
1 / 55

Erlang – a platform for developing distributed software systems

Lars-Åke Fredlund

Problems of distributed systems

2 / 55

■ Distributed programming ishard

■ Challenges for concurrency:

◆ process coordination and communication

Problems of distributed systems

2 / 55

■ Distributed programming ishard

■ Challenges for concurrency:

◆ process coordination and communication

■ And challenges for distributed software:

◆ heterogeneous systems

◆ security, reliability (lack of control)

◆ performance

Distributed Programming Today

3 / 55

Todays contrasts:

■ Vision – easy programming of distributed systems

■ The nightmare/reality – Web services, XML, Apache, SOAP,
WSDL, . . .

■ Why are Web services a nightmare?
Too many standards, too many tools, too many layers, too
complex!

■ Erlang is an Industrially proven solution for developing and
maintaining demanding distributed applications

■ Good qualities of Erlang as a distributed systems platform:
Complexity encapsulated in a programming language, good
performance, efficient data formats, debuggable, not complex

Erlang as a component platform: a summary

4 / 55

■ Processesare thecomponents

Erlang as a component platform: a summary

4 / 55

■ Processesare thecomponents

■ Components (processes) communicate bybinary
asynchronous message passing

Erlang as a component platform: a summary

4 / 55

■ Processesare thecomponents

■ Components (processes) communicate bybinary
asynchronous message passing

■ Component communication does not depend on whether
components are located in the same node, or physically
remote (distribution is seamless)

Erlang as a component platform: a summary

4 / 55

■ Processesare thecomponents

■ Components (processes) communicate bybinary
asynchronous message passing

■ Component communication does not depend on whether
components are located in the same node, or physically
remote (distribution is seamless)

■ Component programming is facilitated by usingdesign
patterns (client/server patterns, patterns for fault tolerant
systems, etc) andlarger components(web server, database)

Erlang as a component platform: a summary

4 / 55

■ Processesare thecomponents

■ Components (processes) communicate bybinary
asynchronous message passing

■ Component communication does not depend on whether
components are located in the same node, or physically
remote (distribution is seamless)

■ Component programming is facilitated by usingdesign
patterns (client/server patterns, patterns for fault tolerant
systems, etc) andlarger components(web server, database)

■ Componentmaintenance, andfault tolerance is facilitated
by language features and design patterns

Erlang as a component platform: a summary

4 / 55

■ Processesare thecomponents

■ Components (processes) communicate bybinary
asynchronous message passing

■ Component communication does not depend on whether
components are located in the same node, or physically
remote (distribution is seamless)

■ Component programming is facilitated by usingdesign
patterns (client/server patterns, patterns for fault tolerant
systems, etc) andlarger components(web server, database)

■ Componentmaintenance, andfault tolerance is facilitated
by language features and design patterns

■ But the devil is in the details: let’s see them!

Erlang/OTP

5 / 55

■ Basis: a general purpose functional programming language

■ Automatic Garbage Collection

■ With lightweight processes
(in terms of speed and memory requirements)

■ Typical software can make use of many thousands of
processes;smp supported on standard platforms

■ Implemented using virtual machine technology and
compilation to native code (Intel x86, Sparc, Power PC)
Available on many OS:es (Windows, Linux, Solaris, . . .)

■ Supported by extensive libraries:
OTP– open telecom platform – provides tools such as
components, distributed database, web server, etc

Erlang/OTP History

6 / 55

■ Erlang language born in 1983

■ Used inside and outside Ericsson for telecommunication
applications, for soft real-time systems, . . .

■ Industrial users: Ericsson, Swedish Telecom, T-Mobile (UK),
and many smaller start-up companies (LambdaStream in
A Coruña)

■ Application example: High-speed ATM switch developed in
Erlang (2 million lines of Erlang code), C code (350 000 lines
of code), and 5 000 lines of Java code

■ Other examples: parts of Facebook chat written in Erlang (70
million users), CouchDB (integrated in Ubuntu 9.10), usersat
Amazon, Yahoo, . . .

■ Open-source; install fromhttp://www.erlang.org/

Erlang is becoming popular

7 / 55

C and C++ job offers over the last 5 years:

Erlang job offers the last 5 years:

Erlang as a source of inspiration

8 / 55

■ Concurrency and communication model from Erlang are also
influencing other programming languages and libraries like
Scala, Node.js, Clojure, . . .

