
Implementing a Multiagent Negotiation Protocol in Erlang

Álvaro Fernández Dı́az Clara Benac Earle Lars-Åke Fredlund
Grupo Babel, Facultad de Informática, Universidad Politécnica de Madrid

{afernandez,cbenac,lfredlund}@fi.upm.es

Abstract
In this paper we present an implementation in Erlang of a multi-
agent negotiation protocol. The protocol is an extension of the
well-known Contract Net Protocol, where concurrency and fault-
tolerance have been addressed. We present some evidence that
show Erlang is a very good choice for implementing this kind of
protocol by identifying a quite high mapping between protocol
specification and Erlang constructs. Moreover, we also elaborate
on the added advantage that it can handle a larger number of agents
than other implementations, with substantially better performance.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features

General Terms Languages, Performance

1. Introduction
Multiagent negotiation is a very active area of research in the Au-
tonomous Agents and Multiagent Systems communities. In a ne-
gotiation, each agent modifies its local plans in order to achieve
an agreement with other agents in the system. Several negotiation
protocols have been proposed, among them, the Contract Net Pro-
tocol (CNP) [3] is probably the most popular. CNP is based on the
bidding mechanism of a human market. However, as a task assign-
ment or resource allocation mechanism, CNP cannot optimise sys-
tem performance, especially when scheduling several orders. Also,
CNP cannot detect failures in the agents participating in a negotia-
tion process. An extension of the CNP to address these two issues
has been proposed in [1].

The concurrent and fault-tolerant aspects of that extension to
CNP, make Erlang an ideal implementation candidate. Indeed we
have implemented the protocol in Erlang, with very encouraging
results so far. In particular, we have been able to work with much
larger systems than those reported in [1], i.e., using 3000 agents
compared to 40, and with much better performance.

The rest of the paper is organised as follows. In the following
section we describe the extended negotiation protocol. The imple-
mentation of the protocol in Erlang is discussed in Sect. 3, and the
results of some experiments are shown in Sect 4. Finally, the con-
clusions and future work are summarised in Sect. 5.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0253-1/10/09. . . $10.00

2. The Contract Net Protocol extension
As mentioned in the previous section, the multiagent negotiation
protocol presented in [1] is an extension of the Contract Net Pro-
tocol (CNP). The goal of the CNP protocol is to enable agents to
negotiate the allocation of tasks among them in a fair way, avoid-
ing the possibility of reaching a deadlock state. Such a deadlock
state would prevent agents from performing other tasks they are
committed to accomplish. The agents involved in the negotiation
can be considered as self interested, as they are supposed to pro-
vide the best possible bids in order to get the task assigned to them.
However, it is not important as the relevant outcome of the process
depends only on the overall task allocation and on how efficiently
it was performed. The CNP extension includes the addition of new
negotiation phases, which: increase the probability for obtaining a
more efficient allocation of tasks, permit an agent to handle nego-
tiation of several tasks at the same time thus shortening the overall
time required to finish the whole process, and support the detec-
tion of failures in agents and a mechanism for negotiation blockage
avoidance.

The CNP extension protocol defines two roles for the agents
involved in a negotiation process: the Manager, which announces
the task to be accomplished, and the Contractors, which send bids
to the manager.

The negotiation process is split into four phases:

1. PreBidding: first of all, the manager agent announces the task
to all potential contractors. Then, the manager waits for bids
from contractors. The contractor whose bid is the highest is pro-
moted and considered as the potential contractor. A contractor
whose bid is inferior to the highest bid is sent a preReject mes-
sage from the manager. However, a contractor whose first bid
failed can make new bids. The PreBidding phase ends once a
time limit has expired, or all the informed contractors have bid
at least once.

2. PreAssignment: in this phase, the manager informs the po-
tential contractor that its bid was the highest one by sending
a preAccept message.

