
A Verification of a Process Supervisor∗

David Castro Clara Benac Earle Lars-Åke Fredlund
MADS Group Babel Group Babel Group

University of A Coruña Universidad Politécnica de Madrid Universidad Politécnica de Madrid

dcastrop@udc.es cbenac@fi.upm.es lfredlund@fi.upm.es

Victor M. Gulias Samuel Rivas
MADS Group LambdaStream S.L.

University of A Coruña A Coruña, Spain

gulias@udc.es samuel.rivas@lambdastream.com

Abstract

In this paper we present a work in progress
on the formal verification of a process super-
visor using the McErlang model checker. The
process supervisor is an alternative implemen-
tation of the standard supervisor behaviour
of Erlang/OTP. This implementation, in use
at the company LambdaStream, was checked
against several safety and liveness properties.

1 Introduction

Writing correct concurrent software is a hard
task given the inherit non-deterministic be-
haviour of such systems. Concurrent declar-
ative languages seem to be an interesting and
practical choice to implement concurrent soft-
ware due to the absence of side-effects (or at
least a much smaller number of them). For
example, the concurrent functional language
Erlang [5] is being used by several companies
worldwide to implement complex concurrent
control systems.

A technique which is often used to check
that a concurrent program fulfills a set of de-

∗This work has been partially supported by
the following projects: ProTest (FP7-ICT-2007-1
215868), DESAFIOS10 (TIN2009-14599-C03-00),
PROMETIDOS (P2009/TIC-1465), and XUGA
(PGIDIT07TIC005105PR).

sirable properties is model checking [9]. In
model checking, in theory, all the states of
(a model of) a concurrent system are system-
atically explored to check for safety require-
ments such as absence of deadlocks and similar
critical situations that can cause the system
to misbehave. For instance, McErlang [7], a
model checker for programs written in Erlang,
uses directly the actual Erlang source code
as the model to be analyzed. McErlang has
been successfully applied in a number of case
studies, such as a Video–on–demand server [6],
leader election protocols [7], the control soft-
ware for elevators, and multi-agent systems
playing for robotic soccer [4].

An example of a company using Erlang
is LambdaStream S.L., which is interested
in improving their software quality as shown
by their participation in a European research
project on property-based testing (ProTest1).
Thanks to this project, a fruitful collabora-
tion has been established between develop-
ers at LambdaStream and researchers at the
University of A Coruña and the Universi-
dad Politécnica de Madrid. One example of
this collaboration is the experience on the
verification using McErlang of properties of
some LambdaStream components, as McEr-
lang model checker is well suited to verify this

1http://www.protest-project.eu/



class of concurrent software components.

In this paper we describe the experience
on checking several properties on LambdaS-
tream’s supervisor component using McEr-
lang. A process supervisor is responsible for
starting, stopping, and monitoring its child
processes. Testing and reproducing errors
in such code is intrinsically difficult due to
its non-deterministic behaviour, asynchronous
communication, timing, etc. At the same
time, it is crucial to establish the reliability
of that critical software component because it
is integrated into several software systems at
LambdaStream. Although the supervisor has
been in use in several products for some time
and it was well tested by both the develop-
ers and a specific testing team, a discrepancy
between the component specification and the
actual implementation of the component was
identified.

The rest of this paper is organized as follows.
A brief introduction to Erlang and McErlang
is found in Section 2. The description of the
process supervisor component is given in Sec-
tion 3 together with a brief description of the
properties we have considered. The implemen-
tation of such properties and the experimental
results of checking them with McErlang is ex-
plained in Section 4. Finally, some conclusions
and future work are discussed in Section 5.

2 Background

2.1 The Erlang Programming Language

Erlang [1,5] is a concurrent programming lan-
guage and run-time system. The sequen-
tial subset of the language is a dynamically
typed functional programming language with
strict evaluation. Concurrency is achieved by
lightweight processes communicating through
asynchronous message passing. Erlang has
no construct inducing side-effects with the ex-
ception of communications among processes2.

2Strictly speaking this is not true as Erlang has a
process registry with side effects, and various libraries
offering mutable data structures. The use of such fea-
tures in Erlang, however, tends to be greatly reduced
compared to other programming languages.

