
Software basado

en Componentes

Curso 2006-2007

New research issued on Component based
and Service Oriented Software :
Towards new ways of
creating Software Intensive
Systems

Juan José Moreno-Navarro
Universidad Politécnica de Madrid
jjmoreno@fi.upm.es

2 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Summary

Software Intensive Systems: new paradigm

Difficult to develop with conventional techniques (complicate
verification or validation, combining new and legacy code, etc.)

Software Architecture

Only solves a part of the problem.

Software Urbanism

New concept: Need for early planning knowing no complete details
about future use, heterogeneous systems, advanced ways of
combining software based on semantics interoperability.

We pose more questions than solutions: Provocative
discussion.

3 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Software production nowadays

Software market in the world: around 200 billion €
Europe: 1/3 of this market, around 4.5% of GPB

Spain: around 45 M€, 2.5% of GPB

Industries bet for their digital conversion, and software is the key.

Software systems in all our environment:
They control essential aspects of our lives: banking systems,

communications, transport, medicine

Continuous need for more and more software
Not always followed by an adequate foundational

model.

4 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Motivation: Information Society

The ever growing demand:
For quality, reliability, safety, efficiency, ...

Reality:
fragility, unreliability, lack of trust, ...
Several examples of severe Software failures

5 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Software Failures

Well known examples
– Ariane 501 (ESA report)
– Mars Climate Orbiter (Nasa 98)

Problems mixing british and decimal measures
– Wrong alarms about electricity in USA (First Energy

infrastructure) with 3 victims
– Accident of a American Marines flight mission in 2000 (no

survivors)
– 2000 effect
– Euro problem

6 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Software Failures

(More) Well known examples

– Impact of a Patriot missil on a friend plane in Irak
– Severe failures in the telecommunication systems in France,

summer 2004

– Panama incident: Non reliable software used in a treating
cancer device caused the death of patients for over-exposition
to radiation. The authors have been condemned by a jury.

– http://www.acm.org/technews/articles/2004-6/0322m.html#item17

•Effect of formal methods
–Detection of errors in X-21 y TCP

7 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Gap between theory and practice

Software quality as a social problem: The
Economist (June 2003)
http://www.economist.com/displaystory.cfm?story_id=1841081

“To achieve predictable quality in software-making, just as in
carmaking; the more you automate the process, the more
reliable it is”.
“The Panama incident causes some industry experts to
consider the possibility that more stringent regulation of SW
development is necessary”

8 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Gap between theory and practice
Cost of failures:
USA 60 B$ per year, means a 0.6% of GPD. 80% of software
development cost invested in solving failures.

A 80% of total cost of a software development are invested in
identifying and correcting errors.

NIST Study: Software Bugs Take Bite Out of Nation's
Economy, www.nist.gov/director/prog-ofc/report02-3.pdf

9 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Software Intensive Systems
Software Intensive Systems: A system in which software is the

dominant, essential, and indispensable element

–Complex programmable systems, based on embedded technology
(sensors and integrated controllers).

–Integrated with the service-oriented computing paradigm.
• Dynamic and evolving systems,
• Adaptative and anticipatory behaviour.
• Process knowledge and not only data

10 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Autonomous, platform-independent computational entity that
can be described, published, categorised, and dynamically
discovered. Services can be dynamically assembled for
developing massively distributed, interoperable, evolvable
systems and applications.

Design

–Future uses cannot be predicted

–We need to dynamically ask services about the functionality it provides

Software Services

11 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

The typical application (in some years)

Devices

Services

everywhere, everytime

thousands of them

Payment, accounting,

and autentification

methods

Legacy code

Networks

Providers

Certification of properties

Dynamism

Users

Best value

12 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

SW Intensive Systems
Validation/Verification

Conventional techniques are no longer useful:
–Sensors and controllers: no room for patches, upgrades or new versions;
software is part of long lived goods (cars, planes, mobile phones, etc.);

–A software system using software services cannot be verified:
• we ignore the code.
• it even cannot be tested as we can only use the software service in

operation (and maybe paying for its use).

