
Using McErlang to Verify an Erlang Process
Supervision Component∗

David Castro1, Clara Benac Earle2, Lars-Åke Fredlund2, Victor M. Gulias1,
and Samuel Rivas3

1 MADS Group, Computer Science Department
University of A Coruña, Spain
{dcastrop,gulias}@udc.es

2 Babel Group, School of Computer Science,
Universidad Politécnica de Madrid (UPM), Spain

{cbenac,lfredlund}@fi.upm.es
3 LambdaStream Servicios Interactivos S.L.

Ronda de Outeiro 33 Entlo., A Coruña, Spain
samuel.rivas@lambdastream.com

Abstract. We present a case-study in which a tool for model checking
programs written in Erlang, McErlang, was used to verify a complex
concurrent component. The component is an alternative implementation
of the standard supervisor behaviour of Erlang/OTP. This implementa-
tion, in use at the company LambdaStream, was checked against several
safety and liveness properties. In one case, McErlang found an error.

1 Introduction

Developing reliable concurrent software is a hard task given the inherent non-
deterministic nature of concurrent systems. A technique which is often used to
check that a concurrent program fulfils a set of desirable properties is model
checking [12]. In model checking, in theory, all the states of a concurrent system
are systematically explored.

Erlang [6] is a functional programming language that is used by several com-
panies worldwide. One such company is LambdaStream, which is dedicated to
improving their software development methodology, as shown by their partic-
ipation in the European research project ProTest1. Thanks to this project, a
fruitful collaboration has been established between LambdaStream, the Univer-
sity of A Coruña and the Universidad Politécnica de Madrid. One result of the
collaboration is the verification, using the McErlang model checker, of a process
supervision component developed by LambdaStream. Although the supervisor
has been used in several products, and was well tested, we did find a discrepancy
between its documentation and the implementation of the component.

∗ This work has been partially supported by the following projects: ProTest (FP7-
ICT-2007-1 215868), DESAFIOS10 (TIN2009-14599-C03-00), and PROMETIDOS
(P2009/TIC-1465).

1 http://www.protest-project.eu/



A process supervision component is responsible for starting, stopping, and
monitoring its child processes. Testing and reproducing errors in such code is
intrinsically difficult due to its non-deterministic behaviour, asynchronous com-
munication, timing, etc. At the same time, it is crucial to establish the reliability
of a critical software component that is used in several products at Lambda-
Stream. Fortunately, the McErlang model checker is well suited to verify this
class of complex concurrent software components.

McErlang [11] is a model checker for programs written in the Erlang pro-
gramming language. The model is the Erlang program to be analysed, which
undergoes a source-to-source translation to prepare the program for running un-
der the model checker. Then the normal Erlang compiler translates the program
to Erlang byte code. Finally the program is run under the McErlang run-time
system, under the control of a verification algorithm, by the normal Erlang byte-
code interpreter. The pure computation part of the code, i.e, code with no side
effects, is executed by the normal Erlang run time system. However, the side
effect part is executed under the McErlang run-time system which is a complete
rewrite in Erlang of the basic process creating, scheduling, communication and
fault-handling machinery of Erlang. Naturally the new run-time system offers
easy check pointing (capturing the state of all nodes and processes, and all mes-
sages in transit between processes) of the whole program state. One of the chief
advantages of using McErlang compared to a traditional testing framework is
that the tool provides direct access, and therefore, control, of the runtime system.

As the model checking tool is itself implemented in Erlang we benefit from the
advantages that a dynamically typed functional programming language offers:
easy prototyping and experimentation with new verification algorithms, rich
executable models that use complex data structures directly programmed in
Erlang, the ability to treat executable models interchangeably as programs (to
be executed directly by the Erlang interpreter) and data, etc.

For non-Erlang programmers the approach has merits too. Erlang is a good
specification language due to its root in functional programming: higher-order
functions enables concise specifications, software components further lifts the
abstraction level of specifications, and programs can be treated as data – yielding
a convenient meta level. Moreover, Erlang is a good platform for specifying
distributed algorithms since language features matches common assumptions in
algorithms: isolated processes communicate using message-passing only, fault-
tolerance is obtained by using unreliable failure detectors, process fairness is
built into the language, and locality is important – communication guarantees
are stronger for intra–node communication than for inter–node communication.

