
Static Partial Order Reductions for Probabilistic
Systems

Masterthesis

zur Erlangung des akademischen Grades
Master of Science (Ms.Sc.)

vorgelegt an der

Technischen Universität Dresden,
Fakultät für Informatik

eingereicht von Álvaro Fernández Díaz

Betreuende Hochschullehrerin:
Prof. Dr. Christel Baier

Dresden, im 2011

Abstract

The present Master’s thesis seeks the development and analysis of static partial order reduc-

tion techniques for the models of probabilistic systems. The properties of those systems can

be verified via model checking technique. Model checking suffers from the problem known

as State Space Explosion, which can make the verification process intractable. Partial order

reductions are aimed at alleviating that problem. As an outcome of the work carried out

for the elaboration of current thesis, two new static partial order techniques, named Naïve

SPOR and Reachability-Aware SPOR, were defined. A recommendation of the situations

in which each of them should be used is provided. The latter achieves a better reduction

than the former when the system to be verified is not probabilistic or when the property

to be checked can be expressed in a linear temporal logic. The software tool known as

LiQuor model checker was extended in order to be able to execute both reduction tech-

niques. Those techniques were utilized for the reduction of the models of some classical

concurrent systems. Several properties of the reduced and unreduced models were verified

using symbolic and explicit model checking techniques. As a result of the analysis over the

experiments, it is concluded that static partial order techniques should be more conveniently

used in combination with symbolic model checking than with explicit model checking.

3

Acknowledgements

First of all, I want to thank Prof. Dr. Christel Baier for accepting me as her Master student

since the very first moment I contacted her. I also thank Dr. Frank Ciesinski for his help

during the development of this Master’s thesis. He has always been friendly in the inter-

action and provided me with quick and very useful tips for the correct culmination of my

work. I would like to thank Prof. Dr. Steffen Hölldobler for giving me the opportunity to

finish my Master studies in Dresden. Last but not less important, I want to sincerely thank

my PhD. supervisors in Madrid, Dr. Clara Benac Earle and Dr. Lars-Åke Fredlund. They

informed me about the European Master’s Program in Computational Logic (EMCL) for

the first time, encouraged me to enroll in it and have supported me during the two years it

has lasted. I owe them a lot of gratitude for their patience during my stay in Dresden and

the trust on me that they always show.

Although their support has not been academical, I am sure that I could never have finished

my Master’s thesis without the reassurance of my friends in Spain, my colleagues from

Babel Research Group in the Universidad Politécnica de Madrid and the new friends I have

made during my stay in Dresden. I specially want to thank Beatriz and Dirk. Both of them

listened patiently to my concerns when I got stuck with my work and encouraged me to

finish it, always with a smile. They also allowed me to distract and freshen my mind during

my leisure time through a whole bunch of great experiences. They have a well-deserved

place deep within my heart. Finally, I wish to express my utmost gratitude to my parents

Marcelino and Begoña. I owe them every step I take, as they keep constantly giving me the

opportunity to accomplish all the dreams I could have never dared to dream of. My steps

are also their steps.

5

0 Table of Contents

CHAPTER 1 – Introduction 1

CHAPTER 2 – Basic Concepts 7

2.1. Notations . 7

2.2. State Space Explosion Problem . 11

2.3. Partial Order Reductions . 14

2.3.1. Some POR Alternatives . 18

CHAPTER 3 – Towards Static POR for Probabilistic Systems 21

3.1. Sticky Set POR Technique . 21

3.2. Sticky Set Identification: the Naïve Approach 22

3.2.1. Theoretically Expected Improvement 23

3.3. Experiments . 25

CHAPTER 4 – Completely Static POR of Probabilistic Systems 29

4.1. Static POR for Non-Probabilistic Systems 29

4.2. Static POR for Probabilistic Systems . 32

4.2.1. Fundamental Considerations . 33

4.2.2. Preliminary Calculations . 34

4.2.3. Naïve SPOR . 35

4.2.4. Reachability-Aware SPOR . 37

4.2.5. Experiments . 51

CHAPTER 5 – Conclusion and Future Lines of Work 59

I

TABLE OF CONTENTS TABLE OF CONTENTS

II

1 Introduction

The presence of software systems in everyday life has exponentially increased during the

last decades. Their use ranges from the most trivial tasks, like driving and controlling do-

mestic appliances, to more sophisticated jobs, which include air traffic synchronization, lo-

gistics or data management, among others. It is very likely also that the reader has required

the use of some software entities in order to read the present document, e.g. obtaining

it from the Internet or displaying it in a computer screen, smart-phone or electronic-book

reader. This quotidian use of software requires the development of reliable programs. Nev-

ertheless, it is well known that software systems quite often contain errors, some of them

very subtle and hard to identify. As evidence of the high relevance of error identification in

the software development process, we can recall that, as stated in [Eme08], software devel-

opers usually devote half of their time to error identification and system debugging. There

exist several techniques whose goal is to analyze whether a system provides the expected

functionality, which corresponds to a system specification. That analysis process is known

as Verification.

The different existing techniques for Software Verification can be classified attending to the

way they are performed and, consequently, the kind of information they collect. Dynamic

Verification techniques are performed during system execution, thus requiring its prior total

or partial implementation. These techniques usually analyze the behaviour of the system

through its output to some controlled stimuli. One very popular dynamic verification tech-

nique is known as testing, where the specification of the system is given in the shape of a

series of tests, named test suite, that the system has to pass in order to be considered correct.

Conversely, Static Verification techniques physically analyze the system implementation or

a model of it. Among these techniques we can find several approaches that vary from sys-

tem metrics calculation, e.g. lines of code or size of binaries, to common bad practices

identification or the use of mathematics in order to prove the correspondence between the

system specification and its implementation. The use of these latter approaches is known

as Formal Verification, which utilizes a set of mathematically-based techniques known as

Formal Methods.

1

Chapter 1. Introduction

Formal verification techniques require the specification of the system in a mathematical and

logical way. That specification is then checked against the code implementation in order

to identify whether the latter meets the former. The most popular formal verification tech-

niques are Logical Inference and Model Checking. Logical inference, commonly referred

also as theorem proving, evaluates the correctness of the implementation with regards to its

implementation by using certain axiomatic system and a set of inference rules. This task

can be automatically or semi-automatically performed by a tool known as theorem prover.

Well-known examples of these tools are Isabelle [Pau94] and Coq [HKPM97]. On the other

hand, model checking techniques evaluate the correctness of the implementation with the

use of a model of that implementation, represented in a Kripke Structure, and a set of prop-

erties, specified in some temporal logic formula, that conform the system specification. The

aim of this technique is determining whether the model provided correctly models the logi-

cal function. Some examples of successful model checking tools, known as model checkers,

are Prism [KNP02] and SPIN [Hol03].

The use of model checking techniques is specially recommended for the formal verifica-

tion of concurrent systems. This kind of systems are composed by a series of processes

that interact with each other either via an explicit communication mechanism or by sharing

resources. One of the main characteristics of these systems is their non-determinism. We

refer to a system as non-deterministic when it can provide different outputs from the same

set of inputs. That non-determinism typically derives from the lack of a global scheduler

that determines an execution order for the processes with respect to each other. Therefore,

the different possible interleavings of process actions may result in a different output of the

system. Apart from non-determinism, there exist some systems that show some uncertainty

in the effects of their actions. Such uncertainty can derive, for instance, from the existence

of randomized actions, whose effect is chosen stochastically with respect to some distribu-

tion, or the presence of faulty communication channels between processes. The systems

that exhibit this kind of uncertainty modelled by stochastic actions are referred as proba-

bilistic systems.

Regarding the way in which the model of the system being verified is represented, there

exist two alternatives. The first implies using a modelling language, like PROMELA [PRO]

which is used as input language for the popular SPIN model checker, to build the system.

The second alternative allows the use of the source code as model of the system being veri-

fied, as occurs in the model checker McErlang [FS07].

2

Chapter 1. Introduction

Concerning the properties that conform the specification, they are most commonly specified

in a temporal logic or an equivalent structure, like regular automata. Temporal logics allow

the statement of properties that permit the reasoning about the behaviour of concurrent pro-

grams taking into account a temporal component. For instance, they allow the enunciation

of propositions that can eventually hold in a future state of the system with respect so some

other moment in time. Probably the most popular temporal logics are a linear time one

known as Linear Temporal Logic (LTL), see [Pnu77], and a branching time logic named

Computation Tree Logic (CTL), described in [CE82] and studied in [EH82]. In the context

of linear time logics, from each moment in time, thus from each state of the system, there

exists only one possible future, whereas the semantics of branching time logics allow the

existence of several possible futures, which can also be quantified. However, as CTL and

LTL are not equivalent, which was shown in [Var98], the superset CTL* of both of them

was generated and also described in [Var98]. All these logics allow the construction of

qualitative properties of the system, e.g. in a communication system one could try to check

whether the property “when a message is sent, there exist some execution paths in which

the message is correctly delivered” holds or not. Nevertheless, in the real world exists the

necessity to model some uncertainty about the system, as we stated before, specially when

trying to analyze some aspects of a system, like the so-called Quality of Service. Therefore,

the temporal logics were extended with a component known as “probabilistic operator”,

which allows the construction of predicates that refer to the probability to satisfy certain

predicate or propositional formula. Then, some probabilistic temporal logics like PCTL

and its generalization PCTL*, see e.g. [HJ94], [Din07], were described in order to allow

the statement of quantitative properties.

As we mention before, the goal of a model checking process is, given a model M of the

system and a property P , identify whether M is a model for P if the system starts from one

of the possible initial states s ofM . In order to do that, the most common approach consists

in, first, generating the automaton for property ¬P , named A¬P . Then, the crossproduct

M⊗A¬P , from initial state s, is generated and checked for acceptance-emptiness. If there

is no word w that is accepted by the crossproduct, then M , s |= P , which means that the

property holds for the system. Otherwise, if w is accepted, the property does not hold

and w represents a counterexample for P . Therefore, the model checking process can be

considered as a reachability analysis one. However, this process suffers the drawback of

generating a number of states, known as State Space, that grows exponentially with respect

to some features, like the number of processes involved in the system or the complexity

of the property. That exponential growth in the state space can make the model checking

process impossible in the real-time setting due to both storage and computation restrictions.

3

Chapter 1. Introduction

This problem is known as the State Space Explosion Problem.

In order to tackle the state space explosion problem, there exist several approaches that per-

form model checking avoiding the generation of the complete state space of a system. One

of them is known as Abstraction, where some details of the system are ignored in order

to generate a smaller model M . That reduced model M should be easier to analyze than

M and the checks over M should be sufficient to reason about M . For instance, an exact

abstraction guarantees that M |= P ⇔M |= P . Nevertheless, there are some more conser-

vative abstractions that can only ensure M |= P ⇒ M |= P . Another alternative consists

in the symbolic representation of sets of states and transitions instead of representing all of

them individually. This approach is known as Symbolic Model Checking, see [BCM+90],

in contraposition to Explicit Model Checking. Symbolic Model Checking makes use of

some structures for the representation of relations and states as formulas, known as Ordered

Binary Decision Diagrams (BDDs). BDDs were introduced in [Bry86], and have been gen-

eralized in structures like the Multi-Terminal Binary Decision Diagrams, from [FMY97],

which were successfully used to perform symbolic model checking over a probabilistic sys-

tem, as described in [BCHG+97]. A different technique for the reduction of the state space

is known as partial order reduction. This technique uses information about the different ac-

tions that each process can perform in order to, together with a notion for action dependence,

establish which of the possible actions from every state s can be safely delayed to generate

a reduced, but equivalent, state space. The sequences of actions that are represented in the

reduced state space are referred to as representatives. Attending to what kind of informa-

tion these techniques collect, with respect to temporal criteria, they can be classified into

stubborn/persistent sets or sleep sets. Sleep sets, introduced in [God96], try to identify the

dependencies between actions by analyzing only the actions enabled from a state s and the

actions that have already been executed. Conversely, stubborn sets, which are described in

[Val89], use information about the future executable actions. A very popular stubborn set

technique is known as ample set approach, in which the persistent set, referred to as ample

set, has to fulfill a series of conditions, described in [Pel93]. Depending on the moment in

which these techniques obtain the information and decide on the different representatives,

partial order reductions are referred either as static or dynamic. Static partial order reduc-

tions decide on the representatives by performing a static analysis over the structure of the

system being analyzed. In order to do that, they need to generate a symbolic representation

of the system and generate the conditions to only construct those representatives by, for in-

stance, modifying the program semantics of each individual process in a conservative way.

Conversely, dynamic partial order reductions discover the representatives during the model

checking process, i.e. the reachability analysis, of the property.

4

Chapter 1. Introduction

Contribution of the Thesis The contribution of this master thesis work to the state-of-the-

art of model checking is twofold. On the one hand, we develop two new techniques for the

static partial order reduction (SPOR) of software systems. Both techniques are developed

with the aim of being suitable for both probabilistic and non-probabilistic systems, hence

allowing the analysis of qualitative and quantitative properties. The two of them can be

applied over the probabilistic control graphs of the processes that compose a system and

generate a modified version of them such that the state space of the new system either has

the same size or is smaller than the state space of the original unreduced one. The use of

each of our SPOR techniques is determined by the temporal logic used to build the proper-

ties checked. The first of the techniques, to which we refer as Naïve SPOR, can be applied

for the sound reduction of the state space of a system where the properties to be checked

can be expressed in PCTL* and are stutter-invariant, notion that is later explained in this

document. The second technique, named Reachability-Aware SPOR, can only be applied

for the reduction of models where the properties checked, both qualitative and quantitative

ones, are stutter-invariant and can be also expressed in linear time logic. Nevertheless, we

show evidence of how Reachability-Aware SPOR can be more efficient than Naïve SPOR,

in terms of providing a higher reduction to the same state space.

On the other hand, we perform an extension of the model checker LiQuor [CC06]. This

model checker performs explicit model checking for both qualitative and quantitative linear

time properties of systems. The input language for the models that this model checker

accepts is PROBMELA, see [BCG04]. PROBMELA programs are translated into an XML-

like intermediate language named PASM. Besides, LiQuor is able to apply dynamic partial

order reductions to PASM programs. The contribution of our extension comes, again, in

two ways:

• We applied a reverse engineering process in order to gather all information contained

in PASM programs sufficient to build a symbolic representation of the system. That

symbolic representation of the system is composed by all different probabilistic con-

trol graphs of the processes and is now built and stored by the model checker. There-

fore, some state space reduction techniques can be applied to this representation, fact

that represents an increase in the extensibility of LiQuor functionality.

5

Chapter 1. Introduction

• Given the symbolic representation of the system, we include the functionality to per-

form both Naïve SPOR and Reachability-Aware SPOR techniques. The way in which

this implementation acts implies analyzing the symbolic representation and modify-

ing PASM code. Therefore, as the modification is performed in the intermediate code

and not in the source code, those techniques could be applied to any input language

that could be compiled into PASM.

Structure of the thesis. In Chapter 2 of this master thesis we elaborate on the basic nota-

tions and provide with the knowledge required for the perfect understanding of the contents

presented. Moreover, in that chapter we also introduce the state space explosion problem

along with a description of partial order reduction techniques based on ample set identifi-

cation, as motivation for the present thesis work. In Chapter 3 we describe a technique that

allows a semi-static partial order reduction, as allows the identification of some actions that,

when included in an ample set, guarantee that some of the ample set conditions are fulfilled.