–Bertrand Meyer pointed out that exhaustively and formally verifying a
software service that will be used hundred or thousand of times could be
extremely worthy.

13 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

The problem with requirements
•Bad analysis of requirements is a
general problem.

Responsible of 50% of failures:

• Standish Group 1995 - 350 USA, 8000
projects

• European Software Institute 1996, 3800
companies, 17 countries

•Severe cost for late corrections or new
version (up to 200 times greater - Boehm,
1981)

14 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

New challenges, new models
A change in the models is a must.

Forcing the use of only those elements semantically
rigorous in all the stages:

– Analysis (Specification Languages)

– Modelling (UML?)

– Design ([Formal] Languages for architecture description,
design patterns -when formalized)

– Implementation (Programming Languages with clear
semantics: Declarative languages, Imperative languages
with strict rules and well documented)

Tools for automatezing (part of) the process.

15 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Two ways of handling the problem of software
reliability

1. Providing tools for checking properties of existing code
(model checking, abstract interpretation, verification
tools, ...).
We depart for declarative programming and now
applying those ideas for GCC (Eureka project).

2. Providing a methodology for generating correct code
from the early steps of a system:
The SLAM system.

16 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

New models

Software Architecture is not enough

Specification of components need an
essential be part of it.

17 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Architecture defined

Architecture n (1563)
1. The art or science of building or constructing edifices of any kind

for human use

2. The action or process of building

3. Architectural work; structure, building

4. The special method of ‘style’ in accordance with which the details
of the structure and ornamentation of a building are arranged

5. Construction or structure generally

6. The conceptual structure and overall logical organization of a
computer or computer-based system from the point of view of its
use or design; a particular realization of this

Oxford English Dictionary

18 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Software Architecture

The software architecture of a program or computing system is the
structure or structures of the system, which comprise:

– software components,

– the externally visible properties of those components, and

– the relationships among them

Offer a global vision of the system
Dynamic Architectures: Basis for the systematic and autonomous evolution
of software in execution.

Main ideas:

– Separation of concerns between components and connectors.

– Identify the desired characteristics of connectors for facilitating
change

– Use of architecture description languages for separating the structure
of the system and the dynamic reconfiguration.

19 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Software Architectures are not enough

They just supply a part of the need of evolution of the systems. The
structural approach does not necessary contribute to the capacity of
evolution of the system, even more the system could be “too much
structured”, avoiding the adaptation to new situations. E.g. many
current systems are monolithic and centralized, not easy to adapt for
their highly distributed management.

Quality attributes are rarely part of requirement specification. Later
when they appear in the development they are not adequately
understood.

– Architecture: Refers to a house

– Urbanism: Refers to quarters and cities.

20 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Urbanism
Urbanism: comes from the Latin word urbanitas meaning « from
city, having the characteristic way of life of city dwellers ».

In 1867, Ildefonso Cerda, a Spanish engineer,
published « Teoría de la Urbanización » where
urbanización denotes the process of space
arrangement, that could be planned or not, and the
underlying laws. The job of the «urbanizador» is to
discover hidden and unconscious laws in order to
understand and to use them, knowingly, for
conception and arrangement of constructed spaces.
Barcelona’s “El Ensanche” integrating old and new
quarters to improve the city.

Unlike the notion architecture which refers to the structure and style
of an edifice, urbanism refers to the integration of the edifice into the
environment according to the needs of the society. Urbanism is
defined as the art to reason and plan about urban agglomerations to
adopt them to the needs of human beings who live and work there.

21 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Urbanism
Hausmann (prime minister Napoleon III) reorganized the city of Paris. The
intention of this re-organization was to transform the middle age town of
Paris into a modern city which fulfils new requirements like the growing
traffic at that time, better supply infrastructures and others. For doing so, it
was required to document the existing situation to provide information for
later changes, i.e. a cartography of the city was needed. Such
cartography is not a simple map of streets and blocks. It has to take
different points of view into account, e.g. form outside, i.e. how to get into
the city, or existing supply infrastructures such as water, electricity, and
garbage collection and so on.