3. DefinitiveBidding: once the potential contractor receives a
preAccept message, it computes and sends a definitive bid,
which can be different to its previous bid. If this definitive
bid is lower than the bid of any other contractor, the current po-
tential contractor is demoted and receives a preReject message.
Then the contractor whose bid is now the highest is promoted
to potential contractor and the negotiation protocol returns to
PreAssignment phase. On the other hand, if the definitive bid is
higher than the bids from all the other contractors, the poten-
tial contractor is assigned the task and, therefore, a contract is
established.

4. DefinitiveAssignment: in this final phase, the manager sends
a definitiveAccept message to the potential contractor and a
definitiveReject message to all other contractors. After that, the
negotiation for the task allocation has finished.

Despite the fact that there are four different phases, managers
are the only agents that know the current phase for a negotiation.
Hence, it is the only agent role that adapts its behaviour to the one
associated to the negotiation phase. The behavior of the different
contractors does not change with respect to the negotiation phase,
as they just keep trying to get tasks assigned by improving their
bids. Note that an agent can be simultaneously involved in several
negotiations. This means that every contractor must define an or-
dering of the tasks it is negotiating.

Finally, in order to provide fault-tolerance to the negotiation
process, the protocol defines an algorithm to end a multi-agent
negotiation in case of a manager failure. In the first phase of this
algorithm, all the contractors involved in the negotiation whose
manager has crashed, namely fellow contractors, send each other
a manager decision message in which they specify the last answer
received from the manager. If none was received, the agent does not
send any message, which results in an inference of definitiveReject.
Once a contractor has received a manager decision from every
fellow contractor, it infers its own definitive state for the task
execution and forwards it again to all other fellow contractors. The
decisions inferred by contractor agents are:

1. If any other contractor sends a preAccept, the agent infers a final
decision of preReject.

2. If any other contractor sends a definitiveAccept, the agent infers
a final decision of definitiveReject.

3. If all the other contractors send a preReject, the decision in-
ferred for the task execution is preAccept.

4. If all fellow contractors send a definitiveReject, the agent infers
a definitiveAccept final decision.

5. If any other fellow contractor is suspected of failure, and the
contractor has received at least one definitiveReject message,
the decision inferred is definitiveReject.

6. If any other fellow contractor is suspected of failure, and no
other contractor has sent a definitiveReject, the decision inferred
is preReject.

Note the contractors can only infer decisions by themselves
when the manager has crashed. It occurs when this manager agent
has not sent a message it is supposed to for a time that exceedes
certain threshold, implementation dependent. The specification of
this algorithm assumes that all the contractors know about a man-
ager failure and that this failure really happens. Therefore, there is
no need of an external agent deciding whether the manager failed
or not, in order to start the negotiation termination algorithm.

Now that the main features of the protocol have been described,
we will proceed to the details of its implementation in Erlang.

3. Implementing the Contract Net Protocol
extension in Erlang

The implementation of a multi-agent environment performing the
negotiation mechanism previously described seemed to be con-
ceptually straight-forward. Nevertheless, some decisions had to be
taken in order to obtain a fully working implementation of the CNP
extension.

3.1 Process Orchestration
The first step was to define the process structure of the system. As
the main goal of the implementation is to test the efficiency and
performance of the negotiation protocol under Erlang, task execu-
tion is abstracted. We assume that each task completes successfully,
and within any time limits specified in the contract. Consequently,
the behaviour of each agent is relatively simple. Thus, the process
structure of the system, depicted in Figure 1, has one Erlang pro-
cess for each agent, manager or contractor, and a supervisor process
which monitors the agents. The supervisor process receives a list
containing several sets of tasks to be negotiated, and a set of con-
tractor agents. The supervisor spawns a different manager agent for
each set of tasks, and informs it of the contractors that should be in-
volved in the negotiation. Finally, the supervisor is linked to all the
managers, and the managers are linked to their associated contrac-
tors, to enable the system to be shut down cleanly and efficiently
after a finished negotiation.