Expressions are evaluated eagerly similarly to,
for instance, Standard ML.

What makes Erlang different from other
functional languages is its support for concur-
rency and distribution. With Erlang’s primi-
tives for concurrency, it resembles formal cal-
culi such as Milner’s CCS [10] or Hoare’s
CSP [8]. Because of the absence of side-effects,
limited to explicit inter-process communica-
tions, concurrent programming is far simpler
compared to standard imperative languages.
An Erlang virtual machine (node, in Erlang
terminology) hosts several Erlang processes
running concurrently. Usually, an Erlang node
is mapped to an operating system process;
an Erlang process is, in fact, a lightweight
user-level thread with very little creation and
context-switching overheads.

A distributed Erlang application consists of
processes running in several nodes, possibly at
different (physical or virtual) computers. Even
though the initialization and management of
each node is platform dependent, the nice fea-
ture is that communication among remote pro-
cesses is equivalent in a distributed framework,
though remote communications are less effi-
cient, of course.

Fault-tolerance in Erlang is achieved by
linking processes together in order to detect
and possibly recover from abnormal process
termination. Abnormal termination occurs if,
for example, a function tries to access the tail
of an empty list. Processes linked to the pro-
cess that terminated abnormally are notified
of the termination, and can thus take correc-
tive action, i.e., possibly restarting the failed
process. Process links are always bidirectional
but the treatment of process termination no-
tifications may differ between the two parties.

Handling a large number of processes easily
turns into an unmanageable task, and there-
fore Erlang programmers mostly work with
higher-level language components provided by
libraries. The OTP (Open Telecom Platform)
component library [12] is by far the most
widely used library, offering several behaviours
(design patterns in Erlang) that can be instan-
tiated with concrete callback functions. For
example, OTP behaviours include, among oth-



ers, generic servers (for client-server communi-
cation), finite state machines, or a supervisor
component for structuring fault-tolerant sys-
tems hierarchically, where a parent supervisor
is responsible for supervising and managing its
children (work processes).

2.2 The McErlang model checker

McErlang [7] is a tool for model checking Er-
lang programs. The input to McErlang is the
Erlang program we want to verify together
with the property of interest. The fact that
the program is the model facilitates the use in
real-world development.

As the model checking tool is itself imple-
mented in Erlang we benefit from the ad-
vantages that a dynamically typed functional
programming language offers: easy prototyp-
ing and experimentation with new verification
algorithms, rich executable models that use
complex data structures directly programmed
in Erlang, the ability to deal with executable
models interchangeably as programs (to be ex-
ecuted directly by the Erlang interpreter) and
data, etc.

In order to use Erlang programs as models,
McErlang undergoes a source-to-source trans-
formation to prepare the program for running
under the model checker. Then, the actual Er-
lang compiler translates the program to Erlang
byte code. Finally the program runs under the
McErlang run-time system, under the control
of a verification algorithm, using the regular
Erlang byte-code interpreter. The pure com-
putation part of the code (i.e, code with no
side effects) and memory management (includ-
ing garbage collection), is carried out by the
normal Erlang run time system. However, the
side effect part is executed under the McEr-
lang run-time system, which is a complete
rewrite in Erlang of the basic process creating,
scheduling, communication and fault-handling
machinery of Erlang. Naturally, the new run-
time system offers easy check pointing (cap-
turing the state of all nodes and processes, of
the message mailboxes of all processes, and all
messages in transit between processes) of the
whole program state as a feature.

The steps required to perform model check-
ing with McErlang are the following:

1. Create the model. Use directly the Er-
lang program. McErlang provides sup-
port for virtually the full language, full
data type support, support for general
process communication, node semantics
(inter-process communication behaves in
a subtly different way from intra-process
communication), fault detection and fault
tolerance, and crucially can verify pro-
grams written using the high-level OTP
Erlang component library used by most
Erlang programs.

2. Formulate correctness properties.
Write down the properties to verify as ei-
ther a safety monitor or a formula in lin-
ear temporal logic (LTL).