The city cartography forms the basis for re-
organization of the city. In Paris there exist an
east-west axis which cuts the city and along
which many important buildings and sights are
located. Many avenues follow the direction to
former town gateways (portes). Some quarters
were entirely re-organized, others (Le Marais)
remained almost unchanged.

22 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Urbanism
When re-organizing a city in the described way city architects and
engineers are confronted with a lot of problems which concern many levels
of the city such as water supply, heating or security. Large wide avenues
are usually securer than small tiny lanes, because they are easier to
supervise. A restructuring of the streets implicates a reconstruction of the
supply network. These problems also require solutions when re-organizing
a city. Some of these problems, so-called Core-Level-Concerns can be
encapsulated into single functions, others not. These are called System-
Level-Concerns or Crosscutting-Concerns, because they are interwoven
with each other and concern the whole systems. Consequently, a city re-
organization also needs solutions for these crosscutting problems which
cut through all layers of the logical city structure.

Arturo Soria proposed the Ciudad Lineal. The goal
was to build a new and healthy city, improving the
quality of life of its inhabitants. The main axe was the
public transport and services as a sustainable
cohesion element. The integration of the society in
the city was introduced as an important element of
urbanism.

23 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Software Urbanism: Approach

Software Urbanism:

Urbanism in computer science is an approach for a systematic evolution of
software systems. It is a metaphor which establishes an analogy between
building software and building cities that has been introduced to improve
our insight on how to obtain a good system design and, especially, helping
to re-engineer existing software systems. It is based on similarities
between urban systems and large software systems:

–Both possess a great complexity with numerous facets and corresponding
view points reflecting the human organization which created them.

–Both types of systems are characterized by a great dependency of their
history, by a construction over the course of years depending of the
constraints of the given time, and by various adoptions to different needs
without re-designing the systems in a coherent manner.

24 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Software Urbanism: Six axes
Cartography: Evolution and re-engineering

New quarters: Autonomy and change

Old quarters: Involving legacy code

Reasoning and planning: Semantical foundations

Crosscutting issues: Non-functional aspects

Integrating society: Automatization

25 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Cartography: Evolution and re-engineering

Need for a high capacity for evolution:

Good software architecture Low cost for changes

New uses in new contexts

Need for models to support for system changing and evolution in aspects
like business model, requirements, technological platforms, etc.

–Separation of pure applicative parts from the software infrastructure
(communications, interoperability layers, middleware, etc.)

–Architecture standarization as part of service information. Allowing for
service composition reasoning and (semi)-automatization.

–Ability for change as part of modelling and design: e.g. automatic
configuration of components compatible with the architectonical style.

26 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Cartography: Evolution and re-engineering
Urbanism is based on a functional decomposition which provides a functional
cartography of the system with the following properties:

– Hierarchical classification of activities discovered during the system analysis.

– It reflects the services offered within the system. This is one of the pillars of a
strategic alignment for supervising and controlling the system.

Derivation of the system cartography is based on the modelling of different
view points to make the system structure visible:

– External view point: services provided by the system, the external user and the relation
between them, the usage of the service, and the data exchanged.

– Internal view point: processes and work flows running in the system.

– Informational view point: Data exchanged between the processes as well as between
the system components and specifies the applied data formats.

– Architectural view point: building blocks and the structure of the system, i.e. its
components, its subsystems, the hierarchical structure, and the infrastructures.

The derived cartography is used to re-engineer or evolve the system in a
systematic way: definition of the building blocks of the new system (or system
version), re-design of data exchange infrastructure, creation of the new system
architecture. In addition, the traceability of the changes must be ensured.

27 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Cartography: Evolution and re-engineering

Derivation of system cartography: iterative process.

– To chart the existing system by determining the structural
elements of the studied system, defining their roles and their
associations.

– To consolidate the cartography by validating the coherence of
different view points and by simplifying them according to given
rules.

