
eJason: an implementation of Jason in Erlang?

Álvaro Fernández Dı́az, Clara Benac Earle, and Lars-Åke Fredlund

Babel Group. Universidad Politécnica de Madrid, Spain
{avalor,cbenac,fred}@babel.ls.fi.upm.es

Abstract. In this paper we describe eJason, a prototype implementa-
tion of Jason, the well-known agent-oriented programming language, in
Erlang, a concurrent functional programming language. The reason for
choosing Erlang as the implementation vehicle is the surprising number
of similarities between Jason and Erlang, e.g., both have their syntac-
tical roots in logic programming, and share an actor-based process and
communication model. Moreover, the Erlang runtime system implements
lightweight processes and fast message passing between processes. Thus,
by mapping Jason agents and agent-to-agent communication onto Erlang
processes and Erlang process-to-process communication, we can create a
very high-performing Jason implementation, potentially capable of sup-
porting up to a hundred thousand concurrent actors. In this paper we
describe in detail the implementation of Jason in Erlang, and provide
early feedback on the performance of the implementation.

1 Introduction

Among the different agent-oriented programming languages, AgentSpeak [13] is
one of the most popular ones. It is based on the BDI architecture [14, 17], which
is central in the development of multiagent systems. AgentSpeak allows the im-
plementation of rational agents by the definition of their know-how, i.e. how each
agent must act in order to achieve its goals. AgentSpeak has been extended into
a programming language called Jason [7, 9]. Jason refers to both the AgentSpeak
language extension and the related interpreter that allows its execution in Java.
Thus, Jason is an implementation of AgentSpeak that allows the construction
of multiagent systems that can be organized in agent infrastructures distributed
in several hosts. It allows the interfacing to the JADE Framework [5, 6], thus
generating multiagent systems fully compliant to FIPA [1, 12] specifications. To
effortlessly distribute the agent infrastructure over a network, the use of the
SACI [11, 2] middleware is suggested. Jason has been designed to address the
desirable properties of rational agents identified in [16]: autonomy, proactiveness,
reactiveness and social ability. In the rest of the paper we assume that the reader
is familiar with Jason [9].

A significant new trend in processor architecture has been evident for a few
years. No longer is the clock speed of CPUs increasing at an impressive rate,

? This work has been partially supported by the following projects: DESAFIOS10
(TIN2009-14599-C03-00) and PROMETIDOS (P2009/TIC-1465).

rather we have started to see a race to supply more processor elements in main-
stream multi-core CPU architectures coming from Intel and AMD. Initially, the
software industry has been slow in reacting to this fundamental hardware change,
but today, utilising multiple cores is the only way to improve software system
performance. With traditional programming languages (such as Java, C, C++,
etc.) writing bug-free concurrent code is hard, and the complexity grows quickly
with the number of parallel tasks. As a result, alternative languages, with less
error-prone concurrency primitives, are attracting more attention.

Following this trend, the Erlang programming language [3, 10] is gaining mo-
mentum. The usage has increased, and among the users are large organisations
like Facebook, Amazon, Yahoo!, T-Mobile, Motorola, and Ericsson. The most
prominent reasons for the increased popularity of Erlang are lightweight con-
currency based on the actor model, the powerful handling of fault tolerance,
the transparent distribution mechanisms, the generic OTP design patterns, and
the fact that the language has functional programming roots leading to a small,
clean code base.

In this paper we report on our experience translating the Jason program-
ming language to Erlang. The similarities between Jason and Erlang – both are
inspired by Prolog, both support asynchronous communication among compu-
tational independent entities (agents/processes) – make the translation rather
straightforward. By implementing Jason in Erlang we offer the possibility to
Erlang programmers of using an agent-oriented programming language like Ja-
son integrated in Erlang. To Jason programmers, the approach gives them the
possibility of executing their code in the Erlang runtime system, which is partic-
ularly appropriate for running robust multiagent systems with a large number
of concurrent and distributed agents.

