Verification of Language Based Fault-Tolerance

Clara Benac Earleand LarsAke Fredlund-3

1 Computing Laboratory, University of Kent, England
2 LSIIS, Facultad de Informatica, Universidad Politeenite Madrid
3 Swedish Institute of Computer Science, Sweden

Abstract

In this paper we target the verification of fault tolerantexgp of distributed applications
written in the Erlang programming language. Erlang progreams mostly work with
ready-made language components. Our approach to veoficatifault tolerance is to
verify systems built using a central component of most Eyksaftware, a generic server
component with fault tolerance handling.

To verify such Erlang programs we automatically translagsrt into processes of
the uCRL process algebra, generate their state spaces, and usdeaahecker to de-
termine whether they satisfy correctness properties pedn they-calculus.

The key observation of this paper is that, due to the usagbesfet higher-level
design patterns, the state space generated from a Erlaggaprpeven with failures
occurring, is relatively small, and can be generated auticaily.

1 Introduction

As software based critical systems are now becoming wideplayed, it is a crucial
development task to analyse whether such systems wilhaithe inevitable faults (in
hardware, in network links, in software components) thauodHowever, this remains
very difficult. It is hard to develop realistic failure moddbr simulation and testing
(often the environment characteristics are not fully knpvamd to test and simulate
for all possible faults would be very time consuming. Consadly, here is an area
where there is a need for formal verification. But that tooasdh Most earlier work on
verifying fault-tolerance target a single applicationygmre ad-hoc, and do not provide
a reusable verification method. In this paper, instead, wpgse a verification method
based on model checking, that, since it addresses progravetoged using higher-
level design patterns which address fault-tolerance imetred way, can be reused
for a large set of such applications.

Erlang is a programming language developed at the Ericssmoration for im-
plementing telecommunication systems [1]. It providesracfional sub-language, en-
riched with constructs for dealing with side effects suclpaxess creation and inter—
process communication. Today many commercially availpideucts offered by Eric-
sson are at least partly programmed in Erlang. The softwlaseah products is typi-
cally organised into many, relatively small, source moduiehich at runtime execute

* The second author was supported by an ERCIM grant and a 8gaaisrnmental Grant from
the Ministerio de Educacion Y Ciencia, with reference SB2@195

as a dynamically varying number of processes operatingradlphand communicating
through asynchronous message passing. The highly contamd dynamic nature of
such software makes it particularly hard to debug and testthgrefore explore the
alternative of software verification based on a formal psyastem.

A key feature of the systems for which Erlang was primarigeted is fault-tolerance.
Switching systems should provide an acceptable level oficein the presence of
faults. Erlang implements fault-tolerance in a simple vidiyks between two processes
A and B can be set up so that process B is notified of the teriranmaf process A and
vice versa. The default behaviour of a process that is inéoraf the abnormal termi-
nation (e. g., due to an exception) of another process ignaiate abnormally itself,
although this behaviour can be modified. This process lmk&ature can be used to
build hierarchical process structures where some prosessesupervising other pro-
cesses, for example restarting them if they terminate abaldy.

We start, in Section 2, by explaining the software compamthat are used to build
quality Erlang software. The basic mechanisms for errodhiag in Erlang are de-
scribed in Section 3. In Section 4, we describe how the gerseriver component of
Erlang is extended with fault tolerance, and the actuaktedion from Erlang tquCRL
is given in Section 5. The checking of correctness propedfdault-tolerant systems
is discussed in Section 6, where as an example we analysahedttiusion properties
of a server implementing a locking service for a number @&rdlprocesses.

2 Erlang components

A key aspect of the Erlang approach to development is the fudesign patterns (pro-
vided by Erlang/OTP) which are encapsulated in terms of gememponents. This
approach simplifies the development cycle, as well as otfication of fault-tolerance.

Erlang/OTP provides a convenient componentgdreric server, for programming
server processes. A server is a process that waits for a geeBsen another process,
computes a response message and sends that back to thalgrigicess. Normally
the server will have an internal state, which is initialiselden starting the server and
updated whenever a message has been received.

The behaviour modulegén_ser ver) implements the common parts of a generic
server process, providing a standard set of interface ifumgtfor example, the func-
tiongen_ser ver: cal | for synchronous communication with the server. The specific
parts of the concrete client-server system are given inlebeak module.

