
1

Languages for Safety-Certification Related
Properties

Clara Benac Earle and Elena Gómez-Martı́nez∗, Stefano Tonetta†, Stefano Puri and Silvia Mazzini‡, Jean-Louis
Gilbert and Olivier Hachet§, Ramon Serna Oliver¶, Cecilia Ekelin∥, Katiusca Zedda∗∗

∗Babel Group. Universidad Politécnica de Madrid, Spain Email: {cbenac,egomez}@babel.ls.fi.upm.es
†Fondazione Bruno Kessler, Italy Email:tonettas@fbk.eu

‡Intecs SpA, Italy Email:{stefano.puri,silvia.mazzini}@intecs.eu
§Thales Communication, France Email:{jean-louis.gilbert,olivier.hachet}@thalesgroup.com

¶TTTech Computertechnik AG, Austria Email:ramon.serna@tttech.com
∥Volvo Technology, Sweden Email:cecilia.ekelin@volvo.com

∗∗Akhela srl, Italy Email:katiuscia.zedda@akhela.com

I. INTRODUCTION

The Safety Certification of Software-Intensive Systems
with Reusable Components project, in short SafeCer
(www.safecer.eu), is targeting increased efficiency and reduced
time-to-market by composable safety certification of safety-
relevant embedded systems. The industrial domains targeted
are within automotive and construction equipment, avionics,
and rail. Some of the companies involved are: Volvo Tech-
nology, Thales, TTTech, and Intecs among others. SafeCer
includes more than 30 partners in six different countries and
has a budget of e25.7 millions.

A primary objective is to provide support for system safety
arguments based on arguments and properties of system
components as well as to provide support for generation
of corresponding evidence in a similar compositional way.
By providing support for efficient reuse of certification and
stronger links between certification and development, compo-
nent reuse will be facilitated, and by providing support for
reuse across domains the amount of components available for
reuse will increase dramatically. The resulting efficiency and
reduced time to market will, together with increased quality
and reduced risk, increase competitiveness and pave the way
for a cross-domain market for software components qualified
for certification.

II. SYSTEM AND COMPONENTS’ PROPERTIES RELATED TO
SAFETY CERTIFICATION

Safety certification requires the production of a big amount
of evidence to convince a certifying authority that a system
is safe. In order to produce such evidence, the designer of
the system has to enrich the system description with SP, i.e.
with properties that are relevant to the demonstration of the
system’s safety. In order to integrate the certification with the
development process, the modeling languages must support
the specification of these Safety Properties (SP for short).

The research leading to these results has received funding from the
ARTEMIS Joint Undertaking pSafeCer and nSafeCer, under grant agreement
no 269265 and no 295373, respectively, and from National funding.

In a component-based software system, where systems are
built by assembling existing components, it is beneficial if the
SP can be associated with individual components, allowing
it to be reused when the component is reused in a new
system. Then, it can be desirable to provide together with
the component some selected information about its internals,
without fully exposing all details.

Typically, a component only has a subset of the available
properties associated with it. These properties cover both
functional aspects and extra-functional aspects such as timing,
memory usage, error handling, etc. Informally, SPs represent
an abstraction of a particular functional or extra-functional
aspect of a component. Since the focus of the paper is on the
area of certification, we are primarily interested in properties
relevant to the activities for safety certification.

The left-hand column in Table I shows the classes of SP
considered in this survey. They have been identified from the
requirements provided by the industrial companies involved
in the SafeCer project. Below we give a summary of each of
these classes.

1) Types and value ranges: Value ranges give a crude
abstraction of the component behaviour, stating that the values
of a particular entity are always in the specified range.

2) Functional Pre/Post conditions: Traditionally, pre and
post conditions (and invariants) are used to formally ab-
stract the functional behaviour of a sequential program. In
a component-based context, they can be used to abstract the
functionality of a single invocation of a provided service or
method, or a single execution of a passive component.

3) Temporal contracts: As pre/post conditions, temporal
contracts structure the properties into assumptions, which are
the properties that the component expects to be satisfied by the
environment, and guarantees, which are the properties satisfied
by the component in response.