■ So lets see the main features. . .

Erlang basis

9 / 55

A simple functional programming language:

■ Simple data constructors:
integers (2), floats (2.3), atoms (hola), tuples ({2,hola })
and lists ([2,hola],[2|X]), records
(#process {label=hola }), bit strings (<<1:1,0:1>>)

■ Call-by-value

■ Variables can be assigned once only (Prolog heritage)

■ No static type system!
That is, expect runtime errors and exceptions

■ Similar to a scripting language (python, perl) – why popular?

Erlang basis, II

10 / 55

■ Example:

fac(N) ->
if

N == 0 -> 1;
true -> N* fac(N-1)

end.

Variables begin with a capital (N)
Atoms (symbols) begin with a lowercase letter (fac ,true)

Erlang basis, II

10 / 55

■ Example:

fac(N) ->
if

N == 0 -> 1;
true -> N* fac(N-1)

end.

Variables begin with a capital (N)
Atoms (symbols) begin with a lowercase letter (fac ,true)

■ But this also compiles without warning:

fac(N) ->
if

N == 0 -> 1;
true -> "upm" * fac(N-1)

end.

Erlang basis, II

10 / 55

■ Example:

fac(N) ->
if

N == 0 -> 1;
true -> N* fac(N-1)

end.

Variables begin with a capital (N)
Atoms (symbols) begin with a lowercase letter (fac ,true)

■ But this also compiles without warning:

fac(N) ->
if

N == 0 -> 1;
true -> "upm" * fac(N-1)

end.

■ And this call is permitted (what happens?):fac(0.5)

Concurrency and Communication

11 / 55

■ Concurrency and Communication model inspired by theActor
model (and earlier Ericsson software/hardware products)

■ Processes execute Erlang functions

■ No implicit sharing of data (shared variables) between
proceses

■ Two interprocess communication mechanisms exists:

◆ processes can send asynchronous messages to each other
(message passing)

◆ processes get notified when a related process dies
(failure detectors)

Erlang Processes

12 / 55

M2 M1 Pid
f(Arg1,...,Argn)

■ Processes execute Erlang functions (f(Arg1, . . . , Argn))

■ A process has a unique name, aprocess identifier(Pid)

■ Messages sent to a process is stored in amailbox (M2,M1)

Erlang Communication and Concurrency Primitives

13 / 55

■ Sending a message to a process:

Pid !{request, self(), a }

■ Retrieving messages from the process mailbox (queue):

receive
{request, RequestPid, Resource } ->

lock(Resource), RequestPid !ok
end

■ Creating a new process:

spawn(fun () -> locker !{request,B } end)

■ A name server assigns symbolic names to processes:

locker !{request,a }

Communication Primitives, receiving

14 / 55

Retrieving a message from the process mailbox:
receive

pat1 when g1 -> expr1 ;
. . .;
patn when gn -> exprn
after time -> expr’

end

■ pat
1

is matched against the oldest message, and checked
against the guardg1. If a match, it is removed from the
mailbox andexpr1 is executed

■ If there is no match, patternpat2 is tried, and so on. . .

■ If no pattern matches the first message, it is kept in the
mailbox and the second oldest message is checked, etc

■ after provides a timeout if no message matches any pattern

Receive Examples

15 / 55

■ Given a receive statement:

receive
{inc,X } -> X+1;
Other -> error

end

and the queue isa · {inc, 5} what happens?

Receive Examples

15 / 55

■ Given a receive statement:

receive
{inc,X } -> X+1;
Other -> error

end

and the queue isa · {inc, 5} what happens?

■ Suppose the queue isa · {inc, 5} · b what happens?

Receive Examples

15 / 55

■ Given a receive statement:

receive
{inc,X } -> X+1;
Other -> error

end

and the queue isa · {inc, 5} what happens?

■ Suppose the queue isa · {inc, 5} · b what happens?

■ Suppose the receive statement is

receive
{inc,X } -> X+1

end

and the queue isa · {inc, 5} · b what happens?

Receive Examples

15 / 55

■ Given a receive statement:

receive
{inc,X } -> X+1;
Other -> error

end

and the queue isa · {inc, 5} what happens?