Moreover, as the syntax of Erlang is inspired by Prolog 1, e.g., having atoms
beginning with a lowercase letter, and single-assignment variables beginning with
an uppercase letter, etc., we hope to reduce the conceptual gap for a Jason
programmer interested in modifying the Jason meta-level (e.g., changing the
selector functions, and implementing actions) by adopting Erlang, compared to
having to use Java. Perhaps even more interesting is the potential for introducing
Erlang programmers to the world of BDI programming through this new Jason
implementation. This is a group of programmers already used to thinking of
programming systems composed of independent communicating agents (or in
the terminology of Erlang, processes), and superficially familiar with the syntax
of Jason. To us it appears that the conceptual gap between programming agents
in Jason, and functions and processes in Erlang, is smaller than for many other
programming languages (Java).

A prototype of the implementation of Jason in Erlang is available at

git : //github.com/avalor/eJason.git

The rest of the paper is organized as follows. Before explaining the transla-
tion, the main characteristics of Erlang are briefly described in Sect. 2. Then,

1 Not surprisingly, as the first implementation of Erlang was written in NU Prolog [4]

in Sect. 3 the translation of the Jason constructs, the Jason reasoning cycle,
the process orchestration of eJason, and the current limitations of the approach
are explained. Some early benchmarks results for the eJason prototype are re-
ported in Sect. 4. Finally, a summary of our conclusions and items for future
work appear in Sect. 5.

2 Erlang

Erlang [3, 10] is a functional concurrent programming language created by Eric-
sson in the 1980s. The chief strength of the language is that it provides excellent
support for concurrency, distribution and fault tolerance on top of a dynami-
cally typed and strictly evaluated functional programming language. It enables
programmers to write robust and clean code for modern multiprocessor and dis-
tributed systems. In this section we briefly describe the key aspects of Erlang.

2.1 Functional Erlang

In Erlang basic values are: integers, floats, atoms (starting with a lowercase
letter), bit strings, binaries, and funs (to create anonymous functions), and pro-
cess identifiers (pids). The compound values are lists and tuples. Erlang syntax
includes a record construct which provides syntactic sugar for accessing the ele-
ments of a tuple by name, instead of by position. Functions are first class citizens
in Erlang. For example, consider the declaration of the function factorial that
calculates the factorial of a number.

factorial(0) -> 1;

factorial(N) when N > 0 -> N * factorial(N - 1).

As in Prolog, variable identifiers (N) start with a capital letter, and atoms
(factorial) with a lowercase letter. Like Prolog, Erlang permits only single
assignment to variables.

As virtually all functional programming languages, Erlang supports higher
order functions.

2.2 Concurrent and Distributed Erlang

An Erlang system (see Fig. 1) is a collection of Erlang nodes. An Erlang node (or
Erlang Run-time System) is a collection of processes, with a unique node name.
Communication is asynchronous and point-to-point, with one process sending a
message to a second process identified by its pid. Messages sent to a process are
put in its message queue, also referred to as a mailbox. Informally, a mailbox is
a sequence of values ordered by their arrival time. Mailboxes can in theory store
any number of messages. Although mailboxes are ordered, language constructs
permit retrieving messages from the process mailbox in arbitrary order.

As an alternative to addressing a process using its pid, there is a facility for
associating a symbolic name with a pid. The name, which must be an atom,

Node 1
Node 2

Proc B Proc C

Proc A

mailbox

process
dictionary

registry registry

Fig. 1. An Erlang multi-node system

is automatically unregistered when the associated process terminates. Message
passing between processes in different nodes is transparent when pids are used,
i.e., there is no syntactical difference between sending a message to a process in
the same node, or to a remote node. However, the node must be specified when
sending messages using registered names, as the pid registry is local to a node.

A unique feature of Erlang that greatly facilitates building fault-tolerant
systems is that processes can be “linked together” in order to detect and recover
from abnormal process termination. If a process P1 is linked to another process
P2, and P2 terminates with a fault, process P1 is automatically informed of the
failure of P2. It is possible to create links to processes at remote nodes.

As an integral part of Erlang, the OTP library provides a number of very
frequently used design patterns (behaviours in Erlang terminology) for imple-
menting robust distributed and concurrent systems. The most important OTP
design patterns are generic servers that implement client/server architectures,
and supervisors, to build robust systems. Other OTP design patterns implement,
for instance, a publish-subscribe mechanism, and a finite state machine.

3 Implementing Jason in Erlang

This section describes the implementation of a subset of Jason in Erlang.

