
Implementing WS-CDL

Lars-Åke Fredlund
LSIIS, Facultad de Informática, Universidad Politécnica de Madrid

fred@babel.ls.fi.upm.es

Abstract

The WS-CDL definition, currently a W3C candidate recom-
mendation, describes a language which is meant for charac-
terising interactions between distinct web services. However,
so far there are few tools that allow to check and execute
specifications written in the new WS-CDL language. Apart
from missing tool support, many basic language features are
currently poorly understood. In contrast to traditional lan-
guages for describing Web Service interaction, the WS-CDL
does not describe traditional two-party communications from
the point-of-view of one of the participants. Rather, the WS-
CDL language describe interaction scenarios involving mul-
tiple parties and from a viewpoint independent of its process
participants. To allow us to experiment with the new lan-
guage, and in general gain more insight in the design prin-
ciples of the WS-CDL standard proposal, we have imple-
mented a tool that allow us to syntax check, execute and de-
bug WS-CDL descriptions, and which in the near future will
allow model checking of WS-CDL descriptions.

1. Introduction

WS-CDL, the Web Services Choreography Description Lan-
guage [3], is a new XML [2] based language for describ-
ing interactions between web services. In November 2005, it
reached the status of W3C Candidate Recommendation.

In contrast to, say, WS-BPEL [4], in WS-CDL there is no
notion of a unique Web Services being defined (through use
of other Web Services in its definition). In WS-CDL Web
Service interactions are described in a peer-to-peer manner,
there is no notion of a coordinating Web Service nor of a
coordinated Web Service. In popular terms the developers
of WS-CDL likes to distinguish between traditionalorches-
tration languages, like WS-BPEL that uses existing services
to orchestrate a new service, and betweenchoreography lan-
guages, like WS-CDL, that describe the interaction points
between existing Web Services without defining new such
services.

The developers of WS-CDL have also made public claims

that the language is based on a particular formal method, the
π-calculus [7] process algebra, and that therefore the pro-
posed language is particularly well-suited language for de-
scribing concurrent processes and dynamic interconnection
scenarios.

It is not clear, however, that the reality of the current WS-
CDL standard proposal really fulfils the lofty vision of its
designers. Already the language proposal have met with
widespread criticism. WS-CDL is considered not useful for
developing concrete web services (in contrast to, say, WS-
BPEL), nor is it directly useful for deriving implementa-
tions of Web Services but is rather intended to serve some
abstract purpose (defining abstract interactions among ser-
vices) that so far has seen little use in industry. As a fur-
ther drawback it is difficult to write WS-CDL specifications
that can be considered elegant or intuitive. As the language
is based on XML, and lacking a graphical notion, specifi-
cations even of smaller interactions become rather lengthy.
Moreover the language introduces a wealth of new design
concepts such as e.g. channel passing, and constructs for ex-
pressing directly concurrent execution and nondeterministic
choices, choreographies, and so on that are currently not very
well understood in the world of Web Services. With regards
to the connection to formal methods, so far there exists no
accepted formal semantics of WS-CDL that shows exactly in
what way the new language is related to theπ-calculus (but
see [8] for an early attempt).

Moreover, so far precious few tools exists that allow to ex-
periment with the new WS-CDL language. Perhaps the most
widely known tool ispi4soa 1, which provides an Eclipse
plugin that provides a graphical editor to compose WS-CDL
choreographies and generate from them compliant BPEL.

To address some of these problems we decided to develop an
implementation of the WS-CDL language. Concretely our
implementation is a tool that allows to parse and syntactically
check WS-CDL specifications, to simulate (or run) specifica-
tions, and to model check specifications against correctness
properties specified as safety automatons.

The value of the tool is however greater than its core func-

1http://sourceforge.net/projects/pi4soa

tionality. The simulation functionality of the tool is provided
by implementing an interpreter for WS-CDL programs in
the Erlang functional programming language. As the im-
plementation of the interpreter is written in a clean way, the
source text of the interpreter can in fact serve as a formal
(operational) semantics of the WS-CDL language, something
which so far is missing.