■ Suppose the queue isa · {inc, 5} · b what happens?

■ Suppose the receive statement is

receive
{inc,X } -> X+1

end

and the queue isa · {inc, 5} · b what happens?

■ And if the queue isa · b?

Communication Guarantees

16 / 55

Messages sent from any process P to any process Q is deliveredin
order (or P or Q crashes)

QP M2 M1

QP M2 M1

Communication Guarantees Part II

17 / 55

■ But the following situation is possible:

◆ Process P sends a message M1 to process Q

◆ and P then a message M2 to process R

◆ R forwards the message M2 to Q

◆ Process Q may receive M2 from R before M1 from Q

■ Mimics TCP/IP communication guarantees

A Simple Concurrent Program

18 / 55

facserver() ->
receive

{request, N, Pid }
when is_integer(N), N>0, pid(Pid) ->

spawn(fun () -> Pid !(fac:fac(N)) end),
facserver()

end.

A Simple Concurrent Program

18 / 55

facserver() ->
receive

{request, N, Pid }
when is_integer(N), N>0, pid(Pid) ->

spawn(fun () -> Pid !(fac:fac(N)) end),
facserver()

end.

1> spawn(server,facserver, []).

<0.33.0>

A Simple Concurrent Program

18 / 55

facserver() ->
receive

{request, N, Pid }
when is_integer(N), N>0, pid(Pid) ->

spawn(fun () -> Pid !(fac:fac(N)) end),
facserver()

end.

1> spawn(server,facserver, []).

<0.33.0>

2> X = spawn(server,facserver, []).

<0.35.0>

A Simple Concurrent Program

18 / 55

facserver() ->
receive

{request, N, Pid }
when is_integer(N), N>0, pid(Pid) ->

spawn(fun () -> Pid !(fac:fac(N)) end),
facserver()

end.

1> spawn(server,facserver, []).

<0.33.0>

2> X = spawn(server,facserver, []).

<0.35.0>

3> X!{request,2, self() }.

{request,2,<0.31.0> }

A Simple Concurrent Program

18 / 55

facserver() ->
receive

{request, N, Pid }
when is_integer(N), N>0, pid(Pid) ->

spawn(fun () -> Pid !(fac:fac(N)) end),
facserver()

end.

1> spawn(server,facserver, []).

<0.33.0>

2> X = spawn(server,facserver, []).

<0.35.0>

3> X!{request,2, self() }.

{request,2,<0.31.0> }

4> X!{request,4, self() }, receive Y -> Y end.

2

Erlang and Errors

19 / 55

■ Unavoidably errors happen in distributed systems

Erlang and Errors

19 / 55

■ Unavoidably errors happen in distributed systems

◆ hardware (computers) fail

Erlang and Errors

19 / 55

■ Unavoidably errors happen in distributed systems

◆ hardware (computers) fail

◆ network links fail

Erlang and Errors

19 / 55

■ Unavoidably errors happen in distributed systems

◆ hardware (computers) fail

◆ network links fail

◆ local resources (memory) runs out

Erlang and Errors

19 / 55

■ Unavoidably errors happen in distributed systems

◆ hardware (computers) fail

◆ network links fail

◆ local resources (memory) runs out

■ Errors happen, good fault-tolerant systems cope with them

Erlang and Errors

19 / 55

■ Unavoidably errors happen in distributed systems

◆ hardware (computers) fail

◆ network links fail

◆ local resources (memory) runs out

■ Errors happen, good fault-tolerant systems cope with them

■ Many Erlang products have high availability goals: 24/7,
99.9999999% of the time for the Ericsson AXD 301 switch
(31 ms downtime per year!)

Erlang and Errors

19 / 55

■ Unavoidably errors happen in distributed systems

◆ hardware (computers) fail

◆ network links fail

◆ local resources (memory) runs out

■ Errors happen, good fault-tolerant systems cope with them

■ Many Erlang products have high availability goals: 24/7,
99.9999999% of the time for the Ericsson AXD 301 switch
(31 ms downtime per year!)

