|mplementing WS-CDL

LarsAke Fredlund

LSIIS, Facultad de Informatica, Universidad Politeenéte Madrid
f red@babel.ls.fi.upm.es

Abstract that the language is based on a particular formal method, the

m-calculus [7] process algebra, and that therefore the pro-

The WS-CDL definition, currently a W3C candidate recom—pos.'e.d language is particularly well-suited _Iapguage for d_e

. . . scribing concurrent processes and dynamic interconmectio
mendation, describes a language which is meant for charac-

S . 2 - scenarios.
terising interactions between distinct web services. Hare

so far there are few tools that allow to check and execuigig not clear, however, that the reality of the current WS-
specifications written in the new WS-CDL language. Apargp| standard proposal really fulfils the lofty vision of its
from missing tool support, many basic language features afggigners. Already the language proposal have met with

currently poorly l_m_derstood. In_ contrast t(_) traditional-la widespread criticism. WS-CDL is considered not useful for
guages for describing Web Service interaction, the WS'CD&eveloping concrete web services (in contrast to, say, WS-

does not describe traditional two-party communicatioasir BPEL), nor is it directly useful for deriving implementa-

the point-of-view of one of the participants. Rather, the-WS;jo 5 o web Services but is rather intended to serve some
CDL language describe interaction scenarios involvingmub sy ot purpose (defining abstract interactions among ser
tiple parties and from a viewpoint independent of its preéces;iceq) that so far has seen little use in industry. As a fur-

participants. To allow us to experiment with the new lang, o qrawback it is difficult to write WS-CDL specifications

guage, and in general gain more insight in the desig.n Prifat can be considered elegant or intuitive. As the language
ciples of the WS-CDL standard proposal, we have implég ased on XML, and lacking a graphical notion, specifi-

mented a tool that allow us to syntax check, execute and dgsiions even of smaller interactions become rather lengthy

bug WS-CDL desc_nptlons, and which m_th_e near future wil\y o -aover the language introduces a wealth of new design

allow model checking of WS-CDL descriptions. concepts such as e.g. channel passing, and constructs for ex
pressing directly concurrent execution and nondeteriinis
choices, choreographies, and so on that are currently mpt ve

1. Introduction well understood in the world of Web Services. With regards
to the connection to formal methods, so far there exists no

WS-CDL. the Web Services Ch hvD intion L accepted formal semantics of WS-CDL that shows exactly in
) ,t.e eb Services Choreography Description aihat way the new language is related to thealculus (but
guage [3], is a new XML [2] based language for descnbéee [8] for an early attempt)

ing interactions between web services. In November 2005, it
reached the status of W3C Candidate Recommendation. \joreover, so far precious few tools exists that allow to ex-

| WS-BPEL [4] in WS-CDL th . periment with the new WS-CDL language. Perhaps the most
n contrast to, say,) [4], in) there is NOyidely known tool ispi 4soa %, which provides an Eclipse

notion of a unique Web Services being defined (through u?ﬁugin that provides a graphical editor to compose WS-CDL

of ot_her_Web S_erwces In its d_ef|n|t_|on). In WS-CDL Webchoreographies and generate from them compliant BPEL.
Service interactions are described in a peer-to-peer manne

there is no notion of a coordinating Web Service nor of &g address some of these problems we decided to develop an
coordinated Web Service. In popular terms the developejgplementation of the WS-CDL language. Concretely our
of WS-CDL likes to distinguish between traditior@iches- jmplementation is a tool that allows to parse and syntaltyica
tration languageslike WS-BPEL that uses existing servicescheck WS-CDL specifications, to simulate (or run) specifica-
to orchestrate a new service, and betweleoreography lan- tions, and to model check specifications against correstnes
guages like WS-CDL, that describe the interaction pointsyroperties specified as safety automatons.

between existing Web Services without defining new such

services. The value of the tool is however greater than its core func-

The developers of WS-CDL have also made public claims !http://sourcef orge. net/ proj ect s/ pi 4soa

tionality. The simulation functionality of the tool is prijked Warehouse role types of a business interaction are imple-
by implementing an interpreter for WS-CDL programs inmented by the same organisation, the organisation could be
the Erlang functional programming language. As the immodelled using one Participant Type. In the example the par-
plementation of the interpreter is written in a clean wag, thticipant types are defined on lines 9-15.