– To define the evolution targets: The evolution targets define the
objectives of the evolution process or of certain evolution steps,
respectively. The evolution targets determine the evolution or re-
engineering strategy applied and possibly the migration paths
towards that target. The evolution step will lead to a new
cartography.

28 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

New quarters: Autonomy and change

Autonomy of services and systems, and the ability
for self-organizing.

Systems could take decision based on the context, and adapt to it
(by means of re-organizing knowledge, models, code, ...)

Autonomy is the capacity of “living in a society”, so it is intimately
linked with urbanism.

Need for strategies and methods for changing large distributed
software systems and services and/or integrating new components
and/or to migrating to others system architectures, allowing to
extending and adopting existing systems to meet new demands and
to make the system evolution more efficient.

29 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Old quarters: Involving legacy code
Hard topic

Why God could create the world only in 7 days?

New or modified source lines of code per year per developer & cumulative

0

100,000,000,000

200,000,000,000

300,000,000,000

400,000,000,000

500,000,000,000

600,000,000,000

700,000,000,000

800,000,000,000

19
45

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

New or modified source lines of code per
year
Cumulative source lines of code

Source: Grady Booch

First option: Leave the systems are they are, but specify in detail the
interface, making the verification and validation tasks that were not done
in their development.

Second option: Audit the systems to identify those parts that need a re-
engineering to fulfil needed properties.

Because He has no legacy system to integrate

30 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Crosscutting issues: Non-functional aspects

Need for strategies for handling crosscutting issues: quality of service,
security, resilience, extensibility, and manageability in urban strategies,
allowing to supporting complete re-engineering processes.

Non-functional aspects specification, representing quality attributes.

Part of the modelling from the very beginning.

Quantification of non-functional requirements. A single value is not usually
enough. Idea: use of soft-constraints and ranges of values:

• Allowed users: [10..15]

– Fuzzy aggregation operators: conjunctive (less or equal the minimum),
disjunctive (greater of equal than maximum), average (between minimum
and maximum), negation.

• Availability: Minimum operator

• Efficiency: Product operator.

31 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Reasoning and planning: Semantical foundations
Need for developing methods and formal language concepts for modelling
urban and architectural aspects allowing to describing different views, exchange
scenarios, and architectural elements to support the re-engineering process in a
more formal way.

Packed service: It is important to know i) its behaviour, and ii) a certification of its
quality properties.

All the layers need rigorous and semantically defined elements: requirements,
models, architectures, patterns, validation techniques, etc.

– A must for reasoning with systems with huge number of services: a formal
models of the behaviour, how it can be developed, validated, ...

– A must for building tools that automates (part of) the process.

Semantic interoperability or How to understand what a software service
offers: Description languages (WSDL, syntactic, BPEL4WS not expressive
enough) allow that applications have the ability to ''talk'' to each other but they do
not ''understand'' what they are talking about.

A formal specification language for web services is needed, with

i) no ambiguities, and

ii) allowing automatic management.

32 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Integrating Society: Automatization

Need for automatizating (part of) the generation
and software development:

TOOLS:

– Ensuring predictability of quality attributes (notably reliability) by
construction.

– Formal components is a must.

– Decrement of development time.

– Increment of reuse.

A Software development process where

– most verification and validation tasks are done in the analysis phase.

– Code generation, consistency of specifications, testing, ... more and
more automatized.

33 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Integrating Society: Automatization

34 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Dealing with specifications: The SLAM project

Automatizing code generation

Specification

Executable
prototype

Nuevo programa
(desde cero)

Validation

Optimized program
(with support for

debugging)

35 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

The SLAM project

(Invisible) formal and rigorous methods for software
development.
Programming from specifications: From a description given in
an specification language (SLAM) we are able to generated
verified, readable and reasonably efficient code (Java, C++,
...).
Environment support for reasoning and validating changes in
code : Checkable post-conditions as assertion in the code.
Many applications in different contexts.
Useful for a complete systems, but the best use is for
component specifications.

