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Abstract—Safety becomes a primordial assessment in safety-
related systems where human lives can be somehow put in risk,
needing to comply with safety requirements defined by industry
standards such as IEC 61508, ISO 26262 or DO-178C. Safety
contracts are useful to specify these requirements (as assumptions
and guarantees), thus assuring an expected level of confidence.
To verify the safety requirements is measured to represent more
than a half of the overall system development costs. In this
paper, we propose a model-based verification that addresses safety
verification from the early beginning of system development, thus
saving costs. Namely, we use UML for system design and Object
Constraint Language (OCL) for specifying safety contracts, while
its verification is carried out using Petri nets. As case study,
we assess the safety of an embedded system that models a fire
prevention system in a hospital building.

I. INTRODUCTION

Verification of safety properties during system development
usually induces overruns in the system development budget.
For instance, verification has been quantified as representing
more than a half of the overall costs in the avionics software
domain [1]. A safety assessment becomes a primordial task
when dealing with safety-related systems, such as industrial
equipment, road vehicles or avionics. In these domains, safety
requirements are usually specified by industrial standards, such
as IEC 61508 [2], ISO 26262 [3] or DO-178C [4].

A (software) contract is commonly used to specify the
relation between system artifacts (or components), expressing
the pre- and post-conditions of a system component [5]. A
safety contract is a similar idea but instead of having pre(post)-
conditions, it contains assumptions and guarantees assuring a
certain level of confidence (integrity) of such a component [6].
Thus, safety contracts can be used to specify safety standard
requirements in the design phase, as it is stated in [6]–[8].

Bringing safety contracts specification in design phase
enables its early verification, thus detecting potential problems
in earlier development phases, and saving overruns normally
induced by later verification [1]. Formal models are a good
framework to verify and validate safety requirements [9].
However, formal specification is usually ignored by engi-
neers [10] that rely their confidence on graphical descriptions
instead of formal specification. In this sense, the Unified Mod-
elling Language (UML) [11], standard de-facto as modelling
language, provides an unified understanding and insight in
system and software design. Safety specification in UML has
been explored in the research community using the Object
Constraint Language (OCL) [12] (a standard UML extension
to specify constraints in the UML models), such as the works

in [5], [7], [8], [13]. Other works [14], [15] use specific UML
profiles (a UML extension in terms of stereotypes and tags),
such as SysML and OMEGA, to express safety or correctness
contracts in a UML model system. These contracts are usually
verified by model-checking techniques, such as ATL [13], [16],
or Timed Input/Output Automata [14]. Safety specification and
analysis has also been explored using model-based approaches
such as AADL [17], [18].

In this paper, we mix both approaches of OCL and UML
profiles. Namely, we explore the idea of specifying the safety
contracts (assumptions, guarantees) by means of OCL in UML
models enriched with the MARTE [19] profile. This profile
is used to specify the performance system information. We
consider the UML Sequence Diagrams (UML-SD) and UML
State-Machine diagrams (UML-SM) to model the dynamic part
of the system, while the UML Class Diagram (UML-CD) for
the static one. Then, these contracts are analysed using Petri
nets [20]. As Lutz established in [21], the integration between
informal and formal methods can enhance safety analysis. We
assess the safety in a high safety-critical system (namely, a fire
prevention system in a hospital building) throughout the paper
to explain our approach.

The outline of this paper is as follows. Section II gives
some background. Section III is devoted to the specification
of safety contracts in OCL and its verification using Petri nets.
Finally, Section IV concludes the paper.

II. BACKGROUND

UML is a semi-formal modelling language commonly used
for systems and software specification that can be tailored for
specific domains by profiling [22]. A UML profile defines
an extension of UML, in terms of stereotypes (concepts in
the target domain) and tagged values (the attributes of the
stereotypes). For instance, the UML Profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE [19])
provides an analysis framework called Quantitative Analysis
Model (GQAM) that enables performance specification in
UML models. In this paper, we use the gaStep stereotype
(and the hostDemand tagged value) of MARTE to indicate
the duration of activities in a UML model.

However, a UML design annotated with MARTE is not
suitable for a performance evaluation or model-checking. In
this sense, some model transformation is needed. In this work,
we use the approach in [23] to obtain a formal model (namely,
a Generalized Stochastic Petri Net (GSPN) [24]) suitable for
quantitative and qualitative evaluation.
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Figure 1. (a) UML Class diagram, (b) UML Sequence Diagram of the example and (c) its GSPN representation.