source text of the interpreter can in fact serve as a formal

(operational) semantics of the WS-CDL language, somethinrg _)) _
which so far is missing. elationship Types A relationship type declares that two

Role Types (invariably two) have a need to interact to realis
In the following we will in Section 2 first introduce the WS- some set of web services, as seen on lines 41-44 in the static
CDL language, and then in Section 3 describe our implemepart of the example.
tation of WS-CDL. To illustrate the language features ard th

type of specifications that the tool can manage we include o h | q ibe th di q
in the paper a small case study example; the source codéqganne Types Channel types describe the medium use

available in figures 2 and 3. Finally we draw some conclu® communl_cgte bet_ween role types. A c_ommunlcanon al-
ays, surprisingly given the supposedly high-level natifre

sions from the implementation effort, and outline a numbe‘ﬁ R) :
of items for further work in Section 5. the specification Ian.guage, mvolves.twq parnes. In the.WS-
CDL standard multi-party communication is not possible.
WS-CDL interactions have two-phasesreguestfollowed
: by an optionatesponseTwo channel types for communicat-
2. A Short Introduction to WS-CDL ing with a retailer, and a channel for directly communicgtin
with a customer, are provided on lines 46-57 of the example.
The WS-CDL language is, as are most other languages for
describing Web services, based on XML. Given that né channel type identifies the responding role type but not
graphical syntax exists, descriptions of web service intefh€ requesting role type. Furthermore a channel type may
actions become |arge for even small examp|es_ The ngCIUde a section that describes how channel type insténces
CDL language can be understood to have two parts: a p&p@y be transmitted over another channel instance in interac
describingstatic relationships which are invariant, e.g., fortions. Interestingly, the channel type may also restriat ho
characterising types of XML data, for defining types of commany times and in what circumstances channel instances are
munication channels, types of communication partners, att$ed; e.g. stipulating for instance that a given instance ca
so on. The second part descriltggamicbehaviour: inter- ©nly be usednce in a single communication aharedthat
actions between communication partners (web services) atigan be used in multiple communications. However, the us-
their temporal interdependencies. age of these restriction modes for channel instances idypoor
explained in the standards document, nor are such features
present in the core-calculus formalism either. Finally the
2.1. StaticWS-CDL static part also contains definitions of types, and of fuordj
defined in the XPath formalism [1], for retrieving subfields o

The static part defines the collaborating entities in a WML based document data.
CDL specification.

2.2. Dynamic WS-CDL

Role Types All interactions takes place between different

role types for example between a Customer role type antthe core of WS-CDL can be found in the dynamic part. Here
a Retailer role type. A typical definition of role types can behe notion of achoreographys defined. In WS-CDL a chore-
found on lines 30-39 in figure 2. ography represents, essentially, a use case.

It would probably have been preferable to call these estitieA choreography concerns a set of relationships (interastio
roles instead of role types, as there is no possibility te crésetween role types) and includes a definition of the set of
ate separate instances from a role type definition, but # thiariables used to realise the data dependent behavioue of th
paper we will continue using the vocabulary of the WS-CDLchoreography. A particular variable is located at a paldicu
definition. The same confusion with regards to types versuysrticipant type, and all role types at a participant typareh
instances holds also for Participant and Channel Types (caxccess to such a variable. A role type that is located at a
ered next). different participant type from where a variable is located
cannot access the variable. Thus, in the normal case, there i

. . no implicit communication between web services located at
Participant Types A participant type groups together role different participants using shared variables.
types, that are conceptually going to be realised by the same

physical entity. For instance, if both the Retailer and the 2yes, there are instances of channel types

The choreographgctivity construct describes the behaviour3. AN | mplementation of WS-CDL
of the choreography (as seen next), while an exception

block defines the handling of exceptional events durir;g tioned in the introduct h ol ted a tool
the execution of the choreography activity, and a finaliz r> mentioneadin fhe introduction we nave impiemented a too

block describes the actions to be taken upon termination E)q execute WS.'CDL de;crlptlons, and W'th the secondary
the choreography. In addition a choreography can def oal of developing a semi-formal semantics for the language

sub-choreographies, and can make available to these s%éelg%?:ggg Ifh:(())ubgel‘t]tzr :;%ergaenrg;:gciei?wz (:r?glzlg\?sr(;:)
choreographies its own variables. provide the much needed facility of debugging the dynamic

part of WS-CDL descriptions.