In the following we will in Section 2 first introduce the WS-
CDL language, and then in Section 3 describe our implemen-
tation of WS-CDL. To illustrate the language features and the
type of specifications that the tool can manage we include
in the paper a small case study example; the source code is
available in figures 2 and 3. Finally we draw some conclu-
sions from the implementation effort, and outline a number
of items for further work in Section 5.

2. A Short Introduction to WS-CDL

The WS-CDL language is, as are most other languages for
describing Web services, based on XML. Given that no
graphical syntax exists, descriptions of web service inter-
actions become large for even small examples. The WS-
CDL language can be understood to have two parts: a part
describingstatic relationships which are invariant, e.g., for
characterising types of XML data, for defining types of com-
munication channels, types of communication partners, and
so on. The second part describesdynamicbehaviour: inter-
actions between communication partners (web services) and
their temporal interdependencies.

2.1. Static WS-CDL

The static part defines the collaborating entities in a WS-
CDL specification.

Role Types All interactions takes place between different
role types, for example between a Customer role type and
a Retailer role type. A typical definition of role types can be
found on lines 30–39 in figure 2.

It would probably have been preferable to call these entities
roles instead of role types, as there is no possibility to cre-
ate separate instances from a role type definition, but in this
paper we will continue using the vocabulary of the WS-CDL
definition. The same confusion with regards to types versus
instances holds also for Participant and Channel Types (cov-
ered next).

Participant Types A participant type groups together role
types, that are conceptually going to be realised by the same
physical entity. For instance, if both the Retailer and the

Warehouse role types of a business interaction are imple-
mented by the same organisation, the organisation could be
modelled using one Participant Type. In the example the par-
ticipant types are defined on lines 9–15.

Relationship Types A relationship type declares that two
Role Types (invariably two) have a need to interact to realise
some set of web services, as seen on lines 41–44 in the static
part of the example.

Channel Types Channel types describe the medium used
to communicate between role types. A communication al-
ways, surprisingly given the supposedly high-level natureof
the specification language, involves two parties. In the WS-
CDL standard multi-party communication is not possible.
WS-CDL interactions have two-phases, arequestfollowed
by an optionalresponse. Two channel types for communicat-
ing with a retailer, and a channel for directly communicating
with a customer, are provided on lines 46–57 of the example.

A channel type identifies the responding role type but not
the requesting role type. Furthermore a channel type may
include a section that describes how channel type instances2

may be transmitted over another channel instance in interac-
tions. Interestingly, the channel type may also restrict how
many times and in what circumstances channel instances are
used; e.g. stipulating for instance that a given instance can
only be usedonce, in a single communication orsharedthat
it can be used in multiple communications. However, the us-
age of these restriction modes for channel instances is poorly
explained in the standards document, nor are such features
present in the coreπ-calculus formalism either. Finally the
static part also contains definitions of types, and of functions,
defined in the XPath formalism [1], for retrieving subfields of
XML based document data.

2.2. Dynamic WS-CDL

The core of WS-CDL can be found in the dynamic part. Here
the notion of achoreographyis defined. In WS-CDL a chore-
ography represents, essentially, a use case.

A choreography concerns a set of relationships (interactions
between role types) and includes a definition of the set of
variables used to realise the data dependent behaviour of the
choreography. A particular variable is located at a particular
participant type, and all role types at a participant type share
access to such a variable. A role type that is located at a
different participant type from where a variable is located
cannot access the variable. Thus, in the normal case, there is
no implicit communication between web services located at
different participants using shared variables.

2yes, there are instances of channel types

The choreographyactivity construct describes the behaviour
of the choreography (as seen next), while an exception
block defines the handling of exceptional events during
the execution of the choreography activity, and a finalizer
block describes the actions to be taken upon termination of
the choreography. In addition a choreography can define
sub-choreographies, and can make available to these sub-
choreographies its own variables.

