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Abstract

In this paper we report on our experiences using Erlang to imple-
ment a subset of the agent-oriented programming language Jason.
The principal existing implementation of Jason is written in Java,
but suffers from a number of drawbacks, i.e., has severe limitations
concerning the number of agents that can execute in parallel. Bas-
ing a Jason implementation on Erlang itself has the potential of
improving such aspects of the resulting multi-agent platform.

To evaluate Erlang as a programming language implementation
platform the paper describes our experiences in mapping Jason to
Erlang, highlighting the positive and negative aspects of Erlang for
this task. Moreover, the paper contains a number of benchmarks to
evaluate the quantitative aspects of the resulting Jason implementa-
tion, especially with respect to support large multi-agent systems.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Performance, Experimentation

Keywords BDI Languages; Erlang Implementation; Translation

1. Introduction

Although not widely known outside the artificial intelligence com-
munity, the belief-desire-intention software model (BDI for short)
for programming multi-agent systems has a number of interesting
features. Basically it provides a higher-level software architecture
for separating a number of program concerns:

e Deliefs are the facts an agent (thinks it) knows
e desires are the goals an agent wants to realise, and

e intentions represents the strategies the agent has chosen to re-
alise its desire; these are often called plans

Moreover, as BDI systems are generally reactive multi-agent
systems, events (occurrences of actions outside of the control of
the agent itself, but which potentially impacts the agent) are key.

Although much of the BDI literature is inspired by the philo-
sophical aspects of artificial intelligence, the concepts above can be
reinterpreted to speak about a particular software architecture for a
multi-process systems (such as can be implemented in Erlang). We
will use that interpretation in this paper.
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As an example then, we consider a classical simple communica-
tion protocol using acknowledgement messages (such as the alter-
nating bit protocol or TCP/IP) for transmitting a sequence of bytes,
with a sender and received agent (process). What are the beliefs,
desires, intentions and events of the agents? Clearly the overall de-
sire of both the sender and receiver agents is that the sequence of
bytes gets correctly transferred and received at the receiver agent.
Beliefs concern basic facts, as well as more complex facts concern-
ing protocol negotiation. For instance, a basic belief of the sender
is that it has sent some subsequence of bytes on the communica-
tion channel. A more complex belief is that the sender ‘“knows”
that the receiver agent has correctly received a sent subsequence
of bytes; this knowledge comes from observing the event that an
“acknowledgment” message was received from the receiver agent.
Similarly a receiver agent may possess the more complex belief
that it “knows” that the sender agent knows that the receiver agent
has correctly received a subsequence of bytes (usually this knowl-
edge comes from having received a later subsequence of bytes as
an event). The intentions, or plans, describe the concrete protocol,
i.e., for an agent, when a new event occurs, and given a certain set
of beliefs, what is the next set of actions of an agent. An action may
be a communication or that the agent updates its beliefs. As an ex-
ample, the sender agent may send an new sequence of bytes upon
receiving an acknowledgement message (event) from the receiver
agent, and also update its beliefs to reflect the fact that it knows
that the receiver agent has correctly received the previous part of
the message.

Compared to a more traditional way of implementing a commu-
nication protocol, here the main the difference is that the knowledge
of the agents (processes) is structured and made explicit in a declar-
ative fashion.

There are numerous different BDI programming language sys-
tems around; some of the more popular ones are Jason [2], Goal [5]
and 2APL [3]. As a core part, most of the programming language
systems use a prolog inference engine to resolve basic queries re-
garding beliefs, to store beliefs, and to select plans. Although all
these language systems do provide support for multi-agent sys-
tems, i.e., adequate communication facilities, it is fair to say that
the major implementation effort for systems like e.g. Goal has been
on improving basic inference speed by utilising a high-performing
prolog implementation. Rather less attention has been spent on im-
proving multi-agent aspects, resulting in multi-agent system imple-
mentations that do not scale to more than at most a few thousand
concurrent agents.

Finding the BDI software architecture interesting, while being
disappointed in the actual quality of the existing implementations
with regards to supporting large agent based systems, naturally we
considered how to integrate the high-performing Erlang runtime
system in such a BDI platform. One possibility would have been
to add support for beliefs and plans to Erlang itself, possibly as be-
haviours. A similar approach is followed by the agent implementa-
tion platform eXAT [9]. Instead we chose to implement a particular



BDI language, Jason, using Erlang. The main reason for imple-
menting Jason was to be able to establish a dialogue with main-
stream BDI researchers, who we believe, would not have been par-
ticularly interested in Erlang with some BDI sugar added.