3.1 A simple running example in Jason

To illustrate the implementation of Jason in Erlang, we use the example in Fig. 2,
which illustrates the main syntactical elements of the Jason language.

This somewhat artificially programmed agent is a counter, which prints a
message when finished. The initial beliefs of the agent are (a), representing that

init_count(0). (a)

max_count(2000). (b)

next(X,Y) :- Y = X + 1. (c)

!startcount. (d)

+!startcount : init_count(X) <- +actual_count(X); (e)

!count.

+!count: actual_count(X) & max_count(Y) & X < Y <- (f)

?next(X, NewCount);

-+actual_count(NewCount);

!count.

+!count: actual_count(X) & max_count(Y)& X >= Y <- (g)

.print("Terminated count").

Fig. 2. A simple Jason agent

the agent believes the initial value to be zero, and (b), representing that the agent
believes that it has to count up to 2000. There is one rule (c), expressing the
successor relation for numbers. The agent’s initial goal (d) is to start counting.
There are three plans (e), (f) and (g). Plan (e) initializes the actual counter by
adding a new belief to the agent’s belief base and introduces a new achievement
goal !count. That goal can be achieved by plans (f) and (g), whose context’s
are disjoint and, thus, can never be considered as applicable plans at the same
time. When plan (g) is executed, which occurs when the agent has counted up
to its limit, it prints a message and the agent remains waiting as there are no
more events. We kindly direct the reader to [9] for a complete definition of the
Jason programming language and its interpreter, as a detailed description of the
different features of Jason lies beyond the scope of this paper.

3.2 An overview of the implementation

Jason is both a programming language which is an extension of AgentSpeak, and
an interpreter of this programing language in Java. The constructs of the Jason
programming language can be separated into three main categories: beliefs, goals
and plans. The Jason interpreter runs an agent program by means of a reasoning
cycle that provides the operational semantics of the agent. This semantics has
been formalised and can be found in [9].

The translation of beliefs and goals to Erlang is rather straightforward since
they represent the knowledge of an agent, rather than its behaviour (with the
exception of rules). Common Erlang data types and functions are used to trans-
late these Jason constructs to Erlang. Initially we used the third party software

ERESYE [15] (ERlang Expert SYstem Engine) to implement the belief base of
each agent. ERESYE is a library to write expert systems and rule processing
engines using the Erlang programming language. It allows to create multiple
engines, each one with its own facts and rules to be processed. We decided to
use this software as the term storage service due to its capabilities to store Er-
lang terms and to also retrieve them using pattern matching. Nevertheless, due
to the way in which we used this software, the resulting Jason implementation
was rather inefficient. Therefore we decided to implement our own belief base.
This later implementation represents the belief base of each agent as a list of
ground terms. The translation of beliefs, goals and rules to Erlang is explained
in Sect. 3.3

The implementation of plans is more convoluted due to their dynamic na-
ture. Every plan is composed by one or more formulas that must be evaluated
sequentially. However, the formulas in a plan may not all be executable in the
same reasoning cycle. The representation of plans in Erlang, and their execution
by a tail-recursive Erlang function, is explained in Sect. 3.4.

A higher-level view of the different Erlang processes implementing the Jason
reasoning cycle [9] and the communication between them is described in Sect. 3.5,
while Sect. 3.6 provides the details. Basically, the reasoning cycle of each agent
is handled by a different Erlang process.

Finally Sect. 3.7 enumerates the limitations of eJason, with respect to im-
plementing the full Jason language, at the time of writing this paper.

3.3 Translation of Jason beliefs and goals into Erlang

Here we describe how the different constructs for representing and inferring
knowledge of Jason are implemented.

Variables. To represent the bound and unbound variables of a plan we use a
variable valuation that is updated as variables become bound to values. Con-
cretely, a valuation for a plan is represented by an Erlang tuple where values are
associated with distinct variables ordered according to the order in which these
variables first occur in the plan. For instance, a possible valuation for the second
plan (f) in Fig. 2 would be {0, 2000, ’_’}, thus binding X to 0, Y to 2000 and
leaving NewCount unbound.