A GSPN is a graphical and mathematical formalism used
for the modelling of concurrent and distributed systems. For
the sake of space, we refer the reader to [24] for a gentle intro-
duction to GSPN. Once a GSPN is obtained from an annotated
UML model, it can be used for performance analysis and for
qualitative analysis. In this paper, we use the GreatSPN [25]
tool to compute the probability of (eventually) reaching a safe
state represented as a place being (eventually) marked. This
model enables also performance evaluation, and we aim at
exploring it as future work.

III. SAFETY CONTRACTS SPECIFICATION AND

VERIFICATION

A. Safety Contracts Specification

Recall that safety contracts define safety constraints (or
assumptions) and guarantees in the context of a system artifact,
guaranteeing its functional properties and a certain level of
integrity [6]. In this work, we explore the idea of specifying
safety constraints and guarantees (forming a safety contract
fragment, SCF [6]) of artifact components using OCL invari-
ants within UML models. In this paper, we restrict the logic
of SCF assumptions to AND and OR.



Let S = 〈C,G〉 be a SCF [6], where C = C+
⋃
C∗ is

the superset of disjoint sets C+, C∗ of OR and AND safety
constraints, respectively, and G is a guarantee. Recall that
OCL is an extension of UML to express constraints into UML
designs. Therefore, the question we raise here is: is there any
easy way to translate a SCF , usually expressed in text form,
to an OCL constraint in the context of a UML model?. In
this paper, we propose to express a SCF of a system with
information extracted from the UML Class Diagram (UML-
CD) of the system, thus making easier the construction of
OCLs.

Running Example. Hospital buildings require some of the
most demanding facilities with a very strict building regulation.
A Building Management System (BMS) controls most of these
facilities, such as air conditioner, lights and elevators, among
others. Figure 1(a) depicts a BMS of a hospital supervising
and coordinating the interaction between several subsystems.
In addition, a BMS coordinates the interaction between these
subsystems and checks their functionality. The most safety-
critical subsystem is the fire alarm system, since human lives
depend on it. The fire alarm system is located at the Fire Alarm
Control Panel (FACP), which communicates with BMS via a
Gateway. A FACP is in charge of fire detection of a building
area that are divided in sectors. Each sector is composed of
a set of environmental detectors, fire doors, lockgates and
ventilation system fans.

Consider now the following safety contracts in the context
of the running example: 1.- When a fire is positively detected
in some sector, eventually the system reaches emergency state;
and 2.- When a fire is detected in a sector s, the lock gates of
s are eventually closed.

Attending to the UML-CD in Figure 1(a), these safety
contracts can be respectively defined as:

S1 =〈{FACP.getF ireDetected()}, {BMS.getState() = EMERGENCY }〉

S2 =〈{FACP.getF ireDetected()

∧ Lockgate.getSector() = Lockgate.sector.fcp.getSectorFire()},

{Lockgate.getState() = CLOSED}〉

Let us describe now how these safety contracts can be
expressed in terms of OCLs. Note that a SCF S = 〈C,G〉 will
be defined in system level (i.e., it interrelates several classes),
but OCL is defined in a concrete class. Thus, we need to find
the more suitable context for S when expressed in OCL. Let us
assume that G always contains an equation relating some class
attribute that is private, only accessible through setters and
getters class methods, being compared to some value. Under
these assumptions, the setters class methods become the more
suitable context. Thus, a SCF S = 〈C,G〉 will be transformed
to an OCL invariant in such a context. Following the running
example, S1,S2 can be therefore mapped to the OCL rules
listed in Code 1. As it can be seen, the transformation rule
from a SCF to a OCL is intuitive.

OCL invariants are useful to state conditions that must
always be met by all instances of a context type, as the
SCF does. This transformation step can be easily automated
by navigating through the UML-CD. However, OCL does
not take into account dynamic or timing behaviour of UML
models. This drawback has been overcome in the literature
with an extension of OCL [26]. Here, we propose to use

Code 1. OCL of safety contract S1 (above) and S2 (below).
context BMS::setState(state: BMSState): void

inv: gw.facp.getFireDetected() implies state = EMERGENCY

context Lockgate::setState(newState: LockgateState): void

inv: gw.facp.getFireDetected() and

self.getSector() = self.sect.fcp.getSectorFire()

implies newState = CLOSED

Normal Emergency

setState(N������

setState(EMERGENCY)

Figure 2. UML State-Machine of Building Management System (BMS).