2.2.1. Choreography Activities

An activity is the basic programmatic building block of WS-
CDL. Essentially there are three classes of activities: struc-
tural ones, workunit activities, and basic activities.

Basic Activities The principal basic activity is the
interaction; an example interaction can be seen on lines
25-53 in figure 3. An interaction describes the binary com-
munication between two role types, as a request–response
set of events exchanging information about the value of vari-
ables located at the respective role type (or rather: partici-
pant types). Other basic activities include the starting ofa
sub-choreography (using theperform statement) and the
assigning of variables (assign).

Workunits A workunit is essentially a conditional and a
looping construct combined in one, enclosing an activity. A
workunit has a guard, which if true permits the execution of
the enclosed activity. If false, and if a blocking execution
strategy has been specified, and the guard has a chance of
becoming true in the future, the execution of the guards is
halted until it becomes true. Upon successful execution of
the workunit activity the repeat condition of the workunit is
analysed, and if the condition is true, the workunit is enabled
for future execution.

An example workunit that checks whether a variable has
been initialised is shown on lines 15–23 in figure 3.

Structural Activities The most basic structural activity is
the sequence, specifying that its arguments should be eval-
uated in sequence. The parallel activity, in contrast, per-
mits parallel execution of its activity arguments. Finallythe
choice activity selects, based on the executability of its argu-
ments, one of its arguments for continued execution. If, for
instance, one branch continuously blocks (a workunit wait-
ing for its guard condition to become true) then that choice
branch will never be chosen. These constructs bear a strong
resemblance to the corresponding process operators in theπ-
calculus in contrast to the more flow-oriented concurrency
constructs available in WS-BPEL.

3. An Implementation of WS-CDL

As mentioned in the introduction we have implemented a tool
to execute WS-CDL descriptions, and with the secondary
goal of developing a semi-formal semantics for the language.
The ambition is to better understand the design decisions of
the language through a proper semantics, and moreover to
provide the much needed facility of debugging the dynamic
part of WS-CDL descriptions.

Although the standard says, “WS-CDL is not an ”executable
business process description language” or an implementation
language”, the purpose of our implementation is exactly to
provide a tool for executing WS-CDL specifications. Essen-
tially we have implemented an executable formal semantics
for WS-CDL as a structured operational semantics transition
relation over WS-CDL states (see later discussion on what
constitutes a WS-CDL state). The implementation of the se-
mantics allows to compute the possible next states from a
given WS-CDL specification (in case data is not completely
determined we cannot fully deduce which states are reach-
able).

The semantics is implemented in the Erlang programming
language [5]. Erlang is, basically, an untyped eager func-
tional programming language which offers excellent support
for concurrency, communication and distribution. In con-
trast to most functional programming languages Erlang has
actually been widely used in industry, at Ericsson (the chief
language provider) as well as at a significant number of other
companies.

Thanks partly to the industry usage, there exists in Erlang al-
ready good library support for working with XML based doc-
uments, e.g., thexmerl library provides a parser for XML
documents, and thexmerl xpath library permits execut-
ing XPath 1.0 queries against XML documents.

An alternative to formulating the operational semantics inEr-
lang would have been to use a tool such as, for instance,
Maude system [6]. However clearly the level of XML and
XPath support in Erlang is far superior to what is available
in Maude. In fact thanks to these salient features of Erlang
we were able to provide a relatively clean implementation
of the semantics of WS-CDL; the functional part of Erlang
provides a nice syntax for expressing the transition relation,
whereas the XML and XPath support already available in Er-
lang is key to the evaluation of WS-CDL expressions. For
instance, retrieving the channel variable from a purchase or-
der (lines 48–52 in figure 3) is done by accessing the subfield
’/PO/CustomerRef’ (using an XPath expression) of the
choreography variabletns:purchaseOrder (located at
the Retailer) using thecdl:getVariable function. As
can be seen, use of XML and XPath is typically used ev-
erywhere in a WS-CDL specification (XPath is also used in
the specification of token locators), and having them avail-

able without effort constitutes a significant advantage when
it comes to providing an executable implementation of the
language semantics.