We illustrate the functionality provided by the genericveercomponent using a
server in Figure 1 which also serves to introduce the coa&dang syntax. Informally
the serverimplements a locking facility for a set of clierdgesses. A client can acquire
the lock by sending aequest message, and release it usinged ease message.

Names of functions and atoms begin with a lowercase letteifewariables begin
with an uppercase letter. The usual data types are prowidgd lists, tuples (enclosed
in curly braces) and numbers. Matching a value against aeseguof patterns, which
happens in function applications and in these expression, is sequential.

A programmer that uses the generic server component eabeti@as to provide
two functionsi ni t which is invoked when the generic server starts, and whiollsh

init(A -> {ok []}.

handl e_cal | (request, Cient, Pending) ->
case Pending of
[T -> {reply, ok, [Cient]};
_ ->{noreply, Pending ++ [Client]}
end;
handl e_cal | (rel ease, Client, [_|Pending]) ->
case Pending of
[1 ->{reply, done, []};
-> gen_server:reply(hd(Pending), ok), {reply, done, Pending}
end.

Fig. 1. The source code of an Erlang generic server

return the initial state of the server (the empty list in tkaraple), anchandl e_cal |
which is invoked when a call is made to the generic servergaraply is expected by
the caller. Théhandl e_cal | function is invoked with three arguments, the message
submitted in the call, a value that is used to reply to the agessand the current state of
the generic server. It returns the new state of the server apmpletion. The processing
of calls by a generic server is sequential, i.e., there averrmncurrent invocations of
the callback functions; a generic server thus offers a auiewe way of controlling the
amount of concurrency in an application and of protectirggsttate of the server.

In the example the server may be called withemquest or ar el ease message.
If the message is a request, andPdéndi ng is the empty list, it replies to the caller
with the atomok, and the new state of the servefi€l i ent] . If Pendi ng is not
empty, then the reply is postponed (until more messagasaand the new state of the
server is obtained by adding i ent to the end oPendi ng. In case of a el ease,
the server may issue a reply to the waiting caller, ugiag_ser ver:reply.

Client processes use a uniform way of communicating withstiv@er; when a re-
ply is expected they issue a cgkn_server: cal | (Locker, Message) where
Locker is the process identifier of a generic server. The clientggssuspends until
a value is returned by the server.

Note that the semantics of communication using the generiees component is
less complex that the communication paradigm of the untteyl§erlang language.
Generic servers always receive messages sequentiallyinilelFO (first-in first-out)
order. Erlang processes in contrast can potentially reqemssages sent to them in ar-
bitrary order. Thus by focusing on the higher-level compuasgrather than the under-
lying language primitives, our verification task becomesiergconcretely, state spaces
are reduced). We will see the same thing happening whendenisj fault tolerance.

3 Fault-tolerance in Erlang

In Erlang, bidirectional links are created between proegby invoking thé i nk func-

tion with the process identifier of the process to link to aguarent. There is also a
function spawn_l i nk which atomically both spawns a new process, and creates a
bidirectional link to it.

Terminating processes will emit exit signals to all linkedgesses. Erlang distin-
guishes between normal process termination (the toplewsition of the process re-
turned a value) from abnormal process termination (e.gatime error such as attempt-
ing to divide by zero). If a process terminates abnormafiidd process will by default
terminate abnormally as well. However, a linked processiamexit such exit signals,
and thus escape termination, by callimgocess_fl ag(trap_exit,true).

In this case, when an exit signal reaches the process itrisfaaned into an exit
message and delivered to the process mailbox like any othesage. Exit messages
are of the form{’ EXI T , Pi d, Reason}, with Pi d the process identifier of the pro-
cess that terminated, aftason the reason for termination. If a process terminates
normallyReason is equal tonor nal .

This basic mechanism of Erlang for error handling is explblty the Erlang generic
server behaviour in order to build fault-tolerant clieetager systems. The Erlang pro-
grammer that implements a server process using the gemevierscomponent has to
take several possible types of faults into account. Fingt,server itself may be faulty
and crash. Recovery should be implemented by designatingergdsor process that
restarts the server process (or takes some other corraction).

