
Model Checking Erlang Programs: The Functional Approach

Lars-Åke Fredlund ∗

LSIIS, Facultad de Informática
Universidad Politécnica de Madrid

fred@babel.ls.fi.upm.es

Clara Benac Earle
Departamento de Informática

Universidad Carlos III de Madrid
cbenac@inf.uc3m.es

Abstract
We present the new model checker McErlang for verifying Erlang
programs. In comparison with the etomcrl tool set, McErlang dif-
fers mainly in that it is implemented in Erlang. The implementa-
tion language offers several advantages: checkable programs use
“almost” normal Erlang, correctness properties are formulated in
Erlang itself instead of a temporal logic, and it is easier to properly
diagnose program bugs discovered by the model checker. In addi-
tion the model checker can easily be modified, thanks largely to the
use of Erlang. The drawback of writing the model checker in Erlang
is, potentially, severely reduced performance compared with model
checking tools programmed in programming languages which per-
mit destructive updates of data structures.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Verification

Keywords Code Verification, Concurrency

1. Acknowledgement
Thanks are due to Thomas Arts, Juan José Sánchez Penas, Hans
Svensson and the anonymous referees.

2. Introduction
Early on in the development of the etomcrl tool set [1, 3] 1 its
principal authors (Thomas Arts and Clara Benac Earle) discussed
whether to implement their approach to model checking Erlang
programs through the translation into µCRL [8], and use third-party
model checking tools, or whether to implement the model check-
ing algorithms directly in Erlang. The Erlang route was rejected
because the authors thought that it would be more efficient to reuse
existing quality tools for model checking.

This paper documents an attempt to follow the second route
above, i.e., to provide an model checking framework for Erlang
programs implemented in Erlang.

∗ The author was supported by a Ramon y Cajal grant from the Ministerio
de Educacion Y Ciencia.
1 comprising a translator from Erlang to µCRL, a state space generator for
µCRL specifications, and the CADP state space analysis tools

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’06 September 16, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-490-1/06/0009. . . $5.00.

The main current differences between McErlang and etomcrl,
for a user, can be summarised as follows:

• McErlang supports a larger fragment of the Erlang language,
especially with respect to the evaluation of functions without
side effects (which in McErlang are evaluated by the normal
Erlang run time system).

• McErlang provides support for the basic communication mech-
anisms of Erlang: i.e., sending and receiving, and process link-
ing, whereas in etomcrl processes can only communicate with
generic servers (in McErlang generic servers are, as in normal
Erlang, implemented on top of the basic communication mech-
anism).

• The closer integration with McErlang and the runtime sys-
tem for Erlang makes it easier to implement alternative seman-
tics for Erlang, and to check a program under those semantic
assumptions. For instance, although the node functions (e.g.,
spawning a process on a remote node) are currently not sup-
ported a user can choose to check programs either under the
assumption that all processes execute on a single node, or un-
der the assumption that all processes execute on different nodes.
Similarly, for checking fault-tolerance, McErlang provides the
option to at any moment kill an executing process.

• Program correctness properties in etomcrl are often formu-
lated in a branching-time temporal logic over the actions of the
Erlang program, and checked using the CADP [7] tool. In con-
trast, in McErlang correctness properties are written as ordi-
nary Erlang functions that can inspect the current program state.
Currently the McErlang tool supports only checking of safety
properties (e.g., “the bad state A is never reached”); hopefully
this will change in the near future.

• As the model checking part of the etomcrl tool set is imple-
mented in C it can be expected to be much more efficient than
the McErlang counterpart implemented in Erlang. Neither have
the McErlang model checker tool been optimised for speed or
memory efficiency (crucial properties in a model checker.

Given especially these efficiency drawbacks why is it worth
considering writing a model checker in Erlang? Because of a key
reason Erlang (and other scripting languages) is popular in the first
place: an untyped programming language, where program text can
be constructed and deconstructed on the fly, stored as data, and can
be executed on demand (using apply) is a very capable experi-
mental platform; especially so when experimenting with program
analysis2.

The hope is that the programming flexibility such a platform of-
fers outweighs any execution efficiencies. For the McErlang tool,

2 In our opinion Erlang is a very capable scripting language with a clearly
very superior concurrency model compared to other such languages; it is
just a pity that the rest of the world hasn’t caught on yet. . .

although still just a prototype, early evidence points to such ad-
vantages with regards to the ease with which complex correctness
properties can be formulated, the possibility to integrate powerful
state abstractors for reducing the state spaces explored, and the
rich specification language (normal Erlang, except that a number
of side-effect inducing API functions are not available).

The main idea of the McErlang tool is to replace the part of the
ERTS runtime system that implements process concurrency with a
new runtime system suitable for model checking. In other words,
the model checker replaces basic Erlang operations such as process
spawning, communication and process linking, and corresponding
data structures for recording processes, with its own data structures
for recording processes and its own code for interacting with pro-
cesses.