A safety monitor is used to verify safety
properties (something bad never happens),
by keeping an internal state to check the
properties at each state the program to
verify reaches. Given a program and a
monitor, McErlang runs them in lockstep
letting the monitor investigate each new
program state generated. If the property
does not hold, a counterexample (an ex-
ecution trace) is generated. Monitors are
capable of observing both the shape of the
system (e.g., which processes are alive)
and significant system events (e.g., mes-
sages sent between processes).

Some properties cannot be expressed
with safety monitors, for example, live-
ness properties (something good eventu-
ally happens). In McErlang one can ex-
press such properties in Lineal Temporal
Logic (LTL), and use the LTL2Buchi tool
[11] to automatically translate an LTL
formula into a Büchi automaton [3].

3. Generate scenarios. Model checking
is typically a memory intensive opera-
tion, and frequently completely verifying
a large system may require more com-
puter memory than is available. As an
alternative to verifying the whole system



at once we instead specify a sizeable num-
ber of smaller system scenarios, specify-
ing both system configuration and process
communications, such that each scenario
is small enough to admit complete ver-
ification. As an example, if the system
to verify is a client/server architecture,
we verify a sizeable number of client–
server configurations varying the number
of clients, and varying the requests that
clients issue to the servers.

3 Case Study: Supervisor Process

3.1 The Notion of Supervision

A supervisor is a process in charge of start-
ing, stopping and monitoring a set of children
(processes). Basically whenever a child pro-
cess terminates the supervisor should restart
it, i.e., spawn a new process executing the task
of the terminated child. A supervisor typi-
cally supervises not only process workers, but
also other supervisors, defining a hierarchical
structure as shown in the example of Fig. 1.

Supervisor1

Worker1 Supervisor2

Worker3 Supervisor3

Worker4 Worker5

Worker2

Figure 1: A supervision tree.

There are several strategies of how a super-
visor process should handle the event of an ab-
normal termination of a child. The two main
policies are:

• one for one: If a child process termi-
nates, only that process is restarted.

• one for all: If a child process termi-
nates, all other child processes are ter-

minated and then all children, includ-
ing the originally terminated process, are
restarted.

There is usually a mechanism to prevent a
situation where a process repeatedly termi-
nates for the same reason, only to be imme-
diately restarted again. This mechanism in-
volves a maximum restart intensity. When a
child reaches this restart intensity, the supervi-
sor terminates all the child processes and then
itself.

As the supervision tree is hierarchical, when
a lower-level supervisor terminates, then the
next higher level supervisor can take correc-
tive action. That is, either restarting the ter-
minated supervisor (and its subsystem of pro-
cesses), or terminating itself if the error can
not be handled on that level of the supervi-
sion tree.

In addition to the restart policy, the creation
and termination order of children must be also
specified in the supervisor.

3.2 Supervisor Implementation

There is a standard implementation of the
supervisor behaviour provided by the open
source distribution of Erlang/OTP. In this
case study, we used an implementation of a
supervisor process slightly different from the
OTP implementation. This variant (from now
on nos supervisor) was implemented by the
company LambdaStream because they wanted
a more configurable supervisor to easily inte-
grate into its products. In particular, different
restarting policies are allowed for each child
node in nos supervisor.

Following the specification for a child, a
child process is spawned by a supervisor pro-
cess. In the nos supervisor a child specifica-
tion is a tuple:

{Id, StartFun, RestartFun,

RestartStrategy, RestartIntensity,

Shutdown, Options}

• Id is a name that is used to identify the
child specification internally by the super-
visor.



• StartFun defines the function call used to
start the child.

• RestartFun defines the function call to
restart the child.

• RestartStrategy. When a child pro-
cess crashes/dies, if its restart strategy is
child, only this child will be restarted.
If its restart strategy is all, all the chil-
dren will be stopped in reverse start order,
and they will be restarted (including the
offending one) in start order.

• RestartIntensity: either a tuple
{MaxR,MaxT,Finally} or infinity:

– {MaxR,MaxT,Finally}. If a child is
restarted MaxR times in MaxT or less
seconds, the Finally action is trig-
gered:

∗ Finally==kill sup. The super-
visor shuts down its living chil-
dren in reverse start order, and
then it terminates.

∗ Finally==stop child. The of-
fending child is not restarted.
Remaining children continue
restarting normally.