Another error condition occurs when the server may comnateigvith remote
processes, or hardware devices, that can malfunction wtitrashing, and moreover
without generating exit signals to linked processes. Suobr €onditions should be
handled in a traditional manner using timeouts. We focuteats on the error con-
dition when an explicit exit signal reaches the generic eseprocess. For the Er-
lang programmer such signals are handled by providing a ralkack function,
handl e_i nf o(Si gnal , St at e) that gets passed the exit signal as argument, to-
gether with the current state of the server. taadl e_i nf o function should, sim-
ilarly to the other callback functions, either return thevrstate of the server or stop.
This function will be called only if no call to the server isibg processed.

In the client-server applications that we want to verifyngsihe fault-tolerant exten-
sion, the state of the server contains information abouste in which its clients are
in, for example, in the locker in Figure 1, the state of th&&yaeflects whether a client
is accessing a resource or whether is waiting to get accdsslfta client terminates
abnormally, the system should be able to recover graceftithout a complete restart,
i.e., the state of the server process should be cleaned opdargly.

4 Fault-tolerance in generic servers

Our goal is to check the correctness of generic servers irptegsence of crashing
clients. The class of servers that we can analyse for faldtance have the follow-
ing characteristics: (i) the server expects to receive @meessage whenever a linked
client crashes, and (ii) the server establishes a proadstlievery client that issues a
generic server call to it.

Although the above conditions may appear arbitrary, theyirafact indicative of a
class of servers that safely implement a stateful protoetleen itself and its clients,
through call and reply exchanges. Thus, in a sense, theslitioms give rise to a new
Erlang high-level component which refines the basic Erlagnegic server component.

As an example of a fault-tolerant server let us reconsidestmple server in Fig-
ure 1. The main loop of a client that accesses the locker sngbelow. Every client
process sendsraeequest message followed byreel ease message.

| oop(Locker) ->
gen_server:cal |l (Locker, request),
gen_server:cal |l (Locker, rel ease),
| oop(Locker).

We implement a locker which recovers from the abnormal teatidn of a client
process by first adding the functiopsocess _f | ag andl i nk to the call-back mod-
ule of the locker given in Figure 1 as shown below.

init(A) -> process_flag(trap_exit,true), {ok,[]}.

handl e_cal | (request, {dientPid, Tag}, Pending) ->
link(CientPid),
case Pending of
[T -> {reply, ok, [dient]};
-> {noreply, Pending ++ [Client]}
end;

The locker process now gets linked to the clients when thgyest a resource. If
a client crashes, the locker will receive an exit messagqrégiously mentioned, exit
messages are handled by the generic server funhaorl e_i nf o provided by the
Erlang generic server behaviour. A trivial implementatodrihis function just returns
the state of the server.

handl e_info({" EXIT , d i ent Pi d, Reason}, Pendi ng) -> {noreply, Pending}.

Now, if a client process crashes immediately after sendieg equest message
to the locker, then the locker will process thequest message before the exit signal.
If there the resource is available, then the locker will sandk message to the client
that crashed and will put the client in the pending list. 8itfuis client has crashed, it
cannot release the resource, therefore, all other cliegpsasting the resource are put
in the pending list and will eventually starve. If the resmiis not available, the client
will be put in the pending list, and when the resource is abdd, we have the same
starving situation described before. Starvation also ifuthe client crashes while
accessing the resource and before releasing it. Howewbe iflient crashes after re-
leasing, then the program behaves correctly. Of courseg itih@n one client process
may crash, therefore, we need to consider all the combimatid clients crashing at
different points in the program execution. Already we camtbat testing fault-tolerant
code for a simple protocol like the one presented here iequmplex. Our goal is
to use a high-level language, a process algebra, and usettoalitomatically gener-
ate all these combinations and to check that key propedes]lock-freedom, mutual
exclusion, and non-starvation, are fulfilled.

The implementation of theandl e_i nf o function for the locker is given below.

handl e_i nfo({" EXIT , d i ent Pi d, Reason}, Pendi ng) ->
NewPendi ng = renpve(C i entPid, Pendi ng),
case avail abl e(CientPid, Pendi ng) of
true -> gen_server:reply(hd(NewPendi ng), ok),
{noreply, NewPending};

-> {noreply, NewPendi ng}
end.

remove(ClientPid,[]) ->[];
remove(CientPid, [{CientPend, TagPendi ng}| Rest]) ->
case CientPid == dientPend of
true -> Rest;
false -> [{dientPend, TagPendi ng}| renmove(d i ent Pi d, Rest)]
end.

available(dientPid,[]) -> false;
avail able(CientPid, [{CientPend, TagPendi ng}]) -> fal se;
avail able(CientPid, [{CientPend, TagPendi ng}| Rest]) -> CientPid == CientPend.