Model checking a program is achieved by running the program,
in the new runtime system, in lock-step with an automaton (also
implemented in Erlang) that represents the correctness property to
check. The automaton has the power to inspect the state of the
running Erlang program, and will halt the execution of the program
if a correctness violation is detected.

Let us define an Erlang state as the collection of currently exe-
cuting Erlang processes, together with their process identifiers, pro-
cess mailboxes, the links connecting processes, as well as any other
data structure needed during the execution of an Erlang application.

The basic new operations upon such Erlang states that the model
checker requires are:

• From a state s, the possibility to compute all next states
s1, . . . , sn. Multiple next states are possibly due to the inter-
leaving notion of concurrency we use, as well as the introduc-
tion of an explicit non-deterministic construct in our Erlang
variant.

• Checkpoint and restore the current state. That is, the possibility
to store the current state (and next states) in (Erlang) data
structures, and later retrieve them from these data structures to
compute next states.

• The possibility to treat a system state as an ordinary Erlang
data item in order to compute abstractions over the state (e.g. to
compute a hash value for use in the state table implementation,
and to check whether two states are equal up to some notion
of state equality), as well as general state inspection functions
used in program monitors checking whether a state complies
with an associated correctness property.

One option would have been to add this functionality directly to
ERTS. Another option would have been to use a language reflection
capability, should a good such facility have existed for Erlang. Pre-
sumably calls to Erlang kernel functions such as link could have
been redirected; however the handling of the receive statement
would likely present problems.

To avoid having to modify Erlang we opted instead to modify
the program to check; to replace in the source code calls to func-
tions with side-effects with calls to the runtime system of the model
checker, and to replace instances of receive constructs with a new
model checking construct.

In section 3 we explore the technical underpinnings and details
of the execution model of the McErlang tool, section 4 describes
the model checking features of the tool while section 5 contains
a case study on the checking of the (classical) locker example of
Arts and Benac Earle in McErlang. Finally section 6 draws some
preliminary conclusions about the use of the tool and its future.

3. Execution Model
Here we describe the execution model of Erlang programs running
under the runtime system of the model checker McErlang.

3.1 Model Checker Runtime System

As previously described the McErlang checker replaces the con-
current part of the normal Erlang runtime system which its own.
The new runtime system contains data structures for recording pro-
cesses and process related data structures.

3.1.1 Processes

Informally, a process is a tuple having five components
{Status,Expr,Pid,Queue,CommQueue,Flags} where Status
records whether a process is runnable, receivable, blocked
and so on (e.g., a process is blocked when it is waiting in a
receive statement and no message in its input queue can be re-
ceived). Expr either contains the next function to be invoked (a
triple {Mod,Fun,Args}), or the equivalent of a receive statement
(see section 3.2.1 below) or a non-deterministic choice. The field
Pid is the unique process identifier of the process, Queue is the
process mailbox and Flags records, for instance, whether exit mes-
sages should be received by the process in its mailbox. CommQueue
is used when a program is checked under the assumption that all
processes are located on different nodes. In that case messages
directed to a process are not delivered directly in its mailbox, in-
stead they are stored first in CommQueue which is a data structures
containing tuples {SendingPid,Messages} where Messages is a
queue sorted in arrival order (to guarantee the proper Erlang mes-
sage semantics [6]). Non-deterministically a process can, at any
time, choose to move a message from CommQueue to Queue.

3.1.2 System

A system in the model checker runtime system is a set of pro-
cesses, a data structure for associating names with pids (to im-
plement register), and a set of tuples {Pid1,Pid2} (for imple-
menting link). Still absent in the checker is, for instance, moni-
tors. Currently this global system state is kept in a separate Erlang
gen_server process, and modifications to it, or queries, are made
through the gen_server API interface.

3.1.3 API

Erlang programs running in the model checker invoke the runtime
system normally, except that for instance calls to spawn a new
processes should be made to evOS:spawn, instead of just spawn.
The module evOS currently provides a subset of the normal Erlang
functions for process spawning, process linking, sending, self,
register, exit, process_flag, etc.

3.2 Execution Model

To invoke the model checker the user should provide:

• the name of the initial function to run, and its arguments

• the name of a “monitor module” that implements the correct-
ness property to check

• the name of an “abstraction module” that abstracts program
states, and provides a state table

• a set of checking options, such as e.g. whether the remote
semantics should be used, whether processes should be crashed
non-deterministically, etc.

The role of the monitor and the abstraction modules in the
model checking process will be explained in section 4. Here only
the execution of the Erlang program will be informally described.

The model checker begins by creating a new process (note: not
an Erlang process but a simulated process in its own runtime sys-
tem), marks it as runnable and begins executing the initial function
using the normal Erlang function apply. The execution of the func-
tion may cause side effects which are implemented by the evOS

module; an example is a call to evOS:send(Pid,Value) to send
a message to another process. Such API calls result in immedi-
ate changes to the global model checking state, via communication
with the gen_server process keeping the global state.

