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Abstract

Coding rules are often used in industry to foster best practices when coding software and to avoid the
many hazardous constructions present in languages such as C or C++. Predictable, reliable tools are
needed to automatically measure adherence to these practices, as manually checking for compliance is
cumbersome. Moreover, due to the wide range of possible coding rule sets, easy of customization is a need
in order for these tools to be of practical use. With this aim in mind, we present an extension of the GNU
Compiler Collection (GCC) that flags those code fragments that do not conform to coding rules belonging
to a given set. These sets of coding rules can be defined using a high-level declarative language based on
logic programming, thereby making it possible to easily check code for conformance with respect to rules
addressing the particular needs of a project, company, or application area.
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1 Introduction

Languages such as C or C++ need to be used in a disciplined manner to minimize
hazards due to their weaknesses and more error-prone features. To that end, it is
common in industry to require that code rely only on a well-defined subset of the
language, following a set of coding rules.

Some standard rule sets do exist listing good general programming practices for
a given language, like High-Integrity C++ (HICPP [?]). MISRA-C [?] is another
leading initiative elaborated by The Motor Industry Software Reliability Association
(MISRA). It contains a list of 141 coding rules aimed at writing robust C code
for critical systems. In practise many organisations — or even projects — need to
establish their own coding rule sets, or adapt the existing ones.

However, an automatic method to check code for conformance is needed® for
coding rules to be of practical use, no matter who devises the coding rule set or
dictates its use. There exists a number of commercial compilers and quality assur-
ance tools from vendors such as TAR Systems [?] and Parasoft [?] that claim to be
able to check code for compliance with a subset of HICPP, MISRA-C or other stan-
dards. Other tools, e.g. Klocwork [?], define their own list of informally described
rules aimed at avoiding hazards, and users can add new rules by means of complex
application program interfaces (usually in C or C++). But, in absence of a formal
and concise definition of rules, it is difficult to be certain about what these tools are
actually checking, and two different tools could very well disagree about the validity
of some particular piece of code with respect to, e.g., the same MISRA-C rule.

In [?] we proposed a framework to precisely specify rule sets and automatically
check (non-trivial) software projects for conformity. On the rule-writer side, a
logic-based language (currently a subset of Prolog with minor syntactic extensions)
permits to easily capture the meaning of coding rules, constituting a more practical
mechanism for user-defined rules than those provided by most other tools. There
have recently appeared other tools providing high-level languages to define code
checks, such as Klocwork Insight, Parasoft RuleWizard or Semmle Code [?]. In
contrast with these other tools, our proposal relies on general logic programming (in
Semmle Code all code queries are translated into Datalog). With the expressiveness
of full logic programming we can cope with the potentially infinite sets that appear
when reasoning about C++ templates and template instance properties. It also
gives us the opportunity of using unification on structured terms and, for example,
use logic variables as template parameters, greatly simplifying the definition of rules
on templates (see [?]). This comes at the cost of jeopardizing the termination of
the execution of some rules, unless suitable constraints are established on the rule
definition language.

The other salient feature of our coding rule checking tool is that it has been
integrated into the GNU Compiler Collection (GCC, gcc.gnu.org) development
tool-chain. In this work we present a new version of our coding rule checker, im-
proved the one presented presented in [?], that extracts all the needed information
about C++4 programs while compiling them with GCC. One reason to put together
the rule checker and the GCC tool-chain, which is a non-trivial task, is to make

6 Although some rules may be undecidable, finally needing human intervention.
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Figure 1. Overall rule checking procedure. The left-hand part of the diagram contains the steps related
to rule formalization. On the right, program feature extraction is depicted. Rule conformance checking is
shown at the bottom.

the checker readily available in the everyday tool of thousands of developers, which
will undoubtedly foster the adoption of coding rules in many projects. Moreover,
by using a single parser and semantic analysis engine (used for object code genera-
tion) both for the compilation and to gather information for the code checker, any
possible discrepancy on how code is interpreted (which could happen if a different
parser / anlyzser were used) is avoided. In addition, information gathered by static
analyses already present in GCC can be reused to implement rules that need it.