The rest of this paper is organised as follows. A short survey on related work
is presented in Section 2, whereas Section 3 introduces Erlang and McErlang.
The process supervisor component is described in Section 4 together with a brief
discussion of the correctness properties we consider. The formalisation of such
properties, and the experimental results of checking them with McErlang, is
explained in Section 5. Finally, Section 6 draws conclusion and outlines items
for future work.



2 Related Work

Many techniques and tools for verifying concurrent and distributed systems have
been developed. SPIN [12] is a well known model checker for distributed soft-
ware systems, which uses Promela (a C-like language) as the modeling language.
The Symbolic Analysis Laboratory (SAL [7]) is a a framework for combining
different tools for abstraction, program analysis, theorem proving, and model
checking toward the calculation of properties (symbolic analysis) of transition
systems. Some other model checkers use the source code as modeling language,
like Bogor [8] and Java Pathfinder [17]. A key difference between these tools and
McErlang is the programming language they analyse, e.g. Java and Erlang. By
using Erlang we have all the advantages (and disadvantages) of using a functional
programing language for specification and programming (access to higher-order
functions, no shared variables, etc.). In contrast to e.g. the Java Pathfinder tool
we do not implement a new byte code interpreter (for Beam, the Erlang byte
code format). The chief reason for this is that the Erlang byte code format is
much less standardised than Java’s; indeed there is no documentation available
apart from the source code. In McErlang, rather, programs are run by the nor-
mal Erlang byte code interpreter, but have been modified to return control to
the model checker after a side effect has occurred.

For Erlang the etomcrl toolset [2] already provides a model checking ca-
pability. In comparison, however, the etomcrl toolset supports only a smaller
subset of Erlang, for instance lacking the concept of direct process communica-
tion, distribution and fault tolerance (i.e. nodes, processes, links, monitors, . . . ).
Other verification tools for Erlang include Huch’s abstract interpretation model
checker [13] which uses abstract interpretations to reduce the size of the state
space. Another work addressing the verification of Erlang programs is the “Veri-
fication of Erlang Programs” project [9] which uses theorem proving technology.
Furthermore there is a QuickCheck tool (originally for the Haskell programming
language) for Erlang [3], which however primarily focuses on testing software
rather than formal verification.

3 Background

3.1 Erlang Programming Language

Erlang [1, 6] is a concurrent programming language and run-time system. The
sequential subset of the language is a dynamically typed functional programming
language with strict evaluation. Concurrency is achieved by lightweight processes
communicating through asynchronous message passing.

Erlang has no construct inducing side-effects with the exception of commu-
nications among processes2. Expressions are evaluated eagerly similarly to, for
instance, Standard ML.

2 Strictly speaking this is not true as Erlang has a process registry with side effects, and
various libraries offering mutable data structures. The use of such features in Erlang,
however, tends to be greatly reduced compared to other programming languages.



What makes Erlang different from other functional languages is its support
for concurrency and distribution. With Erlang’s primitives for concurrency, it
resembles formal calculi such as Milner’s CCS [14]. Because of the absence of side-
effects, which are limited to explicit inter-process communications, concurrent
programming is far simpler compared to standard imperative languages.

An Erlang virtual machine (node, in Erlang terminology) hosts several Er-
lang processes running concurrently. Usually, an Erlang node is mapped to an
operating system process; an Erlang process is, in fact, a lightweight user-level
thread with very low creation and context-switching overheads.

A distributed Erlang application consists of processes running in several
nodes, possibly on different computers. Even though the initialisation and man-
agement of each node is platform dependent, the nice feature is that communi-
cation among remote processes is semantically equivalent in a distributed frame-
work – though remote communications are less efficient, of course.

Fault-tolerance in Erlang is achieved by linking processes together in order
to detect and possibly recover from abnormal process termination. Abnormal
termination occurs if, for example, a function tries to access the tail of an empty
list. Processes linked to the process that terminated abnormally are notified of
the termination, and can thus take corrective action, i.e., possibly restarting the
failed process. Process links are always bidirectional but the treatment of process
termination notifications may differ between the two parties.