3.1. WS-CDL States and Transitions

In our semantics the notion of a WS-CDL state is an Erlang
record type namedchor with the fieldsname, state, vars,
blocking, and running. This record type essentially repre-
sents the running instance of the top choreography of the
WS-CDL specification:nameis the name of that choreogra-
phy,stateis the state of the choreography (whetherenabled,
in exception, finalising, completed) and vars is a mapping
from the variables defined in the choreography to their cur-
rent values.

A variable resides a particular participant, and is either unini-
tialised, or has a value, or is aligned with another value at
another participant (one of the more advanced concepts of
WS-CDL permits tight coordination of role type interactions
leading to aligned – with the same value – variables), or its
value is defined by an outer choreography.

Therunningfield refers to the currently executing activity in
the context of the current choreography. Initiallyrunning
is equal to the first statement in the choreography, but the
contents of the field changes during the execution of the
choreography. In the general case, for instance, an activity
may refer to a sub-choreography, leading therunning field
to contain a a sub-choreography WS-CDL record state. This
sub-choreography WS-CDL of course has its own variables,
and a separate activity.

The implementation of the set of transition rules for our WS-
CDL semantics then is a functiondoStep that given three
arguments: (i) the WS-CDL record state of the choreogra-
phy to execute, (ii) a stack of surrounding choreographies in
which the currently executing one is embedded, and (iii) and
the static data present in the WS-CDL specification, com-
putes and returns (as a list) the set of possible next states.

For completeness we show below thedoStep function
clause concerning the transition steps (execution) of a
perform activity.

1 doStep (Chor , Chors , Package)
2 when Chor# chor . r unn ing ={per form , P} −>

3

4 C = getChor (P# per form . chor ,
5 Chor , Package) ,
6 Vars =
7 l i s t s : f o l d l
8 (fun (VD, Vars) −>

9 i f
10 VD# v a r i a b l e D e f . f r e e−>

11 [b i n d v a r (VD, [Chor| Chors])|
12 Vars] ;

13 t r u e −>

14 i n i t v a r s (VD, Package)++ Vars
15 end
16 end ,
17 { [] , [] } , C# chor . v a r i a b l e D e f s) ,
18

19 NewChor =
20 # chor{name=P# chor . name ,
21 s t a t e = enabled ,
22 v a r s =Vars ,
23 b l o c k i n g =P# per form . b lock i ng ,
24 r unn ing =[P# chor . a c t i v i t y]} ,
25

26 [Chor# chor{ r unn ing ={ chor , NewChor}}] ;

Although the example uses concrete Erlang syntax it is
fairly easy to understand. In Erlang variables begin with a
capital letters and atoms (literals) with a lowercase letter.
Variables can be assigned once only (meaning there is
never two consecutive assignments to the same variable).
The Erlang syntaxVariable#RecordName.Field
is used to access a fieldField of the variable
Variable of record type RecordName, the
syntax #RecordName{Field1=Value1,...}
is used to create a record and
Variable#RecordName{Field=Value} returns
a new record where the value of the referenced field has
changed but otherwise the record is identical to the record
stored inVariable.

Thus the above function clause is chosen when called with
a first argument record whoserunning field matches the
functional pattern{perform,P}. Essentially the function
retrieves the definition of the choreography (lines 4–5), and
then initialises the variables of the choreography in lines6–
17. Free variables are bound by the outer choreographies
([Chor|Chors]) while the location (participant types) of
fresh variables are computed usinginit_vars function.
Then a new choreographyrunning state record is ini-
tialised in lines 19–24. Its name is derived from the chore-
ography description, it isenabled to execute, it may be
blocking, and its initial activity (running) is also fetched
from the choreography description.

Finally in the last line the function returns the new set
of states, which in theperform clause is just a sin-
gle state that is identical to the incoming state, except
the running record component now contains a new sub-
choreography. For completeness thedoStep clause for
such a sub-choreography is also shown below. Any step by
the sub-choreography gives rise to a set of new states, which
are embedded again in the outer choreography.