Figure 1. Process links orchestration for a system of m managers
and n contractors

3.2 Information Representation
In order to represent a task, we decided to implement an Erlang
record, named task, described in Figure 2. An instance of this
record is generated by every manager for each task it handles and
sent along to all contractors enclosed in an announce message dur-
ing the start of each preBidding phase. The information required by
a manager includes the name of the task being currently negotiated,
the process identifier of the potential contractor, the bid of this po-
tential contractor and the list of bids received from each contractor
agent. This is represented by the manager record also shown in Fig-
ure 2. Analogously, every contractor maintains a record named con-
tractor that contains information about the identifier of that agent,
the next time it will be ready to execute new tasks according to its
own schedule, a list of tasks it has committed to perform, a list of
tasks it is currently negotiating and a list of tasks whose manager
has crashed, for which the negotiation termination algorithm must
be executed.

3.3 Simultaneous Negotiation
To complete the implementation of the protocol, that allows a con-
tractor to be involved in several task negotiations, some decisions
had to be taken. One such example was the “currency” used for
computing task bids. As the negotiated tasks were not to be exe-
cuted, but rather abstracted, we decided that a good currency candi-
date was the time an agent estimates that completing a task requires.

-record(task ,{
id=0, % task name
startTime = 0, % start time for task
duration = 0, % execution time for task
endTime = 0, % finish time for task
manager=void , % manager pid
maxBid = 0, % max bid received for task
lastBid = 0, % last bid received
contractors =[],% list of contractors
status , % protocol status

% {announced ,preAccepted ,
% preRejected ,Accepted}

info = []}).

-record(contractor ,{
id=0, % agent identifier
nextFreeTime =0, % time last task would finish

% (if assigned to this agent)
tasksExecuted= [],% tasks already committed
nextExecTime =0, % first available time slot

% after task execution
offeredTasks =[], % tasks being negotiated
blockedTasks =[] % tasks with failed manager

}).

-record(manager ,{
task=void , % task being negotiated
winner=void ,% pid of potential contractor
maxbid=void ,% bid of the potential contractor
bids =[] % all bids received

}).

Figure 2. Erlang records used in the protocol implementation

Thus a bid b1 is considered to be higher (or better) than another bid
b2, if time(b1) < time(b2), meaning that bid b1 promises to com-
plete a task before the bid b2 promises to complete the task.

Next, the behaviour of each agent (manager, contractor) was de-
fined. A manager agent first receives a sequence of tasks to nego-
tiate and a list of process identifiers that correspond to contractor
agents. Then, it starts negotiating the first task in the sequence, be-
ginning by sending an announce message to all the contractor pro-
cesses. After that it waits for bids from the contractor agents (in
the preBidding phase), until either all of them have answered or a
timeout expires. At that moment, a potential contractor has been
identified and the manager process sends this process a preAccept
message and enters the definitiveBidding phase.

The following messages can be received in that state:

• preBid: if this bid, from an agent a, is higher than the bids from
all the other agents, including the one from the potential con-
tractor, the current potential contractor is demoted, by sending
it a preReject message, and a is promoted to potential contrac-
tor, consequently receiving a preAccept message.

• definitiveBid: There are two cases:

This bid comes from current potential contractor: a if it is
better than the bids from all other contractors, the task be-
ing negotiated is assigned to a and a contract is signed via
a definitiveAccept message to a and a definitiveReject mes-
sage is sent to every other contractor. If there is a contractor
b whose bid is higher that this definitiveBid, a is demoted
while b is promoted, via preReject and preAccept messages
respectively.

This bid comes from a past potential contractor: as Erlang
does not guarantee message ordering from different pro-
cesses, it is possible for a definitiveBid from a potential con-

tractor to arrive to the manager when this process has been
demoted. When this situation happens, definitiveBid mes-
sage is processed like a preBid one.

A manager agent similarly negotiates all the tasks it has, and
when all tasks have been successfully assigned among the contrac-
tors, the manager process finishes.

A contractor agents listens and responds to incoming messages
sent by manager agents:

• announce: when this message is received, the contractor adds
this task to its list of offered tasks. The list of tasks is sorted
according to the preference for the contractor to serve a partic-
ular task. As previously indicated, as we are primarily interested
in evaluating the suitability of Erlang for implementing such a
multi-agent system, with regards to performance, we here ab-
stract away from the decision regarding task preference, and
simply order the task list in arrival order. Finally, a contractor
agent computes the time required to finish the task according to
its own schedule, and sends a preBid to the manager of the task.