Handling a large number of processes easily turns into an unmanageable
task, and therefore Erlang programmers mostly work with higher-level language
components provided by libraries. The OTP component library [16] is by far
the most widely used library, offering various design patterns such as a generic
server component (for client-server communication), a finite state machine com-
ponent, TCP/IP communication, and a supervisor component for the structuring
of fault-tolerant systems. In Erlang these design patterns are called behaviours,
and they provide functionality in a fashion similar to inheritance in object-
oriented programming or interfaces in Java. A number of callback functions
must be defined for each behaviour to work.

In this paper we focus on verifying a process supervisor similar to the one
in the OTP library. Such a process supervisor is used by Erlang applications to
structure processes hierarchically in a tree structure, where a parent supervisor
is responsible for supervising and managing its children (work processes).

3.2 McErlang, a Model Checker for Erlang

McErlang [11] is a tool for model checking programs written in Erlang which
has been successfully applied in a number of case studies, for example: a Video–
on–demand server [10], leader election protocols [11], the control software for
elevators, and multi-agent systems playing for robotic soccer [4].

The steps needed to perform model checking with McErlang are the following:

Create the model. McErlang provides support for virtually the full, rather
complex, programming language. The model checker has full Erlang data type



support, support for general process communication, node semantics (inter-
process communication behaves in a subtly different way from intra-node com-
munication), fault detection and fault tolerance, and crucially can verify pro-
grams written using the high-level OTP Erlang component library used by most
Erlang programs.

Formulate correctness properties. Write down the correctness properties
to verify as either safety monitors or as formulas in linear temporal logic (LTL).

A safety monitor is used to verify safety properties (something bad never
happens). In McErlang a safety monitor is an Erlang function, with an internal
state, that given a program state determines whether the program state violates
some correctness property. Given a program and a monitor, McErlang runs them
in lockstep letting the monitor investigate each new program state generated. If
the property does not hold, a counterexample (an execution trace) is generated.

Some properties cannot be expressed with a safety monitor, for example,
liveness properties (something good eventually happens). In McErlang one can
express such properties in LTL, and use the LTL2Buchi tool [15] to automatically
translate LTL formulas into Büchi automata [5].

Monitors are capable of observing both the shape of the system (e.g., which
processes are alive) and significant system events (e.g., messages sent between
processes). In the case study we for instance specify monitors that observe the
termination of a process, and the creation of new processes.

Generate scenarios. Model checking is typically a memory intensive opera-
tion, and may require more computer memory than is available. As an alterna-
tive to verifying the whole system at once we instead specify a sizable number
of smaller system scenarios, specifying both system configuration and process
communications, such that each scenario is small enough to admit complete ver-
ification. As an example, if the system to verify is a client/server architecture,
we verify a size-able number of client–server configurations varying the number
of clients, and varying the requests that clients issue to the servers.

4 Case Study: A Supervisor

A supervisor is a process responsible for starting, stopping and monitoring a
set of children (processes). Basically whenever a child process terminates, the
supervisor should restart the child, i.e., spawn a new process executing the task
of the terminated child.

In Fig. 1 a typical supervision tree is depicted. Note that the tree is multi-
level, a supervisor may have other supervisors as children.

The two main policies for how a restart is performed are:

– one for one: If a child process terminates, only that process is restarted.
– one for all: If a child process terminates, all other child processes are ter-

minated and then all children, including the originally terminated process,
are restarted.



Supervisor1

Worker1 Supervisor2

Worker3 Supervisor3

Worker4 Worker5

Worker2

Fig. 1. A supervision tree.

There is a mechanism to prevent a situation where a process repeatedly
terminates for the same reason, only to be immediately restarted again. This
mechanism involves a maximum restart intensity. When a child reaches this
restart intensity, the supervisor terminates all the child processes and then itself.

As the supervision tree is hierarchical, when a lower-level supervisor termi-
nates, then the next higher level supervisor can take corrective action. That is,
either restarting the terminated supervisor (and thus indirectly its children), or
terminating itself.

4.1 Supervisor Implementation

There is a standard implementation of the supervisor behaviour provided by
the open source distribution of Erlang/OTP (Open Telecom Platform) [6]. It
is implemented as a behaviour, i. e., a library implementing a design pattern
which provides functionality in a fashion similar to inheritance in object-oriented
programming or interfaces in Java.