When any such application returns3 its return value is checked.
If it is a normal value, or an exception was raised, the process has
terminated and linked process are notified of this fact. The model
checker then selects another ready process to run.

Apart from immediately terminating, a function may also return
one of the so called “special return values” that signify that the
associated process should not yet terminate, but that it has reached
a “stable state”.

Special Return Values These special return values are:

• {recv, {Mod,RecvFun,Args}}

• {letexp, {Expr, {Mod,LetFun,Args}}}

• {choice, [{Mod,Fun,Args}|...]}

• {pause, {Mod,Fun,Args}}

3.2.1 Handling Receives

Instances of receive statements in Erlang code to be model
checked have to be replaced with code that instead returns a
{recv, {Mod,RecvFun,Args}} tuple above. When an invoked
Erlang function, in an Erlang process, returns such a recv tuple
the runtime system marks the process as blocked, and then checks
whether there is any receivable value in the process mailbox (in
which case the process status is upgraded to receivable). In any
case, the runtime system can schedule another ready process.

The transformation of an Erlang program containing a receive
into one using a recv expression will be explained by a small
example below.

doRequest(State) ->
receive

{call, F, Pid} when is_pid(Pid) ->
{Reply, NewState} = apply(F, State),
Pid!{reply, Reply},
{ok, NewState}

end.

The code defines a function which guards some private state
data. The state can be changed by sending a call message to the
server process, containing a function that should return a new state
and a return value. The transformation of the above function yields
the following Erlang fragment:

doRequest(State) ->
{recv, {?MODULE, f_0, [State]}}.

f_0({call, F, Pid}, [State]) when is_pid(Pid) ->
{true,
fun ({call, F, Pid}, [State]) ->
{Reply, NewState} = apply(F, State),
evOS:send(Pid,{reply,Reply}),
{ok, NewState}

end};
f_0(_, _) ->

false.

Thus, a call to doRequest(State) will immediately return a
tuple {recv, {?MODULE, f_0, [State]}} which is recognised
by the model checker. The function argument to recv should refer
to a function that accepts two arguments, a message from the queue

3 if it doesn’t return the model checker will hang forever

which should be tested whether it is readable, and a set of variables
needed in the evaluation of the receive.

The function should return {true, AF}, where AF is an anony-
mous function, if the message matches. If the message doesn’t
match, false should be returned. The function AF receives the
same argument as the original function, and contains the body of
the receive clause.

The separation of a receive clause into two functions serves to
separate the testing whether a message is receivable from the actual
reading of the message from the queue. Moreover, the use of an
actual named function in the recv tuple helps during the checking
of state equality in the model checker.

3.2.2 Receives in an Expression Context

The special return value {letexp, {Expr, {Mod,LetFun,Args}}}
is useful in the situation when a receive statement occurs in an
expression context (not in a tail-recursive position). Consider a
recursive function server which acts similarly to a gen_server:

server(State) ->
{ok, NewState} = doRequest(State),
server(NewState).

This should be translated into:

server(State) ->
{letexp,
{doRequest(State), {?MODULE, f_1, []}}}.

f_1({ok,NewState}, []) -> server(NewState).

The function referenced in the letexp is called when the inner
function has returned a value, and receives as parameters the re-
turned value as first argument and as second argument a list of vari-
ables necessary to compute the continuation.

Note that all non tail recursive calls to functions that contain a
receive in their body will have to be guarded using a letexp in a
manner similar to the above code fragment.

3.2.3 Other Special Return Values

The special return value {choice, [{Mod,Fun,Args}|...]}
introduces explicit non-determinism in Erlang; the model checker
will non-deterministically select the continuation function from the
list of functions in the parameter to choice.

Finally {pause, {Mod,Fun,Args}} is just short hand for a
choice with a single continuation function. The choice construct
is mostly useful to facilitate detection of interesting states in the
correctness properties.

3.3 Translation

A prototype translation exists for translating a sizable fragment of
Erlang code to Erlang code acceptable as input to the McErlang
model checker, according to the translation schema illustrated in
the previous subsection. The translation takes one module as input
and returning a translated one.

Note that the resulting Erlang modules, for use in the model
checker, represent syntactically completely legal Erlang modules
and can thus be compiled by the normal Erlang compiler (and of
course such a compilation is necessary to use the model checker).

The translator substitutes calls to functions as spawn to the cor-
responding ones in the evOS module, it replaces receive state-
ment in expression contexts with recv and letexp tuples, and
so on. Although the translator using the erl_syntax libraries to
streamline the translation, not all translation rules are trivial due to
the semantics of Erlang variable binding which can export variable
bindings from deep inside a sub-expression to the context of the
sub-expression.

Similarly to the case for etomcrl, an integral part of the transla-
tion is the (transitive) computation of the Erlang functions that have
side effects (i.e., contains a receive statement). That is, if a function
g calls a function f that has side effects, then indeed calling g may
also cause side effects and so g is also marked as a side-effect in-
ducing function, and so on. In essence, we are computing the least
fixed point of the set of functions containing side effects, due to
their calling graphs.