1 doStep (Chor , Chors , Package)
2 when Chor# chor . r unn ing ={chor , Ch} −>

3 l i s t s : map
4 (fun (NewCh) −>

5 Chor# chor

6 { r unn ing ={chor , NewCh}}
7 end ,
8 doStep
9 (Ch , [Chor| Chors] , Package)) ;

3.2. Tool Functionalities

As an extension to standard WS-CDL language the tool
provides the facility to simulate instantiated specifications
through the use of a XPath functioncdl:doc for embed-
ding an XML document into the body of the WS-CDL code.
In the example this construct is used on line 19 in figure 3 to
initialise thepurchaseOrder variable at theCustomer
role type.

On top of the WS-CDL semantics we have built a simple
debugging environment for single-stepping WS-CDL speci-
fications, setting breakpoints (based on variable assignments,
and role type interactions), and for executing (simulating)
WS-CDL specification without stopping. As WS-CDL spec-
ifications are inherently non-deterministic in simulationa
next state is chosen randomly, while in debugging mode the
user may influence the choice.

Moreover there is a possibility to model check a specifica-
tion against a correctness property formulated as a safety au-
tomaton. Such an automaton has the power to inspect the
WS-CDL specification state. For example, to check that in
all possible interactions a choreography variable always re-
ceives a well-defined value at the conclusion of a choreog-
raphy. Note that such correctness properties investigate the
internal soundness of the WS-CDL specification itself, and
do not address the problem of whether a WS-CDL specifi-
cation has been correctly implemented (orchestrated). Such
verification is possible, but left for future work.

3.3. The WS-CDL Example Simulated

The small WS-CDL example in figures 2 and 3 was sim-
ulated in our tool. The result can be depicted symboli-
cally as in figure 1. The example has 7 transitions in our
simulator. The first transition corresponds to the Customer
executing the guard of the workunit (line 16), and since
the guard succeeds, then the body of the workunit (the as-
signment statement in lines 17 to 22 which initialises the
purchaceOrder variable at theCustomer side) pro-
vides the second transition.

Then, theCustomer interacts with theRetailer issu-
ing a request (lines 30–35), and theRetailer sends a re-
sponse indicating either a successful or failed purchase op-
eration. Note that, because thealign option was not spec-
ified in the scenario, the sending and the receiving part of a
exchange is logically separate transitions in the diagram,

Consumer Retailer

guard

assign purchaseOrder

exchange request

response
ok response

badPurchaseOrderAckException
or error

msc Example

Figure 1: Message Sequence Chart for the WS-CDL Example

since there is a possibility that other concurrent activities
could be interleaved with the exchange betweenCustomer
andRetailer.

4. Acknowledgments

The author was supported by a Ramón y Cajal grant from the
Ministerio de Educación y Ciencia.

5. Conclusions and Further Work

It is fair to say that the tool still remains a prototype. The full
WS-CDL language is not yet covered. We do, for instance,
not handle the non-“isolated” choreographies (i.e., updates
to free choreography variable take place immediately). Nor
is the exception mechanism and the choreography coordina-
tion mechanism completely handled for now. We expect to
address these limitations of the prototype in the near future.

However, even so the prototype represents a powerful tool to
experiment with the new WS-CDL language as it is very in-
structive to trace message exchanges and variable updates as
result of the dynamics of the WS-CDL specification. More-
over the implemented semantics clearly has a value in itself,
it serves to clarify some obscure corners of the WS-CDL
standard. We expect to publish a separate paper regarding
the use of the tool semantics as a semi-formal semantics for
WS-CDL in the near future. With regards to the WS-CDL
standard itself the implementation exercise has highlighted
a number of language constructs which for now are either
poorly defined, or just poorly explained in the reference doc-
ument. We enumerate a few such issues below:

• Coordination of exceptions: The exception (and fi-
nalising) mechanisms are in general poorly explained
(and defined). For instance there is some confusion in
the standards document regarding whether exceptions
impact only certain role types in a choreography, or
whether all role types are impacted. The likely inten-
tion is that choreography coordination is required to no-

tify all role types, but this is inadequately specified in
the reference document.