– infinity. If a child terminates, the
supervisor will always try to restart
it.

• Shutdown. The shutdown strategy is the
same as in the OTP supervisor.

– brutal kill. Supervisor kills pro-
cesses, i.e., a child process P will be
unconditionally terminated by the
supervisor sending an exit(P,kill)

message.

– infinity. The supervisor will in-
form the child process that it should
terminate and then wait to receive
an exit signal from the child signal-
ing that it indeed has terminated.

– Timeout (integer). As in infinity

but if no exit signal is received from
the child within the specified time,
the child process is unconditionally
terminated.

• Options is a list of options where an
option can be either insistent restart

meaning that restart function failures
are treated as process crashes instead of
restart errors, or {notify,pid()} which
makes the supervisor send notification
messages to the specified process identi-
fier.

3.3 Properties of the nos supervisor

By reading the nos supervisor documentation
we came up with many interesting properties
to verify for the nos supervisor implementa-
tion. As a trivial example, we wanted to check
that a child that has terminated is actually
restarted by its supervisor. We also focused
on properties regarding the different restart
intensities and the shutdown strategies, check-
ing all combinations of those options. For ex-
ample, we formulated and checked a property
that states that if there is any child specifi-
cation with the Finally action of the restart
intensity set to kill sup and this child reaches
the maximum restart intensity, the supervisor
applies the Shutdown strategy to its children
in reverse start order and then it finishes. In
the following section we describe how some of
these properties were verified using McErlang.

4 Verification using McErlang

To verify the nos supervisor described in the
previous section using McErlang we follow the
approach described in Sec. 2.2, i.e., we create
a verifiable model, we formulate a number of
correctness properties, and we generate a set
of scenarios.

4.1 Create the Model

Obtaining the model for this case-study is
straightforward since McErlang can use the ac-
tual source code as model. In this section we
explain the only change to the source code of
the nos supervisor that was needed to obtain
a verifiable model. To measure the restart in-
tensity the nos supervisor needs to determine
the number of restarts that took place within
a certain time interval. As McErlang currently



implements neither real-time nor discrete-time
model checking algorithms we were forced to
abstract away from the time interval.

add_restart (# child_spec{

restart_intensity = infinity

}) -> [];

add_restart (# child_spec{

restart_intensity = {MaxR , MaxT , Finally},

state = ChildState}) ->

Restarts = ChildState#child_state.restarts ,

Now = now(),

check_restarts( MaxR

, Finally

,filter_restarts(MaxT

,[Now|Restarts]

)

).

As we can see above, the nos supervisor
stores the restart time of each process in a list,
which is then filtered using the difference be-
tween the time of the current restart and the
maximum time specified by the restart inten-
sity. If the resulting list is greater than the
allowed number of restarts, then the Finally

action is triggered. If not, the filtered list with
the new restart time is returned:

filter_restarts(MaxT , [H | Restarts]) ->

F = fun(Restart) ->

difference(Restart , H) < MaxT

end ,

[H | lists:takewhile(F, Restarts)].

check_restarts(MaxR , Finally , Restarts) ->

case length(Restarts) > MaxR of

true -> Finally;

false -> Restarts

end.

The solution was not to store concrete times
when restarting, but merely recording that a
restart occurred (using the symbol now), un-
til the length of the list containing restart in-
dications is equal to the maximum number of
restarts. The last two lines of add restart are
thus replaced by the following code fragment:

NewRestarts = case length(Restarts) >= MaxR of

true -> Restarts;

false -> [now | Restarts]

end ,

check_restarts(MaxR , Finally , NewRestarts ).

It no longer makes sense to filter the list, but
instead the model checker must consider two
possibilities: whether these restarts happened
within the maximum time or not. McErlang
offers the possibility to express such a non-
deterministic choice using a function call to
mce erl:choice giving the branches as a list

of anonymous functions as shown below, and
during model checking both alternatives will
be explored:

check_restarts(MaxR , Finally , Restarts) ->

case length(Restarts) >= MaxR of

true ->

mce_erl:choice([ fun() -> Finally end

, fun () -> Restarts end

]);

false ->

Restarts

end.