3.4 Semantics

The approach to model checking embodied by the McErlang
tool can be described as pragmatic. We consider verification us-
ing model checking to be, fundamentally, a debugging activity
which should complement other debugging activities such as us-
ing Dialyzer [10], QuickCheck [5] and tracing tools such as
TraceTool [4, 2].

The semantic model, although not fully worked out yet, for
an Erlang program executed by the McErlang tool is a (possibly
infinite) state graph.

The structure of an Erlang system was covered in section 3.1.2;
transitions between states are the result of choosing a runnable
Erlang process (one that is ready to execute a function, or is ready
to receive a message from the mailbox) and executing until it either
terminates or returns a special return value (signalling a desire to
receive another message, or that a non-deterministic choice needs
to be resolved).

Since in general multiple processes are enabled in any given
system state the model is non-deterministic.

If we were to label these transitions by, for instance, the commu-
nication actions that the invoked process initiates, these transitions
would be labelled not by singleton actions, but rather by sequences
of such actions.

Compared to a more fine-grained execution semantics, which
would offer to pause the running process when any action with
a side-effect (effecting another process) takes place, our seman-
tics contains much fewer states. This means, possibly, that some
bugs will go undetected in our model checker, but would be caught
in another model checker. Similarly the process scheduler used in
the model checker will never interrupt a running process; with this
choice again we risk failing to detect a program bug. Moreover the
program is checked using only a fixed ordering of sub-expression
evaluation, and one which is not guaranteed to always to corre-
spond to the de-facto left-to-right ordering used in Erlang compil-
ers.

The reason for choosing such coarse execution steps is that (i)
we expect to gain quite a lot in performance and model complexity
(execution of Erlang code will be quicker since the model checker
process scheduler will have to be invoked less often, and (ii) the
size of the model (its number of states) will decrease considerably,
and (iii) we can anyway recover the more finely-grained semantics
using the so called “remote semantics” option (see next subsec-
tion), and (iv) repeating again, verification using model checking is
a pragmatic activity concerned with helping debugging programs,
not primarily concerned with providing absolute guarantees regard-
ing correctness.

It remains an item for future development and research to extend
the special return values to include any call to an Erlang function
that has a side effect, in order to refine the resulting semantics.

3.4.1 Remote Semantics

Remote Semantics is an execution option for the McErlang model
checker which (partly) implements the communication semantics
of Claessen and Svensson [6]. If enabled, all communications
(including sending messages, establishing links, and delivering
exit messages) between Erlang processes will be subject to non-

deterministic transmission delay (as modelled by having an inter-
mediate communication buffer CommQueue in the process state, see
explanation in section 3.1.1). The only communication guarantee
is that between two processes P and Q, messages are delivered in
order if they are delivered at all.

Naturally enabling this option greatly enlarges the state space
of the analysed Erlang program.

Interestingly, enabling this option removes the need to refine the
execution model to interleave processes after any side effect (say, a
send), since the non-deterministic communication delay introduced
by the communication buffer will have the same effect.

3.4.2 Process Termination

Remote Semantics is an execution option which is useful for testing
the fault tolerance of a program. If enabled, the runtime system will
in any program state include the possibility of killing any process.

3.5 Handling OTP libraries

The ideal situation for handling the OTP components would be to
simply translate them, from their source code representation, to the
core language of the model checker. However, the McErlang sup-
port libraries are not complete enough yet to make this a practical
task. In addition, there is a strong possibility that by using a spe-
cially developed library we will be able to shrink the state space of
typical Erlang programs using OTP libraries.

Currently McErlang only provides two OTP components, a
severely cut down supervisor component for spawning pro-
cesses (the support for monitoring and restarting processes is not
yet implemented) and a generic server component (gen_server)
for client–server communication. The gen_server library in
McErlang is also limited in functionality, for instance there is no
support for multi_call yet.

For completeness we include the source code of the gen_server
module that we use in Appendix B. Note that for presentation pur-
poses we have cut out some functionality present in the module
such as creating a generic server without registering a name.

4. Model Checking
In this section we describe the approach to model checking used in
McErlang, and how correctness properties can be formulated.

4.1 Correctness Properties

Program correctness properties are described directly in Erlang.
Currently only safety properties can be expressed, i.e., properties
concerning the absence of a bad state or action (“the bad state A is
never reached”, “action A is never invoked”). These are properties
that needs to be checked in every reachable program state. In
contrast, progress properties (“after the reception of a message,
eventually a reply is sent”) requires the usage of a slightly more
complex correctness automata4; see [9] for details.

A correctness property is defined as a program monitor, i.e.,
essentially an Erlang function which is checked in every reach-
able program state. Intuitively a monitor is a simple automaton (the
monitor also has its own state) that simply reacts to program tran-
sition.