When the locker receives an exit message, i.e., a clienepsitas terminated ab-
normally, then if the client is in the pending list, then it@noved from it. Moreover, if
the client was accessing the resource (i.e., it was in the betne pending list), then,
the resource is available and therefore the locker givesssdo the resource to a client
which was waiting for it. This is similar to when a client serat el ease message.

5 Translating fault-tolerant systems touCRL

In this section we briefly review the translationt€RL of Erlang fault-tolerant client-
server systems, full details are provided in [4].

For the purpose of verification Erlang programs are traedlatto theuCRL pro-
cess algebra [5] by an automatic translator tool [2]u®BRL behaviour is described
on two levels, as traditional process behaviour using tloegss algebra operators of
1CRL (sequencing, parallel composition, recursion, comigation using synchroni-
sation, etc), and data kept by processes and exchanged mumigations. Functions
can be defined over data types using rewrite rules.

The translation of Erlang mimics the separation betweergs® behaviour and
functional behaviour present jpCRL. A pre-analysis step partitions Erlang functions
into two categories: the ones with pure functional compotatand the ones with side
effects (e.g., communication to/from a generic serverg Jile-effect free Erlang func-
tions are translated inteCRL functions, which are defined using a set of rewrite rules.
Thus such Erlang functions do not generate any state. Imasirihe side-effect Erlang
functions are translated injaCRL processes, using the process operators.

The translation of communications with a generic serves asentermediate buffer
process implemented wCRL, which stores sent messages until the translated generi
server process is ready to receive them. Thus the asynaisaraiure of communi-
cation in Erlang is kept in the translated code. The traimsiadf non-tail recursive
side-effect functions uses an explicit call-stack to keapk of recursive calls.

Which processes (e.g., generic servers and clients) telatenis computed by
analysing the code for setting up the system. The geneneserocesses are found
by analysing which processes initially execute a functioa module with the generic
server behaviour attribute.

The fault-tolerant extension of Erlang only affects theqass part of Erlang, hence,
the translation of the functional part of fault-tolerantdfiy remains the same. For the
process part, the fault-tolerant extension of Erlang assuthat a server expects to

receive an exit message in its mailbox whenever a linkedttishes, and that this exit
message is received and handled by the generic serverigem#ndl e_i nf 0. The
translation touCRL therefore needs to take into account this implicit comioation
between the client and the server, and the translation dfaimell e_i nf o function.

The uCRL toolset [3] is used to generate a state space froqu@RL translation.
Obviously, the state space generated for a client-serggzisywith this client process is
larger than the one where the client cannot crash. For exating state space generated
in a scenario with two client processes which cannot crasiaims 33 states and 48
transitions, while the state space for the same scenaitoonashing clients consists of
326 states and 584 transitions.

6 Model checking properties in fault-tolerant systems

Once the labelled transition system has been generatecehyCRL toolset from the
1CRL specification (the result of translating the Erlang pamg), the CADP toolset is
used to check whether safety and liveness properties hotdh &rrectness properties
are formulated in the regular alternation freealculus [9, 8]. Informally, the modali-
ties in the logic are relaxed to sequences of actions craisetl by regular expressions.

Action label are enclosed in quotes (e!gr,ash’) and can contain wildcards (e.g.,
’. % crash.x’ matches any action that has the text stratgash somewhere in its
name),—regaction matches any action that does not match the action regulaexp
sionregaction, regaction, V regaction, is disjunction. Actions can be composed using
the normal regular expression operators, j.€gnotes alternative, zero or more oc-
curencies, is sequencing, and matches any action. Comments can be enclosed in
formulas using thé *+ conment =*) notation.

6.1 Deadlock freedom

Since we model crashing of client processes, actually werdreducing deadlock
states. To verify that a client-server system is deadloek-&xcept for the states where
all clients have crashed, we formulate a fault-toleransieoer of the classical deadlock-
freedom property. The property we are interested in sthgsnio deadlocks occurs as
long as not all the processes in the system have crashedorbipisrty can be expressed
by explicitly stating the crash actions in the formula.