This topic composes a whole topic on its own because it derives from work previous to

this thesis and has not been mentioned in the contributions. Nevertheless, it is included in

present document because it represents the preliminary work required as preparation for the

thesis. In Chapter 4, we introduce Naïve SPOR and Reachability-Aware SPOR techniques,

as well as an already existing technique that served as basis for them. Besides, we illustrate

both techniques and compare their use in combination with symbolic and explicit model

checking. We present some practical examples, provide formal proof of the soundness of

the new techniques and analyze their performance based on a comparison over empirical

results. Finally, in Chapter 5 we present the conclusion and future research lines that could

be taken as continuation of this thesis work.

6

2 Basic Concepts

Before we start explaining our contribution to Model Checking, we give a brief introduc-

tion to the notations that will be necessary to understand the contest of the present thesis

document. Besides, we elaborate on one of the main difficulties this formal verification

technique faces, as well as a short description of one of the already existing techniques to

alleviate it.

2.1. Notations

Model Checking technique typically requires the generation of a model of the system, which

would be later algorithmically examined. One popular model representation mechanism for

probabilistic systems are Markov Decision Processes (MDP for short), which reflect some

operational behaviour of the system under consideration. A Markov Decision Process M is

defined by a tuple (S, Act, =⇒, s0, AP, L) where:

• S is a set of states

• Act is a set of Actions

• =⇒: S × Act 7→ Distr(S) is the partial transition function. Distr(S) is the set

of all stochastic distributions over countable set S. Therefore, for every state s∈S
and action α ∈ Act for which the function =⇒ is defined, we obtain a stochastic

distribution µ∈Distr(S) s.t. for every state s′∈S. µ(s′) ∈ [0, 1] and
∑
s′∈S

µ(s)= 1

• s0 ∈ S is the initial state

• AP is a set of atomic propositions

• L : S→ 2AP is the labeling function

This kind of model represents the behavior of the whole system by including all the pos-

sible states in which the system can appear, along with the transitions between them and

the atomic propositions for their valuations. Intuitively, the system modeled starts in initial

state s0, and evolves to different states according to the transition relation =⇒. In the case

7

2.1. Notations Chapter 2. Basic Concepts

of software systems, each different state s ∈ S holds information about the values of all

variables along with the program counters that identify the execution point of each of the

programs that compose the system. The set S of all states is frequently referred to as the

State Space of a system. An MDP is said to be finite if its number of states and transitions

is not infinite.

This model representation allows the construction of a directed labelled graph with the aim

of easing the overall understanding of the system. In this graph, each node corresponds to

a different state s of the state space. Besides, for every state-action pair (si,α)∈S×Act for

which =⇒ is defined with output µ and for every sj ∈ support(µ)={sk∈S| µ(sk)>0}, there

is a different edge between graph nodes ni and nj where ni and nj correspond to si and sj
respectively. In this document, we will represent those edges labeled as α[µ(sj)] or only α

if µ(sj) = 1. Notice that if si = sj , the edge is a self loop.

As a matter of example, consider the system, to which we refer as the stochastic counter,

composed by a program which operates over an integer variable x bounded to interval [0,2]

and a binary value a. This system increments variable x by one unit iteratively until it

reaches value 3. Then, it stochastically changes value of a to true or false, with the same

probability for both alternatives. The MDP that models such program can be M = (S, Act,

=⇒, I, AP, L) where:

• S = {si} where i ∈ [0, 7]

• Act = {α,β, γ}, where α increments value of x in one unit, β stands for the action

that probabilistically sets variable a to either value true or false and γ assigns value 0

to x.

• =⇒ is defined for cases:

– ⇒(s0,α)=µ0,α s.t. µ0,α(s1)= 1 and µ0,α(sn) = 0 for every sn∈S\{s1}

– ⇒(s1,α)=µ1,α s.t. µ1,α(s2)= 1 and µ1,α(sn) = 0 for every sn∈S\{s2}

– ⇒(s2,γ)=µ2,γ s.t. µ2,γ(s3)= 1 and µ2,γ(sn) = 0 for every sn∈S\{s3}

– ⇒(s3,β)=µ3,β s.t. µ3,β(s0)= 0.5, µ3,β(s4)= 0.5 and µ0,α(sn) = 0 for every

sn∈S\{s0, s4}

– ⇒(s4,α)=µ4,α s.t. µ4,α(s5)= 1 and µ4,α(sn) = 0 for every sn∈S\{s4}

– ⇒(s5,α)=µ5,α s.t. µ5,α(s6)= 1 and µ5,α(sn) = 0 for every sn∈S\{s5}

– ⇒(s6,γ)=µ6,γ s.t. µ6,γ(s7)= 1 and µ6,γ(sn) = 0 for every sn∈S\{s6}

8

Chapter 2. Basic Concepts 2.1. Notations

– ⇒(s7,β)=µ7,β s.t. µ7,β(s0)= 0.5, µ7,β(s4)= 0.5 and µ7,α(sn) = 0 for every

sn∈S\{s0, s4}

• s0

• AP = {0,1,2,3,a}, which reflects the numerical and truth values of variables x and a

respectively.

• L such that :

1. L(s0) = {0,a}

2. L(s1) = {1,a}

3. L(s2) = {2,a}

4. L(s3) = {0,a}

5. L(s4) = {0}

6. L(s5) = {1}

7. L(s6) = {2}

8. L(s7) = {0}

The directed graph that corresponds to the stochastic counter is presented in Figure 2.1.

As we can see, the MDP provides the intuitions of which states or situations are reachable

(i.e. possible) within a program execution. However, as the choice between the transitions is

performed non-deterministically, in more complex systems, for instance involving different

concurrent processes,it is not possible to reason, a priori, about the individual behaviour of

each program. For instance, in the MDP represented in Figure 2.1 the conditions that enable

each transition are abstracted and omitted. Therefore, the set of relevant properties of the

system to be verified is shrunk. In order to provide a deeper insight into the programs, a

closely related representation construct, known as Probabilistic Control Graph is used. A

probabilistic control graph is a tuple PCG=(Loc, Event, ;, l0) over a set V ar of variables,

and channels, where:

• Loc is a set of locations. A location determines a position into the program, but

abstracts the value of any variable.

• Event is a set of process events.

• ;⊆ Loc× Cond(V ar)×Distr(Event×Loc) is the edge relation. Cond(V ar) is

the set of conditional propositions that can be elaborated with the variables contained

9

2.1. Notations Chapter 2. Basic Concepts

s0start

s1

s2

s3 s4

s5

s6

s7

α[1]

α[1]

γ[1]

β[0.5]

β[0.5]

α[1]

α[1]

γ[1]

β[0.5]

β[0.5]

Figure 2.1: MDP digraph for the stochastic counter

in V ar. For instance, x > 1 for a numerical variable x or y = true for a boolean

variable y. Distr(Event×Loc) is the set of all possible distributions over pairs

(e, l) ∈ Event× Loc.

• l0 is the initial location.

Besides, we can define the set of actions Act⊆ Cond(V ar) × Distr(Event × Loc) as

Act={α ∈ Cond(V ar) × Distr(Event × Loc)|α ∈
⋃
l∈Loc

;(l)}. For the sake of sim-

plicity, from now on, each tuple (l,g,Distr) ∈ ;, which corresponds to an action α will

be depicted as l ;g:α Distr. g ∈ Cond(V ar) is called guard and represents a condition

that has to be fulfilled for the action α to be enabled, which means that the effect of each

event e ∈ Event can be applied regarding probability distribution Distr. Therefore, for

the example in Figure 2.1. the probabilistic control graph PCG = (Loc, Event, ;, l0) over

V ar={x} could be:

• Loc = {l0, l1}. Usually, the locations of a program correspond to positions from

which the program can execute at least one action.

• Event = {α, β1,β2,γ}. Which correspond to the events associated to actions de-

scribed in Figure 2.1, whose effect over a valuation η∈V al(V ar) is:

1. Effect(α,η)=η[x=x+1]

10

Chapter 2. Basic Concepts 2.2. State Space Explosion Problem

2. Effect(β1,η)=η[a=true]

3. Effect(β2,η)=η[a=false]

4. Effect(γ,η)=η[x=0]

• ;={(l1,g1=(0<x<2), Distr1), (l1, g2=(x = 2), Distr2),(l1,g3=true,Distr3) }

where:

– Distr1(α, l1)= 1

– Distr2(γ, l2)= 1

– Distr3(β1, l1)= 0.5, Distr3(β2, l1)= 0.5

We can notice that, from ;, we can extract the set of actions Act={α, β, γ}.

• l0 = l1

In a similar way to the process of building a digraph of a MDP, it is possible to build one that

represents a probabilistic control graph. The digraph in Figure 2.2. corresponds to this later

probabilistic control graph. It is also possible to obtain the MDP that corresponds to the

set of probabilistic control graphs of the different processes that compose a system. Such

procedure is explained in [Cie11].

l1 l2

0 < x < 2:α[1]

x = 2:γ[1]

true:β1[0.5]

true:β2[0.5]

Figure 2.2: Probabilistic Control Graph for the stochastic counter

2.2. State Space Explosion Problem

Nowadays, most software applications are no longer composed by a single execution thread,

but as a set of processes running simultaneously and concurrently. The formal verification

of this kind of multiprocessed systems is a quite computationally expensive task. Model

Checking techniques offer some ways for carrying out such verification tasks. As we men-

tioned before, there exist some algorithms to unfold a probabilistic control graph PCGi,

or a set of them, into a MDP, e.g. in [Cie11], MDPi=MDP (PCGi). This technique is

11

2.2. State Space Explosion Problem Chapter 2. Basic Concepts

especially useful when we try to build the MDP that corresponds to a system composed of

several processes. In order to do that, first we must obtain the probabilistic control graphs of

each different process. Then, an interleaving operation has to be performed between them

in order to obtain their crossproduct. Finally, this crossproduct can be unfolded into a MDP.

In order to provide a better understanding of this process, we show an example of this pro-

cedure. Consider a system, which we name the two-counters system, composed by two

programs P1 and P2. These programs perform the behavior of a stochastic counter over in-

teger variables x, y and binary variables a, b respectively. The probabilistic control graphs

PCG1 and PCG2 corresponding to them are presented in Figure 2.3. Once we have them,

the crossproduct is built by first generating a control state that corresponds to the initial state

of both programs. Then, a new state is generated for every single transition with probabil-

ity greater than 0 that each program can take. As variable values are abstracted, only the

locations of each probabilistic control graphs are taken into account in order to differentiate

crossproduct locations. Therefore, a crossproduct location which corresponds to the same

single program locations is unique. The crossproduct probabilistic control graph for the

two-counters system, over the variable set V ar1,2= V ar1 ∪ V ar2, is shown in Figure 2.4.

As we can see, the set of locations of the crossproduct is Loc1,2 = Loc1 × Loc2.

l1,1 l1,2

l2,1 l2,2

0 < x < 2:α[1]

x = 2:γ[1]

true:β1[0.5]

true:β2[0.5]

0 < y < 2:δ[1]

y = 2:ι[1]

true:ε1[0.5]

true:ε2[0.5]

Figure 2.3: Individual Probabilistic Control Graphs for the 2-counters system

12

Chapter 2. Basic Concepts 2.2. State Space Explosion Problem

l1

l2 l3

l4

0<x<2:α[1]

0<y<2:δ[1]

x=2:γ[1]

y=2:ι[1]

true:β1[0.5]

true:β2[0.5]

0<y<2:δ[1]

y=2:ι[1]

0<x<2:α[1]

x=2:γ[1]

true:ε1[0.5]

true:ε2[0.5]

true:β1[0.5]

true:β2[0.5]true:ε1[0.5]

true:ε2[0.5]

Figure 2.4: Crossproduct Probabilistic Control Graph for the 2-counters system

Analogously, in the case of a system composed of n processes, the crossproduct probabilis-

tic control graph obtained from the interleaving of all them contains a location set Loc1−n
⊆ Loc1 × . . . × Locn (notice we use ⊆ because of the possible presence of synchronous

communication operations [BK08], if they are not present, “=” could be used). Therefore,

the number of locations in a crossproduct probabilistic control graph can increase exponen-

tially with respect to the number of processes it was calculated from, as |Loc1−n| ≈
n∏
i=1

|Loci|.

Regarding the cardinality of the state space Si of a probabilistic control graph PCGi over

variable set V ari, it can be at most |Loci| ·
∏

v∈V ari

|dom(v)|. Therefore, in the case of the

two-counters system, where dom(x) = dom(y) = 0, 1, 2 and dom(a) = dom(b) = 0, 1,

|S1,2|= |Loc1| · |Loc2 · |dom(x)| · |dom(y)| · |dom(a)| · |dom(b)| = 22 · 32 · 22 = 144.

Then, we can see how the cardinality of the state space increases exponentially in both the

number of processes it is composed of and the number of observable variables. Because of

that, even for simple and small systems, the number of states can be too huge. For instance, a

13

2.3. Partial Order Reductions Chapter 2. Basic Concepts

system composed of 6 processes with 10 locations each, over a total set of 8 integer variables

which range between 10 possible values, generates a state space S with cardinality |S| =
106·108 = 1014 states! This phenomenon is known as State Space Explosion and represents

the major problem of Model Checking, as stated in [Cla08], due to its enormous increase in

the complexity to analyse relatively big systems, also making their verification intractable.

In the next section, we describe one technique used to ease this problem.

2.3. Partial Order Reductions

This technique aims at identifying a smaller reduced model M̂ = (Ŝ ⊂ S, Event, =⇒, s0,

AP, L) of the state space of a system represented by the MDP M such that, given Φ as the

set of all stutter-invariant properties it holds that ∀ φ ∈ Φ. M |= φ ⇔ M̂ |= φ. In that

case we say that M and M̂ are stutter-trace equivalent. Instances of stutter-invariant proper-

ties are those specified in a temporal logic like LTL-◦, which are LTL formulas that do not

contain next operator ◦. Those properties do not differentiate traces which are equal if we

eliminate the consecutive states where the valuation of the atomic propositions remains un-

changed. Then, the properties of the unreduced system M can be checked by analysing the

reduced system M̂. M̂ is obtained by removing some actions from the set of enabled ones in

certain state s ∈ S, consequently, removing some paths and states from the unreduced sys-

tem. From now on, we refer to the set of all the enabled actions from a state s ∈ S asAct(s).

As sample introduction to why POR are possible, consider a small subset of the state space

of the two-counters system, shown in Figure 2.5. Here, every state is labelled as sxyab in

order to show the value of variables x, y, a and b, e.g. s01tf represents a state where η(x)

= 0, η(y) = 1, η(a) = true and η(b) = false. This subset originates from all the possible

interleavings of actions α, β, γ, δ, ε, ι ∈Act from state s00tt. If we wanted to check a

system property which only refers to variables a and b, therefore AP={a, b}, it may suffice

to analyze only some interleavings, like the ones in Figure 2.6, as original unreduced state

space could be built varying the execution order of actions that do not modify the variables

in AP . We can see how the new interleaving does not disable actions γ and ι, which is a

relevant property on which we elaborate later in this section.

