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Abstract. The verification of safety becomes crucial in critical systems
where human lives depend on the correct functioning of such systems.
Formal methods have often been advocated as necessary to ensure the
reliability of software systems, albeit with a considerable effort. In any
case, such an effort is cost-effective when verifying safety-critical sys-
tems. Safety requirements are usually expressed using safety contracts,
in terms of assumptions and guarantees. To facilitate the adoption of for-
mal methods in the safety-critical software industry, we propose the use
of well-known modelling languages, such as UML, to model a software
system, and the use of OCL to express the system safety contracts within
UML. A UML model enriched with OCL constraints is then transformed
to a Petri net model that enables to formally verify such safety contracts.
We apply our approach to an industrial case study that models a train
doors controller in charge of the opening and closing of train doors. Our
approach allows to perform an early safety verification, which increases
the confidence of software engineers while designing the system.
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1 Introduction

With the growing adoption of software in safety-critical systems, safety assess-
ment has become a crucial software engineering task as it has been recognised by
several initiatives, for instance, the ARTEMIS JU nSafeCer project [1]. More-
over, software system safety engineering must be incorporated early in the soft-
ware design process and be part of the development and operational lifecycle of
the system.

Contract-based design is a popular approach for the design of complex
component-based systems where safety properties are difficult to guarantee [2,3].
A key benefit of using contracts is that they follow the principle of separation
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of concerns [4], separating assumptions that the environment of a component
obeys from what a component guarantees under such an environment.

The Unified Modelling Language (UML) [5] is widely adopted to model the
design of a system. By providing the means to include safety requirements in
UML, the integration of safety activities in the normal software lifecycle is facili-
tated. For safety specification, two approaches have been proposed: (i) to use the
Object Constraint Language (OCL) [6] which is a well-known language among
modelisation engineering community, or (ii) to use specific UML profiles [7]. In
previous work [8], we have proposed a technique that combines both approaches.
In this paper, in contrast, we focus on the representation of safety contracts as
OCL constraints.

For the verification of safety contracts, several formal verification techniques
have been proposed, for instance [3], which uses model checking. Our proposal is
to translate UML to Petri Nets and perform the analysis by computing probabil-
ities using the GreatSPN tool [9]. By combining standard engineering practice,
i.e., UML, with formal verification techniques, i.e. Petri nets, we provide a rig-
orous safety analysis available for software engineers.

Our approach has been used to verify a set of safety contracts on an industrial
case study where the UML model of a train doors controller has been analysed.
The train doors controller is the component in charge of opening and closing train
doors. The CAF Power & Automation company' develops these train compo-
nents. Thus, components like the train doors controller are modelled in UML
previous to their implementation.

In summary, the contributions of the work presented in this paper are the
following:

— a formal definition of the proposed transformation of a safety contract into an
OCL constraint.

— an (informal) transformation of OCL constraints into Petri nets by means of
the case-study.

— a (partly automatic/partly manual) translation of the case-study UML dia-
grams annotated with OCL to Petri Nets.

— the safety analysis of the case-sudy.

The rest of the paper contains the following sections. Firstly, Sect. 2 outlines
the basic concepts. Section3 details the train doors controller. Then, Sect.4
describes a proposal of safety contract specification in OCL, and its transforma-
tion to Petri nets. It also introduces the safety contracts of the case study, which
are analysed in Sect.5. Finally, Sect.6 covers related work and Sect.7 states
some conclusions.

2 Previous Concepts

UML [5,10] is a semi formal general-purpose visual modelling language used
for specifying software systems. UML can be tailored for specific purposes by

! http://www.cafpower.com/es/.
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profiling. A UML profile is a UML extension to enrich UML model semantics
defined in terms of: stereotypes (concepts in the target domain), tagged values
(attributes of the stereotypes) and constraints (formulae that apply to stereo-
types and UML elements to extend their semantics). Numerous UML profiles can
be found in the literature targeting different specific domains and non-functional
properties system analysis (e.g., performance, dependability, security, etc.). For
instance, MARTE (Modeling and Analysis of Real-Time and Embedded sys-
tems) profile [11] provides support for schedulability and performance analysis in
real-time and embedded systems, while DAM (Dependability Analysis and Mod-
elling) profile [12] supports dependability analysis and SecAM (Security Analysis
and Modelling) profile [13] focuses on security aspects. In this paper, we use the
MARTE profile to indicate the duration of activities in a UML model. The stereo-
type provided by MARTE to this goal is gaStep (hostDemand tagged value),
within the MARTE analysis framework called Generic Quantitative Analysis
Model (GQAM).