4.2 Formulating Correctness Properties

As explained in section 2.2, in McErlang cor-
rectness properties can be specified either us-
ing a safety monitor, which run in parallel with
the system to verify and observe its actions, or
as a formula of linear temporal logic. In prac-
tice, most of the relevant nos supervisor cor-
rectness properties can be expressed as safety
monitors.

In McErlang a safety monitor is imple-
mented as an Erlang behaviour; a module im-
plementing a safety monitor must implement
the following callback functions:

• an init function to initialize the monitor
(which should return the initial state of
the monitor).

• a stateChange function: when the model
checker computes a new system state, this
function is called with the following ar-
guments: (i) the new system state, (ii)
the current state of the monitor, and (iii)
the sequence of system actions that oc-
curred during the computation of the new
system state. The stateChange function
should determine whether the new system
state, and the system actions, are accept-
able given the current state of the mon-
itor. If so, the function should return a
new monitor state, otherwise a failure rea-
son.

4.2.1 An Example Safety Monitor

In this section, a safety monitor which checks
some properties for the nos supervisor is
shown. The relevant properties of interest are:



• a child is spawned only if it has died

• no process is killed by the nos supervisor
without having a sibling process that has
terminated too many times (so that it
should not be restarted again).

To be able to determine whether a pro-
cess spawning or a kill action caused by the
nos supervisor is allowed, the monitor has to
keep track of the state of all its children. Thus,
the state of the monitor is a record keeping
track of the status of all child processes under
supervision:

-record(monitorState ,

% List of dead or never started children

% ordered by the crash time

{ deadProcesses = []

% children killed by supervisor

, killedProcesses = []

% spawned children currently alive

, spawnedProcesses = []

% number of restarts for children

, supervisorChildren = []

, supervisorPid = undefined

}).

The main function of the monitor is de-
picted below:

stateChange(_,MonState ,Actions) ->

...

case interpret_action(Action) of

{died , Pid , normal} ->

{ok ,Monstate};

{died , Pid , Reason} ->

died(Pid , Monstate );

{spawn , SpawnInfo , SpawnedPid} ->

case SpawnInfo of

{supervisor , Intensities}

-> setChildren(Intensities ,Monstate );

{worker , WorkerName}

-> spawned({WorkerName , SpawnedPid}

,Monstate)

end;

{killedby , SourcePid , KilledPid} ->

killed(KilledPid , Monstate );

_ ->

{ok ,Monstate}

end

...

where the function interpret action splits
concrete program actions into different ab-
stract categories, and for each one it checks
whether that action is acceptable in the cur-
rent monitor state. The action {died, Pid,

normal}, for instance, represents the fact that
a process has terminated normally (and so
should not be restarted). If the abstract action
represent a new child process being spawned,
the function spawned is called:

spawned({WorkerName , Pid}, State) ->

DeadProcs =

State#programState.deadProcesses ,

SpawnedProcs =

State#programState.spawnedProcesses ,

case lists:member(WorkerName , DeadProcs) of

true ->

State#programState

{deadProcesses = lists:delete(WorkerName

,DeadProcs),

spawnedProcesses = [{WorkerName ,Pid}

| SpawnedProcs]};

false ->

throw("Already spawned worker")

end.

The spawned functions checks that the
(name of the) newly spawned child function
is not already spawned, and removes the new
child from the list of dead processes and then
adds it to the list of spawned ones. If the child
is already spawned, an exception is thrown
which notifies McErlang that the monitor has
found an error.

Similarly, when a child dies abnormally the
died function is called, which increments the
restart counter for the child. This counter is
checked when the nos supervisor kills a child
to ensure that a sufficient number of restarts
have occurred for some sibling of the killed
process.

It is interesting to note the way in which we
formulate correctness properties using safety
monitors. Instead of specifying them in a tem-
poral logic, what is done is to develop a set
of simplified models of the nos supervisor sys-
tem, and then check whether the behaviour of
the real nos supervisor corresponds to these
models. The use of the same language for
regular development and for specifying safety
monitors eases the adoption of this technique
by the developers.