In order to determine the interleavings that have to be performed, we concentrate in the

technique called ample set method, described in [Pel93]. This technique aims at identifying

the ample set: ample(s) ⊆ Act(s). Then, the interleaving is only performed for the actions

in ample(s) and the rest of enabled actions are delayed and executed later from some of the

successor states of s. The execution sequences that are contained in the reduced state space

14

Chapter 2. Basic Concepts 2.3. Partial Order Reductions

s00tt

s10tt s01tt

s20tt s11tt s02tt

s21tt s12tt

s22tt

s′00tt

s′01tt

s′02tt

s′′00tt

s′10tt

s′20tt

s′′′00tt

s00ft

s01ft

s02ft

s00tf

s10tf

s20tf

s′00ft s′00tf

s00ff

α δ

α δ α δ

δγ α δ α ι

δγ α ι

γ ι

β[0.5]

β[0.5]

δ

β[0.5]

β[0.5]

δ

β[0.5]

β[0.5]

ι

ε[0.5]

ε[0.5]

α

ε[0.5]

ε[0.5]

γ

ε[0.5]

ε[0.5]

α

β[0.5]

β[0.5]

ε[0.5]

ε[0.5]

δ
α

δ
α

α ι

α δ

α δ

δγ

α δ

α ε[0.5]

ε[0.5]

δβ[0.5]

β[0.5]

Figure 2.5: Fully interleaved subgraph of the 2-counters system

Ŝ are named representatives, as they will represent every other possible execution sequence

in the unreduced state space S. Before we describe the conditions that ensure the selection

of certain ample set preserves system properties, we provide some definitions required to

understand the aforementioned properties:

• S′: is the reduced state space S′ ⊆ S.

• s =< l0, . . . , ln, η >: is a state of the state space S. It is composed by the control

locations li ∈ Loci, where 1 ≤ i ≤ n of each of the n processes in the system, along

with the valuation η of the set V ar of variables and Chan of channels.

• enabled(li) ∈ Act(s): is the set of all actions of state s that belong to location li
from PCGi.

15

2.3. Partial Order Reductions Chapter 2. Basic Concepts

s00tt

s10tt

s20tt

s′00tt

s′01tt

s′02tt

s′′00tt

s′10tt

s′20tt

s′′′00tt

s00ft

s01ft

s02ft

s00tf

s10tf

s20tf

s′00ft s′00tf

s00ff

α

α

γ

δ

δ

ι

α

γ

α

β[0.5]

β[0.5]

ε[0.5]

ε[0.5]

δ

δ

ι

α

α

γ

α

ε[0.5]

ε[0.5]

β[0.5]

β[0.5]

Figure 2.6: Single interleaving subgraph of the 2-counters system

• α-successor: we refer as such to those states s′ ∈ S for which =⇒(s,α)=µα where

α ∈ Act(s) and µα(s′)>0. We depict the set of α-successors of s as α(s).

• Transition Probability: as mentioned before, in probabilistic systems when an ac-

tion α∈Act is performed from state s∈S, the successor state t∈α(s) is determined

probabilistically. We refer to that probability as P(s⇒αt)=µα(t), where =⇒ (s, α)=µα.

• Action Independence: we say two different actions α, β ∈ Act are independent in a

MDP if and only if for all states s, t, u ∈ S where α, β ∈ Act(s) it holds that:

1. P(s⇒α t)> 0 implies β ∈ Act(t)

2. P(s⇒β t)> 0 implies α ∈ Act(t)

3. for all states w ∈ S:
∑
t∈S

P(s⇒α t)·P(t⇒β w) = P(s⇒β u)·P(u⇒α w)

16

Chapter 2. Basic Concepts 2.3. Partial Order Reductions

If two actions are not independent, they are dependent.

• Action Visibility: α ∈ Act is called invisible, or stutter, if ∀ s ∈ S, α ∈ Act(s), s′ ∈
α(s). L(s) = L(s′). Otherwise, α is visible.

• Path: it is a sequence ρ = s0 ⇒α1s1 . . .⇒αnsn such that P(si−1 ⇒αi si)> 0 for 1

≤ i ≤ n.

• Cycle: a cycle is a path ρ = s0 ⇒α1s1 . . .⇒αnsn such that s0 = sn.

• Full Expansion: a state s ∈ S is fully expanded if ample(s) = Act(s).

• Subgraph: a subgraph of MDP M is a tuple ξ=(T,Actξ) where:

1. ∅6= T⊆S.

2. Actξ : T → 2Act such that for all t ∈ T we have ∅ 6=Actξ(t)⊆Act(t).

3. If t ∈ T , α ∈ Actξ and P(t⇒α u)> 0 for u∈S, then u ∈ T .

• End Component: an end component is a subgraph whose underlying digraphGξ=(T,E)

with (s,s′)∈E ⇔ ∃α ∈Actξ such that P(s⇒α s′)> 0 is strongly connected.

In order to guarantee that interleaving only the actions in the ample set does not change the

properties that the reduced system models, this set has to fulfill a set of conditions, already

described, for instance, in [Pel98], [Cie11], [CGC04]:

C0: ample(s)=∅ ⇔ Act(s)=∅

C1: for every finite path ρ = s⇒α1 . . .⇒αn sn⇒βsn+1 in M , if β depends on ample(s)

then exists at least one αi for i ∈ [1, n] s.t. αi ∈ ample(s)

C2: if s is not fully expanded then all the transitions in ample(s) are invisible.

C3: for each end component (T,A) in M̂: α∈
⋂
t∈T

Act(t) implies α ∈
⋃
t∈T

ample(t)

This four conditions are sufficient for non-probabilistic systems. However, in order to check

quantitative properties in the probabilistic setting, they are not enough, as shown in e.g.

[CGC04] and [DN04]. Therefore, [GKPP99] introduces the Branching Condition which is

discussed in [DN04] and [BDG06] for its necessity in probabilistic systems:

17

2.3. Partial Order Reductions Chapter 2. Basic Concepts

C4: if ample(s) 6= Act(s) then |ample(s)| = 1.

This condition ensures stutter-trace equivalence between M and M̂ for stutter-invariant

qualitative or quantitative properties expressed in branching or linear temporal logics, ex-

pressible in PCTL∗−◦, as stated in [BDG06]. However, in [CGC04] a weaker condition

is presented which is valid for the reduction of systems whose qualitative and quantitative

properties are expressed in LTL−◦:

C4’: if ρ= s⇒α1 . . .⇒αn sn⇒βsn+1. . . is a path inM where s∈S, α1 . . .αn, β 6∈ample(s)
and β is probabilistic then |ample(s)| = 1.

The informal meaning of condition C0 refers to the prohibition to include final states, i.e.

states where no more transitions can be taken, in M̂ which were not already present in

M . Regarding C1, it guarantees that every finite path in M starting on certain state s, all

the actions γ ∈ Act(s) and γ 6∈ ample(s) are independent from the actions in ample(s),

as an action α dependent on ample(s) cannot appear by executing only γ. Condition C2

guarantees that executing the actions in ample(s) generates stutter-equivalent execution

traces, i.e. execution traces in which the valuation of the atomic propositions does not

change. Condition C3 avoids the removal of an action as side-effect of a loop over invisible

actions that belong to the same end component. Finally, conditions C4 and C4’ guarantee

that path probabilities are maintained. Then, as proven in [BDG06] if M̂ is built using the

ample set method where conditions C1-C4 hold, ∀ φ ∈ Φ such that φ is a stutter-invariant

temporal qualitative or quantitative property expressed in PCTL∗−◦ (which includes every

property expressible in LTL−◦ or CTL−◦). M |= φ⇔ M̂ |= φ also holds. Analogously,

if C1-C3 and condition C4′, which is weaker than C4, hold, stutter trace equivalence for

stutter-invariant qualitative and quantitative linear time properties is also guaranteed, as

proven in [CGC04].

2.3.1. Some POR Alternatives

There exist different alternatives for the generation of the reduced state space Ŝ. Regarding

the moment in which the different processes of the system are analyzed, in order to check

the fulfilment of the POR conditions for the ample sets, they can be categorized in two main

groups:

Dynamic Partial Order Reductions. In this category, the checking of the fulfilment of at

least one of the ample set conditions is performed on an on-the-fly basis, that is to say, while

the model of the global system is being generated. There exist many different algorithms

18

Chapter 2. Basic Concepts 2.3. Partial Order Reductions

that allow the successful implementation of these techniques. One of them is presented

in [FG05]. There are some other similar implementations, like the one in [Cie11], which

provides some overapproximations sufficient to guarantee the conditions of the ample sets

identified. Nevertheless, some of these approximations strongly depend on the generation

of the state space via a Depth First Search. Otherwise, the computational complexity of the

algorithm to guarantee the ample set conditions would raise significantly.

Static Partial Order Reductions. Opposite to dynamic partial order reductions, all the

condition checking and reductions are performed prior to state space generation. In order to

do that, the system has to be symbolically represented in a smaller structure. That structure

would frequently be composed by the probabilistic control graphs (recall that a program

graph can be considered as a probabilistic control graph where each stochastic distribu-

tion enables at most one transition and that transition is taken with probability one) of the

processes that integrate the system. Then, all the necessary checks to identify the represen-

tatives are performed on the different control locations and transitions of the probabilistic

control graphs. Possible implementations, for non-probabilistic systems, are described in

[KLM+98] and [BK08]. They describe a way of identifying which transitions should be

performed by analyzing the program graphs of the individual processes, that is to say, prior

to the global state space generation. One big advantage of these techniques is that, as all

reduction is decided prior to reachability check, they are independent to the search algo-

rithm used. Moreover, they can be easily combined with other techniques that try to further

reduce the state space, like symbolic model checking.

19

2.3. Partial Order Reductions Chapter 2. Basic Concepts

20

3 Towards Static POR for Probabilistic

Systems

As mentioned before, in dynamic partial order reduction techniques, the checking of the

fulfilment of the ample set conditions is usually performed while the state space is being

generated. Nevertheless, it is possible to guarantee the satisfaction of some of those condi-

tions carrying out a static analysis over the probabilistic control graphs, prior to state space

generation. In this chapter, we elaborate on a static technique that allows us to guarantee

conditions C2 and C3. The result of that hybrid, static and dynamic, technique is an ample

set POR where conditions C2 and C3 over ample sets are checked statically using informa-

tion from the individual probabilistic control graphs and where the rest of conditions are

checked dynamically.

3.1. Sticky Set POR Technique

This technique, inspired in the static partial order for non-probabilistic systems, described

in [KLM+98] and [BK08], is based in the identification of a set of sticky actions referred to

as the Sticky Set. Those actions fulfil certain conditions:

• S1: Given V is the set of all visible transitions, V is ⊆ Sticky.

• S2: for any cycle s0,s1...,sn in M̂,
⋃
i∈[1,n] ample(si)

⋂
Sticky 6= ∅

Informally, condition S1 states that all visible transitions belong to the set of sticky transi-

tions. S2 guarantees that no cycle on the reduced state space can be closed without executing

a sticky transition. These conditions allow the enunciation of a new condition C3′ on ample

sets that replaces C2 and C3:

• C3′: if ample(s)
⋂
Sticky 6= ∅ then ample(s) = Act(s).

Finally, condition C3 implies that every state whose ample set contains a sticky transition

is fully expanded. We can see how C3′ suffices to guarantee previous condition C2, as

every visible transition is also a sticky one. Regarding condition C3, it is guaranteed by the

conjunction of S2 and C3′, as in every end component ξ=(T,Actξ) in the state space there

exists at least one loop. This assessment is easy to see because, as ξ is an end component

21

3.2. Sticky Set Identification: the Naïve Approach Chapter 3. Towards Static POR for Probabilistic Systems

is represented by a strongly connected subgraph, for every pair of states (si,sj) ∈ T×T
there is a path ρ from si to sj . Analogously, there also exists a path ρ′ from si to sj as

(sj ,si) ∈ T×T . The path ρ′′=ρ∪ρ′ represents a loop. Notice that even for the minimal

end component where |T |=1, there exists at least a path p =si⇒βsi as (si,si) ∈ T×T .

Therefore, as in every cycle there is at least an action α ∈Sticky, there is also at least one

in every end component, hence having at least one fully expanded state.

3.2. Sticky Set Identification: the Naïve Approach

In order to identify a sufficient Sticky Set, we have implemented an algorithm that represents

a naïve approach that does not generate the minimal, hence optimal, set of sticky transitions

but one that fulfils conditions S1 and S2 previously stated. The pseudo-code notions of

this algorithm, which we name Naïve Sticky Set Identification Algorithm, are presented in

Figure.3.1. The algorithm starts defining a Sticky Set which only contains all the visible

actions. After that, it performs a depth-first search on every probabilistic control graph of

the system processes and keeps track of all loops contained in each of them (containing

probabilistic actions or not). Every time a backward edge is found, the action it corresponds

to is added to the Sticky Set.

As a matter of example, we consider again the two-counters system presented in Figure 2.3.

We assume that the property to check only refers to variables {a,b}, then, the set of visible

actions is V is = {β,ε}. If we apply the function backwardActions to each probabilistic

control graph, we find that the backward edges are those corresponding to actions {α, δ, β,

ε}. Then, by executing the algorithm in Figure 3.1 we obtain the Sticky Set Sticky = {α,β,

δ1, ε}. The new probabilistic control graphs with actions of the Sticky represented as dotted

edges are presented in Figure 3.2. If we perform the interleaving in order to obtain the

crossproduct probabilistic control graph, we obtain a new graph, depicted in 3.3, showing

again the actions that belong to the Sticky Set as dotted edges . We can observe that it

is impossible to close a loop in the new graph without going through a dotted edge, thus

executing a Sticky Action. Then, upon generation of the state space corresponding to this

crossproduct probability control graph, the check of conditions C2 and C3 is not necessary,

as fully expanding systematically those states whose ample set contains a Sticky Transition

guarantees them.

Theorem 3.2.1. Soundness of the Naïve Sticky Set Algorithm Given PCG1,. . .,PCGn
and M the MDP they generate, if dynamic checks for conditions C2-C3 in state s∈S′ re-

sume to checking Sticky∩ample(s)=∅, while the rest of conditions are checked dynami-

cally, M ′ and M are stutter-trace-equivalent.

22

Chapter 3. Towards Static POR for Probabilistic Systems 3.2. Sticky Set Identification: the Naïve Approach

Input: all system probabilistic control graphs PCG1...PCGn.

Assumption: function backwardActions: PCG ⇒ Backward, where Backward ⊆
Act. It is a function that takes a probabilistic control graph as input and returns a set

which contains all the actions corresponding to the backward edges in it.

Output: Sticky ⊆ Act satisfying S1 and S2.

Code:
Sticky := V is

for i = 1 to n do
Backwardi := backwardActions(PCGi)

Sticky := Sticky ∪ Backwardi
end for
return Sticky

Figure 3.1: Naïve Sticky Set Identification Algorithm

Proof. In order to prove soundness of the Naïve Sticky Set Algorithm, we have to show that

the Sticky Set Sticky provided by it for MDP M fulfils conditions S1 and S2 stated before:

• Fulfilment of S1: it is obvious, as Sticky is initially built up from the set of all

visible actions. To such initial set some other actions are possibly added, but never

removed, therefore always containing the whole visible actions set.

• Fulfilment of S2: every cycle in state space S derives from at least one control cycle

c = l ⇒α1s1 . . . ⇒αn ln such that l = ln and n>0. Therefore, as the Naïve Sticky

Set Algorithm adds to the Sticky Set every backward edge in the probabilistic control

graph, every control cycle contains at least one Sticky Action. Then, we obtain that

every cycle in the state space contains at least a Sticky Transition, whose origin state

is fully expanded.