• preAccept: the contractor computes again the time required to
finish the task, as the calculation may have changed from its
first prebid, and sends a definitiveBid to the manager.

• preReject: if the bid for the task this message refers cannot
be improved, the preference from the contractor to serve this
this task should be decreased. In order to simulate this, the task
is removed from the list of offered tasks and added to its last
position. It the bid can be improved, a new preBid message is
sent to the manager.

• definitiveAccept: the contract is signed, and the contractor
commits itself to complete the task, so the agent removes it from
its list of offered tasks and adds its to its list of executed ones.

• definitiveReject: as there is no possibility for the agent to
accomplish the task, it is removed from its list of offered tasks,
which means that the contractor leaves the negotiation.

As it is a simulated environment, we introduced a new message
with the only purpose to let the contractor processes finish when
there are no more tasks to negotiate. Then, when a contractor
receives a finish message from the main process and its list of
offered tasks is empty, it terminates. If that list is not empty, it
resends the finish message to itself, in order to process it again later.

3.4 Fault Tolerance
In [1], the means for detecting a failure in an agent is based on
the absence of an expected communication. Concretely an agent is
suspected to be unavailable for the negotiation when no message
arrives from it during a certain time interval. This behaviour can be
implemented directly in Erlang by letting receive statements time
out. However, as Erlang provides a better mechanism for error de-
tection, process linking, we decided to use it instead. Nevertheless,
in a large multi-agent systems linking every process to each other
is not efficient as this can generate a huge number of termination
messages to be generated. Because of that, the processes are linked
to each other in a dynamic way that varies with respect to the status
of the negotiations. As depicted in Figure 1, every contractor pro-
cess is linked to the managers of the negotiations they are involved
in. Then, as the links are bidirectional, we can treat failures by tak-
ing into account the state of the negotiating state, and the type of
process that has failed:

• Contractor failure: the actions to be taken by the manager
depends on the status of the contractor that failed

Potential Contractor: if a failure is detected in the potential
contractor, the manager deletes it and its bid from the list of

bids and possible contractors, respectively. Then, it chooses
another potential contractor and continues the negotiation of
the task.

Not potential contractor: the manager erases the bid this
contractor sent, if any, and removes it from the list of possi-
ble contractors.

• Manager failure: if a manager fails during a negotiation, all
the contractors linked to it perform the following steps in order
to avoid getting stuck in the negotiation:

Every contractor generates a link to all the other contrac-
tors whose process identifiers were included in the task an-
nouncement, and sends them the last answer received from
the manager, labelled manager decision. If none was re-
ceived yet, it sends unknown and infers a definitive rejection
for itself in order to avoid the possibility of having several
processes inferring acceptance simultaneously.

A contractor waits for an answer from all the processes that
were successfully linked to it. The rest are assumed to be
in a failure state, as it is not possible to create a link to a
process already terminated. If all the other processes send a
manager decision belonging to set {preReject, definitiveRe-
ject }, the contractor infers a final status of definitiveAccept
for the task and, thus, it behaves as if a contract had been
signed with the manager for the execution of the task. If it
receives any unknown, preAccept or definitiveAccept mes-
sage or if another contractor involved in the stuck avoid-
ing process fails, detected through the existing link to it, the
contractor infers a definitiveReject for the task, as avoiding
simultaneous acceptance inference is more important that
not being able to allocate a task, a procedure that could be
retried.