An Erlang monitor must define two call-
back functions: init(Parameters) and
stateChange(ProgramState,MonitorState). The init
function returns {ok,MonState} where MonState is the initial
state of the monitor (as in a gen_server a state is an arbitrary
Erlang value).

4 Intuitively, we need to distinguish progressing loops from non-progressing
loops

The function stateChange(ProgramState,MonitorState)
is called when the model checker encounters a new program state
ProgramState and the current monitor state is MonitorState.
If the monitor finds that the combination of program and
current monitor state is acceptable, it should return a tuple
{ok, NewMonState} containing the new monitor state; any other
value signals a violation of the correctness property implemented
by the monitor.

As an example, Figure 1 contains a simple monitor that that
guards against program deadlocks.

-module(monDeadlock).
-export([init/1,stateChange/2]).

-include("state.hrl").
-include("process.hrl").

init(InitState) ->
{ok, InitState}.

stateChange(State,MonState) ->
case lists:any(fun (P) -> not_deadlocked(P) end,

State#state.processes) of
true ->
{ok, MonState};

false ->
{deadlock, MonState}

end.

not_deadlocked(P) ->
P#process.status=/=blocked.

Figure 1. A monitor to detect deadlocks

4.2 Model Checking Algorithm

Currently the McErlang tool only offers a very simple depth-first
state traversal model checking algorithm. In pseudo-code Erlang
the algorithm can be described as in figure 2.

Given a starting call m:f(P1,...,Pn), an
initial monitor state M and an empty state ta-
ble T, the checking algorithm should be invoked:
check([[{mkProc(m,f,[P1,...,Pn]),M,T}]],Mon,Abs,Tab)
where mkProc constructs a runnable model checking process, Mon
is a monitor module, Abs is a module used for abstracting states
(see next subsection), and Tab is a module implementing a state
table.

The first argument to check is essentially a stack represented as
a list where the stack levels represents the path from the first pro-
gram state to the current one, and on each level, a list of alternative
next states not yet explored.

As seen in the figure, model checking states are composed of
a program state, a monitor state, and a state table. Newly gener-
ated program states are checked against the associated monitor,
and if accepted, are abstracted using an abstraction function pro-
vided by the module Abs. The abstracted states are checked against
membership in the state table. If the program state is truly new, the
set of next states is computed using the function doExec. The set
of next states includes the case where each runnable process will
take at least a step (more, if there is a non-deterministic choice in
the process). The checking then continues using a new stack frame
containing the new model checking states, where the new program
states have been coupled with the new monitor state and the new
state table.

As can be seen, the program and the correctness property mon-
itor essential run in lock-step during model checking.

% Execution finished
check([],Mon,Abs,Tab) -> ok;

% Backtrack to earlier states
check([[]|Earlier],Mon,Abs,Tab) ->
check(Earlier,Mon,Abs,Tab);

check([[State|Alts]|Earlier],Mon,Abs,Tab) ->
{ProgState,MonState,StateTab} = State,
% Check monitor
{ok,NewMonState} =

apply(Mon,stateChange,[ProgState,MonState]),
% Abstract state, and check whether seen
{ok, AbsState} =

apply(Abs,abstract_state,
[ProgState,NewMonState]),

case apply(Tab,permit_state,
[AbsState,StateTab]) of

no ->
check([Alts|Earlier],Mon,Abs,Tab);

{ok, NewStateTab} ->
% Compute new states
NewStates =

[{S,NewMonState,NewStateTab} ||
S <- doExec(ProgState)],

check([NewStates,Alts|Earlier]],Mon,Abs,Tab)
end

end.

Figure 2. Basic Model Checking Algorithm

If the monitor detects a violation of its associated correctness
property it prints out a report describing the problem, and a trace
from the initial state of the program leading to the problem state.

4.2.1 Abstractions

An abstraction abstracts a concrete program state into an abstract
representation. It can be used to drastically reduce the checked state
space of a program. The idea is inspired by the use of abstractions
in [4]. A typical abstraction used in model checking is to compute
a hash value from the state, and to use the hash value as the abstract
state when checking for membership in the state table.

However, program specific abstraction functions can also be im-
plemented. For example, an abstraction could transform an integer
variable into a boolean value, signalling whether the integer is less
than zero. Of course, there is in general no guarantee that such ab-
stractions are safe.

4.2.2 State tables

A state table in McErlang implements a state table which record
states encountered during the model checking (a state here is a
combination of a program state and monitor state). The state table
is used to halt the continued exploration of a state when an earlier
identical state already has been checked.

4.2.3 Ensuring Finite Models

Clearly the efficacy of the model checking algorithm depends cru-
cially on whether the Erlang program checked have finite state
spaces or not. However, note that for checking non-compliance this
is not always necessary.

For instance, we can easily code a monitor that raises an alarm
whenever a process mailbox contains more than, say, N messages.

Then, even if mailboxes grow without bound, we will be able to
detect the problem. Similarly, an abstraction could simply cut the
mailbox when it has grown too large.