3.2.1. Theoretically Expected Improvement

As we mention before, the use of Naïve Sticky Set Algorithm prior to state space genera-

tion, thus in a static way, allows to guarantee that no check for conditions C2 and C3 has to

23

3.2. Sticky Set Identification: the Naïve Approach Chapter 3. Towards Static POR for Probabilistic Systems

l1,1 l1,2

l2,1 l2,2

0 < x < 2:α[1]

x = 2:γ[1]

true:β1[0.5]

true:β2[0.5]

0 < y < 2:δ[1]

y = 2:ι[1]

true:ε1[0.5]

true:ε2[0.5]

Figure 3.2: Sticky Actions in the individual Control Graphs of 2-counters system

be performed. In dynamic POR, condition C2 can be achieved just using local information

in the vicinity, e.g. checking if the successors of an action change the value of the atomic

propositions. Therefore, as all successors for every action are generated, the generation of

unnecessary states, i.e. states s∈S such that s6∈ Ŝ. Regarding fulfilment of C3, there exist

different alternatives, like the ones implemented in [Cie11], which may require tracking all

the paths for every cycle in order to perform some checks on it. The existence of a cycle

in the probabilistic control graph of a single process can potentially generate a number of

cycles in the state space which grows exponentially with the number of processes involved.

Therefore, the computational complexity derived from the checks performed upon identifi-

cation of every single cycle in the state space grows exponentially.

However, using a static algorithm, like Naïve Sticky Set Algorithm, checks for conditions

C2 and C3 resume to a search in an list for every enabled action. Then, the computational

complexity to identify an ample set that fulfils conditions C2-C3 is linearly proportional to

the number of control locations in the whole system. Therefore, using Naïve Sticky Set

Algorithm, we expect to achieve an improvement in the time of computing the ample sets,

as less checks have to be performed in order to guarantee C2 and C3. Nevertheless, as this

algorithm does not generate the smallest Sticky Set, a significant improvement in the state

space reduction with respect to more sophisticated dynamic POR techniques is not expected.

In the following section we provide a comparison over a set of experiments between the

performance of an implementation of Naïve Sticky Set Algorithm in the model checker

24

Chapter 3. Towards Static POR for Probabilistic Systems 3.3. Experiments

l1

l2 l3

l4

0<x<2:α[1]

0<y<2:δ[1]

x=2:γ[1]

x=2:ι[1]

true:β1[0.5]

true:β2[0.5]

0<y<2:δ[1]

y=2:ι[1]

0<x<2:α[1]

y=2:ι[1]

true:ε1[0.5]

true:ε2[0.5]

true:ε1[0.5]

true:ε2[0.5]true:β1[0.5]

true:β2[0.5]

Figure 3.3: Crossproduct Probabilistic Control Graph for the 2-counters showing Sticky Set

LiQuor [CC06] and some already implemented dynamic POR, described in [Cie11].

3.3. Experiments

After defining the Naïve Sticky Set Algorithm, we have implemented it in LiQuor Model

Checker. In order to do that, we include a new stack data structure which keeps track of con-

trol states visited during initial Depth First Search (DFS) over each different probabilistic

control graph. Every time a location l is revisited, the new stack structure is visited in search

for the path composed by the states visited after the previous time l was visited in order to

identify the possible loop existing over this location. If a loop is identified, the action that

closes that loop, thus a backward edge, is marked added to a list of sticky actions. That list

also contains all actions that modify a variable referred in the atomic propositions, i.e. visi-

ble actions. Then, during State Space Generation, when a new ample set is being generated,

the membership of the different enabled actions to the list of sticky actions is checked in

order to meet conditions C2 and C3. If any valid ample set identified must contain at least

one of the actions in the list, the state is fully expanded.

25

3.3. Experiments Chapter 3. Towards Static POR for Probabilistic Systems

After implementing the Naïve Sticky Set Algorithm in LiQuor, we have performed a set

of empirical experiments with the aim of checking possible improvements acquired. In

order to provide an intuition about such improvements, a comparison with different already

implemented Dynamic POR techniques, described in [Cie11] as realizations R4-1 - R4-3,

is presented. Those techniques are:

• Fast: automatically fully expands all states with an action that leads to a previous

state.

• Smart: similar to previous one but does not expand fully a backward edge if the loop

it closes already contains a fully expanded node.

• Smarter: only expands fully a backward edge if there exists at least an action α

which is enabled in all the states contained in the loop it closes.

Figure 3.4: Statistics for four Dining Philosophers

Those experiments were performed for the well known models of the Dining Philosophers

and Leader Election algorithms. In Figures 3.4 and 3.5, the percentage reduction in both the

number of states and transitions is presented for a Dining Philosophers algorithm with four

and five philosophers, respectively. We can see how Naïve Sticky Set Algorithm implemen-

tation does not suppose a reduction in the number of states generated, but it does suppose

a reduction of 7, 3% in the number of transitions. Regarding the improvement with regards

to the other algorithms, Naïve Sticky Set Algorithm behaves exactly as Fast algorithm but

achieves a reduction lower than the one got by Smart and Smarter algorithms. Regarding

the possible reduction in the time required to perform Model Checking over the model, we

26

Chapter 3. Towards Static POR for Probabilistic Systems 3.3. Experiments

Figure 3.5: Statistics for five Dining Philosophers

can observe that in the case for four philosophers using Naïve Sticky Set Algorithm the time

increases in a 286% with regards to the time required when POR is not performed. That

increase is similar to the one for Fast algorithm and lower that ones for Smart and Smarter

algorithms, which amount to an increase of 250%, 476% and 495% respectively. In the

case for five Dining Philosophers, we can observe, again, how the reduction achieved by

Naïve Sticky Set Algorithm is the same of that achieved by Fast one. The increase in the

time required to perform Model Checking using each POR algorithm is also similar. With

respect to Smart and Smarter algorithms, they suppose a higher reduction with a smaller

time increase.

Figures 3.6 and 3.7 show information collected by repeating the experiment using a Leader

Election algorithm with three and four processes respectively. In this case, we can see how

Naïve Sticky Set Algorithm provides a significantly better reduction that the one provided

with Fast algorithm. That reduction is even better, although slightly, than the one achieved

by Smart algorithm. Regarding the time increase, it is higher than the one for both other

algorithms, but very similar to the increase for Smart POR algorithm.

From these results we can state that it is possible to improve the reduction achieved by

using Naïve Sticky Set Algorithm in some cases and, in any case, obtaining results as good

as the ones achieved by using other naïve approaches that are more dynamic, like Fast

algorithm . This irregular behaviour shows a dependency of the efficiency of the dynamic

POR algorithms to the structure of the probabilistic control graphs.

27

3.3. Experiments Chapter 3. Towards Static POR for Probabilistic Systems

Figure 3.6: Statistics for a Leader Election between 3 processes

Figure 3.7: Statistics for a Leader Election among 4 processes

28

4 Completely Static POR of Probabilistic

Systems

In the previous chapter we introduced an approach to be able to guarantee fulfilment of

some of the ample set conditions statically, thus using only information from the individual

probabilistic control graphs. By the development and implementation of that semi-static

way of identifying valid ample sets, we have tried to increase the efficiency of the reduc-

tion process by means of a speedup derived from the reduction in the number of condition

checks to be performed dynamically, i.e. during state space generation. In some cases, the

reduction achieved was greater than the ones obtained with completely dynamic POR tech-

niques. Therefore, it is possible to improve state space reduction by implementing static

POR techniques. Moreover, such reduction can be further augmented by the combination

of static POR and symbolic model checking, as suggested in [BK08] and [Pel98].

In this chapter we elaborate, first, on an already existing static POR technique for non-

probabilistic systems, described in e.g. [BK08]. Then, we describe two new completely

static POR techniques for both probabilistic and non-probabilistic systems, which take

as basis the already mentioned one, only suitable for non-probabilistic systems. Finally

we present some experiments performed after the implementation of both techniques into

LiQuor Model Checker.

4.1. Static POR for Non-Probabilistic Systems

As we mention before, in [BK08] a technique for reducing the state space S of the transi-

tion system TS, which can be seen as an MDP where every transition has one and only one

effect which is taken with probability 1, of a non-probabilistic system using only static data

is described. Given n program graphs PGi for i 1 ≤ i ≤ n, whose crossproduct PG would

generate the transition system TS, the aforementioned technique modifies each single pro-

gram graph PGi into PG′i, whose crossproduct is PG′. PG′ generates a transition system

TS′, whose state space is S′ ⊆ S, equivalent to TS for all stutter invariant properties. The

idea is that the reduction achieved relays on the static identification of valid ample sets.

In order to be able to start applying that technique, we have to calculate a valid sticky set

29

4.1. Static POR for Non-Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

Sticky, i.e. one which fulfils conditions S1 and S2 mentioned in the previous chapter, and

the dependency relation D, which contains all pairs of dependent actions. Once Sticky and

D have been identified, we should also construct the digraph Gi = {Vi, Ei} corresponding

to each single Program Graph. In digraph Gi, each node v ∈ Vi corresponds to a different

location l ∈ Li and each edge e ∈Ei to a different action α ∈ Acti, hence not allowing the

same action to appear more than once. We can obtain that by simply renaming actions. For

the sake of simplicity, from now on, we refer to a transition from location l to location l′ by

execution of an action α with guard g as l→g:α l′. Then, the procedure to follow is:

1. Every edge l→g:α l′ such that α ∈ Sticky is marked as sticky.

2. An edge li →gi:α l′i in PGi is marked as good if and only if there does not exist an

edge lj →gj :β l′j in PGj where i 6= j such that (α, β) ∈ D and the variables modified

by β are not referred in g.

3. Location l in PGi is marked as ample if and only if all its outgoing edges l →g:α l′

are marked as good, and not sticky, and the disjunction of its guards is a tautology.

4. Create n new boolean global variables ample1, ...amplen. These variables will be

updated atomically in every transition.

5. Every edge li →gi:α l′i is replaced with li →gi:α
′
l′i, where α′ is the atomic execution

of α followed by amplei = true if li is marked as ample or followed by amplei =

false otherwise.

6. Calculate new propositions, referring to variables amplei, which will strengthen the

guards of every edge:

• hi =
∧

1≤j<i
¬amplej ∧amplei. These propositions will be added to the guards

of actions that correspond to a valid ample set. The goal is to build an ample

set containing only the actions of a single location l ∈ PGi marked as ample,

giving preference to those belonging to a Program Graph PGi with lower index

i.

• f =
∧

1≤j≤n
¬amplej . This proposition will appear in locations that correspond

to a fully expanded state, thus allowing every action to be enabled.

7. Every edge li →gi:α l′i is replaced with li →gi
′:α l′i where g′i = hi ∧ g if li is marked

as ample and g′i = f ∧ g otherwise.

30

Chapter 4. Completely Static POR of Probabilistic Systems 4.1. Static POR for Non-Probabilistic Systems

8. Initial conditions g0,i of every Program Graph are extended into g′0,i = g0,i ∧ amplei

if initial location l0,i of PGi is marked as ample or into g′0,i = g0,i ∧ ¬amplei if it is

not.

All these steps turn original program graphs PG1, . . . , PGn into PG′i, . . . , PG
′
n which

will result in reduced TS′. We remark that there is no reduction in the individual program

graphs, as every location and transition is conserved, though the last ones are modified.

In order to clarify this technique, we provide an example of its application, extracted from

[BK08]. Consider two processes that implement the behaviour of an iterative 1 to 10 counter

(although upper bound of the counter is not relevant for the example and could be abstracted

to N) which modify a boolean variable after every iteration. The Program Graphs PG1 and

PG2 corresponding to each counter are shown in Figure 4.1.

l0 l1

m0 m1

x<10:α1={x=x+1} x=10:β1={skip}

true:γ1={x=0;a=¬a}

y<10:α2={y=y+1} y=10:β2={skip}

true:γ2={y=0;b=¬b}

g0,1={x=0∧a=false}

g0,2={y=0∧b=false}

Figure 4.1: Program Graphs of the iterative counters

Assuming the set AP of atomic propositions only refer to boolean variables a and b, the

set of visible actions is V is={γ1, γ2}. If we choose the Sticky Set to be Sticky = V is,

it fulfils conditions S1 and S2, as it contains all visible actions and every loop in the state

space will contain at least one sticky transition. As every action and guard only refers to

local variables, the set of dependent actions is D = ∅. Then, we mark as sticky the edges

corresponding to actions γ1 and γ2 and as good all other edges, as actions α1, β1 and γ1
are independent to actions α2, β2 and γ2. After labelling the edges, we label locations m0

and l0 as ample as all of their outgoing transitions are marked as good and the disjunc-

tion of their guards is a tautology (we must notice the domains of variables x and y are

31

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

Dom(x) = Dom(y) = [0, 10]). Then, we calculate f = ¬ample1 ∧ ¬ample2 and, as

there are two processes, we compute h1 = ample1 and h2 = ¬ample1∧ample2. Once the

new propositions are calculated, we extend guards of γ1 and γ2 with f , as they come from

a location not marked as ample, guards of α1 and β1 with h1, as they both originate from a

location marked as ample, and guards of α2 and β2 with h2 for the same reason. After guard

strengthening, we atomically extend actions α1 and γ1 with expression ample1=true, ac-

tions α2 and γ2 with ample2=true, action β1 with expression ample1=false and action

β2 with ample2= false. Finally, as initial locations l0 and m0 are both marked as ample,

initial conditions g0,1 and g0,2 are extended with a conjunction to proposition ample1=true

and ample2=true respectively. The result of the whole process are the modified program

graphs displayed in Figure 4.2.

l0 l1

m0 m1

x<10∧ample1:α1={x=x+1;ample1=true}

x=10∧ample1:β1={ample1=false}

¬ample1∧¬ample2:γ1={x=0;a=¬a;ample1=true}

y<10∧¬ample1∧ample2:α2={y=y+1;ample2=true}

y=10∧¬ample1∧ample2:
β2={ample2=false}

¬ample1∧¬ample2:γ2={y=0;b=¬b;ample2=true}

g0,1={x=0∧a=false

∧ample1=true}

g0,2={y=0∧b=false

∧ample2=true}

Figure 4.2: Modified Program Graphs of the iterative counters

As it is proven in [BK08], the new transition system TS′ derived from the modified pro-

gram graphs PG′i is such that TS′ and TS are stutter-trace-equivalent, as the reduction is

performed by identifying valid ample sets for non-probabilistic systems. This statement

also implies that, by following described steps, conditions C0, C1 and C3’ are guaranteed,

and as the system is not probabilistic, fulfilment of conditions C4 or C4’ is not needed.

4.2. Static POR for Probabilistic Systems

As we state before, the ample sets identified by the Static POR technique described in the

previous chapter guarantee the identification of ample sets that fulfil conditions C0-C3’,

where C3’ suffices for C2-C3. Nevertheless, neither condition C4, which imposes the re-

32

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

quirement to find either a singleton ample set or have a fully expanded state nor condition

C4’ which imposes the singleton ample set whenever a probabilistic action can be exe-

cuted before the actions in the ample set, are guaranteed by the aforementioned technique.

Therefore, that technique cannot be applied to perform a reduction of the state space of a

probabilistic system. In order to be able to perform a Completely-Static Partial Order Re-

duction of the state space of a probabilistic system, we have extended that strategy in order

to be able to statically guarantee conditions C4 and C4’. Before we start the description of

such extension, there are some considerations that should be taken into account, as well as

some preliminary computations.