The main contribution of this paper is as a case study in using
Erlang as a platform to implement, using a mix of compilation and
interpretation techniques, another programming language (Jason).
It turned out be rather straightforward to use Erlang to realise an
implementation of the chosen subset of Jason, as the languages
have a lot of features in common: they are syntactically similar,
both having roots in Prolog (uppercase variables, atoms, single
assignment variables, etc.), and they are both based on an Actor
communication model. Moreover, although not a focus of this
paper, fault tolerance is recognised as a problem for agent-oriented
platforms, and it is hoped that the failure detector primitives of
Erlang (links and monitors) can be integrated into the resulting
multi-agent platform.

A prototype of the implementation of Jason in Erlang, named
eJason is available for downloed at

git : //github.com/avalor/eJason.git

In Sect. 2 we further describe the BDI model and Jason in par-
ticular, while Sect. 3 describes how our Jason implementation was
realised using Erlang. This Jason implementation is benchmarked
in Sect. 4, while Sect. 5 describes items for further work.

2. Belief-Desire-Intention Model

Jason is both a programming language which is an extension of
AgentSpeak [7], and an interpreter of this programing language
in Java. It is based on the Belief-Desire-Intention architecture[8,
12] which is central in the development of multiagent systems.
This approach allows the implementation of rational agents by the
definition of their know-how, i.e. how each agent must act in order
to achieve its goals, instead of a more classical reactive model.

Following a BDI architecture, the constructs of the Jason pro-
gramming language can be separated into three main categories:
beliefs, goals and plans. In the remainder of this section we de-
scribe each of them via an example.

2.1 A simple example: Teacher and Pupil

Consider a multiagent system composed by two agents. The first
agent is a pupil agent whose only purpose is to count from some
initial number I to a maximal number M. Given a certain integer
number, the pupil agent cannot compute the next number but needs
to ask a teacher agent the value of the following number by sending
a message to the teacher agent. The teacher agent has no initial
goal, but every time that it receives an integer number X from a
pupil agent, it computes the following integer number Y = X+1 and
sends it back to the pupil. Every time that the pupil receives a new
integer number from the teacher, it checks whether it has reached
the maximum integer M or not. In the first case, it just prints the
message “Terminated Count” in the standard output. Otherwise, it
asks the teacher the following number again.

This example represents a sample multiagent system where the
behaviour of the agents is simple but that requires an intensive
communication between the agents included. The Jason source
code for the pupil and teacher agents is presented in Figures 1 and
2, respectively.

2.2 Jason Beliefs

Agents in Jason have beliefs which somehow represent the infor-
mation that the agent has currently been able to obtain about its
environment, including other agents. The set of all beliefs of an
agent in Jason is contained in a structure named belief base. This

init_count (0).
max_count (100) .

Istartcount.

+!startcount init_count (X) <-
+actual_count (X) .

+actual_count (X) max_count(Y)& X < Y <-
-actual_count (X);
.send(teacher,tell,actual_count(X)).

+actual_count (X): max_count(Y)& X >= Y <-
.print ("Terminated count").

Figure 1. Jason code for the pupil agent

next (X,Y) :-
Y =X +1.

+actual_count (Count) [source(Pupil)]:true <-
—actual_count (Count) [source (Pupil)];
?next (Count,Next) ;
.send (Pupil,tell,actual_count (Next)).

Figure 2. Jason code for the teacher agent

belief base is updated dynamically during the life of the agent due
to different causes described in Section 2.5.

The belief base of an agent is composed by a set of ground
predicates (i.e. predicates without unbound variables) referred as
beliefs and a set of rules that allow the inference of new knowledge
from the information already possessed. The knowledge base can
be accessed in order to determine if a plan context can be matched
or to match certain test goal, as described below.

In Fig. 1, the belief base of the pupil consists of the following
beliefs:

init_count (0).
max_count (100) .

representing that the agent believes the initial value to be zero, and
that the agent believes that it has to count up to 100.