Still, in model checking Erlang programs there are at least two
sources of trivially infinite models that we normally need to take
into account: process identifiers and unique references.

Process identifiers are assigned in the spawn function call, and a
trivial implementation would simply assign increasing integer val-
ues in successive calls to spawn to distinguish different process
identifiers. Such a discipline however directly leads to infinite mod-
els. Instead, we let spawn enumerate the process identifiers in use
in either the current program state, or the current monitor state, and
select the lowest process identifier (a natural number starting with
0) not currently in use. This is clearly an example where it is very
useful having easy programmatic access to both the program state
and the monitor state in the model checker; a strong argument for
the “everything-in-Erlang” approach followed in this paper.

A similar re–use discipline is used to combat the problem of
unique gen_server call tags generated by the gen_server li-
brary.

5. Example
To illustrate the use of McErlang on a non-trivial example, we use
a simplified resource manager, the so called locker, implemented by
Arts and Benac Earle [1]. The locker is based on a real implementa-
tion in the control software of the AXD 301 ATM switch developed
by Ericsson and it was used as a case-study for the etomcrl tool.

5.1 Locker Implementation

The locker case-study consists of a server process (the locker) that
provides exclusive or shared access to an arbitrary number of re-
sources for an arbitrary number of client processes. As in the real
software, the whole locker application is started as a supervision
tree where there is a supervisor for the server and another supervi-
sor for the clients.

The locker is implemented as a generic server callback module.
The state of the locker contains the following information:

• a list containing the locks in the system. Each lock stores infor-
mation about a resource, the clients accessing it with a particu-
lar type of access (shared or exclusive) and the clients waiting
to get access to it.

• two lists, for storing the clients that request exclusive and shared
access to the resources.

The code corresponding to the handle call function for a request
message sent by a client to the locker is given in figure 3.

A client requesting access to a list of resources will only obtain
access to them when they are all available. If they are not available
the client is put in the pending list of each lock, added to the corre-
sponding list (Excls or Shared), and suspended until the resources
are released.

5.2 Clients

The example client repeatedly asks for a set of resources, and then
releases them, see figure 4. Note that a pause is inserted to indicate
to the monitor implementing the correctness property that the client
is in its critical region.

Both the server and the set of clients are started from a supervi-
sor tree description.

5.3 Model Checking the Locker

In this small example we only check a single property: whether
the locker is safe with regards to mutual exclusion. That is,

handle_call({request,Resources,Type},Client,
{Locks,Excls,Shared}) ->
case check_availables(Resources,Type,Locks) of

true ->
NewLocks =

map(fun(Lock) ->
claim_lock(Lock,Resources,Type,Client)

end,Locks),
{reply, ok,{NewLocks,Excls,Shared}};

false ->
NewLocks =

map(fun(Lock) ->
add_pending(Lock,Resources,Type,Client)

end,Locks),
case Type of

excl ->
{noreply,

{NewLocks,Excls++[Client],Shared}};
share ->
{noreply,

{NewLocks,Excls,Shared++[Client]}}
end

end;

Figure 3. implementation of the function handle call for the
request message

start_link(Locker,Resources,Type) ->
{ok,spawn_link(?MODULE, loop,

[Locker,Resources,Type])}.

loop(Locker,Resources,Type) ->
gen_server:call(Locker,

{request,Resources,Type}),
{pause,{?MODULE,inUse,[Locker,Resources,Type]}}.

inUse(Locker,Resources,Type) ->
gen_server:call(Locker, release),
loop(Locker,Resources,Type).

Figure 4. a simple locker client

that if a client requests exclusive access to a resource, and is
granted access, no other client can access the resource at the
same time. As was explained above we instrument the client
process to have a dedicated state, through a function named
inUse(Locker,Resources,Type). The fact that a process is
pausing in this function signals to the monitor implementing the
mutex correctness property that the client is in its critical region,
and has access to its Resources under the access type (share or
excl) signalled by the Type parameter.

The mutual exclusion correctness property is checked by the
monitor in Appendix A. Although the code might appear compli-
cated, the idea is simple. The monitor looks for all processes that
are waiting in the function call inUse (calculateResources)
and creates a list structure such that each of its elements is a tu-
ple, {Type,Name,Pids} where Type is excl or share, Name is
the name of the resource and Pids are the pids of the processes
that have locked the resource.

In case a mutual exclusion violation is detected by the monitor
(e.g., two processes holding an exclusive lock) the monitor returns
an error indication.

etomcrl McErlang

configuration time states time states
aEaEaEaEaE 1m 6s 9997 44s 52197
aEaEaEaEaS 45s 6033 42s 50805
aEaEaEaSaS 47s 6315 47s 56313
aEaEaSaSaS 1m 16s 14215 1m8s 75801
aEaSaSaSaS 4m 31s 59073 2m16s 130101
aSaSaSaSaS 21m 298437 7m48s 284277

Table 1. A comparison of etomcrl and McErlang using the
locker example

As an experiment we modified one line of the locker gen_server
implementation, changing the line

{reply, ok, {NewLocks,Excls,Shared}};

to read instead

{reply, ok, {Locks,Excls,Shared}};

that is, forgetting to update the lock structure. Trying to check the
new locker, using more than one client attempting to access the
same resource, the monitor rapidly signals that it has found a coun-
terexample, and prints out a trace back to the starting state. As an
option, it is possible to search for the shortest such counterexample
path. For the locker example with above modification the shortest
path was 11 transitions.