Beliefs. Every agent possesses its own belief base, i.e., each agent can only access
and update its own belief base. In a first version of eJason, we used ERESYE in
the following manner. Each agent ran its own ERESYE engine, which spawned
three Erlang processes for each belief base. Early experiments showed that this
implementation was rather inefficient. For instance, the eJason implementation
of the counter example could only handle around four thousand agents. An
alternative is to use a single ERESYE engine for all agents, and provide some
means to isolate the beliefs of each agent from everyone else’s. We discarded
this approach because the autonomy of agents would have been compromised.

For instance, a failure in the ERESYE engine would cause a failure in the belief
base of all agents. Therefore, we decided to implement our own belief base in
a separate module, named beliefbase, which provides the functionality to access
and update a belief base without having to create a separate Erlang process. As
explained earlier, this belief base is represented as a list of Erlang terms, where
each term in the list corresponds to a different belief.

A belief, i.e., either an atom or a ground formula, is represented in eJason as
an Erlang tuple. An atom belief is represented in Erlang as the tuple containing
the atom belief itself, e.g., {atom belief }. A ground formula belief is represented
by an Erlang tuple with three elements. The first element is the name of the
predicate, the second is a tuple which enumerates the arguments of the predicate,
and the third is a list containing a set of annotations. Each annotation can either
be an atom or a predicate and is represented in the same manner as a belief. As
an example, the belief base of the running example (with an added annotation):

init_count(0).

max_count(2000)[source(self)].

is translated to the following Erlang term:

{ init_count, {0}, [] }.

{ max_count, {2000}, [{source,{self},[]}] }.

Rules. Each rule in Jason is represented as an Erlang function. This function,
when provided with the proper number of input parameters, accesses the belief,
if necessary, and returns the list of all the terms that both satisfy the rule and
match the input pattern.

Goals. Goals are represented in the same way as beliefs. Nevertheless, they are
never stored in isolation, but as part of the body of an event, as specified below.

Events. As we have not yet implemented perception of the agent environment,
events always correspond to the explicit addition or deletion of beliefs, or the
inclusion of achievement and test goals. An event is composed of an event body,
an event type, and a related intention. The event body is a tuple that contains
two elements. The first element is one of the atoms {added belief, removed belief,
added achievement goal, added test goal}. The second element is a tuple that
represents the goal or belief whose addition or deletion generated the event. The
event type is either the atom internal or the atom external, with the obvious
meaning. The related intention is either a tuple, as described below, or the atom
undefined to state that the event has no related intention. The only internal
events that possess a related intention are the events corresponding to the ad-
dition of goals, as their intended means will be put on top of that intention.
The intended means for the rest of events will often generate new intentions.
When a relevant plan for the event is selected, the list of Erlang functions that

execute the formulas in its body is added either on top of a related intention
or as a brand new intention (e.g. in the case of external events). For instance,
consider the following formulas in the body of a plan belonging to some intention
Intention:

+actual_count(NewCount);

?next(X, NewCount);

The events generated after their respective execution would be:

{event, internal, {added_belief,

{actual_count,{NewCount}, []} }, undefined }

{event, internal, {added_test_goal,

{next, {X, NewCount}, []} }, Intention}

For the sake of clarity, the variable Intention appears as placeholder for the real
representation of the corresponding related intention.

3.4 Implementing Jason plans in Erlang

Body of a plan. Every Jason plan is composed by one or more formulas that
must be evaluated in a sequence. However, these formulas are not all necessarily
evaluated during the same reasoning cycle of the agent, e.g., due to the presence
of a subgoal that must be resolved by another plan. To be able to execute the
formulas separately, each formula is implemented by a different Erlang function.
Then, the representation of the body of a Jason plan is a list of Erlang functions.
Each of these functions implements the behaviour of a different formula from the
Jason plan. The order of these functions in the list is the same order of the body
formulas they represent. The implementation and processing of the formulas in
a plan body is the most intricate task in the implementation of Jason in Erlang.

Plans. A Jason plan is represented by a record having three components: a
trigger, a context and body. The trigger element is a function which, applied to
the body of an event, returns either the atom false if the plan does not belong
to the set of relevant plans for the event or the tuple {true,InitialValuation},
where InitialValuation provides the bindings for the variables in the trigger. The
context is a function which, when applied to the initial valuation obtained from
the trigger, returns a list of all the possible valuations for the variables in the
trigger and context that satisfy the context. Finally, the body element is the list
of Erlang functions that implement the body of the plan, as described before.