36 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

An expressive specification language: object oriented.
Compromise in order to being able to generate code.
Translation schemas to imperative code (Java) based

on (formal) program transformation techniques (coming
from declarative programming).
Key idea: To separate the specification (post-

condition) from the mechanism to implement it
(solution), but define both in the same language.

http://babel.ls.fi.upm.es/slam

The SLAM project

37 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

SLAM: An example

Bank transactions:

Bank Bank

Transaction

amount

BankBank

TransactionsTransactions

AmountAmount

Transaction collection

(+ banks’ names)
Final

amount
Final

amount

Final
amount
Final

amount
BankBank BanKBanK

Final
amount
Final

amount
Source
bank

Dest.
bank

38 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

SLAM: Bank transactions

class Transaction Class declarationClass declaration
public state source : String, dest : String, amount : Real

Attribute declarationAttribute declaration

Predefined construction for recordsPredefined construction for records

public state banck (public name: String, public amount: Real)
Data constructor definitionData constructor definition

observer Name: String Operation/Method declarationOperation/Method declaration
bank (nombre, total).Name = name

Explicit function definitionExplicit function definition
constructor createBank : (String, Real)

createBank (n, t) = bank (n, t)

class Banck

X: SLAM syntax

X: SLAM predefined

X: User defined
.

39 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

An Example: Bank Transactions

class TransactionCol Class declarationClass declaration
state [Transaction]

Attribute declarationAttribute declaration

Predefined sequence constructionPredefined sequence constructionobserver finalAmount: [String]: [Bank]

Operation/method declarationOperation/method declaration

Precondition: Condition that must
hold to ensure expected function
behaviour

Precondition: Condition that must
hold to ensure expected function
behaviour

pre:- length (names) > 0
ctrans.finalAmount (names)
post:-
length (result) = length (names) and
all i in {1..length(result)}.
result(i).name = names(i) and
result(i).total =

(sum t in ctrans| t.source = names(i).t.amount) -
(sum t in ctrans| t.dest = names(i).t.amount)

Postcondition: Relates input
values and the output result
Postcondition: Relates input
values and the output result

Solution: Provides and
effective method to
compute the result

Solution: Provides and
effective method to
compute the result

check
Assertion annotation:
(Part) of the
postcondition that can
be dynamically
checked

Assertion annotation:
(Part) of the
postcondition that can
be dynamically
checked

(

)

X: SLAM syntax

X: SLAM predefined

X: User definition
.

sol map n in names.
makeBank (n,

(sum t in ctrans| t.source = names(i).t.amount) -
(sum t in ctrans| t.dest = names(i).t.amount))

40 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Advantages of SLAM
In contrast with other specification languages, SLAM
generates readable and modifiable code.

No throw-away prototype in the IRPP.
Code generation relatively easy provided that the target
language supports some kind of object orientation (Java,
C++, Haskell, Prolog).
Key feature: O.O. + traversal + quantifiers → loops
Formula classification: Executable specifications (valid for
debugging) and solutions (valid for code generation).

41 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Compilation to Java

Every class into a file.
Private Java constructors (C (...)) + public class members
that constructs objects (makeC (...)).
Instance members for attribute access.
Iterator technology for traversals: any traversable object
returns an iterator.
Quantifiers are translated by code schemes.
Classes implement a serializable interface (automatic
generation of read and write operations)

42 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Compilation to Java
import java.io.Serializable;
import java.io.IOException;
public class Bank implements Serializable {

class Bank

private String name;
private float total;
private Bank (String name, float total) {

this.name = name;
this.total = total; }

public static Bank makeBank (String name,
float total) {

return new Bank (name, total); }

public String name () {
return name; }

}

state bank (String, Real)

constructor makeBank :
(String, Real)

makeBank (n, t) =
bank (n, t)

observer Name: String
bank (name, total).Name =

name
.

class Bank

state bank (String, Real)

constructor makeBank :
(String, Real)

makeBank (n, t) =
bank (n, t)

observer Name: String
bank (name, total).Name =

name

43 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Code Generation: Program Transformation

class List (Elem) inherits Collection
state empty
state cons (Int, Lista)

public class List {

private static final int EMPTY = 1;
private static final int IS_CONS = 2;

private int state;
private Object head;
private List rest;

private List () { }

public static List empty () {
List result;
result :=new List ();
result.state = EMPTY;
return result;