The teacher agent in Fig. 2 does not have any initial beliefs in
its belief base but it does have the following rule:

next (X,Y) :-
Y =X +1.

This rule is used to calculate the successor of a given number.

2.3 Jason Goals

Goals express the properties of the states of the world that the
agent wishes to bring about. In Jason, there are two types of goals:
achievement goals and test goals. Achievement goals are denoted
by the ‘!’ operator. So, for example, the initial goal of the pupil
agent in Fig. 1, !'startcount, means that the pupil agent has the
goal of achieving a certain state of affairs in which the agent will
believe it starts counting.

Test goals are normally used simply to retrieve information
that is available in the agent’s belief base. They start with the *?
operator.



2.4 Jason Plans

Plans represent the know-how of a program, i. e., the knowledge
about how to do things, which is used to reach the agents goals.
Besides, in Jason, plans are also used to characterise responses to
events.

Plans in Jason have three distinct parts: the triggering event,
the context, and the body. The three plan parts are syntactically
separated by > and *<-’

Triggering events are related to two types of changes in the
agent’s mental attitude: changes in beliefs (which can refer to the
information agents have about their environment or other agents)
and changes in the agent’s goals.

For example, the triggering event in the first of the three plans
of the pupil agent in Fig. 1 is the pupil initial achievement goal
!'startcount.

+!startcount : init_count(X) <-
+actual_count (X) .

The context of a plan is used for checking the current situation
so as to determine whether a particular plan, among the various
alternative ones, is likely to succeed in handling the event (e.g.
achieving a goal), given the latest information the agent has about
its environment. A plan that has a context which evaluates as true
given the agent’s current beliefs is said to be applicable at that
moment in time, and is a candidate for execution. In the previous
example of a plan of the pupil agent, the context init_count (X)
evaluates to true initially since init_count(0) belongs to the
pupil’s initial belief base.

The body of a plan is a sequence of formulae determining a
course of action for the agent to take when an event that matches
the plan’s triggering event has happened and the context of the
plan is true in accordance with the agent’s beliefs (and the plan
is chosen for execution). For instance, in the previous example of
a plan of the pupil agent, the body of the plan is to add the belief
actual_count (0) to the pupil’s belief base.

The second plan of the the pupil agent in Fig. 1 is the following:

+actual_count (X) max_count(Y)& X < Y <-
-actual_count (X) ;
.send(teacher,tell,actual_count(X)).

Here, the context is used to check that the pupil has not reached
the maximum number. In that case, the belief actual_count (0) is
removed from the pupil’s belief base and the pupil asks the teacher
the successor of zero.

Lastly, the third plan of the the pupil agent in Fig. 1 is the
following:

+actual_count (X): max_count(Y)& X >= Y <-
.print ("Terminated count").

If the pupil has reached the maximum number, the pupil prints
a message to indicate that it has finished counting.
The teacher agent in Fig. 2 has only one plan:

+actual_count (Count) [source (Pupil)] :true <-
—actual_count (Count) [source (Pupil)];
?next (Count,Next) ;
.send (Pupil,tell,actual_count(Next)).

Upon the triggering event of adding the belief actual_count
with initial value zero to the teacher belief base, the belief will be
removed from the teacher belief base, the successor value of the
number, zero in the initial case, will be retrieved and the new value
will be communicated to the pupil.

2.5 Jason Reasoning Cycle

The semantics of Jason are given by its reasoning cycle. This
reasoning cycle is depicted in Figure 3. The main features of this
cycle are the following:

e An agent obtains information both from its environment (per-
ception) and from the messages received from other agents.
This information may update the belief base and generate new
events that must be handled by the agent.

An agent may modify its environment by executing some action
or may interact with other agents via asynchronous message
passing.

In every iteration, a single event is chosen to be processed, by
the event selection function. The set of relevant plans for that
event are those plans in the plan library whose trigger matches
it. For each relevant plan identified, the belief base is queried
to determine whether its context is met. The set of applicable
plans are those relevant plans whose context holds.

An option selection function chooses one applicable plan from
a list of these. The plan chosen is added to the set of intentions
of the agent.

Each intention is composed by a set of partially instantiated
plans, i.e. a stack of formulae (appearing in the body of a plan)
to be executed.