MARTE annotations for the timing behaviour of UML models.
An annotated UML model can be then transformed to Petri
nets to verify and validate the OCL constraints defined in
the dynamic UML models. The automation of the whole
model transformation process and the model-checking of OCL
invariants, as it is described in the sequel, are currently our
ongoing work.

B. Safety Contracts Verification

We use a subset of the UML behavioural models, namely
the UML Sequence Diagram (UML-SD) and the UML State-
Machine diagram (UML-SM), to express the dynamics of the
system. The UML-SD of the running example is depicted
in Figure 1(b). The FACP needs to receive events from two
different fire detectors distributed in the same sector to raise a
fire alarm, changing its status to FireDetected and keeping
note of the suspected sector. Otherwise, the FACP notifies
the failure of the detector(s) to the BMS. Then, the FACP
closes firewall doors, air lockgates and halts the air fan system,
changing their corresponding states. Finally, the FACP notifies
to the BMS that a fire has been detected through the gateway.
Then, the BMS stops all the associated subsystems and sends
a GSM alarm to the Fire Department. Lastly, the BMS updates
its status to Emergency state until an administrator resets the
entire system. The transition between Emergency and Normal
state is depicted by the UML-SM in Figure 2. The rest
of UML-SM of state changes (firewall doors, air lockgates
and air fan system) are similar to this one. Recall that the
OCL of the safety contract S1 (in Code 1) is associated to
BMS::setState.

The UML-SD and the UML-SM (red-dash boxes) of
Figures 1(b) and 2 can be translated to a combined GSPN,
depicted in Figure 1(c), as proposed in [23]. We have added
a place, padmin (dark grey), which models the deactivation
of emergency state, usually performed by some building
administrator. We can now use the GreatSPN tool [25] to
validate the model. Recall that we are interested in model-
checking the OCL constraints defined in Code 1. In terms
of Petri nets, they are equivalent to compute the probability
of the following conditions in the GSPN: (S1) the places
pfireDetFACP and pemergencyBMS are marked; and (S2) the
places pfireDetFACP and pclosedLock are marked (we assume
that the second safety constraint of the S2 is always fulfilled).
These places have been depicted in light grey in Figure 1(c).
The computation of these conditions with GreatSPN shows
that they are fulfilled.



IV. CONCLUSIONS

An early verification of safety during a safety-critical
system design helps to detect potential problems that contradict
the safety requirements. A safety requirement can be specified
with a safety contract, which defines the assumptions and
guarantees of an artifact, assuring its level of confidence.
Safety contracts are usually expressed in informal ways, such
as descriptive text. In this paper, we propose to express them
using a predefined syntax to make a transformation to Object
Constraint Language (OCL) rules easier. These rules can be
added to the UML system diagrams, thus embedding all safety-
related information in a single picture. Moreover, these UML
diagrams can also incorporate profile annotations (e.g. MARTE
profile) to enrich their expressiveness. For instance, to indicate
the duration of activities, probabilities of execution paths or
number of resources in the model.

In this paper, we propose to transform a UML model,
with MARTE annotations and OCL-based safety contracts,
to a formal model, namely Generalised Stochastic Petri Nets
(GSPN), thus enabling a qualitative and quantitative analysis
during design phase. This early detection can help the engi-
neers during system design to check the fulfilment of safety
requirements, thus assuring unsafe states are not reached in
the system. Let us remark that final effort must be focused
on assuring that system implementation corresponds with the
system model, because otherwise implementation may lead the
system to an unsafe state.

We believe the integration of informal and different formal
models can help in system safety assessment during design
phase, and it deserves further research as it was already
stated in [21]. As future work, we aim at formalising the
model transformation of our approach, to automatise the model
transformation steps and to perform an extensive evaluation of
our approach. We also plan to explore the transformation of
OCL-based safety contracts to Othello [27]. Othello enables
a Linear-time Temporal Logic checking, then providing a
different system analysis.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agreement
no 295373 (project nSafeCer) and from National funding. Part
of this work was done while Dr. Rodrı́guez was a visiting
researcher at Mälardalen University, Västerås (Sweden).
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