2 Coding Rule Checking

Our procedure for checking if some software conforms to a given coding rule consists
of three main steps, depicted in Figure 1:

(i) Formalize the rule” in a logic-based domain-specific language that is automat-
ically translated into Prolog. Standard rule sets typically use plain English for
definitions.

(ii) Transcribe the necessary program information into the same representation,
i.e. as Prolog facts. Programs to be analysed are compiled with our modified
version of GCC, with an added flag -fipa-codingrules for dumping these
facts to a file.

(iii) Analyze the rule violation predicate together with the Prolog facts which de-
scribe the program at the appropriate abstraction level. This is done by seeking
counterexamples to the rule with a standard Prolog system — Ciao Prolog [?],

7 In fact, its violation.
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in our case. The Prolog checker is available as a command line tool called
checkrules® that receives as input the file of facts generated by GCC and the
(precompiled) coding rules themselves.

The current rule definition language is a subset of Prolog with some syntactic
extensions (Section 3). In the future we plan to facilitate rule formal definition
with a completely declarative logic language featuring sorts, constructive negation,
and appropriate quantifiers (some details are given in [?]). Our aim is to enable
developers not familiar with Prolog to formalize coding rules.

More details on rule formalization can be found in Section 3, and program feature
extraction is discussed in Section 4.

3 Structural Coding Rule Definition in Prolog

We have focused first on what we term structural coding rules: those that have to
do with objects in the code such as classes or functions, their static properties, and
static relations among them such as inheritance, containment, or usage.

A good example of this kind of rules is Rule HICPP 3.2.4 (see Figure 2), that
reads “An abstract class shall have no public constructors.” Abstract classes are
those that have at least one unimplemented member function. This rule helps to
make explicit the fact that abstract classes cannot be instantiated, but need to be
used through subclasses.

Formalizing the rules requires a set of language-specific predicates representing
structural information about, e.g., the inheritance graph of the checked program.
Table 1 shows some predicates used for defining a number of rules intended for
the C++ language, including the example above. These predicates constitute the
programming interface for writing rules and are defined on top of the information
generated by the compiler, as explained in Section 4. For example, the unary
predicate abstract_class is used to define the aforementioned rule.

The Prolog formalization of the rule 3.2.4 codifies a violation of the rule, i.e.,
that an abstract class Class has a member Ctor which is a public constructor.
If the rule can be violated, concrete instances of Ctor and Class in the software
analysed will be returned to the user by checkrules, along with a warning message,
associated with the rule by means of operator #. The arguments of the predicate
can be displayed as part of the user message.

Another example of structural rule is HICPP 3.3.13, that reads “do not invoke
virtual methods of the declared class in a constructor or destructor.” The rationale
behind it is that member functions of the same object are always statically bound
if called from a constructor or a destructor. In this case two methods pertaining to
the same class are returned as witnesses of a violation of the rule. Note the use of
disjunction (;) and the special syntax predicate+ to denote the transitive closure
of predicate. We are interested in methods directly or indirectly called by Caller,
thus we use the transitive closure of the predicate calls defined in Table 1.

Rule HICPP 3.3.15 exemplifies the use of negation. It says: “ensure base classes

8 Both our extended GCC and the checkrules tool are available at the web site of the GlobalGCC project:
www.ggcc.info/?q=download, licensed under GPL. We try to keep our GCC in sync with the GCC trunk.
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Table 1
A subset of the predicates necessary to describe structural relations in C++ code.

PREDICATE MEANING

Properties of classes and methods

abstract_class(c) Class ¢ has some non-implemented member function.

constructor(m) Member m is a constructor. There is an analogous
predicate destructor.

public_member(m) Member function m has public visibility. There are
analogous predicates for protected and private
visibility.

virtual_member(m) Member function m is virtual (invocations of the

method are dynamically dispatched).