4.2.1. Fundamental Considerations

The following considerations are assumed in order to extend the original non-probabilistic

Static POR technique to the probabilistic setting:

Consideration 1: Omitting an ample set is safe. By this assessment, we refer to the fact

that when the correctness of an ample set candidate is not guaranteed, but its incorrectness

is not either, the choice to consider such candidate to be a not valid ample set is sound. It is

obvious, as discarding valid reduced ample sets only supposes a decrease in the reduction

achieved but, as no transition is omitted, guarantees similarity to the original unreduced

system.

Consideration 2: Notations for Probabilistic Control Graphs. In order to refer the differ-

ent sets of elements in a probabilistic control graph PCG=(Loc, Event, ;, l0) over a set

of variables V ar and communication channels Chan, from now on, we use the following

notations:

• The set of possible events, i.e. those with a probability greater than zero, correspond-

ing to the execution of an action α∈Act is Events(α).

• written(α) ={a∈V ar∪Chan| ∃η∈Dom(a),e∈Events(α). η 6= Effect(e,η)} is

the set of variables modified by the effects of action α. Analogously, the set of vari-

ables read by those effects is read(α).

• Similarly, written(Act) =
⋃

α∈Act
written(α) is the set of all variables modified by

the set of actions Act of PCG. Again, the set of variables read by those actions is

read(Act).

33

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

• Regarding the guard g of action α, the set of variables referenced by the propositions

of the guard is varsGuard(α).

• In order to refer to all actions modified and read by an action α and its guard g, we

write accessed(α) = {written(α) ∪read(α) ∪ varsGuard(α)}. Similarly, the set

of all variables accessed by PCG is accessed(Act)= {written(Act) ∪ read(Act)

∪varsGuard(Act)}

Consideration 3: On the structure of Probabilistic Actions. This kind of actions are

notable for having different possible effects. From the effects corresponding to a single

probabilistic action, only one is triggered every time that action is executed. The triggered

effect is chosen stochastically with respect to some fixed probabilistic distribution. There-

fore, it suffices for an action to have one of its effects making it dependent to another action,

i.e. given effects |Events(α)| ≥ 1 and there exists e∈Events(α) such that execution of

e can affect the enabling of another action β, then α and β are dependent disregarding

the possibility that every other effect f ∈ Event(α)\e would not make them dependent.

Nevertheless, as the Static POR refers to atomic extension of edges, such extension is only

performed in the effect that the edge depicts, leaving the rest of effects from the same action

untouched. Besides, as all of those effects belong to the same action, all of them share the

same guard statement. Then, if we strengthen the guard for one of the effects, it is also

extended for all the rest.

4.2.2. Preliminary Calculations

As happened in the case of the non-probabilistic version, in order to start applying the static

reduction we have to calculate the set Sticky and the dependency relation D. The former,

can be calculated, for instance, using Naïve Sticky Set Algorithm presented in Chapter 2.

Regarding D, we calculate it by the following conservative overapproximation, extracted

from [BK08]:

Dependency Relation Overapproximation. Given Act=
⋃

1≤i≤n
Acti the complete set of

actions of a system, either probabilistic or non-probabilistic, composed by n processes with

Program Graphs PG1, . . ., PGn, the dependency relation D ⊆ Act×Act is such that for

actions α ∈ Acti and β ∈ Actj where i 6= j, (α, β) ∈ D if and only if at least one of the

following statements hold:

• written(α) ∩ accessed(Actj) 6= ∅.

34

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

• written(Actj) ∩ varsGuard(α) 6= ∅.

• ∃c ∈ Chan, γ ∈ Actj , δ ∈ Acti such that c ∈ accessed(γ) ∩ accessed(δ)

Which, less formally, are equivalent to:

• Some effect of α changes valuation of a variable referenced, i.e. written or read, by

an action γ∈Actj .

• There exists some action γ∈Actj that modifies some of the variables in the guard g

of α.

• There exists a communication channel c that is accessed, for reading or writing, by

actions δ∈ Acti and γ ∈ Actj .

As we can see, this overapproximation allows the situation where actions α∈Acti and β ∈
Actj where i 6= j that do not even share a common variable, accessed(α) ∩ accessed(β)

= ∅, are considered as dependent,(α, β)∈D, because there is some other action γ ∈Actj
which does, e.g. written(α) ∩ accessed(γ) 6= ∅, then (α, γ) ∈ D. The main rationale

behind this approach is that the overapproximation takes into account the possibility that

the execution of α enables action γ, which is dependent to β as β,α ∈ Actj . It is not

possible to discard that possibility just by using local criteria, then α and β are considered

dependent.

4.2.3. Naïve SPOR

As the need of extension derives from the necessity to statically guarantee condition C4,

recalling:

C4: if ample(s) 6= Act(s) then |ample(s)| = 1.

Then, we could achieve this goal by strengthening the condition to consider a location as

ample. We impose it to have one and only one outgoing transition. Therefore, step 3 from

page 30 must be replaced with the following step 3′:

3′. Location l in PGi is marked as ample if and only if it has one and only one outgoing

transition, this transition is marked as good and its guard is a tautology.

Lemma 4.2.1. Soundness of Naïve SPOR
GivenPCG1,. . .,PCGn which generate MDPM and applying Naïve SPOR, we getPCG′1,. . .,PCG′n
whose related MDP M ′ is such that for every stutter-invariant time property E expressed in

PCTL∗−◦, M |= E ⇔M ′ |= E.

35

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

Proof. In order to prove it, we must show that the new ample sets fulfil conditions C0-C4.

We prove this by reasoning on the extension performed. As every location marked as ample

will have a single outgoing action, and the algorithm imposes that ample sets will only con-

tain actions from a single probabilistic control graph, every ample set will have cardinality

one. Therefore, either ample(s) = Act(s) or |ample(s)| = 1, which corresponds to the

Branching Condition introduced in [GKPP99]. Then, fulfilment of condition C4 is obvious.

Regarding the rest of conditions, we must notice that the extension can keep or decrease,

never increase, the number of ample sets with respect to the non-probabilistic Static POR,

being the former always contained in the latter. The reason for this derives from the fact

that the location labelling is maintained from the technique described in page 30. There-

fore, taking into account soundness of non-probabilistic Static POR provided in [BK08] and

Consideration1 in page 33, fulfilment of conditions C0-C3 directly follows.

Even though Naïve SPOR is correct, it strongly limits the potential reduction achieved, as

will only allow singleton ample sets. This approach is sufficient for branching-time stut-

ter invariant properties, as shown in [GKPP99]. Nevertheless, in the setting of linear-time

stutter invariant properties, this shortcoming becomes more noticeable if we apply the new

technique in a non-probabilistic system and compare it with the results obtained using non-

probabilistic Static POR. The comparison of both approaches is presented in Figure 4.4. In

this figure, we present a system composed by two programs. All actions of each program

are independent from the actions of the other, then having D = ∅, and their guard is always

a tautology. There are only two Sticky actions, corresponding to the two backward edges.

If we apply Naïve SPOR in such a system, we can only identify three ample locations, l1,l2
and m2 shown in dotted lines, whose only action represents a valid ample set from states

that include them. Compared with the results obtained if we use non-probabilistic Static

POR technique, which is possible as it is a non-probabilistic system, we identify seven am-

ple locations instead. As we can see, Naïve SPOR is not efficient enough to be applied in

the non-probabilistic setting.

Another shortcoming of Naïve SPOR, which also derives from its lack of ability to check if

there exists any reachable probabilistic action in the system, can be observed in probabilistic

systems like the one shown Figure 4.4. This system is composed by two programs. Again,

actions from one probabilistic control graph are independent of those from the other and

their guards are a tautology, hence being always enabled. There is only one probabilistic

action δ with two effects δ1 and δ2 which have the same 0.5 probability. There are also three

sticky actions that correspond to backward edges δ, κ and σ. As we can see, if we apply

Naïve SPOR technique on the system, we identify four ample locations, l1,l5,m1 and m2.

36

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

l0

l1 l2

l3

m0

m2m1 m3

m4

l0

l1 l2

l3

m0

m2m1 m3

m4

good good

good good

sticky

good
good

good

good

good
good

good

good

sticky

good good

good good

sticky

good
good

good

good

good
good

good

good

sticky

Figure 4.3: Comparison between Naïve SPOR (above) and non-probabilistic SPOR (below)

Nevertheless, upon execution of action β, there are no more reachable probabilistic actions

in the system, which implies that, from that point, condition C4’ always hold. Then, a

more efficient SPOR technique, like the one we have developed and present in next section,

would also label locations l3, l4 and m0 as ample, hence increasing the reduction achieved.

However, we must take into account that as the stronger condition C4 is not guaranteed, the

resulting reduced system could not be checked for branching time properties, but for linear

time ones, both qualitative and quantitative.

4.2.4. Reachability-Aware SPOR

As we show in the previous section, Naïve SPOR technique, in favor of always ensuring

fulfilment of ample set condition C4, disregards the situation in which there are no more

reachable probabilistic actions. In such situation, the singleton ample set restriction is no

37

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

l0

11

l2

l3

l4 l5

l6

m0

m1 m2

m3

α

β

γ

δ1[0.5]1

δ2[0.5]

ε ι

ζ

θ

µ

σ

$ τ

φ χ

κ

Figure 4.4: Yet another shortcoming of Naïve SPOR

longer necessary to comply with restriction C4’. In order to also consider that kind of

situations, we have extended Naïve SPOR technique further. The idea is to identify those

locations which would have been marked as ample by the non-probabilistic SPOR but are

not because they have more than one outgoing action, even though it is not possible to

execute any probabilistic action in the system. We must remark that such lack of possibility

does not only refer to reachability of a probabilistic action within the same Probabilistic

Control Graph, but from all others. Therefore, those locations, from now on referred as

conditionally ample locations, are not always considered as ample locations, but when it is

not possible to execute any probabilistic action by any of the programs in the system. In

order to cope with this reachability problem, and considering these ideas, we have developed

a new technique for Reachability-Aware SPOR, which consists of the following steps:

1. Every edge l→g:α l′ such that α ∈ Sticky is marked as sticky.

2. An edge li →gi:α l′i in PGi is marked as good if and only if there does not exist an

edge lj →gj :β l′j in PGj where i 6= j such that (α, β) ∈ D.

38

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

3. A location l in PGi is marked as probabilistic if there exists a path ρ= l⇒α1 . . .⇒αn

ln−1⇒βln. . . is a path in PGi where β is a probabilistic action. The motivation of

this labelling is finding all locations from where it is possible to reach a probabilistic

action.

4. Every location l ∈ PGi is marked with one or none of these labels:

• ample if and only if it has only one outgoing edge l →g:α l′ marked as good,

and not sticky, and its guard g is a tautology.

• cond_ample if and only if all its outgoing transitions, whose quantity has to be

greater than one, are marked as good and the disjunction of their guards is a tau-

tology. These locations are the aforementioned conditionally ample locations.

5. Create n new boolean global variables ample1, ...amplen. These variables will be

updated atomically in every transition.

6. Create n new boolean global variables prob1, ...probn. Each of these variables can

be updated once or never in the whole system.

7. Create n new boolean global variables cond_ample1, ...cond_amplen. These vari-

ables will be updated atomically in every transition.

8. Every edge li →gi:α l′i in PCGi is replaced with li →gi:α
′
l′i, where α′ is the atomic

execution of α followed by amplei = true if li is marked as ample or followed by

amplei = false otherwise.

9. Every edge li →gi:α
′
l′i in PCGi is replaced with li →gi:α

′′
l′i, where α′′ is the atomic

execution of α′ followed by cond_amplei = true if li is marked as cond_ample or

followed by cond_amplei = false otherwise.

10. Every edge li →gi:α
′′
l′i in PCGi where li is marked as probabilistic and l′i is not,

is replaced with li →gi:α
′′′
l′i, where α′′′ is the atomic execution of α′′ followed by

probi = false.

11. Calculate new propositions, referring to variables amplei, cond_amplei and probi,

which will strengthen the guards of every edge:

• hi =
∧

1≤j<i
¬amplej ∧amplei. As happened in the original technique for non-

probabilistic systems, the goal of this proposition is to build an ample set con-

taining only the actions of a single location l ∈ PGi marked as ample, giving

preference to those belonging to a Program Graph PGi with lower index i.

39

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

• f =
∧

1≤j≤n
¬amplej . When this proposition holds, there is no location marked

as ample, thus trying to build an ample set with either the actions of some loca-

tions marked as cond_ample or fully expanding the state.

• ki =
∧

1≤j<i
¬cond_amplej ∧cond_amplei. Similarly to variable hi, this vari-

able will aim at building ample sets containing the actions of a single location,

this time a conditionally ample location.

• r =
∧

1≤j≤n
¬cond_amplej . Analogously to proposition f , this proposition

holds when the state does not contain any location marked as cond_ample.

• p =
∨

1≤j≤n
(probj ∧ ¬cond_amplej). This proposition holds when at least

one of the control locations of the state is marked as probabilistic but not as

cond_ample.

• q =
∧

1≤j≤n
¬probj . This proposition holds when none of the control locations

of the state is marked as probabilistic.

12. Every edge li →gi:α l′i in PCGi is replaced with li →gi
′:α l′i where g′i, depending on

the labelling of li, will be:

• g′i=hi ∧ gi if li is marked as ample.

• g′i=f∧((cond_amplei ∧ probi)∨ (ki ∧q)∨p)∧gi if li is marked as cond_ample.

• g′i=f ∧ (p ∨ r) ∧ gi if li is not marked as ample or cond_ample.

13. Initial conditions g0,i of every Probabilistic Control Graph are extended with three

new propositions, g′0,i = g0,i ∧ ai ∧ bi ∧ ci, which will be:

• ai=amplei if initial location l0,i is marked as ample and ai=¬amplei other-

wise.

• bi=cond_amplei if l0,i is marked as cond_ample and bi=¬cond_amplei oth-

erwise.

• ci=probi if l0,i is marked as probabilistic and ci=¬probi otherwise.

In order to clarify how this new technique works, we provide an example. Consider the

probabilistic system depicted in Figure 4.4 in page 38, where, as it is already mentioned,

dependency relation D = ∅ and Sticky = {δ, κ, σ}. As first step, we have to mark the four

edges of actions δ, κ and σ as sticky (notice there are two edges corresponding to proba-

bilistic sticky action δ) and all other actions as good. Then, we have to identify all locations

40

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

from where at least one probabilistic action is reachable. A simple way to do this is start-

ing by marking as probabilistic all locations which have at least one probabilistic outgoing

transition. From each of those locations, we have to propagate backwards, with respect

to transition direction, probabilistic label, hence marking as probabilistic every location li
such that there is a transition li →gi:α l′i where l′i is already marked as probabilistic. This

backward propagation process is iterated until no more new locations are labelled. In our

example, we start by labelling location l2 as probabilistic. Then, we propagate that mark to

location l1, as there is an edge l1→g:γ l2 and, finally, from l1 to l0 from edge corresponding

to action α. Then, as final step of the labelling process, we mark locations l1, l5, m1 and

m2 as ample and locations lo,l3,l4 and m0 as cond_ample.

After the labelling process is complete, we start extending the guards and effects of the

different actions. As their corresponding edges lead to a location marked as ample, actions

α,ι, ζ, τ and $ have their effects atomically extended with the assignment amplei=true,

where i ∈ [1, 2] is the index of the probabilistic control graph the action belongs to.