5.3.1 Preliminary Comparison with etomcrl

As a very preliminary comparison with etomcrl we present some
figures for the checking of the locker example in a number of client
configurations in table 1. The configuration column indicates, in a
schematic manner, the model checking scenario used. For instance
aEaEaEaEaS indicates a configuration with four client processes
requesting exclusive access to the resource a, and one client pro-
cess requesting shared access. The timing column indicates the
time needed to generate the transition system (for etomcrl, via
the instantiator tool) and both the time to generate the transition
system and check the mutex property for McErlang. The states
column represents the number of states in the generated models.
For etomcrl the timings were obtained on a SUN E450 with 4
297MHz UltraSparc II CPU’s, with 2Gb of RAM, and 6Gb of
Swap. For McErlang the timings were obtained on a Dell PC run-
ning Linux 2.6.8-3 on 4 2GHz XEON processors, with 2Gb of
memory.

As can be seen in the table, etomcrl creates much smaller state
spaces than McErlang in the smaller scenarios. However, in more
complex scenarios5 the difference in number of states evens out. In
terms of execution speed the tools are roughly equal, except again,
McErlang requires less time to complete the larger scenarios.

It is hard to draw firm conclusions from the above figures since
they represents measurements on a very early version of McErlang.
It appears, however, that McErlang generates more states; it could
possibly be a result of the manner in which we spawn processes
through the supervisor component, which is not optimised. Further
investigations are required here.

It is a hopeful sign that the execution time for generating the
transition system using McErlang is competitive with the instantia-
tor tool [11], as the instantiator is written in C and can be expected
to be heavily optimised by now.

5 a scenario with more sharing is more complex, since many processes can
request and succeed in getting a sharing lock on a resource at the same time

6. Conclusions and Future Work
As we have seen adopting a “everything-in-Erlang” approach to
model checking has certain advantages: it is easy to provide a
richer specification language, and to use the same language for
formulating correctness properties as for programming, and much
of the basic execution machinery can be reused (e.g., the model
checker uses the normal Erlang expression evaluation mechanism).

Still the current tool is just a prototype; there are many draw-
backs to its use that need to be addressed. We enumerate a number
of issues below:

• Finalising the translation from standard Erlang to the fragment
supported by the model checker (e.g., replacing receive state-
ments with receive tuples).

• Support for a richer Erlang fragment, e.g., including process
monitors, nodes, and so on. Ideally we should be able to di-
rectly use the sources of standard Erlang components such as
gen_server; however this may induce a cost in an increased
number of states.

• The monitor model is too weak. We need to be able to spec-
ify/program Büchi automatons, to enable formulation and
checking of liveness and fairness properties.

• We should investigate the possibility of changing the semantics;
to provide the option not only of halting the execution of the
current process when a receive is encountered, but to do so for
every side-effect inducing operation (e.g., also for sends).

• Clearly a model checker is a highly performance critical tool,
and probably some part of its critical functionality (maintaining
a state table) represents a program task for which Erlang is not
very well suited (lacking destructive data structures). Adding
a so called bit-state hash table [9] option to McErlang for in-
stance (a hash table which just keeps one bit of information for
every item) would probably have a prohibitive cost if imple-
mented using ets tables. An option would be to provide such
an implementation in C instead.

Interestingly, on the erlang-questions mailing list Sagonis
leaked information on 23/04/06 about a destructive array fea-
ture available in HiPE:

... I’ve kept quiet till now, because I did not want to
reveal the HiPE magic to the world, but since I see that
all Erlang solutions are ets-based, I find little reason not
to send this post...

Try the program below. Currently, it uses byte arrays
rather than bits, but converting it to use bits should be
straightforward. It is about 20 times faster than Yffe’s
[sic] program and about 10 times faster than Richard’s.
...

We look forward to trying out the HiPE byte arrays!

References
[1] T. Arts and C. Benac Earle. Development of a verified Erlang

program for resource locking. In Proc. FMICS 2001, GMD Report
No.91, pages 109–122, 2001.

[2] T. Arts, K. Claessen, and H. Svensson. Semi-formal development of
a fault-tolerant leader election protocol in erlang. Lecture Notes in
Computer Science, 3395:140 – 154, January 2005.

[3] T. Arts, C. Benac Earle, and J. Derrick. Development of a verified
Erlang program for resource locking. International Journal on
Software Tools for Technology Transfer (STTT), 5(2–3):205–220,
March 2004.