• The underlying semantic model, for implementations
of WS-CDL specifications, is in general vague. For
instance, what assumptions regarding communication
mechanism would be sufficiently powerful to imple-
ment the interaction activity with alignment and chore-
ography coordination?

• The channel passing mechanism is poorly explained in
the standard. Exactly which conditions does the ref-
erence text put on channel usage (the annotations of
theusage optional attribute in a channel type declara-
tion)? Moreover in general the channel passing mech-
anism seems overly clumsy. Why is it at all necessary
to specify that channels can be passed in the channel
type definition? The intention of the language designers
with regards to the channel mechanisms are in general
far from clear, even for the purpose of language imple-
mentation.

A further item for future work is to establish a connec-
tion to WSDL (Web Services Description Language), for the
purpose of testing a set of interacting WSDL web services
against the combined service prescribed by a WS-CDL spec-
ification.

References

[1] XML Path Language (XPath) Version 1.0. Technical report,
W3C, November 1999.

[2] Extensible Markup Language (XML) 1.0. Technical report,
W3C, February 2004.

[3] Web Services Choreography Description Language, Version
1.0 – W3C candidate recommendation 9 november 2005. Tech-
nical report, W3C, November 2005.

[4] Web Services Business Process Execution Language Version
2.0 (draft). Technical report, OASIS, 2006.

[5] J. Armstrong, R. Virding, C. Wikström, and M. Williams.Con-
current Programming in Erlang. Prentice-Hall International
(UK) Ltd., 1996.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and J. F. Quesada. The Maude system. InRewrit-
ing Techniques and Applications, 10th International Confer-
ence, RTA’99, Trento, Italy, July 2–4, 1999, Proceedings, vol-
ume 1631 ofLecture Notes in Computer Science, pages 240–
243. Springer-Verlag, 1999.

[7] R. Milner, J. Parrow, and D. Walker. A calculus of mobile pro-
cesses, part I and II.Information and Computation, 100(1):1–
40 and 41–77, 1992.

[8] Z. X. Yang Hongli and Q. Zongyan. A formal model of web
service choreography description language (ws-cdl). Techni-
cal report, Department of Informatics, School of Math., Peking
University, China, January 2006.

1 <i n fo rma t i onT ype name=” purchaseOrderType ”
2 t ype =” t n s : PurchaseOrderMsg ”/>

3 <i n fo rma t i onT ype name=” purchaseOrderAckType”
4 t ype =” t n s : PurchaseOrderAckMsg”/>

5 <i n fo rma t i onT ype name=”badPOAckType ”
t ype =” xsd :QName” />

6 <i n fo rma t i onT ype name=” u r iT ype ”
t ype =” xsd : s t r i n g ” />

7 <i n fo rma t i onT ype name=” in tT ype ”
t ype =” xsd : i n t e g e r ” />

8

9 <p a r t i c i p a n t T y p e name=” Consumer”>

10 <ro l e T ype type R e f =” t n s : Consumer ” />

11 </ p a r t i c i p a n t T y p e>
12

13 <p a r t i c i p a n t T y p e name=” R e t a i l e r ”>

14 <ro l e T ype type R e f =” t n s : R e t a i l e r ” />

15 </ p a r t i c i p a n t T y p e>
16

17 <t oke n name=” purchaseOrder ID ” i n fo rma t i onT ype =” t n s : i n tT ype ”/>
18 <t oke n name=” r e t a i l e r R e f ” i n fo rma t i onT ype =” t n s : u r iT ype”/ >
19 <t oke n name=” consumerRef ” i n fo rma t i onT ype =” t n s : u r iT ype”/ >
20