An intention selection function selects one intention from the
set of intentions of the agent. The formula on top of this inten-
tion is executed and the remaining stack is returned to the set of
intentions of the agent.

A detailed explanation of the reasoning cycle of Jason is beyond
the scope of this work. It is provided in [2].

2.6 Prolog as Inference Engine

As stated above, a Jason agent possesses a mechanism to infer
knowledge from its set of beliefs, the rules, and to determine
whether the context of a plan holds. Both these elements are rep-
resented in Jason using a Prolog-like predicate syntax. Therefore,
Jason utilises a Prolog inference engine to determine if the belief
base implies certain predicate, which can be part of a rule or a plan
context.

3. Implementation

In this section we present the two main building blocks of the Er-
lang implementation of Jason. The first one is a translator, built us-
ing the third-party software Yecc, which is an Erlang implementa-
tion of a LALR(1) parser similar to the well-known parser Yacc [6],
that generates Erlang source code from the Jason source for the
agents in the system. Thus this translator deals with the syntactical
facet of the implementation. The second is a set of Erlang modules
that implement the reasoning cycle of Jason. As stated in Sect. 2.5,
this reasoning cycle provides the semantics of Jason. Therefore, the
Erlang code for the reasoning cycle represents the semantic facet
of the implementation. In the remainder of the section we provide
more details for these two components.

3.1 eJason Translator

The eJason translator allows the automatic generation of the Erlang
code corresponding to some syntactically valid Jason code, i.e.
its translation. As depicted before, for each “[filename].asl” file,
corresponding to a different Jason agent, a new “[filename].erl”
is produced. The latter ones contain a series of functions that are
invoked either to setup the initial state of the agent or to execute
some part of a plan. As a matter of example, the excerpt of Erlang
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Figure 3. Reasoning Cycle of Jason.

code in Figure 4 corresponds to the Jason code for the pupil already
presented in Figure 1. For the sake of readability of the code
reported, next we describe how the different components of Jason
are represented in Erlang.

3.1.1 Variables

In our implementation, we consider as an eJason variable every
variable in Jason and any atom appearing in the body of a Jason
predicate. In the Jason subset considered, variables appear only in
Jason plans and rules. In order to evaluate these variables, we use
a valuation structure. Concretely, every valuation is represented
by an Erlang tuple where the values are associated with the dis-
tinct variables ordered according to the inverse order in which
these variables first occur in the plan or the rule. For instance,
the variables appearing in the second plan of a pupil agent are
{tell,teacher,Y,X} and a valid valuation for them (actually,
the one corresponding to the initial state of the agent) would be
{tell,teacher,’_,0}, thus binding X to O and leaving Y un-
bound.

3.1.2 Predicates

Predicates appear in every Jason structure. Every predicate is com-
posed by three different elements: a name, a set of parameters
(which are either atoms, variables or other predicates) and a list
of annotations (which are themselves predicates too). Each Ja-
son predicate is represented in eJason by a tuple with three ele-
ments. The first element is an atom that corresponds to the name
of the predicate. The second element is a tuple that contains the
parameters, which can be empty in the case of predicates that
take no parameters (as is the case for atoms). The third and last
element is a possibly empty list containing all the annotations
of the predicate, all of which are predicates, hence represented
as tuples of three elements. For instance, the Jason predicates
startcount and actual_count (Count) [source (Pupil)] are

represented in eJason (respectively) as {startcount,{}, [1} and
{actual_count,{Count}, [{source,{Pupill}, [1}]1}.

3.1.3 Beliefs

Every belief is a predicate (notice that atoms are considered as
predicates that take no parameters), so each of them is represented
as a tuple with three elements as described above.

3.1.4 Goals

Jason allows two kinds of goals: achievement and test goals. They
are represented in eJason using a tuple with two elements. The first
element is either the atom add_achievement_goal or the atom
add_test_goal. The second element is the representation of the
predicate that represents the goal. For instance, the achievement
goal !'startcount is represented as
{add_achievement_goal,{startcount,{}, [1}}.

3.1.5 Rules.

Each rule in Jason is represented as an Erlang function. This func-
tion, when provided with the proper number of input parameters,
accesses the belief, if necessary, and returns the list of all the terms
that both satisfy the rule and match the input pattern.