[4] T. Arts and L. Fredlund. Trace analysis of erlang programs. SIGPLAN
Not., 37(12):18–24, 2002.

[5] T. Arts and J. Hughes. Quickcheck for erlang. In Proceedings of the
2003 Erlang User Conference (EUC).

[6] K. Claessen and H. Svensson. A semantics for distributed erlang. In
Proceedings of the ACM SIPGLAN 2005 Erlang Workshop.

[7] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu,
and M. Sighireanu. CADP: A protocol validation and verification
toolbox. In Proceedings of the 8th Conference on Computer-Aided
Verification, volume 1102 of Lecture Notes in Computer Science,
pages 437–440. Springer, 1996.

[8] J.F. Groote and A. Ponse. The syntax and semantics of µCRL.
Technical Report CS-R9076, CWI, Amsterdam, 1990.

[9] G. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall International, 1991.

[10] T. Lindahl and K. Sagonas. Detecting software defects in telecom
applications through lightweight static analysis: A war story. In
Chin Wei-Ngan, editor, Programming Languages and Systems:
Proceedings of the Second Asian Symposium (APLAS’04), volume
3302 of LNCS, pages 91–106. Springer, November 2004.

[11] A.G. Wouters. Manual for the µCRL toolset (version 2.07). Technical
Report To appear, CWI, Amsterdam, 2001.

A. Appendix: Mutual Exclusion Monitor
-module(monMutex).
-export([init/1,stateChange/2]).

-include("state.hrl").
-include("process.hrl").

init(State) -> {ok, State}.

stateChange(State,MonState) ->
try

ResMap =
calculateResources
(State#state.processes),

{ok, MonState}
catch

throw:Term -> {badmon, Term}
end.

%%% Retrieves resources for processes
%%% in critical region
calculateResources(Procs) ->
lists:foldl
(fun (P,ResMap) ->

case find_innermost(P#process.expr) of
{pause, {_, inUse, [_,Resources,Type]}} ->

addResources
(P#process.pid,
Resources,
Type,
ResMap);

_ -> ResMap
end

end, [], Procs).

find_innermost({letexp,{Expr,_}}) ->
find_innermost(Expr);

find_innermost(Expr) -> Expr.

%%% Returns a list of process locking a resource,
%%% or an exception if locking discipline violated

addResources(Pid,Resources,Type,Map) ->
lists:foldl
(fun (RName,RMap) ->

addResource(Pid,RName,Type,RMap)
end, Map, Resources).

addResource(Pid,Name,Type,[]) ->
[{Type, Name, [Pid]}];

addResource(_,Name,excl,[{_,Name,_}|_]) ->
throw(mutex);

addResource(_,Name,share,[{excl,Name,_}|_]) ->
throw(mutex);

addResource(Pid,Name,share,[{share,Name,L}|Rest]) ->
[{share,Name,[Pid|L]}|Rest];

addResource(Pid,Name,Type,[First|Rest]) ->
[First|addResource(Pid,Name,Type,Rest)].

B. Appendix: gen server component
-module(gen_server).
-export([start_link/4call/2,cast/2,reply/2,doStart/4]).

start_link({local, Name}, Module, Args, Options) ->
Pid = spawn_link(?MODULE, doStart,

[Name, Module, Args, evOS:self()]),
receive started -> {ok, Pid} end.

doStart(Name, Module, Args, ParentPid) ->
{ok, State} = apply(Module, init, [Args]),
register(Name,self()),
ParentPid!started,
loop(State, Module).

loop(State, Module) ->
receive

Msg ->
case Msg of

{call, Data, ReplyId} ->
checkResult
(Module,
apply(Module, handle_call, [Data,ReplyId,State]),
ReplyId);

{cast, Data} ->
checkResult
(Module,
apply(Module, handle_cast, [Data,State]),
void);

{’EXIT’,From,Reason} ->
checkResult
(Module,
apply(Module, handle_info, [Msg,State]),
void)

end
end.

checkResult(Module,{reply,Data,State},ReplyId) ->
reply(ReplyId,Data),
loop(State, Module);

checkResult(Module,{stop,Reason,Data,StopState},ReplyId) ->
reply(ReplyId,Data),
terminating(Module,Reason,StopState);

checkResult(Module,{noreply,State},ReplyId) ->
loop(State, Module);

checkResult(Module,{stop,Reason,StopState},ReplyId) ->
terminating(Module,Reason,StopState).

reply({{callRef,CallPid},CallRef}, Reply) ->
CallPid!{reply, {{callRef,CallPid},CallRef}, Reply},
true.

terminating(Module, Reason, State) ->
apply(Module, terminate, [Reason,State]), ok.

call(Server, Data) ->
CallRef = references:getNewValue({callRef,self()}),
Server!{call, Data, CallRef},
receive

{reply, CallRef, ReturnData} -> ReturnData
end.

cast(Server, Data) -> Server!{cast, Data}, ok.