In this case study we verified an implementation of the Erlang supervisor
behaviour slightly different from the OTP implementation. This variant was im-
plemented by the company LambdaStream because they wanted a more config-
urable supervisor. In particular, in their supervisor (from now on nos supervisor)
different restarting policies are allowed in each child node.

In this section we will focus on the implementation of the nos supervisor. A
child process is spawned by a supervisor process providing a specification for the
child. In the nos supervisor a child specification is a tuple:

{Id, StartFun, RestartFun, RestartStrategy, RestartIntensity,

Shutdown, Options}

where

– Id is a name that is used to identify the child specification internally by the
supervisor.



– StartFun defines the function call used to start the child.

– RestartFun defines the function call to restart the child.

– RestartStrategy. When a child process crashes/dies, if its restart strategy
is child, only this child will be restarted. If its restart strategy is all, all
the children will be stopped in reverse start order, and they will be restarted
(including the offending one) in start order.

– RestartIntensity:

• {MaxR,MaxT,Finally}. If a child is restarted MaxR times in MaxT or less
seconds, the Finally action is triggered:

∗ Finally==kill sup. The supervisor shuts down its living children
in reverse start order, and then terminates.

∗ Finally==stop child. The offending child is not restarted. Remain-
ing children continue restarting normally.

• infinity. If a child terminates, the supervisor will always try to restart
it.

– Shutdown. The shutdown strategy is the same as in the OTP supervisor.

• brutal kill. Supervisor kills processes, i.e., a child process P will be
unconditionally terminated by the supervisor sending an exit(P,kill)

message.

• integer(). The supervisor will inform the child process that it should
terminate and then wait to receive an exit signal from the child signalling
that it indeed has terminated. If no exit signal is received within the
specified time, the child process is unconditionally terminated.

• infinity. As in integer() but without timeout to give the subtree
ample time to shutdown.

– Options is a list of options where an option can be either insistent restart

meaning that restart function failures are treated as process crashes instead
of restart errors, or {notify,pid()} which makes the supervisor send noti-
fication messages to the specified process identifier (pid).

4.2 Relevant Properties of the nos supervisor

By reading the nos supervisor documentation we came up with many interesting
properties to verify for the nos supervisor. As a trivial example, we want to check
that a terminated child is actually restarted by its supervisor. We also focused on
properties regarding the different restart intensities and the shutdown strategies,
checking all combinations of those options. For example, we formulated and
checked a property that states that if there is any child specification with the
restart intensity set to kill sup and the Finally action reaches the maximum
restart intensity, the supervisor applies the Shutdown strategy to its children in
reverse start order and then finishes. In the following section we describe how
some of these properties were verified using McErlang.



5 Checking Properties with McErlang

To verify the nos supervisor described in the previous section using McErlang
we follow the approach described in Sec. 3.2, i.e., we create a verifiable model, we
formulate a number of correctness properties, and we generate a set of scenarios.

5.1 Create the Model

Obtaining the model of this case-study with McErlang was straightforward. In
this section we explain the only change to the source code of the nos supervisor
that was needed to obtain a verifiable model.

To measure the restart intensity the nos supervisor needs to determine the
number of restarts that took place within a certain time interval. As McErlang
currently implements neither real-time nor discrete-time model checking algo-
rithms we were forced to abstract away from the time interval.

The original code of the nos supervisor deals with restarts (and time) in the
following way:

add_restart (# child_spec{restart_intensity = infinity}) -> [];
add_restart (# child_spec{restart_intensity = {MaxR , MaxT , Finally},

state = ChildState}) ->
Restarts = ChildState#child_state.restarts ,
check_restarts(MaxR ,Finally ,filter_restarts(MaxT ,[now()| Restarts])).

As we can see below, the nos supervisor stores the restart time of each process
in a list, which is then filtered using the difference between the time of the current
restart and the maximum time specified by the restart intensity. If the length
of the resulting list is greater than the allowed number of restarts, then the
Finally action is triggered. If not, the filtered list with the new restart time is
returned.

filter_restarts(MaxT , [H | Restarts]) ->
F = fun(Restart) -> difference(Restart , H) < MaxT end ,
[H | lists:takewhile(F, Restarts)].

check_restarts(MaxR , Finally , Restarts) ->
case length(Restarts) > MaxR of

true -> Finally;
false -> Restarts

end.