As an example, consider the plan for agent counter:

+!startcount : init_count(X) <- +actual_count(X);

!count.

The plan record generated for the plan above is

{plan, fun start_count_trigger/1,

fun start_count_context/1,

[Fun1, Fun2]}

where the start_count_trigger/1 and start_count_context/1 functions im-
plement the trigger and the context respectively. The list at [Fun1,Fun2] rep-
resents the plan body, where Fun1 implements the formula +actual_count(X)

and Fun2 implements the formula !count.

Intentions. The stack of partially instantiated plans that compose each of the
Jason intentions is represented as a list of Erlang records. Each of these records
is composed of four elements. The first element is the event that triggered the
plan. This element is kept as a meta-level information that can be accessed
by the intention selection function. For instance, we could give priority to the
execution of intentions whose partially instantiated plan on top of the stack
resolves a test goal. The second element is the plan record chosen by the option
selection function and, again, is intended to serve as a meta-level information
accessible by the intention selection function. The third element is a tuple that
represents the intended means of the intention plan, i.e. the bindings for the
variables in the partially instantiated plan. The fourth element is a list of Erlang
functions, representing the formulas of the partially instantiated plan that have
not been executed yet. If an intention is selected for execution, the record for
the partially instantiated plan on top of it (i.e. the first element of the list that
represents the intention) is obtained. Then, the function at the head of the
list of Erlang functions in the fourth element of this record is applied to the
current variable valuation. Finally, this last function is removed from the list.
This process amounts to processing the formula on top of the intention stack as
is required by the specification in [9].

Selection functions. The event, plan and intention selection functions for a
MAS can be customised by providing new implementations (in Erlang) of the
functions selectEvent, selectPlan and selectIntention.

3.5 Process Orchestration and Communication

The multiagent system generated by the translation from Jason to Erlang maps
each agent to an Erlang process, all executing on the same Erlang node. Each
Erlang agent process can be accessed using either its process identifier, or the
name of the Jason agent. The name of the agent is associated with the Erlang
process using the Erlang process registry. In case multiple agents are created with
the same name an integer (corresponding to the creation order) is appended to
the registered name to keep such names unique. An item for future work is
to extend Jason with new mechanisms to create multiple agents from the same
agent definition, and to associate symbolic names with such agents, as the present
mechanisms are somewhat unwieldy.

The communication between agents is implemented using Erlang message
passing. As an example, consider a system where the agent alice sends different
messages to agent bob by executing the internal action formulas:

.send(bob, tell, counter(3)}

.send(bob, untell, price(coffee,300))

.send(bob, achieve, move_to(green_cell))

The actions are mapped to the following Erlang expressions:

bob ! {communication,alice,{tell,{counter,{3},[]}}}.

bob ! {communication,alice,{untell,{price,{coffee,300},[]}}}.

bob ! {communication,alice,{achieve,{move_to,{green_cell},[]}}}).

The Erlang expression Receiver ! Message deposits Message into the mail-
box of agent Receiver. The atom communication is used to declare the message
type. It is included in the implementation to enable processes to exchange other
types of messages, possibly not related to agent communication, in a future
extension of eJason.

Agent bob can process the different messages sent by alice by checking its
mailbox, which is performed automatically in every iteration of the reasoning
cycle. The Erlang expression that retrieves the message from the process mailbox:

receive

{communication,Sender,{Ilf,Message}} ->

case Ilf of

tell -> ... %% Process tell message

untell -> ... %% Process untell message

achieve -> ... %% Process achieve message

end.

These examples show how easily the agent communication between Jason
agents can be implemented in Erlang. The simple yet efficient process commu-
nication mechanism of Erlang is one of the principal motivations to implement
Jason agents using the Erlang programming language.

In the example above, all the agents are located in the same MAS archi-
tecture; messaging between agents in different architectures would be easy to
support too, and would not require the use of a communication middleware like
SACI. However, such an extension is not yet implemented in eJason.