Another extension to enrich UML semantics is the Object Constraint Lan-
guage (OCL) [6]. OCL is a pure expression language for describing constraints
that apply to UML models. When an OCL expression is evaluated, it simply
returns a value without further effects in the model. OCL allows to specify
invariants (on classes and types), to describe pre- and post-conditions (on oper-
ations and methods), guards or either constraints (on operations). Note that
although an OCL expression can be used to specify a state change (e.g., by
means of a post-condition), the state of the system will never effectively change
because of the evaluation of an OCL expression (that is, OCL only provides
textual description).

Unfortunately, a UML model annotated with OCL and a profile that provides
support for non-functional properties specification is not a suitable model to
quantitatively or qualitatively evaluate such properties. For this aim, formal
methods may help. In this paper, we consider Petri nets [14] as the formal
modelling language. More precisely, we translate the annotated UML diagrams
into Generalized Stochastic Petri Nets (GSPNs [15]), following the guidelines
proposed in [16].

A GSPN is a graphical and mathematical formalism used for the modelling of
concurrent and distributed systems. A gentle introduction to GSPN can be found
in [15]. Informally, a GSPN is a bipartite graph of places and transitions joined
by arcs (graphically represented by circles, bars and arrows respectively). They
describe the flow of the system with concurrency and synchronous capabilities.
Places can hold tokens, which represent system resources or system workload,
while transitions represent system activities. The firing of transitions represents a
change in the system state. When a transition fires, tokens from input places are
placed in output places. A GSPN distinguishes two kind of transitions: immedi-
ate transitions, which fire at zero time (i.e. its firing does not consume any time);
and timed transitions, which may follow different firing distributions such as uni-
form, deterministic or exponential distributions. In this paper, we consider timed
transitions with exponentially distributed random firings. Immediate transitions,
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depicted as thin black bars, can have also associated probabilities to represent
the system routing alternatives. Exponential transitions, drawn as white boxes,
account for the time that takes an activity to complete.

3 Case Study: Train Doors Controller

As a case study in this paper, we consider the door control management per-
formed by a Train Control and Monitoring System (TCMS). The TCMS is a
complex distributed (along the train) system that controls many subsystems. It
contains several Input/Output (I0) modules that gather data and send it to a
PLC (Programmable Logic Controller) via a communication bus. Each of the
IO modules has a CPU, digital/analogical inputs and outputs and is connected
to the communication bus. The logic of the TCMS is performed in the PLC.

The system level requirements concerning the operation of opening and clos-
ing of doors are satisfied by the following components:

— the TCMS component that decides whether to enable or disable the doors. Doors
must be enabled before they can be opened and disabled before closing;

— the Door component that effectively controls the opening or closing of a door;

— the Traction component that controls the train movement; and

— the MVB (Multifunction Vehicle Bus) component that communicates the com-
ponents among them.

Figure 1 shows the composite diagram of the system. The subcomponents of
the Door component, i.e., the controller (in the following we will refer to this
component as the Door Controller), the limit sensors, the obstacle sensor, and
a button for opening doors, are also depicted in the diagram.

In this paper, we focus on the control of doors. The case study presented here
concerns a real system where some simplifications have been made. Namely, the
interaction with other components of the TCMS and the dependencies with other
subcomponents, and their communication has been omitted. Besides, concerning
the closing of doors, in the original design there were different versions of the
existence of obstacles, while here we have chosen only one of them.

In the following, we present the UML Sequence Diagrams (UML-SD) for the
opening and closing of doors. Figure 2(a) depicts the UML-SD for opening the
door. When a train driver requests the opening of doors, first the TCMS checks
whether the train status is suitable for opening the doors without risk, checking
that the train is really stopped before sending the “enable door” order to the
Door Controller component. Thus, the TCMS system sends the “enable door”
command request to the Door Controller component only when the train is in
a safe condition (e.g. speed is zero) to perform the request properly and without
risk for passengers. The Door Controller component opens the door only if it
is enabled, i.e., it has received the “enable door” order from the TCMS and if
some passenger has request the opening of a door (“open request”) using any of
the buttons (interior or exterior) of the door.
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The door closing operation is depicted in Fig.2(b). When the driver com-
mands doors closing, the TCMS system sends the “not enable door” command
to the Door component. The Door component disables the door and closes the
door if it is safe, i.e. there is no detected obstacle. When there is an obstacle,
the door is opened and closed once such an obstacle has disappeared.