All other edges are extended with variable assignment amplei=false, taking into ac-

count that this assignment occurs twice for probabilistic action δ as it has two possible

effects. In a similar way, actions β,ε, σ, κ and effect δ1 of action δ are extended with as-

signment cond_amplei = true while all the rest of edges are extended with assignment

cond_amplei = false. As location l0 is marked as probabilistic but not its successor loca-

tion l3, we atomically extend the effect of action β that transits from the former to the latter

with variable assignment prob1=false. Then, we calculate propositions:

• h1=ample1

• h2=¬ample1∧ ample2

• f=¬ample1∧ ¬ample2

• k1=cond_ample1

• k2=¬cond_ample1∧ cond_ample2

• r=¬cond_ample1∧ ¬cond_ample2

• p= (prob1∧ ¬cond_ample1) ∨(prob2 ∧ ¬cond_ample2)

• q= ¬prob1∧ ¬prob2

Once these propositions are computed, we strengthen the guards of actions γ,µ,φ and χ by

conjunctively adding proposition hi to them. To the guards of actions α, β, ε,ι,ζ, θ, $ and

41

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

τ we add condition f ∧ ((probi∧ cond_amplei) ∨(ki ∧ q) ∨p) and to the guards of actions

who have not been strengthened yet the condition f ∧ (p ∨ r). Finally, initial condition

g0,1 is extended with condition ¬ample1,∧¬cond_ample1∧prob1 and initial condition g0,2
with proposition ¬ample2,∧cond_ample2∧¬prob2. Therefore, resulting set of actions and

initial conditions is:

• g′0,1 = g0,1 ∧ ¬ample1,∧cond_ample1∧prob1

• g′0,2 = g0,2 ∧ ¬ample2,∧cond_ample2∧¬prob2

• α′=g′α:[1]α′1

– g′α=gα ∧ ¬ample1 ∧ ¬ample2 ∧ ((prob1 ∧ cond_ample1) ∨(cond_ample1 ∧
(¬prob1∧ ¬prob2)) ∨ (prob1∧ ¬cond_ample1) ∨(prob2 ∧ ¬cond_ample2))

– α′1=α1; ample1 = true; cond_ample1 = false

• β′=g′β:[1]β′1

– g′β=gβ ∧ ¬ample1 ∧ ¬ample2 ∧ ((prob1 ∧ cond_ample1) ∨(cond_ample1 ∧
(¬prob1∧ ¬prob2)) ∨ (prob1∧ ¬cond_ample1) ∨(prob2 ∧ ¬cond_ample2))

– β′1=β1; ample1 = false; cond_ample1 = true; prob1 = false

• γ′=g′γ :[1]γ′1

– g′γ=gγ ∧ ample1

– γ′1=γ1; ample1 = false; cond_ample1 = false

• δ′=g′δ:{[0.5]δ′1, [0.5]δ′2}

– g′δ=gδ ∧¬ample1 ∧¬ample2 ∧ ((¬cond_ample1 ∧¬cond_ample2)∨ (prob1

∧ cond_ample1) ∨ (prob2 ∧ cond_ample2))

– δ′1=δ1; ample1 = false; cond_ample1 = true

– δ′2=δ2; ample1 = false; cond_ample1 = false

• ε′=g′ε:[1]ε′1

– g′ε=gε ∧ ¬ample1 ∧ ¬ample2 ∧ ((prob1 ∧ cond_ample1) ∨(cond_ample1 ∧
(¬prob1∧ ¬prob2)) ∨ (prob1∧ ¬cond_ample1) ∨(prob2 ∧ ¬cond_ample2))

– ε′1=ε1; ample1 = false; cond_ample1 = true

42

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

• ι′=g′ι:[1]ι′1

– g′ι=gι ∧ ¬ample1 ∧ ¬ample2 ∧ ((prob1 ∧ cond_ample1) ∨(cond_ample1 ∧
(¬prob1∧ ¬prob2)) ∨ (prob1∧ ¬cond_ample1) ∨(prob2 ∧ ¬cond_ample2))

– ι′1=ι1; ample1 = true; cond_ample1 = false

• κ′=g′κ:[1]κ′1

– g′κ=gκ ∧¬ample1 ∧¬ample2 ∧ ((¬cond_ample1 ∧¬cond_ample2)∨ (prob1

∧ cond_ample1) ∨ (prob2 ∧ cond_ample2))

– κ′1=κ1; ample2 = false; cond_ample2 = true

• µ′=g′µ:[1]µ′1

– g′µ=gµ ∧ ample1

– µ′1=µ1; ample1 = false; cond_ample1 = false

• φ′=g′φ:[1]φ′1

– g′φ=gφ ∧ ample2

– φ′1=φ1; ample2 = false; cond_ample2 = false

• $′=g′$:[1]$′1

– g′$=g$ ∧¬ample1 ∧¬ample2 ∧ ((prob2 ∧ cond_ample2)∨((¬cond_ample1
∧ cond_ample2)∧ (¬prob1 ∧ ¬prob2) ∨ (prob1∧ ¬cond_ample1) ∨(prob2 ∧
¬cond_ample2))

– $′1=$1; ample2 = true; cond_ample2 = false

• σ′=g′σ:[1]σ′1

– g′σ=gσ ∧¬ample1 ∧¬ample2 ∧ ((¬cond_ample1 ∧¬cond_ample2)∨ (prob1

∧ cond_ample1) ∨ (prob2 ∧ cond_ample2))

– σ′1=σ1; ample1 = false; cond_ample1 = true; prob1 = false

• τ ′=g′τ :[1]τ ′1

– g′τ=gτ ∧¬ample1 ∧¬ample2 ∧ ((prob2 ∧ cond_ample2) ∨((¬cond_ample1
∧ cond_ample2) ∧ (¬prob1 ∧ ¬prob2)) ∨ (prob1∧ ¬cond_ample1) ∨(prob2

∧ ¬cond_ample2))

43

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

– τ ′1=τ1; ample2 = true; cond_ample2 = false

• θ′=g′θ:[1]θ′1

– g′θ=gθ ∧ ¬ample1 ∧ ¬ample2 ∧ ((prob1 ∧ cond_ample1) ∨(cond_ample1 ∧
(¬prob1∧ ¬prob2)) ∨ (prob1∧ ¬cond_ample1) ∨(prob2 ∧ ¬cond_ample2))

– θ′1=θ1; ample1 = false; cond_ample1 = false

• χ′=g′χ:[1]χ′1

– g′χ=gχ ∧ ample2
– χ′1=χ1; ample2 = false; cond_ample2 = false

• ζ ′=g′ζ :[1]ζ ′1

– g′ζ=gζ ∧ ¬ample1 ∧ ¬ample2 ∧ ((prob1 ∧ cond_ample1) ∨(cond_ample1 ∧
(¬prob1∧ ¬prob2)) ∨ (prob1∧ ¬cond_ample1) ∨(prob2 ∧ ¬cond_ample2))

– ζ ′1=ζ1; ample1 = true; cond_ample1 = false

Then, we can build the associated MDP M ′ and start Model Checking process. Resulting

Probabilistic Control Graphs PCG′1 and PCG′2 are presented in Figure 4.5, where dotted

locations are the ones marked as ample and dashed ones are labelled as cond_ample. As we

can see, this result is equivalent to the expected result described in page 37. As final remark,

one should notice that in the case where no conditionally ample locations are identified, the

reduced systems obtained by applying Naïve and Reachability-Aware SPOR techniques are

equivalent, as despite the fact that the system modifications would be different, the location

labelling would be the same in both cases.

Lemma 4.2.2. Kinds of ample sets Every ample set, from each state s=< l1, . . . , ln, η
′ >,

generated using Reachability-Aware SPOR technique belongs to one and only one of the

following groups:

a) ample(s) = enabled(li) and η′|=amplei. The ample set is composed by all the enabled

actions from a single location li that is marked as ample.

b) ample(s) = enabled(li) and η′|=cond_amplei. In this case, the ample set is composed

by all the enabled actions from a single location li that is marked as cond_ample.

c) ample(s) =
⋃

li∈PCond
enabled(li) where ∅ 6= PCond = {li|li is marked as cond_ample

and probabilistic }. This ample set is composed by all the enabled actions of a set of

locations that are marked as both cond_ample and probabilistic.

44

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

l0

11

l2

l3

l4 l5

l6

m0

m1 m2

m3

α′

β′

γ′

δ′1[0.5]

δ′2[0.5]

ε′ ι′

ζ ′

θ′
µ′

σ′

$′ τ ′

φ′ χ′

κ′

Figure 4.5: Product of Reachability-Aware SPOR technique

d) ample(s)= Act(s). This case represents a full expansion.

Proof. In order to prove this lemma, we have to consider the different possible valuations η′

of the propositions introduced to the guards by Reachability-Aware SPOR technique. Those

valuations derive from the different labelling combinations of the locations li of s. This

technique strengthens the guards of the different actions with three kinds of propositions,

which, for the sake of simplicity, we abbreviate in the following way:

• gamp−i =hi if li is marked as ample.

• gcond−i = f ∧((cond_amplei ∧ probi) ∨ (ki∧q)∨p) if li is marked as cond_ample.

• gnot−i = f ∧ (p ∨ r) if li is not marked as ample or cond_ample.

Informally, each of these strengthening propositions can be described as:

• gamp−i holds if li is marked as ample and its index i is the lowest index among the

set of locations marked as ample contained in current state.

45

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

• gcond−i holds if current state does not contain any location marked as ample, li is

marked as cond_ample and at least one of the following conditions holds:

– li is also marked probabilistic.

– i is the lowest index among the set of locations marked as cond_ample contained

in current state s and s does not contain any location marked as probabilistic.

– At least one of the locations in current state is marked as probabilistic and not

as cond_ample.

• gnot−i holds if current state does not contain any location marked as ample and at

least one of the following conditions:

– At least one of the locations in current state is marked as probabilistic and not

as cond_ample.

– None of the locations in current state is labelled as cond_ample.

All possible combinations of locations in a system s, along with the ample sets they gener-

ate, are:

• There is at least one location marked as ample. In this case, location li, where

0<i≤n, is marked as ample and all locations lj , such that 1≤j<i are not. That is

equivalent to stating η′ 6|=amplej for every j < i and η′|=amplei for some i ∈ [1, n].

Then, the propositions that we have used to strengthen the guards of the actions from

the different locations in current state will be determined in the following way:

– Transition from location li. As this location is labelled as ample, its one and

only outgoing transition is strengthened with proposition gamp−i = hi =
∧

1≤j<i
¬amplej ∧amplei. In this case, η′|=gamp−i. Then, enabled(li) ∈ ample(s).

– Transitions from locations marked as ample different from li, if any. Every lo-

cation lk marked as ample has an index k > i and its guards is strengthened

with proposition gamp−k = hk =
∧

1≤j<k
¬amplej ∧amplek. As i < k and

η′|=amplei, then η′ 6|=gamp−k. Therefore, for every k ∈ [i + 1, n] where lk is

labelled as ample, Act(lk) ∩ ample(s) = ∅.

– Transitions from locations marked as cond_ample, if any. Every location lc marked

as con_ample has its guards strengthened with proposition gcond−c. As η′|=amplei,
then η′ 6|=f , which implies η′ 6|=gcond−c. Therefore, for every c ∈ [1, n] where lc
is labelled as cond_ample, Act(lc) ∩ ample(s) = ∅.

46

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

– Transitions from locations not marked as either ample nor cond_ample, if any. Ev-

ery location ld not marked as ample nor con_ample has its guards strengthened

with proposition gnot−d. As η′|=amplei, then η′ 6|=f , which implies η′ 6|=gnot−d.

Therefore, for every d∈ [1, n] where ld is not labelled as ample nor cond_ample,

Act(ld) ∩ ample(s) = ∅.

Then, in a state s with this combination of locations, the ample set ample(s) will be

a singleton composed by the outgoing action from a location marked as ample. More

formally, ample(s) = enabled(li) which generates an ample set of type (a).

• There is no location marked as ample and there is at least one location marked
as cond_ample. Location li, where 0<i≤n, is marked as cond_ample and loca-

tions lj , where 1≤j<i, are not while any other location lk, where i 6=k and 1≤k≤n,

is not marked as ample. Then we can state, η′ 6|=cond_amplej , η′ 6|=amplek and

η′|=cond_amplei which means η′ |= ki ∧ f ∧ ¬r. In this situation, depending on the

reachability of probabilistic actions, we have three different cases to consider:

– There are no probabilistic actions reachable: then η′ 6|= probi for 1 ≤ i ≤ n

and, consequently η′ |= ¬p ∧ q. Then, the values of the strengthening propo-

sitions can be determined, as well as the composition of the ample set, in the

following way:

∗ Transitions from location li. As this location is labelled as cond_ample, its

outgoing transitions are strengthened with proposition gcond−i. η′|=f ∧ ki
∧ q and, consequently η′ |= gcond−i. Therefore, enabled(li) ∈ ample(s).

∗ Transitions from locations marked as cond_ample different from li, if any. Ev-

ery location lk marked as cond_ample has an index k > i and its guards is

strengthened with proposition gcond−k. As i < k and η′|=cond_amplei,

then η′ 6|=kk which implies η′ 6|=gcond−k. Therefore, for every k ∈ [i+ 1, n]

where lk is labelled as cond_ample, Act(lk) ∩ ample(s) = ∅.

∗ Transitions from locations not marked as either ample nor cond_ample, if any.

Every location ld not marked as ample nor con_ample has its guards strength-

ened with proposition gnot−d. As η′|=cond_amplei, then η′ 6|=r, which im-

plies η′ 6|=gnot−d. Therefore, for every d ∈ [1, n] where ld is not labelled as

ample nor cond_ample, Act(ld) ∩ ample(s) = ∅.

In this case, the ample set will be composed by the enabled actions from a

location marked as cond_ample. The ample set is ample(s) = li, which belongs

to group (b).

47

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

– There are reachable probabilistic actions and condition p holds: η′ |= p

implies the existence of at least one location lp, where p 6= i and 1 ≤ p ≤ n,

which is marked as probabilistic but not as cond_ample. Therefore, η′ |= p ∧
f then ∀c ∈ [1, n]. η′ |= gcond−c ∧ gnot−c which is equivalent to generating an

ample set ample(s) = Act(s) that corresponds to a full expansion and belongs

to group (d).

– There are reachable probabilistic actions and condition p fails to hold: The

case in which η′ 6|= p is equivalent to stating ∀a. η′ |= proba → cond_amplea,

i.e., every location marked as probabilistic is also marked as cond_ample. Then,

the strengthening propositions can be determined:

∗ Transitions from locations marked as cond_ample and probabilistic. Con-

sidering η′ |= f , then ∀ k ∈ [1, n]. s.t. η′ |= probk ∧ cond_amplek then,η′

|= gcond−k. Consequently, enabled(lk) ∈ ample(s). In this case, there is

at least one location labelled as probabilistic which is, therefore, labelled

also as cond_ample, and whose enabled actions will belong to the ample

set.

∗ Transitions from locations marked as cond_ample but not as probabilistic.

Considering that η′ |= ¬q ∧ ¬p then ∀k ∈ [1, n] such that η′ 6|= probi then

η′ 6|= gcond−k. The outgoing actions from those locations will be disabled,

i.e, Act(lk) ∩ ample(s) = ∅.