3.1.6 Plans

The plans in Jason are the structure that posed the biggest challenge
to the translation. Nevertheless, they can be implemented in Erlang
using the following Erlang functions:

¢ One function to implement the trigger of the plan. This function
will either return a variable valuation (possibly with unbound
variables) if the trigger succeeds or the atom false, if the plan
is not applicable.

¢ One function to implement the plan context. This function will
return a list of valuations that comply with the plan context. If
the list is empty, the plan is not applicable.



e As many functions as formulae are there in the plan body. Each
of these functions executes the semantics of a different formula,
e.g. modifying the belief base by adding or removing beliefs
and generating new achievement or test goals.

e A function that is executed when the plan has been executed
entirely, i.e. when all the formulae in its body have been exe-
cuted. This last function returns the valuation for the variables
appearing in the plan trigger, if any.

For convenience, each plan is represented using a record plan
whose elements are its trigger function, its context function and
a list with the functions for the formulae in the body. This list is
ordered in order of appearance and the last one is the function to
be executed after a complete execution of the plan, as mentioned
above.

For instance, the second plan in Figure 1 can be represented as

#plan{trigger=fun pupil:actual_count_2_trigger/1,
context=fun pupil:actual_count_2_context/2,
body=[fun actual_count_2_body_formula_1/2,

fun actual_count_2_body_formula_2/2,
fun actual_count_2_body_last_formula/1]}

3.1.7 Inference Engine in eJason

As mentioned in Section 2.6, Jason relies on a Prolog inference
engine to resolve whether the formulae in a plan context hold,
using the knowledge in the belief base. On earlier stages of the
implementation, we used the third party software ERESYE [10]
(ERlang Expert SYstem Engine) to implement both the belief base
of each agent and its inference engine. ERESYE is a library to
write expert systems and rule processing engines using the Erlang
programming language. It allows to create multiple engines, each
one with its own facts and rules to be processed. In a later stage,
we decided to implement our own belief base and Erlang inference
engine. This new implementation provides a reduced functionality
(compared to ERESYE) that, nonetheless, fits better to our purpose.

The new inference engine requires the generation of an Erlang
function for each rule and plan context. As stated above, that func-
tion returns a list of valuations that comply with the plan context or
the body of a rule. If the list is empty, neither the context is met nor
arule can be applied to infer new knowledge.

3.1.8 Starting an Agent in eJason

The behaviour of each agent in eJason is executed by a different
Erlang process. Therefore, starting an agent implies spawning a
new Erlang process and executing a set of functions that compute
its initial state. These functions are:

e start(Num): this function is executed every time that a new
agent is started. Its parameter Num is used for convenience
and indicates the spawning order assigned to the agent. It
is used when more than one instance of the same agent is
spawned. For instance, to spawn N pupil agents, eJason will
execute spawn(pupil,start,1), spawn(pupil,start,2)
... spawn(pupil,start,N). The function start/1 first reg-
isters the new process with the name of the agent followed by
its spawning order, excepting when it is 1, i.e. for the exam-
ple above the new N processes would be registered as pupil,
pupil’_2...pupil’ _N. Then, it invokes the proper functions
to compute the initial state of the agent. These functions are
described below.

addInitialBeliefs(Agent): this function modifies the agent state
received as a parameter in order to add the proper initial beliefs
to the belief base of the agent. In figure 4 the initial beliefs
added are init_count (0) and max_count (100).

¢ addInitialGoals(Agent): analogously to the previous function,
it modifies the state of the agent received as parameter to in-
clude the events corresponding to its initial goals. Again in Fig-
ure 4, the initial goal added corresponds to ! startcount.

addPlans(Agent): this function adds its proper plan base to
the agent received as parameter. Recall that each plan is rep-
resented by a plan Erlang record. Then, in Figure 4, four
plans are added: one plan triggered by the achievement goal
I'startcount, two plans to handle the addition of a belief
+actual_count (Count) and one plan to resolve every test
goal.

reasoningCycle:reasoningCycle(Agent): this functions im-
plements the reasoning cycle of the Jason agents. It is executed
in a loop during by each eJason agent during all its lifetime. It
receives as parameter the current state of the agent.