2.2.1. Choreography Activities Although the standard says, “WS-CDL is not an "executable
business process description language” or an implementati

language”, the purpose of our implementation is exactly to
provide a tool for executing WS-CDL specifications. Essen-
tially we have implemented an executable formal semantics
for WS-CDL as a structured operational semantics tramsitio

relation over WS-CDL states (see later discussion on what
} o o i L constitutes a WS-CDL state). The implementation of the se-
Basc ACt'.V't'eS The prlnc_lpal be_15|c activity s th_e mantics allows to compute the possible next states from a
i nt er acti on;an example interaction can be seen on Imeaiven WS-CDL specification (in case data is not completely

25'5_3 n figure 3. An interaction describes the binary COMjetermined we cannot fully deduce which states are reach-
munication between two role types, as a request—respo

set of events exchanging information about the value of vari

ables located at the respective role type (or rather: particthe semantics is implemented in the Erlang programming
pant typeS) Other baSiC aCtiVitieS inCIUde the Startin@. Of |anguage [5] Er|ang iS, basica”y, an untyped eager func-
sub-choreography (using thger f or mstatement) and the tjonal programming language which offers excellent suppor
assigning of variables§si gn). for concurrency, communication and distribution. In con-
trast to most functional programming languages Erlang has
actually been widely used in industry, at Ericsson (thefchie

Workunits A wor kuni t is essentially a conditional and a janguage provider) as well as at a significant number of other
looping construct combined in one, enclosing an activity. Asompanies.

workunit has a guard, which if true permits the execution of

the enclosed activity. If false, and if a blocking executiorThanks partly to the industry usage, there exists in Erldng a
strategy has been specified, and the guard has a chanceeaifdy good library support for working with XML based doc-
becoming true in the future, the execution of the guards isments, e.g., themer | library provides a parser for XML
halted until it becomes true. Upon successful execution afocuments, and themer | _xpat h library permits execut-
the workunit activity the repeat condition of the workursit i ing XPat h 1.0 queries against XML documents.

analysed, and if the condition is true, the workunit is eadbl
for future execution. An alternative to formulating the operational semantidsrin

lang would have been to use a tool such as, for instance,
An example workunit that checks whether a variable haslaude system [6]. However clearly the level of XML and
been initialised is shown on lines 15-23 in figure 3. XPath support in Erlang is far superior to what is available

in Maude. In fact thanks to these salient features of Erlang

we were able to provide a relatively clean implementation
Structural Activities The most basic structural activity is of the semantics of WS-CDL; the functional part of Erlang
the sequence, specifying that its arguments should be evplovides a nice syntax for expressing the transition m@ati
uated in sequence. The parallel activity, in contrast, pewhereas the XML and XPath support already available in Er-
mits parallel execution of its activity arguments. Findliy lang is key to the evaluation of WS-CDL expressions. For
choice activity selects, based on the executability ofigaia instance, retrieving the channel variable from a purchase o
ments, one of its arguments for continued execution. If, fader (lines 48-52 in figure 3) is done by accessing the subfield
instance, one branch continuously blocks (a workunit wait-/ PQ' Cust omer Ref ’ (using an XPath expression) of the
ing for its guard condition to become true) then that choicehoreography variablens: pur chaseOr der (located at
branch will never be chosen. These constructs bear a strathg Retailer) using thedl : get Vari abl e function. As
resemblance to the corresponding process operatorsin thecan be seen, use of XML and XPath is typically used ev-
calculus in contrast to the more flow-oriented concurrenogrywhere in a WS-CDL specification (XPath is also used in
constructs available in WS-BPEL. the specification of token locators), and having them avail-

An activity is the basic programmatic building block of WS-
CDL. Essentially there are three classes of activitiesicstr
tural ones, workunit activities, and basic activities.