For instance, supposing there are three processes in ttegrsybhen we define a
action sequence macro denoting the sequences containingt0? crashes:

BETWEEN_0_-AND_2_CRASHES() =

((=".*info.*”)* (* O crashes =) |
(=’ *info.*’*’ *info.*’.(='.*info.*")* (* 1 crash =) |
(='.*info.*"*." *info.*’.(='.*info.*’)*. . *info.*’.(='. *info.*")*))

Using the macro, the deadlock freedom property becomes:

[BETWEEN_0_AND_2_CRASHES()|{- Ytrue

This formula will spot the deadlocks unrelated to completeshes of the sys-
tem. In general, for N processes in the system, one must Nritdines of the form
(".*i nf 0.*’.(=".*i nf 0.*)*) in the macro above.

This example highlights the need to reconsider the prageused to verify nonfault-
tolerant systems in order to verify fault-tolerant systelnshe following subsection we
discussed how mutual exclusion can be verified.

6.2 Mutual exclusion

The formulation of the mutual exclusion property for the ffanlt-tolerant locker is
given below. To make verification easier two actions areoghiiced in the Erlang code
of the client to signal the entering¢e) and the exitingf(r ee) of the critical section.

BETWEEN (a1, az, a3z) = [-* . a1 . (ma2)™ . as]false
MUTEX() = BETWEEN ("use(.*)’,’ free(.*)", use(.*)’)

The formula states that 'on all possible paths, aftengaa action, any furtheuse
action must be preceded by &nee action’. Intuitively, the formula means that if a
client process is accessing the resource, then no othat pliecess can access it until
the resource has been freed. This formula does not hold stéite space generated for
the a scenario with two crashing clients. The CADP model kbiegives the following
counter-example.

“cal | (| ocker, request, Cl1)"
"repl y(C1, ok, | ocker)"
"action_use(Cl)"
"info(locker,{EXIT,CL EXIT))"
“cal | (| ocker, request, C2)"
"reply(C2, ok, | ocker)"
"action_use(C2)"

The counter-example shows that the mutual exclusion ptpjewriolated, since
the resource is accessed by two process clients, diemd client2, without being
freed. However, the counter-example is also showing thiaft is accessing the re-
source after client has crashed, therefore, strictly speaking, clierg not accessing
the resource because it is dead.

In order to show that the mutual exclusion property is vatifiethe fault-tolerant
first version of the locker case-study, we need to take tleattirashes into account, as
is done in the property below.

FT — BETWEEN (a1, az, a3, as) = [-* v a1 . (—az V a3)™ . as]false
FT — MUTEX() = FT — BETWEEN ('use(.*)’, free(.*)’,, use(.*)")

To illustrate the power of model checking as a debugging, tomhsider the fol-
lowing erroneous implementation of thandl e_i nf o function of the locker. After a
client crashes, access to the resource is given to the thiattvas waiting to get access
in the head of the pending list.

handl e_info({" EXIT ,dientPi d, Reason}, Pendi ng) ->
NewPendi ng = renpve(C i entPi d, Pendi ng),
case NewPending == [] of
fal se -> gen_server:repl y(hd(NewPendi ng), ok),
{noreply, NewPending};

_-> {noreply, []}
end.

This code is correct for the case where a client crashes @lftaining access to
the resource, but it is wrong if the client crashes afterasitey the resource. Testing
concurrent code is tricky, in particular, in this examplelyathe right combination of
more than three clients, a client crashing after releasiageésource and the other two
or more clients waiting in the pending list triggers the einathe fault-tolerant code.

7 Conclusions and related work

One of the aspects that makes the programming languagegErtgoular among devel-
opers of business-critical systems is the inclusion of tonts to handle fault-tolerance.
Our approach to verification of such fault-tolerant systdras several components.
First, Erlang systems are translated ipfORL specifications. Next, theCRL toolset
generates the state space from the algebraic specificatidrfinally, the CADP toolset
is used to check whether the system satisfies correctnegerties specified in a the
alternation-freg:-calculus.