3.2 eJason Reasoning Cycle

The Jason reasoning cycle [1] must of course be represented in
eJason. We implement the reasoning cycle using an Erlang func-
tion reasoningCycle with a single parameter, an Erlang record
named agentRationale, which represents the current state of the
agent. The elements of this record are: an atom that specifies the
name of the agent, a list that stores the events that have not yet
been processed, the list of executable intentions for the agent,
the list of executable plans, a list of the terms that compose the
agent belief base, and three elements (selectEvent,selectPlan
and selectIntention) bound to Erlang functions implementing
event, plan and intention selection for that particular agent (in this
manner each agent can tailor its selection functions; appropriate
defaults are provided).

Below a sketch of the reasoningCycle function is depicted,
providing further details on how eJason implements the reasoning
cycle of Jason agents:

This record is updated during the execution of each reasoning
cycle:

(1) At the beginning of each reasoning cycle, the agent checks
its mailbox and processes its incoming messages, adding new
events.

(2) The event selection function included in the agentRationale
record is applied to the list of events also included in the same
record. The result of the function evaluation is an Erlang record
of type event. This record represents the unique event that will
be processed during the current reasoning cycle.

(3) The function trigger of every plan is applied to the body of
the selected event. For every distinct valuation returned by a
trigger function, a new plan is added to the list of relevant plans.
Each relevant plan is represented by a plan record along with a
valuation for the parameter variables.

(4) Next, the context function of each relevant plan is evaluated.
The result of each function application is either an extended
valuation, possibly binding additional variables, or the failure
to compute a valuation that is consistent with both the trigger
and the context. For each remaining valuation, a new plan is
added to the set of applicable plans. Each applicable plan is
represented by a set of variable bindings along with a plan
record.

(5) The plan selection function is applied to the list of applicable
plans. The result obtained is an applicable plan that represents
the new intended means to be added to the list of intentions.

(6) The intention selection function is applied to the list of exe-
cutable intentions. It selects the intention that will be executed
in the current reasoning cycle. Note that, as specified by the Ja-



-module (pupil) .
-compile(export_all).

-include("macros.hrl").
#plan{trigger=fun ?Name:startcount_1_trigger/1 ,

-define (Name,pupil) . body= [{fun startcount_1_body_formula_1/2,
-define(Internal,pupil). ({1,133,
-define (Environment ,pupil) . fun startcount_1_body_last_formula/1],

-define (FunNames, [1) . context=fun ?Name:startcount_1_context/2},

start()-> #plan{trigger=fun
start(1). ?Name:ejason_standard_test_goal_handler_trigger/1,
body=[fun
start (Num) -> ?Name:ejason_standard_test_goal_handler_body/2],
AgName= utils:register_agent (Num,self(),pupil), context=fun

Agent0 = reasoningCycle:start (AgName, [1,[], ?Name:ejason_standard_test_goal_handler_context/2}]}.

beliefbase:start()),

Agentl = addInitialBeliefs(Agent0), startcount_1_trigger({add_achievement_goal,startcount})->
Agent2 = addInitialGoals(Agent1), InitValuation = list_to_tuple(lists:duplicate(2,’_")),
Agent3 = addPlans(Agent2), ResVal = utils:updateValuation([InitValuation],
reasoningCycle:reasoningCycle (Agent3) . [{startcount}], [{2,1}]),
case ResVal of
%% Function to includeInitial beliefs. [(1-> false;
_-> {true,ResVal}
addInitialBeliefs(Agent = #agentRationale{})-> end; .
reasoningCycle:applyChanges (Agent, [ startcount_1_trigger(_A)->
{add_belief,{init_count,{0}, [1}}, false.

{add_belief,{max_count,{100}, [1}}]1).
startcount_1_context (BBID,InitVal)->

Val0 = case InitVal of

%% Function to include initial goals.
A when is_list(A) -> InitVal;

addInitialGoals(Agent = #agentRationale{})-> A when is_tuple(A) -> [A]
InitGoallList=[{addEvent,#event{type=external, end,
body={add_achievement_goal, Parl =utils:makeParams(ValO, [1]),
{startcount,{}, [1}}}}], Resl = utils:query_bb(?Name,BBID,{init_count,’_’,’_’},
reasoningCycle:applyChanges(Agent,InitGoalList) . Pari, ?FunNames) ,
Vall = utils:updateValuation(ValO,Resi,[{1,1}]),
addPlans(Agent = #agentRationale{})-> Vall.