able without effort constitutes a significant advantagemwhe 1 true —

it comes to providing an executable implementation of thew init_vars (VD, Package)++Vars
language semantics. 15 end

16 end s

17 {[1.[1}, C#chor.variableDefs),
3.1. WSCDL Statesand Transitions 18

19 NewChor =

. . . 20 #chor{name=P#chor .name,
In our semantics the notion of a WS-CDL state is an Erlang, statezenabled ,
record type namedhor with the fieldsname state vars ” vars=vars
blocking andrunning This record type essentially repre- ,, blocking=P#perform . blocking ,
sents the running instance of the top choreography of the, running =[P#chor . activity},

WS-CDL specificationnameis the name of that choreogra- 2
phy, stateis the state of the choreography (whetbaabled 2 [Chor#chorf{running={chor,NewCho# }];
in_exception finalising, completedl and vars is a mapping
from the variables defined in the choreography to their cupithough the example uses concrete Erlang syntax it is
rent values. fairly easy to understand. In Erlang variables begin with a
)]) o o capital letters and atoms (literals) with a lowercase tette
A variable resides a particular participant, and is eitmend \/5riables can be assigned once only (meaning there is
tialised, or has a value, or is aligned with another value aaver two consecutive assignments to the same variable).
another participant (one of the more advanced concepts 6, Erlang syntaxVari abl e#Recor dNane. Fi el d
WS-CDL permits tight coordination of role type interact®on js sed to access a fieli el d of the variable
leading to aligned — with the same value — variables), or it§5, i abl e of record type RecordNane, the
value is defined by an outer choreography. syntax #Recor dNare{ Fi el d1=Val uel, ...}

Therunningfield refers to the currently executing activity in s used to create a record and
9 y 9 YN vari abl e#Recor dNare{ Fi el d=Val ue} returns

itgeec?jgﬁét tc;:‘etf}?rsf:tusrggrﬁzﬁﬁggtrhagré)f/].olrr;gairlgnfr: ! nbgut 13, new record where the value of the referenced field has
q) . grapny, c%anged but otherwise the record is identical to the record
contents of the field changes during the execution of the’[ored iVari abl e

choreography. In the general case, for instance, an @ctivﬁ

may refer to a sub-choreography, leadingrth@ni ng field 1,5 the above function clause is chosen when called with
to contain a a sub-choreography WS-CDL record state. ThiSfirst argument record whosainni ng field matches the
sub-choreography WS-CDL of course has its own variableg,nctional pattern{per f or m P}. Essentially the function

and a separate activity. retrieves the definition of the choreography (lines 4-5) an

The implementation of the set of transition rules for ourWSEhen initialises the variables of the choreography in li6es

CDL semantics then is a functiatoSt ep that given three 17. Free variables are bound by the outer choreographies

arguments: (i) the WS-CDL record state of the choreogr [Chor | Chor's]) while the location (participant types) of

- : -2 Tresh variables are computed usingi t _var s function.

phy to execute, (ii) a stack of surrounding choreograplmes . o

4 i : hen a new choreographyunni ng state record is ini-
which the currently executing one is embedded, and (iif) ant(ljalised in lines 19-24. Its name is derived from the chore-
the static data present in the WS-CDL specification, com- :

. . ography description, it ignabl ed to execute, it may be
putes and returns (as a list) the set of possible next States'blocking, and its initial activity (unni ng) is also fetched

For completeness we show below tdeSt ep function oM the choreography description.

clause concerning the transition steps (execution) of

. I?inally in the last line the function returns the new set
per f or mactivity.

of states, which in theper f or m clause is just a sin-

1 doStep (Chor, Chors, Package) gle state that is identical to the incoming state, except
2 when Chor#chor.runningfperform B — the r unni ng record component now contains a new sub-
3 choreography. For completeness itheSt ep clause for

« € = getChor(P#perform.chor, such a sub-choreography is also shown below. Any step by
" Vars - Chor, Package), the sub-choreography gives rise to a set of new states, which
. lists - foldl are embedded again in the outer choreography.