21 <t oke nL oc a to r tokenName=” t n s : purchaseOrder ID ”
22 i n fo rma t i onT ype =” t n s : purchaseOrderType ”
23 query =” /PO / o r d e r I d ”/>
24 <t oke nL oc a to r tokenName=” t n s : purchaseOrder ID ”
25 i n fo rma t i onT ype =” t n s : purchaseOrderAckType”
26 query =” /PO / o r d e r I d ”/>
27 <t oke nL oc a to r tokenName=” t n s : r e t a i l e r R e f ”
28 query =” /PO / r e t a i l e r I d ”
29 i n fo rma t i onT ype =” t n s : purchaseOrderType ”/>

30

31 <ro l e T ype name=” Consumer”>

32 <be ha v io r name=” c o n s u m e r F o r R e t a i l e r ”
33 i n t e r f a c e =” rns : ConsumerReta i le rPT ”/>

34 <be ha v io r name=” consumerForWarehouse ”
35 i n t e r f a c e =” rns : ConsumerWarehousePT”/>

36 </ ro leType>
37 <ro l e T ype name=” R e t a i l e r ”>
38 <be ha v io r name=” r e t a i l e r F o r C o n s u m e r ”
39 i n t e r f a c e =” rns : Reta i le rConsumerPT ”/>

40 </ ro leType>
41

42 <r e l a t i o n s h i p T y p e name=” C o n s u m e r R e t a i l e r R e l a t i o n s h i p”>

43 <ro l e T ype type R e f =” t n s : Consumer ”
44 be ha v io r =” c o n s u m e r F o r R e t a i l e r”/>

45 <ro l e T ype type R e f =” t n s : R e t a i l e r ”
46 be ha v io r =” r e t a i l e r F o r C o n s u m e r ”/>

47 </ r e l a t i o n s h i p T y p e>
48

49 <channe lType name=” ConsumerChannel”>

50 <ro l e T ype type R e f =” t n s : Consumer ”/>

51 <r e f e r e n c e> <t oke n name=” t n s : consumerRef ”/> </ r e f e r e n c e>
52 < i d e n t i t y > <t oke n name=” t n s : purchaseOrder ID ”/> </ i d e n t i t y>

53 </ channelType>
54

55 <channe lType name=” R e t a i l e r C h a n n e l ”>

56 <p a s s i n g c ha nne l =” ConsumerChannel” a c t i o n =” r e q u e s t ” />

57 <ro l e T ype type R e f =” t n s : R e t a i l e r ”
58 be ha v io r =” r e t a i l e r F o r C o n s u m e r ”/>

59 <r e f e r e n c e> <t oke n name=” t n s : r e t a i l e r R e f ”/>

</ r e f e r e n c e>
60 < i d e n t i t y> <t oke n name=” t n s : purchaseOrder ID ”/>

</ i d e n t i t y>

61 </ channelType>

Figure 2: WS-CDL Example: Static Part

1 <c ho re og ra phy name=” C ons ume rR e ta i l e rC ho reog raphy” r o o t=” t r u e”>
2 <r e l a t i o n s h i p t ype =” t n s : C o n s u m e r R e t a i l e r R e l a t i o n s h i p ”/>
3 <v a r i a b l e D e f i n i t i o n s>
4 <v a r i a b l e name=” pu rc ha s e Orde r ” i n fo rma t i onT ype =” t n s : purchaseOrderType ”
5 s i l e n t =” f a l s e ” />
6 <v a r i a b l e name=” purchaseOrderAck ”
7 i n fo rma t i onT ype =” t n s : purchaseOrderAckType” />

8 <v a r i a b l e name=” r e t a i l e r−c ha nne l ” channe lType =” t n s : R e t a i l e r C h a n n e l ”/>

9 <v a r i a b l e name=” consumer−c ha nne l ” channe lType =” t n s : ConsumerChannel”/>

10 <v a r i a b l e name=” badPurchaseOrderAck ”
11 i n fo rma t i onT ype =” t n s : badPOAckType ” />