The solution we adopted was not to store concrete time when a restart took
place, but merely recording the fact that a restart occurred (using the sym-
bol now), until the length of the list containing restart indications is equal to
the maximum number of restarts. The last two lines of add restart are thus
replaced by the code fragment below:

NewRestarts = case length(Restarts) >= MaxR of
true -> Restarts;
false -> [now | Restarts]

end ,
check_restarts(MaxR , Finally , NewRestarts ).

It no longer makes sense to filter the list; instead the model checker must
consider two possibilities: whether these restarts happened within the maximum



time or not. In McErlang such a non-deterministic choice can be expressed using
a function call to mce erl:choice with a list of anonymous functions (continu-
ations) as argument. During model checking all alternatives will be explored.

check_restarts(MaxR , Finally , Restarts) ->
case length(Restarts) >= MaxR of

true -> mce_erl:choice([fun() -> Finally end , fun () -> Restarts end]);
false -> Restarts

end.

5.2 Formulating Correctness Properties

As explained in section 3.2, in McErlang one can specify correctness properties
either using a safety monitor, which run in parallel with the system to verify
and observe its actions, or as a formula of linear temporal logic (LTL).

In practise the majority of the nos supervisor correctness properties we are
interested in checking can be expressed as safety monitors. In McErlang a safety
monitor is implemented as an Erlang behaviour; a module implementing a safety
monitor must implement the following call-back functions:

– an init function to initialize the monitor (which should return the initial
state of the monitor).

– a stateChange function which is called, after the model checker has com-
puted a new system state, with the following arguments: the new system
state, the current state of the monitor, and the sequence of system ac-
tions that occurred during the computation of the new system state. The
stateChange function should determine whether the new system state, and
the system actions, are acceptable given the current state of the monitor.
If so, the function should return a new monitor state, otherwise a failure
reason.

An Example Safety Monitor. As an example we show below a safety monitor,
which checks a number of behavioural properties for a nos supervisor controlling
a set of child processes:

– no child is spawned twice (without first dying)
– no process is killed by the nos supervisor without having a sibling process

that has terminated too many times (so that it should not be restarted
again).

To be able to determine whether a process spawning or a kill action caused
by the nos supervisor is allowed, the monitor has to keep track of the state of
all the processes managed by the nos supervisor. Thus the state of the monitor
is a record keeping track of the status of all child processes under supervision:

-record(monitorState ,
{ deadProcesses = [] % List of dead or never started children

% ordered by the crash time
, killedProcesses = [] % children killed by supervisor
, spawnedProcesses = [] % spawned children currently alive
, supervisorChildren = [] % number of restarts for children
, supervisorPid = undefined}).



The main function of the monitor is depicted below:

stateChange(_,MonState ,Actions) -> ...
case interpret_action(Action) of

{died , Pid , normal} -> {ok,Monstate};
{died , Pid , Reason} -> died(Pid , Monstate );
{killedby , SourcePid , KilledPid} -> killed(KilledPid , Monstate );
{spawn , SpawnInfo , SpawnedPid} ->

case SpawnInfo of
{supervisor , Intensities}

-> setChildren(Intensities ,Monstate );
{worker , WorkerName}

-> spawned({WorkerName , SpawnedPid}, Monstate)
end;

_ -> {ok,Monstate}
end ...

where the function interpret action partitions concrete program actions
into different abstract categories, and for each checks whether that action is
acceptable in the current monitor state. The action {died, Pid, normal}, for
instance, represents the fact that a process has terminated normally (and so
should not be restarted). If the abstract action represent a new child process
being spawned, the function spawned below is called.

spawned({WN , Pid}, State) ->
DPs = State#programState.deadProcesses ,
SPs = State#programState.spawnedProcesses ,
case lists:member(WN, DPs) of

true ->
State#programState{deadProcesses = lists:delete(WN,DPs),

spawnedProcesses = [{WN ,Pid} | SPs]};
false -> throw("Already spawned worker")

end.

The spawned functions checks that the (name of the) newly spawned child
function is not already spawned, and removes the new child from the list of
dead processes and adds it to the list of spawned ones. If the child is already
spawned, an exception is thrown which notifies McErlang that the monitor has
encountered an error.