In order to enable an incremental certification process and to demonstrate the
benefits of reusability, this case study adopts the methodology of contract-based
design. In contract-based design each safety critical component of the system and
non-critical components are seen as separate components [17] which interact with
their environment. As we formally explain in the next section, we associate to
each safety critical component C a safety contract, i.e. an abstract specification
in the form of a tuple S¢ = (A, G), where A represents the assumptions on the
environment of the component, and G represents what the component guarantees
under these assumptions. A contract is intended to expose enough information
about the component, but not more than necessary. We say that a component
implements its contract if it satisfies the guarantees when the environment meets
the assumptions.

In the following section we introduce a framework for safety contract speci-
fication and the transformation to OCL constraints, which will be later used for
formal safety assessment using Petri nets.
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4 Specification of Safety Contracts as OCL
and Petri Nets

In a component-based system a contract defines the obligations to be met by a
certain component and its dependencies [18]. As it is claimed in [19], a safety
contract is similar to a (software) contract but instead of pre/post-conditions
contains assumptions and guarantees that endorse a certain level of integrity of
functional properties depending on the component’s environment.

In this paper, we adhere to the definition of a Safety Contract Fragment
(SCF) given in [19]. A SCF conforms a safety contract as a set of assumptions —
what it is expected to be met by the component’s environment — and a set of
guarantees, which specify the behaviour of a component under such an environ-
ment. In a previous work we have explored the idea of transforming an SCF to
an OCL invariant within UML models [8]. In this work, we revise and formalise
our model-based transformation approach. In the sequel, we formally define a
SCF and the transformation from an SCF to an OCL invariant.

Let us assume a system composed of a set of components that interact
between them. Let C = (Z,O) be a component of such a system having a set
Z of input ports and a set O of output ports. Let S¢ = (A, G) be a SCF [19]
defined over a component C, where A = AT | JA* is a superset of disjoint sets
AT, A* of OR and AND safety constraints, respectively, and G = G JG* is a
superset of disjoint sets G*,G* of OR and AND guarantees®. A safety contract
assumption A is a proposition that relates one or more of the input ports of a
component. Similarly, a safety contract guarantee G is a proposition that relates
one or more of the output ports of a component.

Recall that OCL is a UML extension to express constraints into UML models.
An OCL constraint is defined over a context that describes where such a con-
straint is acting. As it is introduced in Sect. 2, OCL defines different constructs,
such as inv to define invariants, which state conditions that must always be
met by all instances of a context type, pre to state a condition that must be
true when an operation starts its execution, or post to state a condition that
must be true when an operation ends its execution. In this paper, we consider
only OCL invariants. An OCL constraint can be formally defined as follows. Let
R = (X,V) be an OCL constraint defined over a context X’ and having an invari-
ant formula V = (Is,rs). An invariant formula is conformed by two propositions
ls,rs joined by a boolean or implies operator. Note that the right-hand side of
an invariant formula can be empty.

As it has been previously mentioned, an OCL constraint is defined over a
context that describes where such a constraint is acting. In the proposed trans-
lation, a SCF corresponds to an OCL constraint. Since a SCF is specified over
a component, it is reasonable to match the context of the corresponding OCL
constraint to such a component as well. Thus, a transformation from SCF to
OCL invariant can be straightforwardly defined as follows:

2 As in [8], we restrict the logic of SCF assumptions and guarantees to AND and OR
logic operators.
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Proposition 1. Let C be a component of a system on which a Safety Contract
Fragment § = (A,G) has been defined. Thus, an OCL R = (X,V) can be built
considering X =C and V = (A,G).

As it can be seen, the component C defines the context X of the OCL constraint,
while the content of such an OCL constraint (the invariant) is defined by the
assumptions and guarantees of the Safety Contract Fragment S defined on C.

Let us describe how our transformation approach works by means of the case
study described in Sect. 3. Consider the following safety requirements given by
the engineers designing the system:

SR1. The door opening is not enabled when the traction is on or the train speed
is distinct than zero.

SR2. The door must be closed but remains open when some obstacle has been
detected.

SR3. The door is closed when the door opening is enabled and the close event
is received.