3.5 Differences from Specification
During the implementation of the protocol, we realised the speci-
fication of the behaviour of the agents is not complete, as it is not
able to handle some situations that can happen during the execu-
tion of the protocol. The first of them is a manager decision of
type unknown. As it resembles the absence of an answer from the
manager, this allows the possibility of representing either a preAc-
cept or preReject status. This situation is discussed in [1] although
the expected behaviour of a contractor that receives the message
is not specified. Therefore, we decided to treat such an occurrence
as an inferred decision of type definitiveReject in order to avoid
more than one contractor inferring an acceptance status. Another
required decision was how to deal with failures in a contractor,
when it is the potential contractor, as the specified algorithm only
elaborates on what to do when a non potential contractor agent fails.
The solution was quite obvious but it yet represents a shortcom-
ing of the protocol specification. In addition, concerning the block-
age avoidance algorithm, we decided to only allow the inference
of definitiveAccept and definitiveReject negotiation status. The rea-
sons for this decision derive from the fact that an inferred status
of preAccept would provide the same semantics as a definitiveAc-
cept one, while a preReject inferred status only allows to degrade a
task, which still will remain in the list of offered tasks. Then, as the
inference about the negotiation status for a task, is only computed
once, the task will remain in the list of offered tasks of the contrac-
tors indefinitely. This problem can be solved by inferring a defini-
tiveReject status, which removes the task from the list of offered
tasks and provides the expected semantics. Finally, as the speci-
fication does not indicate what to do when a contractor decision
message arrives, and we found no use for it, we simply removed
that mechanism from the blockage avoidance mechanism, leading

to the savings of a huge amount of messages with no observable
semantic changes.

4. Experiments
In the previous sections we have shown how the protocol specifica-
tion could be easily implemented in Erlang, with no major changes
necessary, thus greatly simplifying the design and implementation
task. However, our chief motivation for implementing the proto-
col in Erlang was to assess whether the performance of the proto-
col implementation would be improved, with regards to the size of
multi-agent systems that could be handled.

In order to evaluate this, we conducted a series of experiments,
also present in [1], to determine if the re-implementation in Erlang
provided any performance benefits. The original implementation
was written in Java but the architecture over which the experiments
were run is unknown to us. It modelled a transportation applica-
tion. Nevertheless, it is still comparable to our implementation as
the protocol is the same, thus involving the same kind of communi-
cation, and the computations are not heavier than the ones our im-
plemented agents perform. Moreover, the original implementation
includes a feature, not imposed by the protocol, that can shorten
the overall process of task allocation. This feature implies that if a
manager agent tries to allocate identical tasks, the bid from a con-
tractor for certain task is also taken into account for its identical
ones. For instance, assume a scenario where manager M announces
identical tasks t1 and t2, and contractor C bids for them with bids
b1 and b2, respectively. If b1 < b2 and C is preRejected for task t1,
the manager takes b1 as bid from C for t2. In our implementation,
agent C has to bid again for t2 in order to improve its bid, requiring
more messages to be exchanged, thus increasing overall process.
We decided not to implement that feature as it is implementation
dependend and not derived from the procotol specification.

In order to obtain relevant results, every experiment was re-
peated at least a hundred times. All of them were run under Ubuntu
Linux version 10.04 in a computer with two 2.53 GHz processors.
Our execution time measurements cover the whole negotiation pro-
cess: from the moment the different agents start to be created to the
time instant the last agent finishes its execution. As explained in
Sect. 3.1, task execution is just simulated in our implementation by
committing a contract to a contractor which does not allow over-
lapping of its assigned tasks. In fact, tasks are just defined by a
unique identifier and a number representing the time units that task
completion requires. The same simulation is performed in the im-
plementation by the protocol designers.

The experiments are divided in two groups. In the first group
the experiments are run with the same number of agents as in [1],
to compare the two protocol implementations. In the second group
of experiments, a larger number of clients has been considered, for
the Erlang implementation.

4.1 Small Agent Population
Here we present the results of a series of experiments which are
directly comparable to measurements reported in [1], as they do
not measure protocol behavior under failure conditions. Therefore,
our deletion of contractor decision message has no impact in the
comparison of both implementations. We consider the experiments
in this series to measure protocol behaviour in rather small agent
groups. We present the results in tables due to the big difference
between execution times from both implementations.