Inheritance

immediate_base_of(a,b) Class b directly inherits from a.

base_of(a,b) Transitive and reflexive closure of
immediate_base_of /2.

public_base_of(a,b) Class b immediately inherits from class a with public

accessibility. There are analogous predicates for
other accessibility choices and also for virtual
inheritance: virtual_base_of.

Relations between (member) functions

calls(a,b) (Member) function a has in its text an invocation of
(member) function b.

overrides(a,b) Member function a is defined in a derived class as a
re-declaration of member function b (they have the
same signature but different implementation).

overloading members(a,b) Member functions a and b are declared in the same
class and have the same name (but different
signature).

declares_member(c, m) Member function m is declared (or re-declared with
a new implementation) in class c.

has_member(c, m) Class ¢ has defined a member function m. m can be
inherited from a base class.

have_same_sig(a,b) Functions a and b have the same arity and argument
types.

common to more than one derived class are virtual.” With the help of the justifi-
cation that accompanies the rule, we can reformulate it as follows:

5
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>HICPP 3.2.4°(Class, Ctor)

# ’Class ’ # Class # ’ has pure virtual members and a constructor °’
# Ctor # ’ that is public.’

abstract_class(Class),
has_member (Class, Ctor),
constructor (Ctor),
public_member (Ctor).

HICPP 3.3.13°(Caller, Callee)
# ’Member function ’ # Caller # ’ is a constructor or destructor °’
# ’and calls virtual function ’ # Callee # ’ of the same class.’

has_member (SomeClass, Caller),
(
constructor (Caller)
destructor(Caller)
),
has_member (SomeClass, Callee),
virtual_member (Callee),
calls+(Caller, Callee).

>HICPP 3.3.15°(4, B, C, D)
# ’Class > # D # ’ repeatedly derives from class ’ # A # ’ through °’
# B# ’ and > # C # ’°, and ’> # C # ’ does not use virtual °’
# ’derivation for extending ’ # A4 # ’.°

immediate_base_of (4, B),
immediate_base_of (4, C),
B @< C,

base_of (B, D),

base_of (C, D),

\+ virtual_base_of (4, C).

>HICPP 3.3.5°(Method, Overriding, Derived)

# ’Virtual function ’ # Method # ’ is overridden by ’ # Overriding
# ’ in class ’ # Derived # ’, and some function that overloads °’
# Method # ’ has no overriding in ’ # Derived # ’.°

has_member (Derived, Overriding),
overrides (Overriding, Method),
overloading_members (OJverloads, Method),
\+ (
has_member (Derived, OverridingZ2),
overrides (Overriding2, Overloads)

overrides (M1, M2) :-
declares_member (Derived, M1),
immediate_base_of (Base, Derived),
has_member (Base, M2),
have_same_sig (M1, M2).

Figure 2. Prolog formalization of some rules in the HICPP rule set.

Rule 3.3.15 is violated if there exist classes A, B, C, and D such that: class A is a
base class of D through two different paths, and one of the paths has class B as
an immediate subclass of A, and the other has class C as an immediate subclass
of A, where B and C are different classes. Moreover A is not a virtual base of C.

The rule is written in Prolog as shown in Figure 2. Negation-as-failure (opera-
tor \+) appears in the last line. Since the semantics of this last Prolog goal relies
on the instantiation state of logic variables A and C, the order of goals inside a
clause becomes relevant, not only for performance concerns. In order to avoid this,
we plan to replace negation-as-failure by constructive, logically meaningful nega-

6
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tion. In particular, we are investigating the applicability of constructive intensional
negation [?]. In this example we also use operator @< to get pairs of distinct classes
where B and C cannot interchange their roles.

Finally, rule HICPP 3.3.5 exemplifies a more complex use of negation: one must
“override all overloads of a base class virtual function.” Code for the rule is shown
in Figure 2, along with the implementation in Prolog of one of the predicates used
to define it: the overrides relation between two class methods.