Similarly, when a child dies abnormally the died function is called, which
increments the restart counter for the child. This counter is checked when the
nos supervisor kills a child, to ensure that a sufficient number of restarts have
occurred for some sibling of the killed process.

It is interesting to note the manner in which we formulate correctness prop-
erties using safety monitors. Instead of specifying them in a temporal logic, we
develop a set of simplified “models” of the nos supervisor system, and then check
whether the behaviour of the real nos supervisor corresponds to our “models”.

Checking Liveness Properties. However, some properties, i.e., liveness prop-
erties that express claims regarding eventually behaviour, cannot be imple-
mented as safety monitors. In this case we can instead formulate the property in
linear temporal logic (LTL) and use the automatic translator from LTL formulae
to Büchi monitors.

We have checked using McErlang that the following LTL formula holds:

always "a child terminated abnormally" => eventually "the child is restarted"



Such predicates are specified in Erlang. As an example, the function below
implements the predicate "a child terminated abnormally":

child_terminated(_, Actions , _) ->
lists:any
(fun (Action) ->

try
died == mce_erl_actions:type(Action),
normal =/= mce_erl_actions:get_died_reason(Action),

catch _:_ -> false end
end , Actions ).

As we can see, a predicate is a function which receives three arguments. The
first is the program state, the second are the actions which triggered the state
change, and the third is a private state. If any action is an action corresponding
to a process dying (died action), with a Reason different than normal, this
means that a child terminated abnormally3.

Note however, that this property holds only for a nos supervisor whose chil-
dren have restart intensity infinity; otherwise, after a sufficient number of
deaths, the child would not be restarted. To check more complex features, we
need to keep a private state, and pass it along between the state predicates (thus
corresponding to a monitor state in the generated Büchi automaton).

Verified Safety Monitors. Instead of trying to check all desirable properties
of the nos supervisor using one very complex safety monitor, we define a set of
safety monitors, each checking a particular property of the nos supervisor. This
approach, we believe, reduces the risk of checking incorrect safety monitors, as
the resulting monitors individually are much easier to understand and write.

Moreover, a very big portion of the code for a safety monitor is reusable
when writing a new one. That is, the manner in which we translate concrete
actions into abstract ones, and the way the monitor state is updated upon process
deaths, spawn and kills, is completely generic. What changes is how we interpret
the actions – i.e., when does the occurrence of an action signal an error.

Below we enumerate the different safety monitors we use in verification, in-
dicating for which particular type of nos supervisor specification the monitors
are targeted:

1. A supervisor will always try to restart a child, until one reaches the maximum
restart intensity. Applicable for checking child specifications with restart
intensity different than infinity, and with kill sup Finally action.

2. When a child reaches its maximum restart intensity, living workers are killed
in reverse start order and then it terminates. Applicable for child speci-
fications with restart intensity different than infinity, and with kill sup

Finally action.
3. When a child reaches its maximum restart intensity, living workers are

stopped in reverse start order. Applicable for child specification with restart
intensity different than infinity with kill sup Finally action and infinity
as shutdown strategy.

3 Here we assume that all the processes in the system are managed by the
nos supervisor.



4. If a child has infinity as shutdown strategy, the supervisor never kills it.

5. If a child has an integer as shutdown strategy, a supervisor never kills a
process before it has tried to stop it.

6. When the shutdown strategy for a child is stop child, when the supervisor
stops, the workers which were not respawned had reached their maximum
restart intensity.

7. For the all restart strategy, when a child dies, the supervisor kills alive
children in reverse starting order.

8. For the all restart strategy, the workers are restarted in start order after
killing all alive children.

5.3 Verification Scenarios

To verify the nos supervisor against the above correctness properties using McEr-
lang, we specified a number of scenarios by hand, although it should not be too
difficult to generate them automatically (e.g., using QuickCheck/Erlang [3]).

To create these scenarios, we implemented a test worker nos test worker

which does nothing but keep track of the number of times it has been restarted.
Moreover we enable an option in the McErlang model checker which, non-
deterministically, kills any process in any state. We select a subset of the running
processes for termination by executing the function call

mcerlang:process_flag(do_terminate , true)

in any process that is a candidate for termination (the worker processes). Thus,
a worker processes can non-deterministically die at any moment, which will
cause the nos supervisor to be informed (and hopefully take action). Killing any
process in any state is one example where, compared to testing, we benefit from
the fact that McErlang provides direct access to the runtime system.