4.2.2 Checking Liveness Properties.

Some properties, i.e., liveness properties that
express claims regarding eventual behaviour,
cannot be implemented as safety monitors. In
this case, we can instead formulate the prop-
erty in LTL and use the automatic translator
from LTL formulae to Büchi monitors. For ex-
ample, in the case study an interesting prop-
erty to check is that always that a child termi-
nates abnormally, it gets eventually restarted.



This property is expressed as:

always (P => eventually Q)

where P and Q are predicates stating that a
child terminates abnormally and a dead child
gets restarted, respectively. Such predicates
are specified in Erlang, and the correspon-
dence between the names in the LTL for-
mula and the concrete implementation must
be given to McErlang. As an example of a
predicate, this function implements the predi-
cate that states that a child terminates abnor-
mally :

child_terminated(_, Actions , _) ->

lists:any

(fun (A) ->

try

died== mce_erl_actions:type(A),

normal =/= mce_erl_actions:get_died_reason(A)

catch _:_ -> false end

end , Actions ).

As can be seen, a predicate is a function
which receives three arguments. The first is
the program state, the second are the actions
which triggered the state change, and the third
is some private state. If any action is an ac-
tion corresponding to a process dying (died
action), with a Reason different than normal,
this means that a child terminated abnormally.

Note however, that this property holds
only for a nos supervisor whose children have
restart intensity infinity; otherwise, after a
sufficient number of deaths, the child would
not be restarted. To check more complex fea-
tures, we need to keep a private state, and pass
it along between the state predicates (thus cor-
responding to a monitor state in the generated
Büchi automaton).

4.2.3 Modular Safety Monitors

Instead of trying to check all the desirable
properties of the nos supervisor using a sin-
gle complex safety monitor, it is advisable to
define several safety monitors, each checking
a particular property of the nos supervisor.
This approach reduces the risk of checking the
system with incorrect safety monitors, as the
resulting monitors individually are much eas-
ier to understand and write. Moreover, a large
part of a safety monitor code is reusable when

writing a new one. That is, the strategy in
which concrete actions are translated into ab-
stract ones and the way the monitor state is
updated upon process deaths, spawn and kills,
is completely generic. What changes from one
safety monitor (property) to another is how
the actions are interpreted – i.e., when the oc-
currence of an action signal is interpreted as
an error.

These are some of the safety monitors used
in the verification of the supervisor compo-
nent:

1. A supervisor will always try to
restart a child, until one reaches the
maximum restart intensity. Applica-
ble for checking child specifications with
restart intensity different than infinity,
and with kill sup finally action.

2. When a child reaches its maximum
restart intensity, living workers are
killed in reverse start order and then
it terminates. Applicable for child spec-
ifications with restart intensity different
than infinity, and with kill sup finally
action.

3. When a child reaches its maxi-
mum restart intensity, living work-
ers are stopped in reverse start or-
der. Applicable for child specification
with restart intensity different than in-
finity with kill sup finally action and
infinity as shutdown strategy.

4. If a child has infinity as shutdown
strategy, the supervisor never kills
it.

5. If a child has an integer as shutdown
strategy, a supervisor never kills a
process before it has tried to stop
it.

6. When the shutdown strategy for a
child is stop child, when the super-
visor stops, the workers which were
not respawned had reached their
maximum restart intensity.



7. For the all restart strategy, when a
child dies, the supervisor kills alive
children in reverse starting order.

8. For the all restart strategy, the
workers are restarted in start order
after killing all alive children.

4.3 Verification Scenarios

To verify the nos supervisor against the
above correctness properties using McErlang,
a number of scenarios were designed manu-
ally, although it should not be too difficult
to generate them automatically (e.g., using
QuickCheck/Erlang [2]). To create this sce-
narios, a test worker nos test worker has
been implemented which only keeps track of
its starting time. To simulate process crashes,
we enable an option in the McErlang model
checker which, non-deterministically, kills any
process in any state. We select a subset of the
running processes for termination by execut-
ing:

mcerlang:process flag(do terminate,

true)

in any process that is a candidate for ter-
mination (in the case study, the worker pro-
cesses). Thus, a worker processes can non-
deterministically die at any moment, which
will cause the nos supervisor to be informed
(and hopefully take action).