4 Using GCC to Gather Program Information

The middle-end of GCC contains a set of transformation and optimisation passes
that are independent from both the compiled language and the target architecture.
Many (but not all) of the program features needed for writing rules are common
to multiple languages and have a common representation in the middle-end, even
if the semantics may differ between different languages. For example, constructs as
templates and friends are almost exclusive of C++, and only the C++ front-end
knows about them.

In our extended version of GCC we have instrumented both the middle-end
and the C++ front-end (totalling around 2.8 KLocs of new code), but most of
the analysis is done in a new middle-end pass. Implementing functionality in the
middle-end has many advantages: adding a new pass is simple and clean, and there
is no overhead unless the pass is enabled using a corresponding flag. Furthermore,
the new functionality may be reused for other GCC languages.

Our modified GCC writes Prolog facts describing structural properties of the
analysed software (which can be either a program or a library) to a file. All the
source files in a project have to be analysed because structural rules typically involve
project-wide properties. The global analysis is carried out by relying on the building
process used in the project (e.g., make, cmake, ant, etc.) and accumulating all the
Prolog facts of different compilation units in a single file, which is subsequently
analysed with checkrules.

For every relevant entity in the code a Prolog term of the form
entity (GLOBAL_KEY) is generated, where entity is one of enum, enum value,
union, record (either a struct or a class), function, global_var, method, field,
and bit_field. GLOBAL_KEY is a project wide identifier of the entity, based on name
mangling [?]. Mangled names are a special encoding of names of functions, variables,
etc. generated by the compiler for the linker and other tools that have to deal with
information coming from different compilation units. They resolve, among other
possible name clashes, overloaded function names, including overloading originated
by templates.

The naming scheme for local entities (local variables, function arguments, etc.)
is based upon the scope in which they are defined (that is a global entity) and its
local identifier. For anonymous entities (e.g., anonymous union fields) a numerical
identifier is generated.

Following this identification scheme, a Prolog predicate exists for every relevant
property of global and local entities, and terms are generated in the output for every
occurrence of the property. These terms have the structure shown in Table 2 for

7
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Table 2
Structure of Prolog terms representing properties and relations among C++ global entities.
ACCESS_SPECIFIER is one of public, protected, or private.

virtual (method (GLOBAL_KEY))

accessibility(method (GLOBAL_KEY) ,ACCESS_SPECIFIER)
contains(namespace (GLOBAL_KEY) ,entity)

contains(record (GLOBAL KEY) ,entity)

enumerates (enum (GLOBAL_KEY_1) ,enum_value (GLOBAL_KEY 2))
extends (record (GLOBAL_KEY_1) ,record(GLOBAL_KEY_2))

virtual (extends (record (GLOBAL_KEY_1) ,record (GLOBAL_KEY_2)))

Table 3
C++ projects used in our experiments, with a measure of their number of C++ lines.

PROJECT VERSION DESCRIPTION KLoc
Bacula 2.2.8 A network based backup program. 19
IT++ 3.10.12 Library for signal and speech processing. 46
PPL 0.9 Parma Polyhedra Library: numerical ab- 60

stractions for analysis of complex systems.

dlib 17.0 Library about threading, networking, 77
data compression, and more.

e.g. virtual and accessibility properties of global entities. Besides individual
properties, relations among global entities exist. Some examples of binary relations
among global entities can be found in Table 2: contains, enumerates, and extends.
Relations such as extends can also have properties attached, such as e.g. virtual.

Prolog terms are generated to represent types and attaching types to entities,
and also to associate code locations to entities, which is needed for user output.

The higher-level abstract predicates in Table 1 are defined using the low-level
predicates introduced before in this section. Such higher-level predicates follow
the usual C++ terminology (base classes, member functions, etc.), facilitating the
formalization of coding rules for a C++ expert. This two-layered predicate archi-
tecture is also intended to better support extending the rule checking facility to
other target languages. More details on the implementation of our modified GCC
compiler can be found in [?].