As an example of a concrete scenario, to check the liveness property “if a
child dies then eventually the nos supervisor will restart the child” the simplest
adequate scenario would be a nos supervisor which spawns a child with restart
strategy child (the rest of options are not relevant). Thus, the child specification
in this case will be the following:

{worker1 ,
{nos_test_worker ,start_link ,[worker1 ,foo]},
{nos_test_worker ,restart_link ,{worker1 ,foo}},
child , infinity , brutal_kill , []}

We identified the relevant scenarios as a nos supervisor with, at least one
(two or three depending on the property) child process. All the child processes
in a scenario have the same specification for simplicity.

Each scenario was chosen to verify properties related to the behaviour of the
nos supervisor related to some of its options. For example, if we want to verify
that the nos supervisor evaluates a Finally action correctly when a child reaches
its maximum restart intensity, we only require a restart intensity different than
infinity, but we must know which shutdown strategy is being applied.



5.4 Experimental Results

We present here some quantitative experimental results, measured on a computer
with an Intel(R) Core Quad processor at 2.33GHz with 4GB of RAM memory,
of verifying the correctness properties against a scenario. Figure 2 shows the
size of the state space (Fig. 5.4), and the time required to check safety moni-
tor 1 (Fig. 5.4), for a scenario with restart strategy child, a restart intensity of
{1,1,kill sup}, and a variable number of workers.

1 2 3
102

103

104

105

Number of workers

S
ta

te
sp

a
ce

si
ze

1 2 3

10−1

101

103

Number of workers

T
im

e
(s

)
Fig. 2. Size of state space, and verification time required.

As expected, since the nos supervisor behaviour has been deployed in a num-
ber of LambdaStream products that have been working in production for years,
no truly critical errors were found. Surprisingly though, one discrepancy be-
tween the documentation and the implementation of the nos supervisor was de-
tected. During a model checking run, McErlang returned a counterexample for
the following property:“If any children with specification kill sup and Finally

reaches the maximum restart intensity and has brutal kill shutdown strategy,
then the supervisor only kills a child after all the “younger” children (those that
have been started after this child) are not running (stopped, killed, . . .)”. From
inspecting the counter example in the McErlang debugger it became apparent
that an “older” worker was killed before a “younger” worker, i.e., they were not
killed in reverse start order as it was explicitly stated in the documentation. Dis-
cussions with the developers revealed that the error was in the documentation.
Such discrepancies between the documentation and the actual behaviour are a
serious violation of the less astonishment principle. They can mislead developers
to wrong implementations, wasting precious time and enabling potential bugs
to slip in the resulting code.

6 Conclusions

In this paper we have explored the formal verification of a process supervision
component written in Erlang, using the McErlang model checking tool. The
methodology used for verification is rather standard: we create a model for the



component, express and implement the correctness properties of interest, and
check the model against the properties as constrained by a set of scenarios. Our
approach is an improvement upon a normal model checking work-flow in that
constructing a model from the component is mostly trivial as the source language
of the model checker is virtually full Erlang. Moreover as Erlang is used also to
formalise the correctness properties there is no need for the user to learn a special
purpose specification language. This is achievable, in part, due to the inherent
power of a functional programming language which is sufficiently expressive to
be used both for programming and for writing more abstract specifications.

Creating the model from the source code of the nos supervisor component
was a straightforward task. The single change needed was to abstract from the
timing aspects of the supervisor, into a non-deterministic choice, as currently
McErlang implements neither real-time nor discrete-time model checking algo-
rithms. Even though we have been able to verify most aspects of the supervisor
without considering exact timing, an important item for future work is to add
support for real-time model checking algorithms to McErlang.

The properties of interest were extracted from the component documentation,
and from informal discussions with the developers of the supervisor component.
Most of the properties were formulated as safety monitors, which observe the
actions of the supervisor component as it manages a set of children, and signalling
an error if the supervisor issues an incorrect command. In other words we have
defined a set of simplified models, and check that the real supervisor has the
same behaviour as the models (up to the abstraction level of the monitor).