To enable analysis of fault behaviour we introduce durirgtthnslation phase to
1CRL explicit failure points in the algebraic specificatiama systematic way, where
the system processes may fail. The key observation is thatialthe usage of higher-
level design pattern that structure process communicatioifault recovery, the num-
ber of such failure points that needs to be inserted can lagively few, and can be
inserted in an application independent manner. In othedgydhe state spaces gener-
ated from a failure model can be generated automaticatyredatively small, and are
thus amenable to model checking.

We have demonstrated the approach in a case study wherees, $eiilt using the
generic server design pattern, implements a locking serfac the client processes
accessing it. The server necessarily contains code to édmelkituation where clients
can fail; if it did not the server would quickly deadlock. lmet study we verify, using
the automated translation and model checking tool, systamposed of a server and
a set of clients with regards to crucial correctness progmstuch as deadlock freedom,
mutual exclusion and liveness.

The formal verification of fault-tolerant systems has beteidied in several case-
studies such as e.g. [12, 13]. In contrast to our approaeh térget a single application
only, are ad-hoc, and often do not provide a reusable vetiditanethod.

General models for the verification of fault-tolerant aijuns are also present in
the literature, for example [7]. The main difference witlr approach is that our models
(similar to the software) are on a higher-abstraction lévah those works; there is more
intelligence built-in the Erlang component programmingdeicthan in general model,
and it is interesting to see, that using such a model actoadkes it easier to verify the
correctness of the solution.

References

(1]
(2]

(3]

(4]
(5]
(6]
(7]
(8]
(9]
(10]

(11]

(12]

(13]

J.L. Armstrong, S.R. Virding, M.C. Williams, and C. Witkém. Concurrent Programming

in Erlang. Prentice Hall International, 2nd edition, 1996.

T. Arts, C. Benac Earle and J. J. Sanchez-Penas. TtargsErlang topCRL. Application
of Concurrency to System Design, 2004. ACSD 2004. Procgedifourth International
Conference on, Vol., Iss., 16-18, pp. 135-144, June 2004.

J.-C. Fernandez, H. Garavel, A. Kerbrat, R. MateescuMbunier, and M. Sighireau.
CADP (CESAR/ALDEBARAN development package): A protocol validation and verifica-
tion toolbox. InProc. of CAV, LNCS 1102, p. 437—-440, Springer-Verlag, Berlin, 1996.
C. Benac Earle. Model checking the interaction of Erl@emponents. PhD thesis, Dept.
of Computer Science, University of Kent, Canterbury, 2005.

J. F. Groote. The syntax and semantics of timed mCRL. fieah report SEN-R9709,
CWI, Amsterdam, 1997.

G. Holzmann,The Design and Validation of Computer Protocols. Edgewood Cliffs, MA:
Pretence Hall, 1991.

T. Janowski and M. Joseph. Dynamic Scheduling and Ralétrance: Specification and
Verification. Real-Time Systems. Vol. 20, Issue 1, Kluweademic Publishers. 2001.

D. Kozen. Results on the propositionaicalculus. TCS, 27:333-354, 1983.

R. Mateescu. Local Model-Checking of an AlternatioedrValue-Based Modal Mu-
Calculus.Proceedings of the International Workshop on Software Tools for Technology
Transfer STTT' 98, Aalborg, Denmark, July 1998.

J. van de Pol and M. Valero Espada. Formal SpecificatidawaSpaces Architecture using
#CRL. In F. Arbar and C. Talcott (edsBroc. of 5th int. conf. on Coordination Models and
Languages, York, UK, April 2002, COORDINATION LNCS 2315, pp. 274-298pringer.
S. Owre J. rushby and N. Shankar. PVS: A Prototype Vattiim System. 11th Interna-
tional Conference on Automated Deduction (CADE), Deepakutads. LNAI, volume
607, pages 748-752, Springer-Verlag, Saratoga, NY. Jué2.19

J. Rushby. Systematic Formal Verification for Faultefant Time-Triggered Algorithms.
IEEE Transactions on Software Engineering, volume 25, rarrbb1999.

F. Schneider, S. M. Easterbrook, J. R. Callahan and Gidizmann, Validating Require-
ments for Fault Tolerant Systems using Model CheckProceedings, 3rd International
Conference on Requirements Engineering, 4-13, Colorado, Springs, Colorado, April 1998.