The above safety requirements can be expressed in terms of Safety Con-
tract Fragments, considering the component-based system depicted in Fig. 1, as
follows:

- 81 = ((traction OR (tractionSpeed # 0)), (NOT enableOpening)), defined
on the TCMS component.

— Sy = (obstacle, door Status = opening). In this case, the component on which
this SCF is defined is DoorController.

— 83 = ((enableOpening AND close), doorStatus = isClosed). This SCF is
defined on the component Door.

Note that the assumptions and guarantees of the former SCF's relate, respec-
tively, input and output ports of the components where they are defined.

Following the Proposition (1), the above SCF's can be straightforwardly con-
verted to OCL invariants as it is listed in Code 1.1. Here, the task of a require-
ment engineer is to interpret the safety requirements in terms of SFC. This task
is accomplished by matching the safety requirements to the UML component-
based design. This task is surely a difficult one but once this task has been
performed the transformation to OCL invariants becomes trivial. Recall that
these OCL invariants that express safety requirements allow to perform safety
assessment in a system, as shown in the following section.

Code 1.1. OCL constraints obtained from SCF transformation.

context TCMS_SR1
inv: (traction or tractionSpeed <> 0)
implies not enableOpening

context DoorController_.SR2
inv: obstacle
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implies (doorStatus = opening)

context Door_SR3
inv: (enableOpening and close)
implies doorStatus = isClosed

Let us show how this OCL invariants can be transformed to Petri nets. Note
that we use only the implies binary operator (—) within the OCL invariant.
Recall that in classical logic the implies binary operator can be transformed to
an equivalent form using or and not operators, i.e., p — ¢ is logically equivalent
to —p V q. If we consider each proposition of OCL invariant as Petri net places,
and transform the invariant to its logically equivalent, we obtain the Petri net
models depicted in Fig. 3 for each safety contracts considered for the case under
study?®.

The sink places (without output transitions) of each Petri net representa-
tion depicted in Fig.3(a), (b) and (c¢) allow us to compute the probability of
having a marking in such a place (post-condition) greater than zero, indicating
that preconditions are fulfilled. Note that this solution does not provide us with
information regarding the event order or any other kind of temporal informa-
tion. This is an interesting issue that deserves further study, as discussed in the
following section.

5 Safety Analysis

We describe the safety analysis we propose by means of the case study. In order to
analyse the safety scenarios, i.e. the opening and closing of doors, the correspond-
ing UML-SD diagrams annotated with OCL, respectively depicted in Fig.2(a)
and (b), are translated into GSPNs using the ArgoSPE tool [20] according to
the algorithms proposed in [16]. The resulting GSPN is shown in Fig.4. The
left-hand side of the figure represents the door opening and the left-hand side,
the door closing. Even though part of the translation is done automatically using
the ArgoSPE tool some simple manual modifications to the GSPN are needed to
represent OCL constraints. In particular, modifying this GSPN with the Great-
SPN [9] tool, we have manually modelled the obstacle detection event as a place,
named p_Obstacle, since it has associated an OCL constraint, as we explain in
the following paragraph. Moreover, we have modelled the Traction operation
without considering human interaction, thus, our system automatically speeds
up after closing the door and it brakes when the traction receives a traction stop
signal.

Since the OCL constraints are interpreted in a GSPN, they are equivalent
to compute the probability of a condition. Each condition is represented by a
place of the GSPN. For instance, the place p_-door OPFEN represents the status
in which a door is open and the place p_switch_.ON represents when the door
button is switched on. The probability of (eventually) reaching a condition is

3 1. Sljivo, personal communication, April 1, 2014.



110 E. Gémez-Martinez et al.
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Fig. 3. Petri net representation of OCL constraints of the case study.

represented as a place being (eventually) marked. Note that a place eventually
marked does not necessary mean a place eventually always marked.

The Petri nets representing the safety contracts, depicted in Fig.3 can now
be composed with the Petri net of the system depicted in Fig. 4. Both nets are
merged using the transitions that create tokens in places representing the same
issue, i.e., places NOTtraction and tractionSpeedZero in Fig.3 represent the
same state than p_traction_.on FALSE and p_traction_.STOP, respectively, in
Fig. 4. The connection to places representing safety contracts have been high-
lighted (grey colour) in Fig.4.