The first experimental group is composed of 4 agents, 2 contrac-
tors and 2 managers. The results obtained for the Erlang implemen-
tation, and the original results reported by the protocol designers
are:

Number of Aknine et al. Average Erlang Average
Tasks Execution Time (mil-

liseconds)
Execution
Time(milliseconds)

4 1320 0.122
10 2530 0.248
20 3460 0.518
30 5050 0.698
40 9140 0.974
50 14258 1.13

Table 1. 2 contractors and 2 managers

As we can see, the execution time required for the negotiation in
our Erlang implementation is four orders of magnitude better than
the timings reported by the designers of the protocol. As the results
for such a small population are not very significant, we repeated
the experiments with the maximum number of agents the protocol
designers used to test their implementation. The results obtained for
a population of 40 agents (14 managers and 26 contractors) were:

Number of Aknine et al. Average Erlang Average
Tasks Execution Time (mil-

liseconds)
Execution
Time(milliseconds)

4 3509 0.798
10 7901 2.027
20 10821 4.232
30 16941 7.292
40 18788 9.905
50 29872 1.2116

Table 2. 26 contractors and 14 managers

The results again indicate that our Erlang implementation runs
approximately 1000 times faster. We repeated the experiment for
another population of 40 agents, this time with 24 managers and 16
contractors. The results obtained were:

Number of Aknine et al. Average Erlang Average
Tasks Execution Time (mil-

liseconds)
Execution
Time(milliseconds)

4 3621 0.579
10 8189 1.374
20 10934 3.293
30 16991 4.743
40 18933 7.057
50 29978 9.686

Table 3. 16 contractors and 24 managers

The results for this scenario are consistent with early ones.
Erlang clearly is an efficient platform for implementing multi-agent
systems.

4.2 Large Agent Population
To measure the performance of the Erlang implementation of the
protocol on larger, perhaps more realistic, multi-agent systems, we
decided to repeat the previous experiments with much bigger agent
populations. There is no possibility to compare the outcome of
these experiments to previous works, as [1], for instance, contains
no measurements for populations remotely similar in size to ours.

In the following table, we show how the execution time correlates
with an increase in the number of manager agents in a negotiation
of 1000 tasks among 100 contractor agents:

Manager Erlang Implementation
Agents Average Execution Time(sec)
10 0.914946
20 1.231567
40 1.869366
60 2.515276
80 3.094301
100 3.910985

Table 4. 1000 tasks to 100 contractors

Then, we repeated the experiment for a variable number of
contractors, while the number of managers remains constant with a
population of 10, as depicted in the table below:

Contractor Erlang Implementation
Agents Average Execution Time(sec)
100 0.853911
200 2.212398
400 6.691916
600 12.915213
800 21.532578
1000 32.297314

Table 5. 100 tasks and 10 managers

Next, we measured the impact on execution time in environ-
ments with a constant number of contractors and managers (100
and 10 respectively), and a variable number of tasks:

Number of Erlang Implementation
Tasks Average Execution Time(sec)
100 0.087581
200 0.172625
400 0.353451
600 0.525856
800 0.708959
1000 0.873533
2000 1.75532
5000 4.396946
10000 8.620578

Table 6. 100 contractors and 10 managers

Finally, in order to test the performance of the algorithm in an
environment with few tasks to assign, only 10, we run a series of
experiments that involved 10 managers and a sharply increasing
number of contractors:

4.3 Performance under Failure
In the previous sets of experiments, the execution time measured
was taken from executions where there was no failure in the agents
involved in the negotiation. To evaluate the performance of the

Contractor Erlang Implementation
Agents Average Execution Time(sec)
100 0.009974
200 0.026022
400 0.80698
600 0.158065
800 0.302604
1000 0.413268
2000 1.531921
3000 3.467723
3500 4.342805

Table 7. 10 tasks and 10 managers

protocol implementation in failure scenarios, we designed a set
of experiments where failures were introduced in the agents at
certain points of the negotiation. The first experiment set measures
execution time when the potential contractors fail as soon as they
receive a preAccept message, except for one agent of the population
who will not fail and, thus, will commit all contracts. The results
obtained for with 10 tasks, 5 managers and a varying number of
contractors were:

Contractor Erlang Implementation
Agents Average Execution Time(sec)
100 0.007226
500 0.070008
1000 0.230252
2000 0.91076
4000 3.7773
5000 5.662974

Table 8. 10 tasks and 5 managers under failure

We can observe how the execution time is significantly lower
than earlier measurements, as the number of contractors is con-
stantly decreasing, as the tasks are being assigned, until only one
contractor remains alive. Besides, we wanted to test the implemen-
tation when there are failures in the managers, as this will increase
the number of communications taking place. For instance, in a ne-
gotiation between one manager and n contractors, with n > 1, the
number of messages sent once the announcement of the task has
been finished, is very close to 1. However, if there is a failure in
the manager, this number grows exponentially, as in the better case
there are 2nn messages. The results obtained for the allocation of
5 tasks, where there are 5 managers and 2 of them fail, immedi-
ately before sending a definitiveAccept, under a variable number of
contractors were:

Contractor Erlang Implementation
Agents Average Execution Time(sec)
100 0.069875
500 1.48867
1000 9.858859
2000 67.838057

Table 9. 5 tasks and 5 managers under failure

These results show the aforementioned exponential growth in
the number of messages exchanged. Nevertheless, they are still

surprising, as the time required for such a significant amount of
computations is relatively small, especially if compared to the
results provided by the protocol designers. Once again, Erlang has
proven itself a very capable platform for this type of process and
communication intensive systems.

5. Conclusion and Future Work
In this paper, we have shown the benefits of using Erlang for
the implementation of a task allocation protocol in a multi-agent
system. One such significant advantage is the fact that mapping the
original protocol specification into an Erlang program took very
little effort, approximately one man month, as the assumptions
made in the protocol matches well with the actor process and
communication model used in Erlang.

We have further shown how the information the different agents
handle can be represented as Erlang records. Moreover, it is sig-
nificant how easily an event-driven system, as multi-agent systems
usually are, can be implemented using Erlang message passing. An-
other useful mechanism Erlang provides is process linking which,
compared to the protocol specification, provides a high-level fail-
ure notification mechanism. The use of this high-level mechanism
contributed to enabling the agents to become more “aware of their
environment”, in terms of their knowledge about the status of other
agents, which is a very desirable, if not mandatory, feature in col-
laborative multi-agent systems.

Regarding the execution of multi-agent systems, [1] states “We
understand it is difficult to increase the number of agents and
tasks, because of the computational complexity problem”, referring
to experiments that performed a task allocation of 8 tasks which
involved a population of 8 agents. In this document, we have shown
that by using the Erlang/OTP runtime system, which has a superior
implementation of processes management and message passing,
it is possibly to dramatically increase the number both of tasks
allocated, and the number of agents involved in a negotiation.

Because of these two observations, we strongly believe that
Erlang is a very good choice as programming language for the
implementation of multi-agent systems, allowing the generation
of huge agent populations and, thus, increasing relevance of both
empirical experiments and real world applications.

As a future line of work, we intend to formally verify that our
protocol implementation behaves correctly, and moreover, that the
original protocol specification is consistent. Specifically, we plan
to model check our Contract Net Protocol extension implementa-
tion using the McErlang [2] model checker. Having implemented
the protocol we remain suspicious of a number of features of the
protocol, and we are of the opinion that a verification is required to
increase the trust, and the quality, of the original protocol specifi-
cation.

References
[1] S. Aknine, S. Pinson and M.F Shakun. An Extended Multi-Agent

Negotiation Protocol. In Int. Journal of Autonomous Agents and Multi-
Agent Systems. Volume 8, pages 5–45. Kluwer Academic Publishers,
2004.

[2] L. Fredlund and H. Svensson. McErlang: a model checker for a dis-
tributed functional programming language. In Proceedings of the 12th
ACM SIGPLAN International conference on functional programming
(ICFP 2007), Oct. 2007.

[3] R.G. Smith and R. Davis. Frameworks for co-operation in distributed
problem solving. In IEEE Transaction on System, Man and Cybernet-
ics. Volume 11, number 1, 1981.