8 (fun (VD,Vars) —> 1 doStep(Chor, Chors, Package)

9 if 2 when Chor#chor.runningfchor ,Chh —

10 VD#variableDef. free— 3 lists :map

1 [bind_var (VD,[Chor| Chors])| 4 (fun (NewCh) —>

12 Vars]; 5 Chor#chor

6 {running={chor ,NewCh} s Example

7 end,

8 doStep ponsumir

9 (Ch,[Chor|Chors], Package)); {guard>

assign purchaseOrder
5&
response _ _ -~~~ ok response
3.2. Tool Functionalities badPurchasefiscEcopion - -~ -

As an extension to standard WS-CDL language the tool
provides the facility to simulate instantiated specificas
through the use of a XPath functial : doc for embed-
ding an XML document into the body of the WS-CDL code.
In the example this construct is used on line 19 in figure 3 tgince there is a possibility that other concurrent acésiti
initialise thepur chaseQr der variable at theCust omer could be interleaved with the exchange betw€ast oner
role type. andRet ai | er .

Figure 1: Message Sequence Chart for the WS-CDL Example

On top of the WS-CDL semantics we have built a simple

erqgging eqvironment fpr single-stepping WS-CD!_ speci4. Acknowledgments

fications, setting breakpoints (based on variable assigtsne

and role type interactions), and for executing (simulating

WS-CDL specification without stopping. As WS-CDL spec-The author was supported by a Ramon y Cajal grant from the
ifications are inherently non-deterministic in simulatian Ministerio de Educaciony Ciencia.

next state is chosen randomly, while in debugging mode the

user may influence the choice.

5. Conclusions and Further Work
Moreover there is a possibility to model check a specifica-

tion against a correctness property formulated as a saﬂety%

tomaton. Such an automaton has the power to inspect g_fg'lgf Isaiy thaat;hz tnoc?tl Sg:';?l??j av\p;éoé(;tyg) er.':gti;ce
WS-CDL specification state. For example, to check that inot handle tr?: n%n—l“'solatyed" cr:/oreo ' a h'es, (el uesiat '
all possible interactions a choreography variable always r IS0l graphies (1.e.,

o free choreography variable take place immediately). Nor

ceives a well-defined value at the conclusion of a choreo - the exception mechanism and the choreoaraphy coordina
raphy. Note that such correctness properties investipate t P grapny

internal soundness of the WS-CDL specification itself, anHOn mechanism completely handled for now. We expect to

do not address the problem of whether a WS-CDL specifﬂddress these limitations of the prototype in the near éutur

cation has been correctly implemented (orchestrated)h Suﬁowever, even so the prototype represents a powerful tool to

verification is possible, but left for future work. experiment with the new WS-CDL language as it is very in-
structive to trace message exchanges and variable updates a
3.3. TheWS-CDL Example Simulated result of _the dynamics of the WS—CDL specification. .M_ore—
over the implemented semantics clearly has a value in jtself
o it serves to clarify some obscure corners of the WS-CDL
The small WS-CDL example in figures 2 and 3 was SiMgiangard. We expect to publish a separate paper regarding
ulated in our tool. The result can be depicted symbolig,q ;e of the tool semantics as a semi-formal semantics for
cally as in figure 1. The example has 7 transitions in oWjs_cpL in the near future. With regards to the WS-CDL
simula?or. The first transition corres_por!ds to the CUSt(_)m%'Eandard itself the implementation exercise has highgight
executing the guard of the workunit (line 16), and sincg nymper of language constructs which for now are either

the guard succeeds, then the body of the workunit (the 88501y defined, or just poorly explained in the reference-doc
signment statement in lines 17 to 22 which initialises thg ant. We enumerate a few such issues below:

pur chaceOr der variable at theCust oner side) pro-

vides the second transition.
e Coordination of exceptions: The exception (and fi-

Then, theCust oner interacts with theRet ai | er issu- nalising) mechanisms are in general poorly explained
ing a request (lines 30-35), and tRet ai | er sends a re- (and defined). For instance there is some confusion in
sponse indicating either a successful or failed purchase op the standards document regarding whether exceptions
eration. Note that, because taki gn option was not spec- impact only certain role types in a choreography, or

ified in the scenario, the sending and the receiving part of a whether all role types are impacted. The likely inten-
exchange is logically separate transitions in the diagram, tion is that choreography coordination is required to no-

tify all role types, but this is inadequately specified in
the reference document.