}

Compilation to Java

44 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Code generation: Equational reasoning

class List (Elem) inherits Collection
state empty
state cons (Int, Lista)

function traversal:List (Elem)→[Elem]
empty.traversal = []
(cons (c, l)).traversal = [c] + l.traversal

select x in l where prime (x)

Tail recursive version.
Easily translated to a loop

x := l.head();
while(!prime (x)) {
l := l.tail;
x := l.rest (); }

≡
select x in traversal (l) where prime (x) ≡

s(1) if prime (s(1))
select x in s.suffix where prime (x) otherwise where s = traversal (l) ≡
y if prime (y)
select x in traversal (r) where prime (x) otherwise where l = cons (y,r) ≡
y if prime (y)
select x in r where prime (x) otherwise where l = cons (y,r) ≡

Compilation to Java

45 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Compilation to Java
import java.util.Iterator;import java.io.Serializable;
public class TransactionCol implements Traversable, Serializable {

private Transaction[] ctrans;
private TransactionCol (Transaction[] ctrans) {

this.ctrans = ctrans;
}
public static TransactionCol makeTransactionCol (Transaction[] ctrans) {

return new CTransaction (ctrans);
}
public Iterator iterator () {

return new Cursor (ctrans);
}

46 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Compilation to Java
public Bank[] finalAmount (String[] names) {

Bank[] result = new Bank[names.length];
int i; float sum1, sum2;
Iterator iterator;Transaction t;
for (i = 0; i < names.length; i++) { // map

iterator = this.iterator ();
sum1 = 0;
while (iterator.has_next ()) { // sum

t = (Transaction) iterator.next ();
if (t.source().equals(names[i])) {

sum1 += t.amount(); }
}
iterator = this.iterator ();
sum2 = 0;...
result[i] = Bank.makeBank (names[i], sum1 - sum2);

}
return result;

}

Two traversals!Two traversals!

47 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Hand-coded optimization
public Bank[] finalAmount (String[] names) {

...
for (i = 0; i < names.length; i++) {

iterator = this.iterator ();
sum = 0;
// ONE LOOP!!!
while (iterator.has_next ()) {

t = (Transaction) iterator.next ();
if (t.source().equals(names[i])) {

sum += t.amount(); }
if (t.destination().equals(names[i])) {

sum += t.amount(); }
// ^-> This is a hand coded bug!! Must be -= }

result[i] = Bank.makeBank (names[i], sum);
}
return result;

}

48 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

SLAM: Extensions
Distributed extension:

–Focused on specification of component and (web) services.

One of the needs is to allow for a semantic description of software
services.

Current web services standards are still weakly defined from the
semantical point of view.

Main element: shared resource

This information can be consulted by another component (by
using the reflective capabilities).

49 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Distributed Slam Shared
resource

Code using
this service

Seller: Check if
price updated
until estable

price

50 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Code using
the service

Buyer: Check
price and makes

a bid.

Distributed Slam

51 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Shared resources
Specified as a

class

Actions for
interfacing.
Atomic
Resource

modifying

52 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Shared resources

Concurrent
precondition:
Conditional
synchronization

53 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Extending WSLD by adding semantics

WSLD: Web services definition language:

• Basically, merely syntactic

Our proposal for extension:

– Insert Slam-Sl rules by means of WSLD annotations

Triple:

<pre-condition, concurrent pre-condition, post-condition>
WSLD 1.1: Annotations are added as extensible
attributed

WSLD 2.0: Annotations incorporated via new type
elements

54 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Annotated WSLD 2.0

WSLD
description of
our service

55 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Annotated WSLD 2.0

New
subelements

WSLD 2.0:
new element

56 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Extending OWL-S with Slam-Sl

OWL-S: Significant effort to add semantics to web
services. Our proposal for extension:

OWL-S does not indicates a preferred language
(candidates are SWRL & DRS).

