. To study the impact of reachability-aware SPOR against
basic SPOR, we have made some experiments with synthetic
examples of probabilistic concurrent systems containing loca-
tions that are not potentially probabilistic. As expected, the
reachability-aware SPOR of Section III-B achieves a better
reduction than the basic SPOR algorithm of Section III-A.

V. CONCLUSION AND FUTURE WORK

The main motivation for this paper was to provide the
foundations for combining partial order reduction techniques
with other advanced methods for the quantitative analysis of
probabilistic concurrent systems. We proved that the tech-
niques proposed by Kurshan et al. for systems modeled by
ordinary nonprobabilistic transition systems can be adapted to
the probabilistic setting. We introduced criteria that are sound
for stutter-invariant linear and branching-time properties and
presented algorithms to realize the reduction by modifying the
probabilistic control graphs.

Our experiments illustrate that the quality of the reduction
in terms of the MDP-size (number of states and transitions) is
fairly good. For applying static partial order techniques as a
preprocessing step for a symbolic MTBDD-based quantitative
analysis, the example with the dining philosophers exposes
the task to develop heuristics for improving the variable
orderings in the MTBDD representing the reduced model or
for finding good state encodings by variables used in the
MTBDD-representation. This aspect as well as improvements
of the static preprocessing to overapproximate the dependency
relations or to find suitable sets of sticky actions will be
addressed in future work. Furthermore, it would be interesting
to investigate whether the cycle-breaking condition can be
replaced with an analogous condition for end components.
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