e The underlying semantic model, for implementations
of WS-CDL specifications, is in general vague. For
instance, what assumptions regarding communication. <informationType name="purchaseOrderType”
. s . 2 type="tns :PurchaseOrderMsg®/
mechanls_m WOU|.d be §qﬁ|C|gntly .powerfUI to Imple' 3 <informationType name="purchaseOrderAckType”
ment the interaction activity with alignment and chore- 4 type="tns: PurchaseOrderAckMsgs/

. . 5 <informationType name="badPOAckType”
ography coordination? type="xsd :QName" £
. 6 <informationType name="uriType”
e The channel passing mechanism is poorly explained in type="xsd:string” &

the standard. Exactly which conditions does the ref-" < 1o/mationtvpe, pame=rintrype
erence text put on channel usage (the annotations of
. . . 9 <participantType name="Consumes”

t_he usage optlongl attribute in a channel type_declara- 0 <roleType typeRef="tns :Consumer"s/
tion)? Moreover in general the channel passing mechst </participantType>

. - 2
anism seems overly clumsy. Why is it at _aII Necessary, _participantType name="Retailer"
to specify that channels can be passed in the channel <roleType typeRef="tns:Retailer"
type definition? The intention of the language designerg® ~ </Participantiype
with regards to the channel mechanisms are in general <token name="purchaseOrderID” informationType="tns : Tipe”/>

: 18 <token name="retailerRef” informationType="tns:uriType>
far from clear, even for the purpose of language Imple'w <token name="consumerRef” informationType="tns:uriType

mentation. 20
21 <tokenLocator tokenName="tns:purchaseOrderiD"
22 informationType="tns : purchaseOrderType”

. . . 23 query="/PO/orderld”"t
A further item for future work is to establish a connec- ,; <tokenLocator tokenName="tns : purchaseOrderiD"

tion to WSDL (Web Services Description Language), for theiz iqnufgrr;“_é},t/isonfoyrrzjeefl’&q;: purchaseOrderAckType”
purpose of testing a set of interacting WSDL web services; <tokenLocator tokenName="tns:retailerRef”

against the combined service prescribed by a WS-CDL spec: query="/PO/retailer|d” ,
i . 29 informationType="tns : purchaseOrderType¥/
ification. a0

31 <roleType name="Consumer’

32 <behavior name="consumerForRetailer”

33 interface="rns: ConsumerRetailerPT3/
References 34 <behavior name="consumerForWarehouse”

35 interface="rns:ConsumerWarehouseP¥"/

36 </roleType>
[1] XML Path Language (XPath) Version 1.0. Technical report 37 <roleType name="Retailers

38 <behavior name="retailerForConsumer”

W3C, November 1999. . 39 interface="rns: RetailerConsumerPT3/
[2] Extensible Markup Language (XML) 1.0. Technical report 4 </roleType>

W3C, February 2004. 4 lationshioT . RetailerRelationship”
[3] Web Services Choreography Description Language, Warsi <r<er§f;c}r;ze'ﬂygsge?iﬂi; Lonsumerretailerrelationship

1.0—-W3C candidate recommendation 9 november 2005. Techs behavior="consumerForRetailery

nical report, W3C, November 2005. 45 <roleType QVEER?‘E"I”S : R’Ietg”ecf i Y

. . . . ="retai ’

[4] Web Services Business Process Execution Languageoversi ;- _jiciationshintypes oo

2.0 (draft). Technical report, OASIS, 2006. 48
[5] J. Armstrong, R. Virding, C. Wikstrom, and M. William€on- 4 <channelType name="ConsumerChannel"

. ; | Prenti Hall Int ti | <roleType typeRef="tns:Consumer¥
current Programming in Erlang Prentice-Hall International 51 <reference> <token name="tns:consumerRefs/ </reference>
(UK) Ltd., 1996. 52 <identity > <token name="tns:purchaseOrderID¥/ </identity>