As an example of a concrete scenario, to
check the liveness property if a child dies then
eventually the nos supervisor will restart the
child the simplest adequate scenario would be
a nos supervisor which spawns a child with
restart strategy child (the rest of options are
not relevant).

{worker1 ,

{nos_test_worker ,start_link ,[worker1 ,foo]},

{nos_test_worker ,restart_link ,{worker1 ,foo}},

child ,

infinity ,

brutal_kill ,

[]}

We identified the relevant scenarios as a
nos supervisor with, at least one (two or three
depending on the property) child processes.

All the child processes in a scenario have the
same specification for simplicity.

Each scenario was chosen to verify prop-
erties related to the behaviour of the
nos supervisor related to some of its options.
For example, if we want to verify that the
nos supervisor evaluates a Finally action cor-
rectly when a child reaches its maximum
restart intensity, we only require a restart in-
tensity different than infinity, but we must
know if we should expect a exit(kill) or a
exit(shutdown) (which shutdown strategy is
being applied).

4.4 The McErlang Debugger

What can be done if a property fails? McEr-
lang provides a tool for exploring counterex-
amples, manually exploring the state space,
. . .: the McErlang debugger.

When running the model checker with prop-
erty (ii), McErlang returns a counterexample,
indicating that this property has failed:

*** Property violation detected at

minimum depth 13

*** Monitor failed

monitor error:

{failed_monitor

,"Processes not killed in reverse start order"}

Stack depth 13 entries;

state table contains 44446 states.

Access result using get(result)

To see the counterexample type

"mce_erl_debugger:start(get(result)). "

...

As can be seen, the length of the trace which
leads to an error is shown, as well as the con-
crete scenario of the failure. In the program
trace given by the debugger, we realized that
the kill order was not the proposed in the spec-
ification. The debugger also allows us to man-
ually explore the state space to analyze other
paths, and help us to locate the error (under
which circumstances does this error arise).

4.5 Experimental Results

The safety monitors previously described were
checked on a set of scenarios, constructed as
described in Sect. 4.3. We present here some
measures taken in a Intel(R) Core(TM)2 Quad



at 2.33GHz with 4GB of RAM memory. Fig-
ure 2 shows the number of states explored
(Fig. 2a) by the model checker and the time
required (Fig. 2b) to check the safety mon-
itor (i) given in Sect. 4.2.3, for a scenario
with restart strategy child, a restart inten-
sity of {1,1,kill sup}, and different number
of workers. The state space may vary depend-
ing on scenario parameters (using the same
number of workers). For example, the num-
ber of states explored by the model checker
using {1,1,kill sup}, {2,1,kill sup} and
{3,1,kill sup} were 6617, 13656 and 26712,
respectively.

As expected with model checking tech-
niques, the state space grows exponentially
making difficult to check large scenarios using
the actual implementation as a model. Never-
theless, even though nos supervisor behaviour
has been deployed in a number of LambdaS-
tream products and no truly critical errors
were expected to be found, surprisingly, one
discrepancy between the specification in the
component documentation and the actual im-
plementation of the nos supervisor was found.
McErlang returned a counterexample for the
following combination of scenario and prop-
erty If any children with specification kill sup

and Finally reaches the maximum restart in-
tensity and has brutal kill shutdown strat-
egy, then the supervisor only kills a child af-
ter all the “younger” children (those that have
been started after this child) are not running
(stopped, killed, crashed, dead, . . .) . The
counterexample returned by McErlang was an-
alyzed using the McErlang debugger and it
turned out that an “older” worker was killed
before a “younger” worker, i.e., they were not
killed in reverse start order as it was explicitly
stated in the documentation.

5 Conclusions

In this paper we have explored the verifica-
tion of safety and liveness properties using
the McErlang tool on a process supervisor
deployed as part of several real-world prod-
ucts. Thanks to this verification, we have im-
proved the component’s reliability, not only

because a slight discrepancy between specifi-
cation and implementation was identified but
also because component specification became
much more precise. From this verification ef-
fort we can conclude that model checking is
a valuable technique for analyzing concurrent
programs, and that McErlang can be succes-
fully applied to industrial software.