∗ Transitions from locations that are not marked as neither cond_ample nor

cond_ample. Considering that η′ |= ¬p ∧ ¬r and that ∀k ∈ [1, n] such that

η′ |= 6= amplek ∧ cond_amplek then η′ 6|= gnot−k.

In this case, the ample set identified would contain all enabled actions from the

locations that are marked both as cond_ample and probabilistic. This ample set

belongs to group (c).

• None of the locations are marked as ample or cond_ample. In this case, ∀i ∈
[1, n]. η′ |= ¬amplei ∧ ¬cond_amplei, implying that η′|=f ∧ r. Then, ∀i∈[1, n].

η′ |= gnot−i. All outgoing actions of every location li have been strengthened with

condition gnot−i, which always holds in this case. Again, the ample set generated

corresponds to a full expansion, which corresponds to group (d).

48

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

Theorem 4.2.3. Soundness of Reachability-Aware SPOR technique
Given PCG1, . . ., PCGn, which generate MDP M with state space S, if we obtain

PCG′1,. . .,PCG′n through reachability-aware SPOR technique, then the associated MDP

M ′, with State Space S′ is such that M and M ′ are stutter-equivalent for quantitative and

qualitative LTL properties.

Proof. In order to prove the soundness of Reachability-Aware SPOR technique, in terms

of the LTL-stutter-equivalence of M and M ′, we must show that the reduction performed

is based on the identification of ample sets that comply with conditions C0-C3 and C4’ in

page 18. We must take into account the different kinds of ample sets that can be generated.

Those kinds are stated in Lemma 4.2.2. Fulfilment of conditions C0-C4’ can be proven by:

• C0: as the guard g of every action α is modified, we must show that no new dead-

locks, i.e. states s ∈ S′ from which it is not possible to execute any further action, are

created. This condition is guaranteed in every ample set by showing that the ample

set is not empty unless the original unreduced state was :

a) ample(s) = enabled(li) and η′|=amplei. A location li can only be ample if the

guard g of its single outgoing location is a tautology. Then |enabled(li)| = 1

and, consequently, ample(s) 6= ∅.

b) ample(s) = enabled(li) and η′ |= cond_amplei. Again, as the disjunction of

all the guards of the outgoing actions of li is a tautology, at least one of those

actions will be enabled. Consequently, |enabled(li)| > 0 and ample(s) 6= ∅.

c) ample(s) =
⋃

li∈PCond
where ∅ 6= ∅6= PCond = {li|li is marked as cond_ample

and probabilistic}. All locations li ∈ PCond are marked as cond_ample. Then,

following the same rationale as we did in the previous paragraph, we can state

state there will be at least one enabled location from each of those locations.

Therefore, |ample(s)| ≥ |PCond| > 0.

d) ample(s)= Act(s). No reduction is performed. Then, C0 is obvious.

• C1: we must guarantee that every reachable action β that depends on the ample set

from state s, ample(s), either belongs to ample(s) or at least one of the actions

in every finite path that leads from s to a state s′ where β is enabled, belongs to

ample(s). We can guarantee this condition for each kind of ample set by showing

that either there is no reduction or β cannot exist:

a) ample(s) = enabled(li) and η′|=amplei. As li is labelled as ample, its outgo-

ing action cannot be dependent to any other action. Then, there is no action β

dependent to ample(s).

49

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

b) ample(s) = enabled(li) and η′ |= cond_amplei. In this case, all the outgoing

actions of li are independent to actions in other PCG’s. Therefore, an action β

dependent on ample(s) cannot exist.

c) ample(s) =
⋃

li∈PCond
where ∅ 6= ∅6= PCond = {li|li is marked as cond_ample

and probabilistic}. All locations li ∈ PCond are marked as cond_ample.

Therefore, all outgoing actions have no dependencies to other actions outside

the ample set.

d) ample(s)= Act(s). No reduction is performed. Then, C1 is obvious.

• C2-C3: the technique uses the Sticky Action approach, ample(s)∩Sticky 6= ∅ ⇒
ample(s)= Act(s), which guarantees fulfilment of condition C3′, described in page

21. We can prove these conditions by showing that none of the ample sets, excepting

the one equivalent to a full expansion, can contain a sticky action:

a) ample(s) = enabled(li) and η′|=amplei. As li is labelled as ample, its outgo-

ing action cannot be labelled as Sticky. Then, ample(s)∩Sticky = ∅. Then,

ample(s)∩Sticky = ∅.

b) ample(s) = enabled(li) and η′ |= cond_amplei. In this case, none of the out-

going actions of li can be labelled as Sticky and, therefore, ample(s)∩Sticky
= ∅.

c) ample(s) =
⋃

li∈PCond
where ∅ 6= ∅6= PCond = {li|li is marked as cond_ample

and probabilistic}. All locations li ∈ PCond are marked as cond_ample.

Therefore, as we show in the previous paragraph, ample(s)∩Sticky = ∅.

d) ample(s)=Act(s). Sticky Action approach is fulfilled as the consequent holds.

• C4’: we have to show that every probabilistic action β reachable from state s either

belongs to ample(s) or that this ample set contains at least one of the actions of every

finite path in the original unreduced system that starts in s and contains β. Otherwise,

either there are no more probabilistic actions reachable, or the ample set is a singleton,

i.e. |ample(s)| = 1. We prove fulfilment of this condition by showing that each kind

of ample set complies with at least one of the requirements we just enumerated:

a) ample(s) = enabled(li) and η′|=amplei. Location li, from PCGi, is marked

as ample. Then, it has one and only one outgoing transition and |ample(s)| = 1.

50

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

b) ample(s) = enabled(li) and η′ |= cond_amplei. From the proof of Lemma

4.2.2 we can see that this ample appears when location li, from PCGi, is

marked as cond_ample and there are no probabilistic actions α reachable. As

there are no probabilistic actions reachable, C4’ holds.

c) ample(s) =
⋃

li∈PCond
enabled(li) where ∅ 6= PCond = {li|li is marked as

cond_ample and probabilistic}. In this case, every probabilistic location is also

a conditionally ample one and all its enabled actions belong to the ample set.

Therefore, all probabilistic actions reachable cannot be executed prior to the

execution of one of the actions in the ample set unless they belong to it. Conse-

quently C4’ is fulfilled.

d) ample(s) =Act(s). This case corresponds to a full expansion of state s. There-

fore, fulfilment of C4’ is obvious.

4.2.5. Experiments

After defining the new static POR algorithms, it is interesting to check their efficiency. In or-

der to obtain some empirical information about their performance in both explicit and sym-

bolic Model Checking, we carried out a set of experiments. We started by applying Naïve

and Reachability-Aware SPOR to the PRISM implementation of two classical concurrency

systems: the Randomised Dining Philosophers [LR81] and the Randomised Mutual Exclu-

sion [PZ86], both available in [PRI]. As there is no way to apply the aforementioned reduc-

tion techniques automatically yet, we applied them manually. As a result of the reduction,

we generated some new PRISM code corresponding to the modifications indicated by the

techniques. In both systems, Reachability-Aware SPOR did not identify any conditionally

ample location, only some ample locations. Therefore, the resulting reduced systems were

identical after the application of each technique, i.e., the result of applying Naïve SPOR

to the Randomised Mutual Exclusion system is equivalent to the one obtained if we apply

Reachability-Aware SPOR to it. We analysed some temporal properties in both resulting

reduced systems and the original ones using PRISM model checker. As stutter-trace equiv-

alence is guaranteed by both reduction algorithms, the results obtained during the property

checking were the same. We include a comparison between the state spaces and transition

matrices of the different reduced and unreduced systems in Tables 4.1, 4.2, 4.3 and 4.4. In

order to provide a more readable comparison, we also include Figures 4.6 and 4.7.

51

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

Number of Number of Number of Number of Nodes Number of

Philosophers States Transitions in MTBDD Terminal Nodes

4 9440 48656 15361 3

5 81936 477404 24148 3

Table 4.1: Unreduced Randomised Dining Philosophers System

Number of Number of Number of Number of Nodes Number of

Philosophers States Transitions in MTBDD Terminal Nodes

4 8215 28324 21331 3

5 68976 277691 83165 3

Table 4.2: Reduced Randomised Dining Philosophers System

Number of Number of Number of Number of Nodes Number of

Processes States Transitions in MTBDD Terminal Nodes

4 27600 136992 12355 3

6 3377344 25470144 33297 3

8 3, 9 · 108 3, 9 · 109 62871 3

10 4, 4 · 1010 5, 6 · 1011 101077 3

Table 4.3: Unreduced Randomised Mutual Exclusion System

We can see how, in all the cases, the number of states and transitions is reduced. It is also

remarkable that the reduction percentage in those numbers seems to be constant within the

same kind of system, independently from the number of processes involved. However, if

we consider the number of nodes in the MTBDDs corresponding to the transition matrices,

we can identify a different behaviour. In the case of the Randomised Mutual Exclusion

System, we obtained a reduction that seems to increase proportionally to the number of

processes in the system. In the case where there are ten processes, the reduction in the

number of non-terminal nodes in the transition matrix amounts to 26%. Conversely, in

the Randomised Dining Philosophers System, the number of non-terminal nodes increases.

In the case where there are four philosophers, the increase is of 39% while the case for

five philosopher the increase amounts to a 244%, which means that the number of nodes

52

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

Number of Number of Number of Number of Nodes Number of

Processes States Transitions in MTBDD Terminal Nodes

4 21040 97360 10655 3

6 2482432 17598112 26310 3

8 2, 8 · 108 2, 7 · 109 47697 3

10 3, 1 · 1010 3, 9 · 1011 74816 3

Table 4.4: Reduced Randomised Mutual Exclusion System

Figure 4.6: Percentage Statistics for Randomised Dining Philosophers System

Figure 4.7: Percentage Statistics for Randomised Mutual Exclusion System

53

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

in the “reduced” system is 3.5 times bigger. We believe that such increase derives from

the addition of new variables to the system. Recall that the product obtained after applying

these reduction techniques is a modified system that includes some new global variables and

commands to check and update them. Nevertheless, we have seen how, in some cases, the

reduction in the number of transitions and states also appears in the number of non-terminal

nodes corresponding to the MTBDD for the transition matrix of the system. Regarding the

number of terminal nodes, it has remained constant in all experiments and systems.

As we identified a case in which the new static partial order reduction techniques success-

fully reduce the model of the system in combination with symbolic model checking, we

wanted to check if they can be applied in combination with explicit model checking and

obtain a reduction better than the one achieved with dynamic partial order reduction tech-

niques. In order to do that, we extended LiQuor Model Checker to be able to execute both

Naïve and Reachability-Aware SPOR techniques over PASM models. As an initial step,

we carried out an extension aimed at creating a symbolic representation of the system. That

symbolic representation contains all the information about the different probabilistic control

graphs, i.e. the set of locations and transitions between them. That information is now ob-

tained and stored in a series of data structures into LiQuor Model Checker. Once the differ-

ent probabilistic control graphs are available, LiQuor can execute Naïve and Reachability-

Aware SPOR techniques. Nevertheless, there is a relatively small difference between the

specification of Reachability-Aware SPOR technique and its actual implementation. That

difference is motivated by the high complexity to calculate whether the disjunction of a set

of predicates is a tautology or not. In our implementation, that problem implies checking

whether any valuation for the variables involved in the guards would always enable at least

one of them. This problem is especially hard when there are variables whose domain is

either infinite or relatively wide, as happens with numerical variables. Therefore, LiQuor

extension only considers the disjunction of a set of guards to be a tautology if at least one of

those guards is a tautology itself. We refer here to this implementation strategy as Tautology

Identification Overapproximation.

Lemma 4.2.4. Tautology Identification Overapproximation and Reachability-Aware
SPOR
If we carry out Reachability-Aware SPOR in a system in such a way that we replace the

original condition for identifying a conditionally ample location by using Tautology Identi-

fication Overapproximation, the result is still valid and sound.

Proof. In order to prove this assessment we must recall, first, that the new condition that

54

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

defines whether a location can be marked as cond_ample is:

• A location li is a conditionally ample location, thus marked as cond_ample if and only

if all its outgoing transitions, whose quantity has to be greater than one, are marked

as good and at least one of their guards is a tautology.

We assume that by using Reachability-Aware SPOR over a set of probabilistic control

graphs we would identify a set C of conditionally ample locations. Then, by using the

overapproximation, we would identify a set C ′ ⊆ C of conditionally ample locations. The

reason that ensures the identification of a valid subset is that if a conditionally ample lo-

cation li is identified by the overapproximation, it implies that at least one of the guards g

of its outgoing locations is a tautology. Therefore, the original condition, which requires

that the disjunction of all guards must be a tautology, holds as any proposition constructed

by adding a disjunction to a tautology is a tautology itself. The consequence of finding a

possibly smaller set of conditionally ample locations is a decrease in the efficiency of the

reduction technique, as there will be less ample sets that do not correspond to a full expan-

sion. However, as stated in Consideration1 in page 33, omitting ample locations still gives

a sound solution as it resumes to skipping reduced ample sets.

Once LiQuor was successfully extended to perform the new static partial order techniques

introduced in this document, we chose the PROBMELA versions of the Randomised Din-

ing Philosophers and the Leader Election algorithm as candidate systems to be reduced. As

LiQuor, by now, only allows the model checking of qualitative and quantitative LTL prop-

erties, the experiments only ran Reachability-Aware SPOR technique whose reduction is

at least as good as the one obtained with Naïve SPOR. After we run the experiments, we

noticed that in the case of the Randomised Dining Philosophers no reduction was achieved.

The reason why there was no reduction derives from the fact that no ample or conditionally

ample locations were identified. Those kind of locations could not be identified due to the

fact that all actions in that system accessed (reading, updating or both) global variables that

were also accessed by more than one process. Therefore, the resulting modified system was

equivalent to the original one in terms of the size of the state space and transitions and in

the properties that it models, provided that those properties do not refer the new variables

introduced by the reduction technique. In the case of the Leader Election System, there

where two ample locations identified in every probabilistic control graph, from a total of

25 locations in each of them. In order to provide an efficiency comparison with the dy-

namic partial order reduction techniques already implemented in LiQuor, we also ran them

over the Leader Election System. The results we obtained are presented in Table 4.5 and

Figure 4.8 shows a percentage comparison diagram.

55

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

Number of Processes Number of Number of Time for State

(Reduction Technique) States Transitions Space Generation (s)

2 (not reduced) 3058 5626 1

2 (SPOR) 2743 4934 1

2 (DPOR) 2304 3009 1, 5

3 (not reduced) 60296 149910 52

3 (SPOR) 55803 133326 53, 3

3 (DPOR) 52820 95199 53, 9

4 (not reduced) 3068194 9126120 909, 7

4 (SPOR) 1391973 3927710 1390

4 (DPOR) 1265689 1938194 2809

Table 4.5: Reduced Leader Election System

Figure 4.8: Percentage Comparison between SPOR and DPOR

We can see how even though we can obtain some reduction in both the number of states and

transitions, which amount to a maximum of 54% and 56% respectively. In this case, that re-

duction is worse than the one obtained by using dynamic partial order reduction techniques,

whose maximum value reached a 58% reduction in the number of states and a 78% in the

number of transitions. The only improvement that is perceived is a smaller increase in the

time required to generate the state space of the system by using static POR, compared with

the increase originated from the use of dynamic POR.