3.6 Representing the Jason Reasoning Cycle in Erlang

The Jason reasoning cycle [8] must of course be represented in eJason. We im-
plement the reasoning cycle using an Erlang function reasoningCycle with a

single parameter, an Erlang record named agentRationale, which represents the
current state of the agent. The elements of this record are: an atom that spec-
ifies the name of the agent, a list that stores the events that have not yet been
processed, the list of executable intentions for the agent, the list of executable
plans, a list of the terms that compose the agent belief base, and three elements
(selectEvent,selectPlan and selectIntention) bound to Erlang functions
implementing event, plan and intention selection for that particular agent (in
this manner each agent can tailor its selection functions; appropriate defaults
are provided).

Below a sketch of the reasoningCycle function is depicted, providing further
details on how eJason implements the reasoning cycle of Jason agents:

reasoningCycle(OldAgent) ->

Agent = check_mailbox(OldAgent), (1)

#agentRationale

{events = Events,

belief_base = BB,

agentName = AgentName,

plans = Plans,

intentions = Intentions,

selectEvent = SelectEvent,

selectPlan = SelectPlan,

selectIntention = SelectIntention} = Agent,

{Event,NotChosenEvents} = SelectEvent(Events), (2)

IntendedMeans =

case Event of

[] -> []; %% No events to process

_ ->

RelevantPlans = findRelevantPlans(Event,Plans), (3)

ApplicablePlans = unifyContext(BB, RelevantPlans), (4)

SelectPlan(ApplicablePlans) (5)

end,

AllIntentions = % The new list of intentions is computed

processIntendedMeans(Event,Intentions,IntendedMeans),

case SelectIntention(AllIntentions) of (6)

{Intention,NotChosenIntentions} ->

Result = executeIntention(BB,Intention), (7)

NewAgent = (8)

applyChanges

(Agent#agentRationale

{events = NotChosenEvents,

intentions = NotChosenIntentions},

Result),

reasoningCycle(NewAgent); (9)

end.

This record is updated during the execution of each reasoning cycle:

(1) At the beginning of each reasoning cycle, the agent checks its mailbox and
processes its incoming messages, adding new events.

(2) The event selection function included in the agentRationale record is applied
to the list of events also included in the same record. The result of the
function evaluation is an Erlang record of type event. This record represents
the unique event that will be processed during the current reasoning cycle.

(3) The function trigger of every plan is applied to the body of the selected
event. For every distinct valuation returned by a trigger function, a new
plan is added to the list of relevant plans. Each relevant plan is represented
by a plan record along with a valuation for the parameter variables.

(4) Next, the context function of each relevant plan is evaluated. The result of
each function application is either an extended valuation, possibly binding
additional variables, or the failure to compute a valuation that is consis-
tent with both the trigger and the context. For each remaining valuation,
a new plan is added to the set of applicable plans. Each applicable plan is
represented by a set of variable bindings along with a plan record.

(5) The plan selection function is applied to the list of applicable plans. The
result obtained is an applicable plan that represents the new intended means
to be added to the list of intentions.

(6) The intention selection function is applied to the list of executable intentions.
It selects the intention that will be executed in the current reasoning cycle.
Note that, as specified by the Jason formal semantics, this intention may
not necessarily be the intention that contains the intended means for the
event processed at the beginning of the reasoning cycle.

(7) The first remaining formula of the plan that is at the head of the chosen
intention is evaluated. The result of evaluating a function may generate new
internal or external events, e.g. by adding a new belief to the belief base.

(8) The new events generated are added to the list of events stored in the agen-
tRationale record representing the state of affairs of the agent. If the formula
evaluated was the last one appearing in a plan body, the process implement-
ing the plan body terminates. If, moreover, the plan that finished was the
last remaining plan in the corresponding intention, the intention itself is
removed from the list of executable intentions.

(9) Finally a new reasoning cycle is started by repeating steps 1-9 with the new
updated agentRationale record.

3.7 Jason Subset Currently Supported

eJason currently supports only a subset of the Jason constructs needed to im-
plement complex multi-agent systems. However, we foresee no major difficulties
in adding the additional features not currently supported, and expect to do so
in the near future. The features of the Jason language not currently supported
are the following:

1. Belief annotations. Even though our Jason parser accepts code with belief
annotations, these annotations are not taken into account when resolving
plans (e.g., when checking whether a plan context is satisfied).