Expressiveness problems: f.i. Outputs mean a type,
no synchronization

57 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

OWL-S

Property hasInput:

Input data types

Now: Precondition

58 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

OWL-S

Property hasOutput:

Output data types

Now: Postcondition

59 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

OWL-S

New element for concurrent
conditions:

60 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

IMDEA Software

A Comunidad de Madrid Research Institute around these topics.

Part of the IMDEA network: Madrid Advanced Studies Institutes:
Water, Material sciences, Energy, Social sciences, Nano-
sciences, Telematic networks and services, Mathematics, Food,
Biomedicine

Model: Private non-profitable foundation, agreements with the
Universities for sharing personnel, buildings, infrastructures, etc.

61 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

IMDEA Software
Integrated with Universities: UPM, URJC, UCM, CSIC
Scientific excellence as main goal
Focused on attracting researchers, outside the CAM
Strong connection with industry: Telefónica I+D, Atos Origin, HP,
BBVA
Four initial research lines:

– Correctness by construction.

– Tool-based rigorous modelling and validation.

– New generation languages and optimizing and validating
compilers.

– Free software and its development methods.

62 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Conclusion
Software intensive systems are growing: a complex area. They are
based upon services that were complex when they were built. This is an
essential complexity that cannot be simplified. This complexity cannot be
perceived by the user.

A new discipline is needed: Software Urbanism.

Key elements:

– Capacity of evolution and autonomy of services further than the concrete
application they were conceived for.

– Enforce reuse.

– Certification of quality properties, including non-functional aspects.

– Solid semantical foundation in all the layers, specially in the specification
of services.

Preference for development methodologies ensuring quality and
correctness by construction.

Software ubiquity is not adequately understood. We need theories to
design and reasoning with (complex) software. It is the only way for recon
ciliate market software demands with its rigorous construction.

63 Software basado en componentes, Curso 2006-2007

Software Urbanism, Juan José Moreno-Navarro

Thank youThank you

I am not enough young to know everything.

James M. Barry

¡Ozú! !Qué miedo saber tanto¡

Lola Flores

Making predictions is difficult, specially for the future

Niels Bohr (Physics Nobel Prize, 1922)

	New research issued on Component based and Service Oriented Software :�Towards new ways of �creating Software Intensive �Syste
	Summary
	Software production nowadays
	Motivation: Information Society
	Software Failures
	Software Failures
	Gap between theory and practice
	Gap between theory and practice
	Software Intensive Systems
	Software Services
	The typical application (in some years)
	SW Intensive Systems Validation/Verification
	The problem with requirements
	New challenges, new models
	Two ways of handling the problem of software reliability
	New models
	Architecture defined
	Software Architecture
	Software Architectures are not enough
	Urbanism
	Urbanism
	Urbanism
	Software Urbanism: Approach
	Software Urbanism: Six axes
	Cartography: Evolution and re-engineering
	Cartography: Evolution and re-engineering
	Cartography: Evolution and re-engineering
	New quarters: Autonomy and change
	Old quarters: Involving legacy code
	Crosscutting issues: Non-functional aspects
	Reasoning and planning: Semantical foundations
	Integrating Society: Automatization
	Integrating Society: Automatization
	Dealing with specifications: The SLAM project
	The SLAM project
	The SLAM project
	SLAM: An example
	SLAM: Bank transactions
	An Example: Bank Transactions
	Advantages of SLAM
	Compilation to Java
	Compilation to Java
	Compilation to Java
	Compilation to Java
	Compilation to Java
	Compilation to Java
	Hand-coded optimization
	SLAM: Extensions
	Distributed Slam
	Distributed Slam
	Shared resources
	Shared resources
	Extending WSLD by adding semantics
	Annotated WSLD 2.0
	Annotated WSLD 2.0
	Extending OWL-S with Slam-Sl
	OWL-S
	OWL-S
	OWL-S
	IMDEA Software
	IMDEA Software
	Conclusion