56

Chapter 4. Completely Static POR of Probabilistic Systems 4.2. Static POR for Probabilistic Systems

From this results we obtain some evidence that supports an intuition that we had prior to

the comparison allowed by the different experiments. That intuition states that static partial

order techniques are more suitable for being used in combination with symbolic model

checking that to be applied to systems where explicit model checking is used as verification

technique. One possible motivation for this is the amount of information available in the

moment when the ample sets are defined. In the static POR, all the information is extracted

from the configuration of the system on the basis of the different locations and transitions

between them that appear in the probabilistic control graphs of the processes in the system.

In dynamic POR techniques, that information is also available, together with some other

that can be gathered during the state space generation. That extra amount of information

dynamically obtained can be gathered when explicit model checking is used, but cannot in

the case of symbolic model checking, which then only benefits from static POR techniques.

57

4.2. Static POR for Probabilistic Systems Chapter 4. Completely Static POR of Probabilistic Systems

58

5 Conclusion and Future Lines of Work

During the development of this Master Thesis, we have carried out a brief analysis over the

state-of-the-art of the partial order reduction techniques for the formal verification of qual-

itative and quantitative temporal properties of probabilistic systems via model checking.

We identified the lack of static techniques to allow the partial order reduction of proba-

bilistic and non-deterministic models, like the ones represented as Markov Decission Pro-

cesses (MDP). On the basis of an already existing static partial order technique for non-

probabilistic systems, we developed two new completely static techniques that allow the

reduction of system models represented as MDPs.

The first of the techniques, namely Naïve SPOR, can be applied when the properties to

be checked can be specified in the modal logic PCTL* and are stutter-invariant, i.e. ex-

pressed in PCTL*−◦ where the next step operator ◦ is not used. This technique guarantees

ample conditions C0-C4, described in page 18, which are necessary and sufficient to en-

sure stutter-equivalence between the original and reduced models. The second technique,

namely Reachability-Aware SPOR, cannot be applied to every quantitative PTCL*−◦ prop-

erty, but the quantitative ones that can be written in LTL−◦. As stated in [BDG06], those

properties are PTCL*−◦ formulas where all the state subformulas are propositional, i.e. they

do not contain the probabilistic operator. This technique guarantees that the reduced system

is built by constructing ample set that fulfil conditions C0-C3 and C4’, which is weaker

than C4. Therefore, this technique can produce some reductions, mentioned in page 36 that

Naïve SPOR cannot. As both techniques guarantee conditions C0-C3, they can be applied

for the reduction of non-probabilistic systems, but we also gave theoretical evidence which

support that the reduction achieved by using Reachability-Aware SPOR can be bigger.

During the experimentation phase, we selected some classical concurrency models and ap-

plied both reduction techniques on them. Some of those systems where modelled in SPIN,

see [Hol03], thus applying symbolic model checking to them, whereas others were writ-

ten in PROBMELA, see [BCG04]. In this latter case, we applied explicit model checking

to the models and, in order to be able to use our reduction techniques, we extended the

59

Chapter 5. Conclusion and Future Lines of Work

functionality provided by LiQuor model checker, see [CC06]. As result of the experimen-

tation phase, we realized that symbolic model checking benefits more from static POR

than explicit model checking, as the latter also allows dynamic POR which produced better

reductions in the cases used. We believe that the rationale for that derives from the fact

that explicit model checking can dynamically provide some information about the system

which is not statically accessible. Dynamic POR techniques can use information obtained

both statically and dynamically. Therefore, a bigger amount of information can lead to bet-

ter reductions. Symbolic model checking can only benefit from static POR, making this a

better match than the combination of static POR and explicit model checking. However, we

provide evidence that shows that a static POR reduction of the system is achievable even if

the use of explicit model checking is intended.

As we report in the previous section, in none of the cases Reachability-Aware SPOR tech-

nique was able to identify a conditionally ample location. Therefore, the reduced model

achieved by using both techniques was equivalent. Nevertheless, that kind of locations the-

oretically exist and, in order to be able to provide a better comparison between the two new

SPOR techniques, we intend to find a system that contains at least one of them as future line

of work. Another possible future line of work consists in the improvement of the identifi-

cation of the dependency relation between actions. Currently, we calculate the dependency

relation using the overapproximation described in page 34, extracted from [BK08]. More-

over, that dependency relation D is later expanded by our SPOR techniques in order to

contain all the pairs of actions (α, β) ∈ Acti × Actj such that the pair of actions (δ, γ) ∈
Acti × Actj already belonged to D. That implies that two actions α and β are considered

dependent if the dependency relation overapproximation considers as dependent two actions

δ and γ such that, α and δ belong to the same probabilistic control graph PCGi and, simi-

larly, β and γ belong to PCGj . Therefore, two actions can be dependent even if they do not

read or write the same variable. Then, the final dependency relation used by the reduction

techniques is constant during all the reduction process and disregards the reachability of the

actions that generated the new dependencies. For instance, considering the example just

provided, in order to build the ample set from a state s, (α, β) would belong to D, and con-

sidered dependent, even if neither δ nor γ are reachable from s. This improvement would

require the definition, implementation and use of a dynamic dependency relation that varies

from state to state.

60

Chapter 5. Conclusion and Future Lines of Work

Finally, another future line of work would be aimed at improving the end component identi-

fication strategy. As we state in Chapter 3, the Sticky Set POR technique requires that every

end component in the reduced system should contain at least one sticky action. Currently,

we guarantee this condition by using the Naïve Sticky Set Identification Algorithm, which

deals with cycles in the different probabilistic control graphs instead of end components in

the state space. That new algorithm would be aimed at guaranteeing that every end compo-

nent, then not necessarily every cycle in the control graphs, would contain at least one sticky

action. Therefore, as the generated Sticky Set would be smaller, the reduction achieved by

our SPOR techniques could be improved.

61

Chapter 5. Conclusion and Future Lines of Work

62

List of Figures

2.1. MDP digraph for the stochastic counter 10

2.2. Probabilistic Control Graph for the stochastic counter 11

2.3. Individual Probabilistic Control Graphs for the 2-counters system 12

2.4. Crossproduct Probabilistic Control Graph for the 2-counters system 13

2.5. Fully interleaved subgraph of the 2-counters system 15

2.6. Single interleaving subgraph of the 2-counters system 16

3.1. Naïve Sticky Set Identification Algorithm 23

3.2. Sticky Actions in the individual Control Graphs of 2-counters system . . . 24

3.3. Crossproduct Probabilistic Control Graph for the 2-counters showing Sticky

Set . 25

3.4. Statistics for four Dining Philosophers . 26

3.5. Statistics for five Dining Philosophers . 27

3.6. Statistics for a Leader Election between 3 processes 28

3.7. Statistics for a Leader Election among 4 processes 28

4.1. Program Graphs of the iterative counters 31

4.2. Modified Program Graphs of the iterative counters 32

4.3. Comparison between Naïve SPOR (above) and non-probabilistic SPOR (be-

low) . 37

4.4. Yet another shortcoming of Naïve SPOR 38

4.5. Product of Reachability-Aware SPOR technique 45

4.6. Percentage Statistics for Randomised Dining Philosophers System 53

4.7. Percentage Statistics for Randomised Mutual Exclusion System 53

4.8. Percentage Comparison between SPOR and DPOR 56

63

LIST OF FIGURES LIST OF FIGURES

64

List of Tables

4.1. Unreduced Randomised Dining Philosophers System 52

4.2. Reduced Randomised Dining Philosophers System 52

4.3. Unreduced Randomised Mutual Exclusion System 52

4.4. Reduced Randomised Mutual Exclusion System 53

4.5. Reduced Leader Election System . 56

65

LIST OF TABLES LIST OF TABLES

66

Bibliography

[BCG04] Christel Baier, Frank Ciesinski, and Marcus GrÃűÃ§er. Probmela: a model-

ing language for communicating probabilistic processes, 2004.

[BCHG+97] Christel Baier, Edmund M. Clarke, Vassili Hartonas-Garmhausen, Marta Z.

Kwiatkowska, and Mark Ryan. Symbolic model checking for probabilis-

tic processes. In Proceedings of the 24th International Colloquium on Au-

tomata, Languages and Programming, ICALP ’97, pages 430–440, London,

UK, 1997. Springer-Verlag.

[BCM+90] J. R. Burch, E. M. Clarke, K. L. Mcmillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: 10 20 states and beyond, 1990.

[BDG06] Christel Baier, Pedro D’Argenio, and Marcus Groesser. Partial order reduc-

tion for probabilistic branching time. Electronic Notes in Theoretical Com-

puter Science, 153(2):97–116, 2006. Proceedings of the Third Workshop on

Quantitative Aspects of Programming Languages (QAPL 2005).

[BK08] C. Baier and J-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipula-

tion. IEEE Transactions on Computers, 35:677–691, 1986.

[CC06] F. Ciesinski and C.Baier. Liquor: A tool for qualitative and quantitative linear

time analysis of reactive systems. In Proc. 3rd International Conference on

Quantitative Evaluation of Systems (QEST’06). IEEE CS Press, 2006.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-

chronization skeletons using branching-time temporal logic. In Logic of Pro-

grams, Workshop, pages 52–71, London, UK, 1982. Springer-Verlag.

[CGC04] C.Baier, M. Grösser, and F. Ciesinski. Partial order reductions for probabilis-

tic systems. In Proc. 1st International Conference on Quantitative Evaluation

of Systems (QEST’04), 2004.

[Cie11] F. Ciesinski. High-Level Modelling and Efficient Analysis of Randomized

Protocols. PhD thesis, Technische Universität Dresden, 2011.

67

BIBLIOGRAPHY BIBLIOGRAPHY

[Cla08] Edmund Clarke. The birth of model checking. In Orna Grumberg and Helmut

Veith, editors, 25 Years of Model Checking, volume 5000 of Lecture Notes in

Computer Science, pages 1–26. Springer Berlin / Heidelberg, 2008.

[Din07] Monica Dinculescu. Probabilistic temporal logic or: With what probability

will the swedish chef bork the meatballs?, 2007.

[DN04] Pedro R. D’Argenio and Peter Niebert. Partial order reduction on concurrent

probabilistic programs. In Proceedings of the The Quantitative Evaluation

of Systems, First International Conference, pages 240–249, Washington, DC,

USA, 2004. IEEE Computer Society.

[EH82] E. Allen Emerson and Joseph Y. Halpern. Decision procedures and expres-

siveness in the temporal logic of branching time. In Proceedings of the four-

teenth annual ACM symposium on Theory of computing, STOC ’82, pages

169–180, New York, NY, USA, 1982. ACM.

[Eme08] E. Allen Emerson. 25 years of model checking. In Orna Grumberg and

Helmut Veith, editors, 25 Years of Model Checking, chapter The Beginning

of Model Checking: A Personal Perspective, pages 27–45. Springer-Verlag,

Berlin, Heidelberg, 2008.

[FG05] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model

checking software. In ACM SIGPLAN-SIGACT Principles of Programming

Languages (POPL ’05), 2005.

[FMY97] M. Fujita, P.C. McGeer, and J.C.-Y. Yang. Multi-terminal binary decision dia-

grams: An efficient data structure for matrix representation. Formal Methods

in System Design, 10:149–169, 1997. 10.1023/A:1008647823331.

[FS07] Lars-Ake Fredlund and Hans Svensson. Mcerlang: a model checker for a

distributed functional programming language. In Proceedings of the 12th

ACM SIGPLAN international conference on Functional programming, ICFP

’07, pages 125–136, New York, NY, USA, 2007. ACM.

[GKPP99] Rob Gerth, Ruurd Kuiper, Doron Peled, and Wojciech Penczek. A partial

order approach to branching time logic model checking. Information and

Computation, 150(2):132 – 152, 1999.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems: An Approach to the State-Explosion Problem. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 1996.

68

BIBLIOGRAPHY BIBLIOGRAPHY

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about

time and reliability. Formal Aspects of Computing, 6:512–535, 1994.

10.1007/BF01211866.

[HKPM97] G. Huer, G. Kahn, and C. Paulin-Mohring. The Coq proof assistant: A tuto-

rial. Technical report, INRIA, 1997.

[Hol03] G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley Professional, September 2003.

[KLM+98] R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigün. Static partial

order reduction. In Tools and Algorithms for the Construction and Analysis

of Systems, 1998.

[KNP02] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilis-

tic symbolic model checker. In Tony Field, Peter Harrison, Jeremy Bradley,

and Uli Harder, editors, Computer Performance Evaluation: Modelling Tech-

niques and Tools, volume 2324 of Lecture Notes in Computer Science, pages

113–140. Springer Berlin / Heidelberg, 2002.

[LR81] D. Lehmann and M. Rabin. On the advantage of free choice: A symmetric

and fully distributed solution to the dining philosophers problem (extended

abstract). In Proc. 8th Annual ACM Symposium on Principles of Program-

ming Languages (POPL’81), pages 133–138, 1981.

[Pau94] Lawrence C. Paulson. Isabelle: a Generic Theorem Prover. Number 828 in

Lecture Notes in Computer Science. Springer – Berlin, 1994.

[Pel93] Doron Peled. All from one, one for all: on model checking using represen-

tatives. In Costas Courcoubetis, editor, Computer Aided Verification, volume

697 of Lecture Notes in Computer Science, pages 409–423. Springer Berlin /

Heidelberg, 1993.

[Pel98] D. Peled. Ten years of partial order reduction. In Computer Aided Verification

(CAV’98), 1998.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th An-

nual Symposium on Foundations of Computer Science, pages 46–57, Wash-

ington, DC, USA, 1977. IEEE Computer Society.

[PRI] PRISM. Prism case studies. http:http://www.

prismmodelchecker.org/casestudies/index.php.

69

http:http://www.prismmodelchecker.org/casestudies/index.php
http:http://www.prismmodelchecker.org/casestudies/index.php

BIBLIOGRAPHY BIBLIOGRAPHY

[PRO] PROMELA Manual Pages.

[PZ86] A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols.

Distributed Computing, 1(1):53–72, 1986.

[Val89] Antti Valmari. Stubborn sets for reduced state space generation. In Proceed-

ings of the 10th International Conference on Application and Theory of Petri

Nets, 1989, Bonn, Germany; Supplement, pages 1–22, 1989. NewsletterInfo:

33,39.

[Var98] Moshe Vardi. Sometimes and not never re-revisited: on branching versus

linear time. In Davide Sangiorgi and Robert de Simone, editors, CONCUR’98

Concurrency Theory, volume 1466 of Lecture Notes in Computer Science,

pages 1–17. Springer Berlin / Heidelberg, 1998. 10.1007/BFb0055612.

70

Declaration

Eidesstattliche Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbststndig verfasst und keine anderen

als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate kenntlich gemacht

habe.

Affidavit

I herewith declare, in lieu of oath, that I have prepared this paper on my own, using only the

materials (devices) mentioned. Ideas taken, directly or indirectly, from other sources, are

identified as such.

14th September 2011

Alvaro

71

	Introduction
	Basic Concepts
	Notations
	State Space Explosion Problem
	Partial Order Reductions
	Some POR Alternatives

	Towards Static POR for Probabilistic Systems
	Sticky Set POR Technique
	Sticky Set Identification: the Naïve Approach
	Theoretically Expected Improvement

	Experiments

	Completely Static POR of Probabilistic Systems
	Static POR for Non-Probabilistic Systems
	Static POR for Probabilistic Systems
	Fundamental Considerations
	Preliminary Calculations
	Naïve SPOR
	Reachability-Aware SPOR
	Experiments

	Conclusion and Future Lines of Work