12 </ v a r i a b l e D e f i n i t i o n s>
13

14 <sequence>
15 <workun i t name=” u n i t ” b l oc k =” f a l s e ”
16 guard =” no t (c d l : i s V a r i a b l e A v a i l a b l e (’ t n s : purchaseOrder ’ , ’ t n s : Consumer ’))”>
17 <a s s i g n ro le T ype =” t n s : Consumer”>

18 <copy name=” copy1”>
19 <s ou rc e e x p r e s s i o n =” c d l : doc (’& l t ;PO&g t ; & l t ; o r d e r I d name=" ;10& quot ; /& g t ; & l t ; CustomerRef name=" ;1000& quot ; /& g t
20 < t a r g e t v a r i a b l e =” c d l : g e t V a r i a b l e (’ t n s : purchaseOrder ’, ’ ’ , ’ ’) ” / >

21 </copy>
22 </ a s s ign>
23 </workun i t>
24

25 < i n t e r a c t i o n name=” c rea tePO ”
26 c h a n n e l V a r i a b l e =” t n s : R e t a i l e r C h a n n e l ”
27 o p e r a t i o n =” ha nd le Pu rc ha s e Orde r ”>

28 <p a r t i c i p a t e r e l a t i o n s h i p T y p e =” t n s : C o n s u m e r R e t a i l e r R el a t i o n s h i p ”
29 f romRoleTypeRef =” t n s : Consumer ” toRo leTypeRef=” t n s : R et a i l e r ”/>
30 <exchange name=” r e q u e s t ”
31 i n fo rma t i onT ype =” t n s : purchaseOrderType ” a c t i o n =” r e q ue s t”>
32 <send v a r i a b l e =” c d l : g e t V a r i a b l e (’ t n s : purchaseOrder ’ , ’’ , ’ ’) ” / >

33 <r e c e i v e v a r i a b l e =” c d l : g e t V a r i a b l e (’ t n s : purchaseOrder’ , ’ ’ , ’ ’) ”
34 r e c o r d R e f e r e n c e =” re c o rd−the−channe l−i n f o ” />
35 </exchange>
36 <exchange name=” re s pons e ”
37 i n fo rma t i onT ype =” purchaseOrderAckType” a c t i o n =” re s pond”>
38 <send v a r i a b l e =” c d l : g e t V a r i a b l e (’ t n s : purchaseOrderAck’ , ’ ’ , ’ ’) ” / >

39 <r e c e i v e v a r i a b l e =” c d l : g e t V a r i a b l e (’ t n s : purchaseOrderAck ’ , ’ ’ , ’ ’) ” / >

40 </exchange>
41 <exchange name=” badPurchaseOrderAckExce pt ion ” fau l tName =” badPurchaseOrderAckExcep t i on ”
42 i n fo rma t i onT ype =”badPOAckType ” a c t i o n =” re s pond”>

43 <send v a r i a b l e =” c d l : g e t V a r i a b l e (’ t n s : badPurchaseOrderAck ’ , ’ ’ , ’ ’) ”
44 c a us e E xc e p t i on =” t n s : badPOAck” />

45 <r e c e i v e v a r i a b l e =” c d l : g e t V a r i a b l e (’ t n s : badPurchaseOrderAck ’ , ’ ’ , ’ ’) ”
46 c a us e E xc e p t i on =” t n s : badPOAck” />

47 </exchange>
48 <r e c o r d name=” re c o rd−the−channe l−i n f o ” when=” a f t e r ”>
49 <s ou rc e v a r i a b l e =” c d l : g e t V a r i a b l e (’ t n s : purchaseOrder ’, ’ ’ ,
50 ’ /PO / CustomerRef ’)” />
51 < t a r g e t v a r i a b l e =” c d l : g e t V a r i a b l e (’ t n s : consumer−channe l ’ , ’ ’ , ’ ’) ” / >

52 </ r e c o rd>
53 </ i n t e r a c t i o n>
54 </ sequence>
55 </ choreography>
56 </package>

Figure 3: WS-CDL Example: Dynamic Part