Finally, to combat the inevitable state explosion problem of model checking
we applied the McErlang model checker not to a large monolithic scenario, but
have defined and checked a large number of smaller scenarios (varying for exam-
ple the number of work processes, etc). Even though the verification is partial,
as there is no way we can check every possible scenario, we discovered an error
in a small scenario comprising one supervisor and three children.

From this verification effort we can conclude that model checking is a valuable
technique for analysing concurrent programs, and that McErlang is capable of
analysis and finding bugs in industrial software.

Compared to e.g. using random testing, model checking can provide firm
guarantees that smaller or mid-sized scenarios are fully verified. For larger sce-
narios and systems, neither random testing nor model checking will be capable
of a full verification. It is an interesting area for future research to quantify how
statistically important is the capability of not re-testing system states that model
checking provides, compared to the tendency of random testing to be able to ex-
ecute a test (scenario) quicker than a model checker. Still, compared to testing,
with McErlang we have the advantage of full and uncomplicated control of the
execution environment of a scenario, i.e., the Erlang runtime system. In the case
study we used this feature to specify that a worker process should be subjected
to abrupt termination at any moment, regardless of its state, simply by chang-
ing a pre-existing verification parameter in the model checker. For testing we
would have had to modify either the source code of the worker process itself, or



add a new process to send a termination message to each worker. In general, by
controlling the runtime system, we can often write less complicated scenarios.

We expect the same advantages of using a McErlang based verification method-
ology to be applicable in the verification of other distributed programs. In par-
ticular, to verify the standard OTP supervisor should be a straightforward un-
dertaking using the same approach as in this paper.

Still there is room for improvement. The learning curve for using McErlang
effectively is currently too steep. Thus we are currently focusing on improving
the usability of McErlang, to provide, for example, better visualising of errors,
guidance in selecting appropriate verification options, and a simplified API for
expressing correctness properties.

References

1. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

2. T. Arts, C. Benac Earle, and J. Sánchez Penas. Translating Erlang to mucrl.
In Proceedings of the International Conference on Application of Concurrency to
System Design (ACSD2004). IEEE Computer Society Press, June 2004.

3. T. Arts and J. Hughes. QuickCheck for Erlang. In Proceedings of the 2003 Erlang
User Conference (EUC), 2003.

4. C. Benac Earle, L. Fredlund, J. Iglesias, and A. Ledezma. Verifying robocup teams.
Lecture Notes in Computer Science, 5348/2009:34–48, 2009.

5. J. Büchi. On a decision method in restricted second order arithmetic. In Pro-
ceedings of the International Congress on Logic, Methodology and Philosophy of
Science 1960, pages 1–11. Stanford University Press, 1960.

6. F. Cesarini and S. Thompson. Erlang Programming. O’Reilly Media, 2009.
7. L. de Moura, S. Owre, and N. Shankar. The SAL language manual.
8. M. B. Dwyer, J. Hatcliff, M. Hoosier, and Robby. Building your own software

model checker using the Bogor extensible model checking framework. In CAV,
pages 148–152, 2005.

9. L. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G. Chugunov. A verification
tool for Erlang. International Journal on Software Tools for Technology Transfer
(STTT), 4(4):405 – 420, Aug 2003.

10. L. Fredlund and J. Sánchez Penas. Model checking a VoD server using McErlang.
In In proceedings of the 2007 Eurocast conference, Feb 2007.

11. L.-Å. Fredlund and H. Svensson. McErlang: a model checker for a distributed
functional programming language. SIGPLAN Not., 42(9):125–136, 2007.

12. G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.
13. F. Huch. Verification of Erlang programs using abstract interpretation and model

checking. In Proceedings of the 1999 ACM SIGPLAN International Conference on
Functional Programming, 1999.

14. R. Milner. Communication and Concurrency. Prentice Hall International, 1989.
15. H. Svensson. Implementing an LTL-to-Büchi translator in Erlang. In Proceedings

of the 2009 ACM SIGPLAN Erlang Workshop, 2009.
16. S. Torstendahl. Open telecom platform. Ericsson Review, 1, 1997.
17. W. Visser, K. Havelund, G. Brat, and S. Park. Java PathFinder - second generation

of a Java model checker, 2000. In Proc. of Post-CAV Workshop on Advances in
Verification.