4) Valid interaction sequences: The static definitions of
component interfaces (e.g., interface signatures extended with
value ranges and pre/post conditions) can be complemented by
SPs that restrict the order in which the provided functionality
can be accessed. In addition to defining what is considered a
valid order of interaction, the SPs could also express timing



2

TABLE I
LANGUAGES COMPARISON WITH REGARDS TO SP

Property AADL CHESS EAST-ADL OCRA VERDE
Types and values ranges Yes Yes Yes Yes Yes
Functional pre/post conditions Partly Yes No Yes Yes
Temporal contracts No Partly No Yes No
Valid interaction sequences No Partly Yes Yes Yes
Memory usage Yes No Yes Partly Yes
Real-time properties Yes Yes Yes Yes Yes
Communication resource usage Yes No Yes Partly Yes
Compliance of code with a particular standard Partly Partly Partly No Partly
Failure propagation Yes Yes Yes Yes Yes
Behavioural model Yes Yes No Yes Yes
Safety integrity level Yes No Partly No Partly
Fault trees and FMEA tables No No No No No
Traces and sequences of subcomponent interaction Partly No Partly No Partly

constraints over the sequences.
5) Memory usage: Information about the memory require-

ments of a component, for example in terms of program
memory and static data memory, is needed to find a suitable
allocation of functionality to computational nodes. Moreover,
knowledge of the dynamic memory usage of components is
needed to argue about the absence of interference caused by
memory overflow.

6) Real-time properties: These are properties related to
the execution time of the system or the components or of
some operation. In hard real-time systems, where all deadlines
must be met, the crucial timing property is the Worst Case
Execution Time (WCET). In systems or subsystems with soft
or no deadlines, the focus is typically the average execution
time or the execution time distribution, allowing for analysis
of performance.

7) Communication resource usage: Similarly to other re-
sources, a component can specify its usage of communication
resources such as a communication bus. This can either be
specified in a simple form, e.g. bandwidth, or by a complex
dynamic model defining how resource usage varies as a result
of calls to the component.

8) Compliance of code with a particular standard: This
property represents a guarantee that the component complies
with a given standard.

9) Failure propagation: This SP includes: i) Error prop-
agation: it specifies how errors propagate from the input to
the output of components; ii) Fault tolerance: it specifies how
the system or component continues the operation also in the
presence of faults; and iii) FDIR: it specifies the component’s
ability to detect, identify and recover from faults.

10) Behavioural model: This property type covers a va-
riety of complex behavioural specifications, addressing func-
tional aspects, non-functional concerns like resource usage or
fault tolerance, or a combination of the two.

11) Safety Integrity level: A property denoting the safety
integrity level (SIL) or Automotive Safety Integrity Level
(ASIL) associated with the entity.

12) Fault trees, FMEA tables: A fault tree analysis (FTA)
is a representation of the logical relationships linking basic
causes (faults or failure events) to an undesirable high-level
event or failure. FMEA (Failure Modes and Effects Analysis)

is a technique to systematically analyse the severity and
probability of the different failures.

13) Traces and sequences of subcomponent interaction:
Traces and interaction sequences represent possible executions
of the sub-components of a composite component. They can be
produced by the analysis or specified by the user as scenario.

Note that FTA, FMEA tables, and traces are typically
generated from the models and not specified as properties.
This is the reason why in Table I it is set as not supported
even if there are tools for the generation of these SP.

III. LANGUAGES CONSIDERED FOR PROPERTIES RELATED
TO SAFETY CERTIFICATION

From the various existing languages for specifying SP, we
have been chosen temporal logics such as LTL and Othello,
and modelling languages such as CHESS, VERDE, AADL
and EAST-ADL. Our choice is based on the following reasons:
(i) they can express several of the SP of interest (see previous
section), (ii) there exist some verification and validation meth-
ods and tools for checking the fulfilment of the SP providing
further evidence to the safety argument and (iii) some of the
partners participating in the SafeCer project have extensive
experience using these languages for specifying SP.

There is no explicit support to describe compliance with
standards, however this can be stated as a requirement which
can be attached to a component. The fulfillment of the require-
ment can then be indicated by matching it with a verification
activity and outcome (e.g. also modelled in EAST-ADL). As
can be seen in Table I, AADL, VERDE, and EAST-ADL
are the most expressive of the considered meta-models and
languages for SP since the majority of the SP considered
can be expressed in them. Othello is also rather expressive,
while CHESS-ML focusses on real-time contracts and failure
propagation.

IV. CONCLUSIONS

In this paper, we survey the classes of properties that are
relevant to the safety certification of systems and a num-
ber of architecture and component-based modeling languages
detailing which properties are supported. This survey was
a fundamental starting point of the SafeCer project, which
targets compositional certification of safety-critical systems.