Agent#agentRationale{plans = [
startcount_1_body_last_formula(Valuation)->

#plan{trigger=fun ?Name:actual_count_3_trigger/1 , [{finished,utils:makeParams([Valuation], [2])}].
body= [{fun actual_count_3_body_formula_1/2,
[{3,1}1%}, startcount_1_body_formula_1(BBID,Valuation)->
fun actual_count_3_body_last_formula/1], VarNames = [’X’,startcount],
context=fun ?Name:actual_count_3_context/2}, Element = utils:unify_vars({actual_count,{’X’3},[1},
Valuation,VarNames),
#plan{trigger=fun ?Name:actual_count_2_trigger/1 , NewEvent = utils:add_belief (Element),
body= [{fun actual_count_2_body_formula_1/2, Res = [NewEvent],
({4,131}, Res.

{fun actual_count_2_body_formula_2/2,
[{1,1},{2,2},{4,3}1},
fun actual_count_2_body_last_formula/1],
context=fun ?Name:actual_count_2_context/2},

Figure 4. Excerpt of Erlang code for agent Pupil



reasoningCycle (0OldAgent) ->
Agent = check_mailbox(0ldAgent),
#agentRationale
{events = Events,
belief_base = BB,
agentName = AgentName,
plans = Plams,
intentions = Intentions,
selectEvent = SelectEvent,
selectPlan = SelectPlan,
selectIntention = SelectIntention} = Agent,

{Event ,NotChosenEvents} = SelectEvent (Events),
IntendedMeans =
case Event of
[1 -> [0; %% No events to process
->

RelevantPlans = findRelevantPlans(Event,Plans),

D)

(2)

(3)

ApplicablePlans = unifyContext (BB, RelevantPlans), (4)

SelectPlan(ApplicablePlans)
end,

(5)

AllIntentions = 7, The new list of intentions is computed
processIntendedMeans (Event,Intentions,IntendedMeans),

case SelectIntention(AllIntentions) of
{Intention,NotChosenIntentions} ->
Result = executeIntention(BB,Intention),
NewAgent =
applyChanges
(Agent#agentRationale
{events = NotChosenEvents,
intentions = NotChosenIntentions},
Result),
reasoningCycle (NewAgent) ;
end.

(8

)]
(8

(9

Figure 5. Erlang code for the Jason Reasoning Cycle (annotated)

son formal semantics, this intention may not necessarily be the
intention that contains the intended means for the event pro-
cessed at the beginning of the reasoning cycle.

(7) The first remaining formula of the plan that is at the head of
the chosen intention is evaluated. The result of evaluating a
function may generate new internal or external events, e.g. by
adding a new belief to the belief base.

(8) The new events generated are added to the list of events stored
in the agentRationale record representing the state of affairs of
the agent. If the formula evaluated was the last one appearing
in a plan body, the process implementing the plan body termi-
nates. If, moreover, the plan that finished was the last remain-
ing plan in the corresponding intention, the intention itself is
removed from the list of executable intentions.

(9) Finally a new reasoning cycle is started by repeating steps 1-9
with the new updated agentRationale record.

4. Evaluation

In this section we provide an evaluation, based on our experience,
of the suitability of Erlang as platform to implement a BDI lan-
guage. This evaluation is based on the two aspects that we consider
of most relevance: the difficulty of the implementation and the per-
formance comparison with an already existing implementation in a
different programming language.

4.1 Difficulty of implementation

Due to the high similarity in the syntax of both programming
languages, the implementation of the syntactic elements of Jason in
Erlang was quite straightforward. The effort invested in this aspect
was of approximately 0.25 Man/Months.

Nevertheless, the implementation of the semantics of Jason was
not trivial. For the subset considered, the design and implemen-
tation phases required 2.25 Man/Months. The most challenging
task was the implementation of the semantics for plans, specially
their context. These constructs require the implementation of some
mechanism to determine whether the context of a plan can be in-
ferred from the knowledge of the agent (i.e. its beliefs and rules).
This mechanism should take into account the different possible val-
uations of the variables for each of the statements in a plan context,
as well as determining which of those were valid. Also, the imple-
mentation of a plan body was quite challenging, as it requires the
realisation of changes of context between different iterations of the
reasoning cycle in order to allow the parallelization of the execution
of the formulae in the intentions of the agents.