5 Experimental Results

Our tool-chain is capable of tackling arbitrary C++ code. In combination with
any make-like software building tool, it can be used to catch violations of struc-
tural coding rules on existent C++ projects. We have implemented 12 structural
rules from the HICPP rule set so far, including those mentioned in this paper, and
checked some small and medium-sized free software projects for compliance with

8
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Table 4
Number of rule violations and user time gin seconds) consumed by the different steps in our rule checking
procedure. BT is the total build time of the project, and BT ¢ R is the total build time with structural
data gathering enabled. LT is the time that takes checkrules to load the project. Columns labeled with a
rule number show, in each cell, the number of violations (above) and the checking time (below).

HICPP rules (num. of violations, checking time)
Prosect BT BTecr LT 324 331 332 335 336 337

0 0 1 0 0 0
Bacula 76.1 789 685 001 000 000 000 000 000
10 0 16 84 113 23

IT++ 307.4  338.7 3004 440 000 012 4443 2508 921

0 20 53 41 33 0

PPL 296.3 4772 2355 191 000 009 5393 264 007
‘ 8 7 17 40 40 6
dlib 8.6 10.7 413 998 000 0.3 3469 1732  0.80

HICPP rules (num. of violations, checking time)
PROJECT 338 3313 3314 3315 345 3.46

0 0 0 0 6 0

Bacula 0.00 0.01 0.01 0.00 0.00  0.00
72 32 0 0 82 7

IT++ 116.95 748 025 002 019 0.9
75 0 0 0 56 0

PPL 97.38 097  0.08 000 008 0.04
. 224 2 0 0 142 29
dlib 4915 095 004 002 019  0.05

them. Table 3 briefly describes the analyzed projects.

Table 4 reports the number of rule violations found on each project, along with
time consumption information that helps assessing the feasibility of our approach
for real projects. Experiments have been run in an Intel Mobile Core 2 Duo 1.20
GHz with 2 Gb RAM and projects are built with -02 optimization flag.

Build time increases when -fipa-codingrules is enabled to extract structural
information during compilation. The time penalty is less than 5% in the case of
Bacula, but more than 60% for PPL. In general, the slow down is more noticeable
when templates are extensively used. Reported build time is small for dlib, in
spite of its size, because of the simplicity of the build procedure, consisting in the
generation of one single object file.

In general, it takes quite a long time for checkrules to load the data of a
project (in most cases in the same order of magnitude of a complete build, with the
exception of dlib for the aforementioned reason). This happens because GCC does
not have the concept of global compilation for C++, and header files are compiled
many times during a project build, generating a lot of redundant information.

On the other hand, checking time goes from a fraction of a second (i.e., cells

9
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with 0.00 time) to over one minute. Empirically, rules where complex sub-goals
appear negated are the ones which take longer. In fact, as there is no restriction
on the computational complexity of the rules, execution time is potentially un-
bounded. Despite this, the observed performance is reasonable for a project-wide
static analysis tool that is not meant to be run in every compilation.

Note that, despite the significant number of violations we found for many rules,
HICPP 3.3.14 and 3.3.15 are not violated in those projects. One reason is that
they deal with language features rarely used by programmers (the declaration of an
assignment operator in abstract classes and repeated inheritance, respectively).

6 Conclusions and Future Work

We have presented a tool for structural coding rule validation where rules for C++
are formally defined by means of a declarative rule definition language. Users can
define their own rules and the tool is seamlessly integrated into the work-flow of the
developers. Basic information about programs is taken from the very same compiler
(GCC) used to generate object code, which avoid inconsistencies.

Only about 20% of the rules in HICPP are purely structural. Implementing more
rules requires modifying other parts of the compiler and gain access to syntactic
information unavailable in the middle-end of GCC and to the results of sophisticated
analyses performed by GCC in its optimisation steps. We plan to extend our rule
definition language to support new logic formalisms that help in the definition of
non-structural rules. The approach should be easily adaptable to other languages
supported by GCC, which will require instrumentation of other front-ends.
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