2. Annotations on plan labels. The meta-level information associated with
plans is removed during the lexical analysis.

3. Plan failure handling. Whenever a plan fails, e.g., because test goal in
the plan body cannot be successfully resolved, the whole intention that the
plan belongs to is dropped. Moreover, no new event is generated as a result
of the plan failure.

4. Environment. The environment of eJason programs is not currently mod-
elled. Therefore, no external actions, except console output, are allowed and
no perception phase is required.

5. Distribution. There is no support for distributed agents.
6. Communication. The only illocutionary forces that are properly processed

are tell, untell and achieve. Messages with any other kind of illocutionary
force are ignored and dropped from the mailbox of the agent.

7. Library of internal actions. The only internal actions considered are
“.print” (to display text on the standard output) and “.send” (to interact
with other agents in the same multiagent system).

8. Unbound plan triggers. The trigger of every plan must be either an atom
or a predicate (whose parameters do not need to be bound) but never a
variable.

9. Decomposition operator. The binary operator “=..”, used to (de)construct
literals (i.e. predicates and terms), is not accepted by the parser.

10. Code order. The grammar accepted by the parser is similar to the sim-
plified one presented in Appendix 1 of [9]. Therefore, the source code to be
translated must state first the initial beliefs and rules, followed by the initial
goals and, finally, the different plans.

11. Multiagent system architecture. There is only one kind of agent infras-
tructure implemented. It runs all the agents in a multiagent system within
the same Erlang node.

4 Experiments

To test the performance of eJason, we use two simple Jason programs. The first
is the counter example of Fig. 2 in Section 3.1. The second represents an agent
that outputs two greeting messages on the console. To add some complexity to
the behaviour, the contents of those messages are obtained from the set of beliefs
of the agent using queries which have both bound and unbound variables. The
examples were run using different numbers of homogeneous agents, i.e., all the
agents behaved the same. All of them were run under Ubuntu Linux version
10.04 in a computer with two 2.53 GHz processors. With these examples, we
want to measure the execution time of the generated MAS and their scalability
with respect to the number of agents in the system.

The preliminary results are presented in Tables 2 and 3.

Number of Jason eJason
Agents Execute Time (magnitude) Execution Time (milliseconds)

10 seconds 20

100 minutes 500

1000 not measurable 1181

10000 not measurable 7916

100000 not measurable 18674

Table 1. Execution times for the pupil-teacher multiagent system

***BORRAR
**** END BORRAR

Number of Jason eJason
Agents Execute Time (magnitude) Execution Time (milliseconds)

10 milliseconds 2

100 milliseconds 46

1000 seconds 181

10000 minutes 1916

100000 not measurable 18674

500000 not measurable 97086

800000 not measurable 165522

Table 2. Execution times for the counter multiagent system

The results indicate that the multiagent systems generated by eJason scale
to some hundreds of thousands of agents with an average execution time of a
few seconds. Regarding the multiagents systems generated by Java-based Jason,
we can see that they required more time to execute (the exact time quantities
could not be precisely measured) and that it was not possible to increase the
number of agents over a few thousands (in the cases labeled as not measurable
a java.lang.OutOfMemoryError exception was raised).

Clearly these are only preliminary findings as more thorough benchmarking
is needed.

5 Conclusions and Future Work

In this paper we have described a prototype implementation of eJason, an im-
plementation of Jason, an agent-oriented programming language, in the Erlang
concurrent functional programming language. The implementation was rather
straightforward due to the similarities of Jason and Erlang. eJason is able to
generate Erlang code for a significant subset of Jason. Early results are promis-
ing, as the multiagent systems running under the Erlang runtime system can

Number of Jason eJason
Agents Execute Time (magnitude) Execution Time (milliseconds)

10 milliseconds 1

100 milliseconds 15

1000 seconds 143

10000 minutes 1550

100000 not measurable 154415

300000 not measurable 484371

Table 3. Execution times for the greetings multiagent system

make use of the Erlang lightweight processes to compose systems of thousands of
agents, where the process generation, scheduling, and communication introduce
a negligible overhead. We also describe and motivate some of the implementation
decisions taken during the design and implementation phases, such as e.g. the
use of the ERESYE tool during an early stage and its later replacement.