[6] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Ofje 52 </channelType-
J. Meseguer, and J. F. Quesada. The Maude systeRevimit- ss <channelType name="RetailerChannel”

ing Techniques and Applications, 10th International Confe ss <passing channel="ConsumerChannel” action="reques®’ /
) . ; 57 <roleType typeRef="tns:Retailer”
ence, RTA'99, Trento, Italy,..]uly 2-4, 1999,. Proceedinvgs o behavior =" retailerEorConsumery
ume 1631 ofLecture Notes in Computer Sciengages 240— 5 <reference> <token name="tns:retailerRef¥
243. Springer-Verlag, 1999. </f9f¢ée“0f®) o haseOrderiDe/
[7] R. Milner, J. Parrow, and D. Walker. A calculus of mobilop ~ *° <,id§'mietr;t;ty> <token name="tns:purchaseOrder|D*

cesses, part | and lInformation and Computatigril00(1):1— & </channelType
40 and 41-77, 1992.

[8] Z. X. Yang Hongli and Q. Zongyan. A formal model of web
service choreography description language (ws-cdl). fiech
cal report, Department of Informatics, School of Math.,iRgk
University, China, January 2006.

Figure 2: WS-CDL Example: Static Part

<choreography name="ConsumerRetailerChoreography” rdotue”>
<relationship type="tns:ConsumerRetailerRelationship”
<variableDefinitions>
<variable name="purchaseOrder” informationType="tns rphaseOrderType”
silent="false” />
<variable name="purchaseOrderAck”
informationType="tns : purchaseOrderAckType™/
<variable name="retailerchannel” channelType="tns:RetailerChanne}’/
<variable name="consumerchannel” channelType="tns:ConsumerChanngl!"/
<variable name="badPurchaseOrderAck”
informationType="tns :badPOAckType ">/
</variableDefinitions>

© ® N U WN R

PR e R e
> w N P O

<sequencg
<workunit name="unit” block="false”
guard="not(cdl:isVariableAvailable ('tns:purchaseGd’, tns:Consumer’))™>
<assign roleType="tns:Consumes”
<copy name="copyl®
<source expression="cdl:doc('&It;PO> &lIt;orderld nam"10"/> <CustomerRef name="108@uot;/&g
<target variable="cdl:getVariable ('tns:purchaseOrder”,’’)"/ >
</copy>
<lassigm>
</workunit>

NNNRNRNE B BB
A WNP O ©®»~N OO

<interaction name="createPO”
channelVariable="tns: RetailerChannel”
operation="handlePurchaseOrder*
<participate relationshipType="tns:ConsumerRetailetRgonship”
fromRoleTypeRef="tns :Consumer” toRoleTypeRef="tns : faéler”/>
<exchange name="request”
informationType="tns : purchaseOrderType” action="regat”>
<send variable="cdl:getVariable ("tns:purchaseOrder ', ")" [/ >
<receive variable="cdl:getVariable ('tns:purchaseOrder’,’’)”
recordReference="recordthe—channelinfo” />
<l/exchange
<exchange name="response”
informationType="purchaseOrderAckType” action="resmpd™>
<send variable="cdl:getVariable ('tns:purchaseOrderAck’,’’)” [>
<receive variable="cdl:getVariable ('tns:purchaseOrdek’,’’,"")" | >
</exchange
<exchange name="badPurchaseOrderAckException” faultdahbadPurchaseOrderAckException”
informationType ="badPOAckType” action="respornd”
<send variable="cdl:getVariable ('tns:badPurchaseOwies ', ","")"
causeException="tns :badPOAck™/
<receive variable="cdl:getVariable ('tns:badPurchasd@rAck ',’’,"")”
causeException="tns :badPOAck”>/
</exchange
<record name="recordthe—channelinfo” when="after”>
<source variable="cdl:getVariable ('tns:purchaseOrder”,
'/PO/CustomerRef’)" />
<target variable="cdl:getVariable ('tns:consumechannel’,’’,’")"/ >
<Ilrecord>
<linteraction>
54 </sequencg
55 </choreography
56 </package>

g A S BRBR AN D DD DWW WWmWWWWWNNNNDN
W NP OB®INOODORB®NERL,OO®N®ORO®RNPR,OO©®~NO A

Figure 3: WS-CDL Example: Dynamic Part