■ The Erlang philosophy is to do error detection and recovery,
but not everywhere in the code, only in certain places

Erlang and Errors

19 / 55

■ Unavoidably errors happen in distributed systems

◆ hardware (computers) fail

◆ network links fail

◆ local resources (memory) runs out

■ Errors happen, good fault-tolerant systems cope with them

■ Many Erlang products have high availability goals: 24/7,
99.9999999% of the time for the Ericsson AXD 301 switch
(31 ms downtime per year!)

■ The Erlang philosophy is to do error detection and recovery,
but not everywhere in the code, only in certain places

■ Higher-level Erlang components offer convenient handlingof
errors

Erlang and Errors, part II

20 / 55

■ Error handling example:

g(Y) ->
X = f(Y),
case X of

{ok, Result } -> Result;
reallyBadError -> 0 % May crash because of ...

end.

Erlang and Errors, part II

20 / 55

■ Error handling example:

g(Y) ->
X = f(Y),
case X of

{ok, Result } -> Result;
reallyBadError -> 0 % May crash because of ...

end.

instead one usually writes

g(Y) ->
{ok, Result } = f(Y), Result.

Erlang and Errors, part II

20 / 55

■ Error handling example:

g(Y) ->
X = f(Y),
case X of

{ok, Result } -> Result;
reallyBadError -> 0 % May crash because of ...

end.

instead one usually writes

g(Y) ->
{ok, Result } = f(Y), Result.

■ The local process will crash; another process is responsible
from recovering (restaring the crashed process)

Erlang and Errors, part II

20 / 55

■ Error handling example:

g(Y) ->
X = f(Y),
case X of

{ok, Result } -> Result;
reallyBadError -> 0 % May crash because of ...

end.

instead one usually writes

g(Y) ->
{ok, Result } = f(Y), Result.

■ The local process will crash; another process is responsible
from recovering (restaring the crashed process)

■ Error detection and recovery is localised to special processes,
to special parts of the code (aspect oriented programming)

Error Detection and Recovery: local level

21 / 55

■ Exceptions are generated at runtime due to:

◆ type mismatches (10 ∗ "upm")

◆ failed pattern matches, processes crashing, . . .

■ Exceptions caused by an expressione may be recovered
inside a process using the constructtry e catch m end

■ Example:

try
g(Y)

catch
Error -> 0

end

Error Detection and Recovery: process level

22 / 55

■ Within a set of processes, via bidirectional process links set up
using thelink(pid) function call

■ Example:

Error Detection and Recovery: process level

22 / 55

■ Within a set of processes, via bidirectional process links set up
using thelink(pid) function call

■ Example:

Initially we have a system of 3 independent processes:

GFED@ABCP2

GFED@ABCP1
GFED@ABCP3

Error Detection and Recovery: process level

22 / 55

■ Within a set of processes, via bidirectional process links set up
using thelink(pid) function call

■ Example:

Result of executinglink(P1) in P2:

GFED@ABCP2>>

~~}}
}}

}}
}}

}

GFED@ABCP1
GFED@ABCP3

Error Detection and Recovery: process level

22 / 55

■ Within a set of processes, via bidirectional process links set up
using thelink(pid) function call

■ Example:

Result of executinglink(P1) andlink(P3) in P2:

GFED@ABCP2>>

~~}}
}}

}}
}}

} ``

 A
AA

AA
AA

AA

GFED@ABCP1
GFED@ABCP3

Error Detection and Recovery: process level

22 / 55

■ Within a set of processes, via bidirectional process links set up
using thelink(pid) function call

■ Example:

Result of executinglink(P1) andlink(P3) in P2:

GFED@ABCP2>>

~~}}
}}

}}
}}

} ``

 A
AA

AA
AA

AA

GFED@ABCP1
GFED@ABCP3

■ If P2 dies abnormally thenP1 andP3 canchoose to die
If P1 dies abnormally thenP2 canchoose to die as well

Error Detection and Recovery: process level

22 / 55

■ Within a set of processes, via bidirectional process links set up
using thelink(pid) function call

■ Example:

Result of executinglink(P1) andlink(P3) in P2:

GFED@ABCP2>>

~~}}
}}

}}
}}

} ``

 A
AA

AA
AA

AA

GFED@ABCP1
GFED@ABCP3

■ If P2 dies abnormally thenP1 andP3 canchoose to die
If P1 dies abnormally thenP2 canchoose to die as well

■ Alternatively whenP2 dies bothP1 andP3 receives a message
concerning the termination

What is Erlang suitable for?