Clearly, the similarities between the capabilities of agents and the Erlang
processes are many, with the exception of the support for programming rational
reasoning in Jason. We believe that the existence of eJason can help attract Er-
lang programmers to the MAS community, by providing them a convenient and
largely familiar platform in which to program rational agents, while being able
to implement the rest (adapting interpreter meta behaviour, and actuators for
the environment) in Erlang itself. Moreover we believe that the MAS community
can benefit from having access to the efficient concurrency and distribution ca-
pabilities of Erlang, while maintaining backward compatibility with legacy code,
and without the need to develop a new agent-based language.

Clearly, as eJason is still a prototype, there are numerous areas for future
work and improvement. The subset of Jason implemented at the moment is quite
small; it is, for example, necessary to add support for belief annotations and plan
labeling. Moreover, we plan to add support in eJason for different distributed
agent architectures. An essential item for near future work is the implementation
of a means for agents to act on their environment. We intend to make eJason
agents capable to cause changes in their environment using actions programmed
either in Java or Erlang, i.e., there should be no need to rewrite the large body
of existing Java code for Jason environment handling. Besides, we expect to be
able to use the agent inspection mechanisms already implemented in e.g. JEdit.

Another item for future work includes prototyping extensions to Jason; we
believe that eJason is a good platform on which to perform such experiments. Fi-
nally we also intend to experiment with model checking, applied on the resulting
Erlang code, to verify Jason multiagent systems.

References

1. Foundation for Intelligent Physical Agents, Agent Communication Language.
http://www.fipa.org/specs/fipa00061/SC00061G.html.

2. Simple Agent Communication Infrastructure. See: http://www.lti.pcs.usp.br/saci/.
3. Joe Armstrong. Programming Erlang: Software for a concurrent world). The

Pragmatic Bookshelf, 2007.
4. Joe Armstrong, Robert Virding, and Mike Williams. Use of Prolog for developing

a new programming language. In Proc. of the international conference on Practical
Application of Prolog, 1992.

5. Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi. JADE
- a Java agent development framework. In Rafael H. Bordini, Mehdi Dastani,
Jürgen Dix, and Amal El Fallah-Seghrouchni, editors, Multi-Agent Programming,
volume 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations,
pages 125–147. Springer, 2005.

6. Fabio L. Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing Multi-
Agent Systems with JADE (Wiley Series in Agent Technology). Wiley, April 2007.

7. R. Bordini and J. Hübner. Bdi agent programming in agentspeak using jason.
Computational logic in multi-agent systems, pages 143–164, 2006.

8. Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge. Ver-
ifying multi-agent programs by model checking. Journal of Autonomous Agents
and Multi-Agent Systems, 12:2006, 2006.

9. Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hübner. Programming
Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technol-
ogy). John Wiley & Sons, 2007.

10. F. Cesarini and S. Thompson. Erlang Programming. O’Reilly Media, 2009.
11. J.F. Hübner. Um modelo de reorganização de sistemas multiagentes [In Por-

tuguese]. PhD thesis, Universidade de São Paulo, Escola Politécnica, Brazil, 2003.
12. P. D. O’Brien and R. C. Nicol. FIPA - Towards a Standard for Software Agents.

BT Technology Journal, 16:51–59, July 1998.
13. Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable

language. In Walter Van de Velde and John W. Perram, editors, Agents Breaking
Away, volume 1038 of LNCS, pages 42–55. Springer, 1996. 7th European Work-
shop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96),
Eindhoven, The Netherlands, 22-25 January 1996, Proceedings.

14. Anand S. Rao and Michael P. Georgeff. BDI agents: From theory to practice. In In
Proceedings of the first Interntional Conference on Multi-Agent Systems (ICMAS-
95, pages 312–319, 1995.

15. Antonella Di Stefano, Francesca Gangemi, and Corrado Santoro. ERESYE: arti-
ficial intelligence in erlang programs. In Konstantinos F. Sagonas and Joe Arm-
strong, editors, Erlang Workshop, pages 62–71. ACM, 2005.

16. M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. Knowl-
edge engineering review, 10(2):115–152, 1995.

17. Michael Wooldridge. Reasoning about rational agents. MIT Press, 2000.