Finally, we use the GreatSPN tool [9] to compute the steady-state probability
of places SRy, SR, SR3 having a marking greater than zero (i.e. the place is
eventually marked), which will indicate that the OCL constraints TCMS_SR1,
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DoorController_SR2 and Door_SR3 are fulfilled. A simulation of the net with
GreatSPN returns a positive value for these probabilities, thus safety contracts
are fulfilled in the system model.

Although the UML models that we use are enriched with MARTE profile
annotations, we do not currently use such an information for the safety analysis
even though it can be necessary for verifying some safety properties [18]. For this
aim, we may use OCL/RT [21], an extension of native OCL to specify time issues,
in conjunction with the MARTE profile, and translate such an information into
the GSPN models. We consider this an interesting issue which deserves further
study.

6 Related Work

Many formalisms have been proposed to express contracts, such as the Require-
ments Specification Language (RSL) [2], the Othello language [3], which is based
on Linear Temporal Logic, or Modal Transmission Systems [22]. Unlike OCL,
these languages are more expressive but OCL is a well-known language among
modelisation engineering community. However, a major drawback of these for-
malisms is that the requirement engineers need to learn a new formalism each
time they need to write contracts in a specific domain. In contrast, OCL is a
well-known language in industry. Besides, to the best of our knowledge some of
the proposed formalisms lack the means to verify that a component model fulfils
their contracts [2,22], or only focus on verification of functional properties [3].
In this work, we have shown that OCL contracts can be used to perform safety
assessment by translating the UML models to Petri nets. Although currently we
also focus on functional properties, the use of UML profiles enables to analyse
other non-functional properties that can affect to safety, such as performance,
dependability or security.

Representing safety contracts using OCL has been previously proposed in [18].
The novelty of our work is that we propose a translation from safety contracts
in the form of assumptions and guarantees to OCL. Our work complements the
work of OTHELLO language [3] and OCRA [23]. In particular, the analysis
of non-functional properties can complement the work on verifying functional
properties in OCRA [23]. Other work similar to ours is [24], where UML/OCL is
used to express system invariants, transformed to Place/Transition nets (with-
out time) and to LTL logic for the verification. In contrast to their work, we
formalise the safety contracts, and, moreover, our Petri net models capture the
timing information.

Some works refine safety contract assumptions in strong and weak assump-
tions [2,25]. Strong assumptions specify what always is fulfilled by the
environment, context-independently, while weak assumptions provide additional
information about the context where a component could operate (e.g.,
the expected timing between input signals). In this paper, we consider the defi-
nition of safety contract as given in [19], having only strong assumptions. In our
case, the weak assumptions can be implicitly described by UML annotations.
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As future work, we aim at extending our safety contract specification to explic-
itly express timing issues.

7 Conclusions and Future Work

Safety assessment is a crucial software engineering activity in critical systems,
since people integrity, and even their lives may depend on it. In the last years,
contract-based design has emerged as a promising approach for designing safe
systems, where contracts describe the expected behaviour of a component.

In this paper, we propose a specification of safety contracts as assumptions
and guarantees based on the input and output ports of a component, and then
translate these contracts to OCL in the UML context. Finally, these UML models
are transformed into a formal model, in terms of Generalized Stochastic Petri
nets (GSPN), to verify that safety contracts are fulfilled. As a case study, we have
analysed three safety contracts on a train door controller designed by CAF Power
& Automation. The most challenging tasks regarding the case study were the
formalisation of safety contracts and the translation of UML models to GSPN.
In the latter, although some automation exists, the complexity of some aspects
of the case study (for instance, the existence of obstacles) required a manual
translation to GSPN.

The specification of safety contracts in terms of OCL within UML models
allows to recap safety requirements and system description in a single picture.
Besides, the adoption of formal models, obtained after the transformation of
UML/OCL models to Petri nets, are facilitated as UML/OCL are languages
familiar to the industry engineers. The result is that we have sacrificed expres-
sion power to keep safety contracts expressed with OCL easier to understand
than contracts written in more expressive languages like, for instance, Linear
Temporal Logic (LTL). This issue can be overcome in the future by extending
the native OCL with more operators.

As for further work, our aim is to keep on formalising more complex contracts
expressed in OCL, as well as exploring how to provide the event order or any
other kind of temporal information (or other non-functional property). Improv-
ing the automatic translation from the UML models to GSPN deserves also
further study. In addition, we also plan to propose a well-established methodol-
ogy to assess safety and to develop a tool that implements this methodology.
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