The methodology we have followed consists
of three steps (a) creating a model for the com-
ponent, (b) expressing and implementing the
properties of interest, and (c) creating scenar-
ios where the properties were checked. Cre-
ating the model is a straightforward task as
McErlang can use the source code as a model
with minimal changes. In the case study, the
only required change was to abstract from the
timing aspects of the supervisor, into a non-
deterministic choice, as currently McErlang
implements neither real-time nor discrete-time
model checking algorithms. Even though we
have been able to verify most aspects of the su-
pervisor without considering exact timing, an
important aspect for future work is to add sup-
port for real-time model checking algorithms
to McErlang.

The properties of interest were extracted
from the component documentation, and from
informal discussion with the developers of the
supervisor component. Most of the properties
were formulated as safety monitors, written in
Erlang, which observe the actions of the su-
pervisor component as it manages a set of chil-
dren, and signaling an error if the supervisor
issues an incorrect command. In other words,
we have defined a set of simplified models, and
check that the real supervisor has the same be-
haviour as the models (up to the abstraction
level of the monitor).

To fight the inevitable state explosion prob-
lem of model checking we apply the McErlang
model checker not to a large monolithic sce-
nario, but define and check a large number
of smaller scenarios (varying, for example, the
number of work processes). Even though the
verification is partial, as there is no way we can
check every possible scenario, we discovered a
discrepancy between the documentation and
the actual implementation of the component



1 2 3

0

2

4

6

·105

Number of workers

S
ta

te
s

ex
p
lo

re
d

(a) States explored

1 2 3

0

2

4

·105

Number of workers

T
im

e
(m

s)

(b) Time required.

Figure 2: States explored and time required (restart strategy=child, restart intensity={1,1,kill sup}).

in a small scenario comprised of one supervi-
sor and three children.

A significant advantage of the approach to
model checking taken in McErlang, compared
to other model checkers, is that there is no
need for learning a new specification language
since Erlang is both used as a programming
language and as a specification language. This
is achievable, in part, due to the inherent
power of a functional programming language
which is sufficiently expressive to be used both
for programming and for writing more ab-
stract specifications.

Still obviously there is much room for im-
provement. The learning curve to be able to
use McErlang effectively, and to formulate cor-
rectness properties, is currently too steep. In
next release of McErlang improvements are
planned regarding the usability of the tool, to
provide, for example, better information on er-
ror causes, guidance in selecting appropriate
verification options, and a simplified API for
the formulation of correctness properties.

References

[1] J. Armstrong. Programming Erlang:
Software for a Concurrent World. Prag-
matic Bookshelf, 2007.

[2] T. Arts and J. Hughes. QuickCheck for
Erlang. In Proceedings of the 2003 Erlang
User Conference (EUC), 2003.

[3] J. Bc̈hi. On a decision method in re-
stricted second order arithmetic. In Pro-
ceedings of the International Congress
on Logic, Methodology and Philosophy of
Science 1960, pages 1–11. Stanford Uni-
versity Press, 1960.

[4] C. Benac Earle, L. Fredlund, J. Igle-
sias, and A. Ledezma. Verifying robocup
teams. Lecture Notes in Computer Sci-
ence, 5348/2009:34–48, 2009.

[5] F. Cesarini and S. Thompson. Erlang
Programming. O’Reilly Media, 2009.

[6] L. Fredlund and J. Sánchez Penas. Model
checking a VoD server using McErlang. In
In proceedings of the 2007 Eurocast con-
ference, Feb 2007.

[7] L. Fredlund and H. Svensson. McErlang:
a model checker for a distributed func-
tional programming language. SIGPLAN
Not., 42(9):125–136, 2007.

[8] C. A. R. Hoare. Communicating Se-
quential Processes. Prentice Hall Inter-
national, 1985.



[9] G. Holzmann. Design and Validation of
Computer Protocols. Prentice-Hall, 1991.

[10] R. Milner. Communication and Concur-
rency. Prentice Hall International, 1989.

[11] H. Svensson. Implementing an LTL-to-
Büchi translator in Erlang. In Proceed-

ings of the 2009 ACM SIGPLAN Erlang
Workshop, 2009.

[12] S. Torstendahl. Open telecom platform.
Ericsson Review, 1, 1997.