23 / 55

■ Generally intended for long-running programs

■ Processes with state, that perform concurrent (and maybe
distributed) activities

■ Typical is to have a continously running system (24/7)

■ Programs need to be fault-tolerant (because hardware and
software invariably fail)

■ So hardware is typically replicated as well – and thus we have
a need for distributed programming (addressing physically
isolated processors)

Distributed Erlang

24 / 55

■ Processes run on nodes (computers) in a network

Node 1

Node 2

Process communication between nodes in different process

■ Distribution is (mostly) transparent

◆ No syntactic difference between inter-node or intra-node
process communication

◆ Communication link failure or node failures are
interpreted as process failures (detected using linking)

Distributed Erlang

24 / 55

■ Processes run on nodes (computers) in a network

Node 1

Node 2

Process communication between nodes in different process

■ Distribution is (mostly) transparent

◆ No syntactic difference between inter-node or intra-node
process communication

◆ Communication link failure or node failures are
interpreted as process failures (detected using linking)

◆ Compare with Java: no references to objects which are
difficult to communicate in messages (copy?)

◆ The only references are process identifiers which have
the same meaning at both sending and receiving process

Erlang Programming Styles

25 / 55

■ Using only the basic communication primitives (send/receive)
makes for messy code – everybody invents their own style and
repeats lots of code for every program

■ We need at least a standard way to:

◆ ask processes about their status

◆ a standard way to handle processstart, termination and
restarts

◆ to handlecode upgrading

◆ and maybe more structured communication patterns:
who communicates withwhom, in what role?. . .

Erlang Software Architecture

26 / 55

■ We need to structure the code according to some more design
principles, to obtain more ”regular” code

■ For Erlang one generally uses the components and the
framework of theOTP library – Open Telecom Platform –
as an infrastructure

■ Today we are going to illustrate a number of these design
principles, and how they are used in practise

OTP – an Erlang library of components

27 / 55

■ A library of components for typical programming patterns
(e.g., client–server, managing processes, . . .)

■ In contrast to many component frameworks OTP is not
concerned with how tolink components together but with:

◆ operation and management of components

◆ fault-handling for components

OTP – an Erlang library of components

27 / 55

■ A library of components for typical programming patterns
(e.g., client–server, managing processes, . . .)

■ In contrast to many component frameworks OTP is not
concerned with how tolink components together but with:

◆ operation and management of components

◆ fault-handling for components

■ OTP components uses similar behaviour wrt management
concerns such as

◆ Starting a component

◆ Terminating a component

◆ Dynamic code update (change code at runtime)

◆ Inspecting components

◆ Handling errors

Component/Behaviour Style

28 / 55

■ Declarative specifications are preferred

■ Callback style– Component descriptions are composed of
two parts:

◆ A generic part containg the generic component code

◆ A concrete one where the default behaviour is
specialised to the concrete application by supplying
function definitions

■ As a result: a weak object-orientation style (very weak type
checking of component specialisation)

■ Except it is based on processes, a pretty powerful concept

OTP components

29 / 55

Example OTP components:

■ Application
– provides bigger building blocks like a database (Mnesia)

■ Supervisor
– used to start and bring down a set of processes, and to
manage processes when errors occur

■ Generic Server
– provides a client–server communication facility

■ Event Handling
– for reporting system events to interested processes

■ Finite State Machine
– provides a component facilitating the programming of finite
state machines in Erlang

Event Handling: Processes

30 / 55

■ An implementation of a publish-and-subscribe behaviour

■ An Event manager controls the publishing of events

■ Event handlers register interest to receive events from a
particular event manager by sending a message to the event
manager

■ Some process generates an event, which is sent to all the
interested event handlers (Event generator)

Event Handling: Behaviour

31 / 55

(1): The event handlers registers themselves:

A

B

Mgr

P

Q

R

Event Generator

Event Generator

Event Handler

Event Handler

Event Handler

Event Manager

register Event Handler(P)

register Event Handler(Q)

register Event Handler(R)

Event Handling: Behaviour

31 / 55

(2): Some process generates an event:

A

B

Mgr

P

Q

R

Event Generator

Event Generator

Event Handler

Event Handler

Event Handler

Event Manager

genEvent(Ev)