On the other hand, the implementation of the features related
to an actor-based execution model (e.g. asynchronous communi-
cation, concurrent execution of agents or agent registration) were
also straightforward. They are provided inherently by the Erlang
Runtime System through the use of the proper constructs.



4.2 Performance

Another relevant factor to consider is the comparison of the perfor-
mance of the different implementations of Jason. As the similarities
between the execution model of Jason and Erlang are much higher
than those between Jason and Java, we expected our implementa-
tion to allow a significant improvement in the performance of the
Jason systems executed under eJason.

In order to check whether our expectations were met, we built
several multiagent systems and compared the performance of their
execution using eJason and the Java-based implementation of Ja-
son. Table 1 shows the execution times for the multiagent system
provided as example in Section 2.1. The figures in Tables 2 and 3
are originally included in [4] and are reported again here for the
sake of self-containment of the present document.

As the figures show, considering the execution times of each
platforms for each system we can state that the improvement in
the performance is of great significance. Some systems require
several seconds or minutes, in the best case, to be executed by
the Java implementation while they can be executed in a matter
of milliseconds by eJason. Moreover, some experiments, the ones
composed by a relatively big number of agents, could not be run
under Java as some execution exceptions were raised. We label

these latter cases in the tables as “not measurable”.

Number of Jason execution eJason execution
Pupil Agents | time (magnitude) | time (milliseconds)
10 milliseconds <1

100 seconds 764

1000 not measurable 4646

10000 not measurable 50000
100000 not measurable 722535

Table 1. Execution times for the pupil and teacher multiagent

system
Number of | Jason execution eJason execution
Agents time (magnitude) | time (milliseconds)
10 milliseconds 2
100 milliseconds 46
1000 seconds 181
10000 minutes 1916
100000 not measurable 18674
500000 not measurable 97086
800000 not measurable 165522

Table 2. Execution times for the counter multiagent system

Number of | Jason execution eJason execution
Agents time (magnitude) | time (milliseconds)
10 milliseconds 1

100 milliseconds 15

1000 seconds 143

10000 minutes 1550
100000 not measurable 154415
300000 not measurable 484371

Table 3. Execution times for the greetings multiagent system

5. Conclusion and Future Work

Early benchmark figures indicate that eJason does scale well with
regards to both the number of agents, as with regards to the num-
ber of messages sent. The difference compared to the standard Java
based Jason implementation is quite significant. Moreover the Er-
lang implementation of Jason is rather clean and compact, and the
manner in which a Jason implementation is supposed to be para-
metric with regards to a number of key selection functions (e.g.,
selecting one plan among a set of executable plans) is elegantly
implementable in Erlang.

However, it is to be expected that benchmarks that stress the
logical inference part of Jason, which is quite similar to Prolog,
and normally implemented using a Prolog interpreter, would favour
the standard Jason implementation. Currently our implementation
of this inference engine is written in Erlang, and needs to be op-
timized. An option would be to use one of the Prolog interpreters
written in Erlang; Robert Virdings’ erlog [11] is probably the most
well known implementation. Even so, we can expect the perfor-
mance of an Erlang based Prolog interpreter to perform signifi-
cantly worse than using a standard Prolog interpreter, as e.g. a nor-
mal Prolog system uses randomly accessed stacks heavily, a data
structure which is difficult to implement efficiently in pure Erlang.

Further work includes finishing the eJason implementation,
which currently for instance lacks support for crucial belief an-
notations (what is the source of a belief). Once this implementation
is finished, we plan to evaluate its perfomances using some widely
accepted benchmark for multiagent systems, if it exists. Then we
expect to experiment with the BDI software architecture itself, to
determine whether as expected more classical distributed system
algorithms and programs can benefit from being rephrased using
this architectural design pattern. In another strand of research, we
expect to benefit from the design and implementation of Erlang in
order to augment the Jason language with better support for con-
current and distributed computations. For instance, a recognised
problem with Jason is the poor support for fault tolerance. We
suspect that the Erlang experience of mapping low-level failure de-
tection primitives to fault handling in higher-level design pattern
such as e.g. the generic server behaviour is the right approach for
Jason too.
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