Event Handling: Behaviour

31 / 55

(3): The event is handled by the event handlers:

A

B

Mgr

P

Q

R

Event Generator

Event Generator

Event Handler

Event Handler

Event Handler

Event Manager

gotEvent(Ev)

gotEvent(Ev)

gotEvent(Ev)

Event Handling: Behaviour part II

32 / 55

Events can be delivered synchronously or asynchronously. The
synchronous case means returning a reply to the event generator:

Event Handling: Behaviour part II

32 / 55

Events can be delivered synchronously or asynchronously. The
synchronous case means returning a reply to the event generator:

(4): All event handlers return their status to the event handler when
they have finished:

A

B

Mgr

P

Q

R

Event Generator

Event Generator

Event Handler

Event Handler

Event Handler

Event Manager

handledEvent(Ev)

handledEvent(Ev)

handledEvent(Ev)

Event Handling: Behaviour part II

32 / 55

Events can be delivered synchronously or asynchronously. The
synchronous case means returning a reply to the event generator:

(5): And the event handler tells the event generator when it has
finished its execution

A

B

Mgr

P

Q

R

Event Generator

Event Generator

Event Handler

Event Handler

Event Handler

Event Manager

allHandlersReadyWith(Ev)

Event Handling, behaviour overview

33 / 55

■ Works distributedly, like all other components (behaviours)

■ Includes managerial aspects:

◆ Error handling: what happens if an event handler
crashes?

◆ Permits changing event handlers

◆ Permits shutting down event handlers

◆ Includes code upgrade facility

The Supervisor Component

34 / 55

■ Applications are often structured assupervision trees,
consisting ofsupervisors andworkers

Supervisor process

Worker process

■ A supervisor starts child processes, monitors them, handles
termination and stops them on request

■ The actions of the supervisor are described in a declarative
fashion (as a text description)

■ A child process may itself be a supervisor

Supervision Dynamics

35 / 55

Supervisor process

Worker process

S

S2 S3

C1 C2 C3

■ When a child process C1 dies (due to an error condition), its
supervisor S3 is notified and can elect to:

◆ do nothing

◆ itself die (in turn notifying its supervisor S)

◆ restart the child process (and maybe its siblings)

◆ kill all the sibling processes (C2,C3) of the dead process

Supervision Dynamics

35 / 55

Supervisor process

Worker process

S

S2 S3

C1 C2 C3

■ When a child process C1 dies (due to an error condition), its
supervisor S3 is notified and can elect to:

◆ do nothing

◆ itself die (in turn notifying its supervisor S)

◆ restart the child process (and maybe its siblings)

◆ kill all the sibling processes (C2,C3) of the dead process

■ One can control the frequency of restarts, and the maximum
number of restarts to attempt – it is no good having a process
continuing to restart and crash

Supervision Examples

36 / 55

■ A file streaming application:

If the sender crashes, its supervisor restarts it
(and vice versa for the receiver)

Supervision Examples

36 / 55

■ A file streaming application:

If the sender crashes, its supervisor restarts it
(and vice versa for the receiver)

■ A file transfer application (with acknowledgment handling):

If the sender crashes, both it and the receiver is restarted

The Generic Server Component

37 / 55

■ gen server is the most used component in Erlang systems

■ Provides a standard way to implement a server process,
and interface code for clients to access the server

■ The client–server model has a central server, and an arbitrary
number of clients:

Client C

Client BServer

Client A

request

reply

The Generic Server Component

38 / 55

Client C

Client BServer

Client A

request

reply

■ Clients makesrequests to the server, who optionallyreplies

■ A server has a state, which is preserved between requests

■ A generic server is implemented by providing a callback
module specifying the concrete actions of the server (server
state handling, and response to messages)

Generic Server Interaction

39 / 55

(1): A client sends a request:

Q

R

P

Server Process

Client

Client

Client

request

State0

Generic Server Interaction

39 / 55

(2): The server does some internal processing to answer, resulting
in a new server stateState1:

Q

R

P

Server Process

Client

Client

Client

Internal processing

State1

Generic Server Interaction

39 / 55

(3a): And eventually sends the reply to the client:

Q

R

P

Server Process

Client

Client

Client

reply

State1

Generic Server Interaction

39 / 55

(3b): Or it doesn’t send a reply, but may do so in the future, and in
the meanwhile accepts a new request:

Q

R

P

Server Process

Client

Client

Client

request

State1

Generic Server: client interface

40 / 55

Client interface:

■ Res = gen_server:call(ServerName, Message)

A call to ServerName (a pid) with a return value

■ gen_server:cast(ServerName, Message)

When no return value is expected

Generic Server: server interface

41 / 55

Server interface:

■ init(Args) – at startup, returns the initial state of the server

■ handle_call(Message, ClientId, ServerState)

called when agen_server:call is made,ServerState is
the current state of the server.
Should return a new server state

■ handle_cast(Message, ServerState)

called when agen_server:cast is made.
Should return a new server state

Generic Server: server returns

42 / 55

Server return values:

■ {reply, Value, NewState }

server replies withValue , and new server state isNewState

■ {noreply, NewState }

server send no reply (yet), but may do so in the future, the
new server state isNewState

■ {stop, Value }

server stops but first returnsValue to the current request

A simple generic server example

43 / 55

■ We want to implement a simple serverlocker that grants
access to a resource for only a single client at a time

■ Clients request access to the server using a messagerequest

■ Once a client has finished with the resource it is released by
sending the messagerelease

■ A client function that requests the resource, applies a function
F on the resource, and then releases:

client(F) ->
{ok, Resource } = gen_server:call(locker, request),
%% We have resource, call F
NewResource = apply(F, [Resource]),
gen_server:call(locker, {release, NewResource }).

Server side: server state example

44 / 55

■ The state of the server is a tuple of two components:

◆ the current value of the resource, and

◆ a list where the first element is the client currently
accessing the resource, and the rest of the list is the
queue of clients wanting to access it

■ The initial state is{Res, []} –
no clients accessing

■ An example state:{Res, [Pid1,Pid2,Pid3]} –
Pid1 is accessing the resource,Pid2,Pid3 are awaiting their
turn

Server side: callback module example

45 / 55

init(Res) -> {ok, {Res, []}}.
%% No clients queued

handle_call(request, Client, {Res,Queue }) ->
if

Queue==[] -> {reply, {ok,Res }, {Res, [Client]}};
Queue=/= [] -> {noreply, {Res, Queue++ [Client]}}

end;

handle_call({release,Res }, Client, {_, Queue }) ->
case Queue of

[Client] ->
{reply, done, {Res, []}};

[Client,FirstWaiter|RestQueue] ->
gen_server:reply(FirstWaiter, {ok,Res }),
{reply, done, {Res, [FirstWaiter|RestQueue]}}

end.

example: handling errors

46 / 55

■ But what happens if the client crashes while it has access to
the resource

example: handling errors

46 / 55

■ But what happens if the client crashes while it has access to
the resource

■ . . . – well the server will stay locked for ever

example: handling errors

46 / 55

■ But what happens if the client crashes while it has access to
the resource

■ . . . – well the server will stay locked for ever

■ We had better handle this case; the callback function
handle_info will be called whenever a linked process
terminates

Handling Errors in the example

47 / 55

Modifying handle call to link to the client requesting access:

handle_call(request, Client, {Res,Queue }) ->
link(Client),
if

Queue==[] -> {reply, {ok,Res }, {Res, [Client]}};
Queue=/= [] -> {noreply, {Res, Queue++ [Client]}}

end;

Handling Errors in the example

48 / 55

Adding the function which handles errors:

handle_info({’EXIT’,Client,_ }, {Res,Queue }) ->
case Queue of

[Client,FirstWaiter|RestQueue] ->
gen_server:reply(FirstWaiter, {ok, Res }),
{noreply, {Res, [FirstWaiter|RestQueue]}};

_ ->
{noreply, {Res,remove(Client,Queue) }}

end.

Error Handling in the Generic Server component

49 / 55

Note some nice properties of error handling in generic servers:

■ only handling errors in one (1) place in the code

■ only handling errors at very controlled points in time (when
not processing a request)

■ We control error handling –
we do not letting error handling control us!

■ Such separation of concerns (between error handling and
normal processing) is the real key to the power of the OTP
components!

Generic Server Actions

50 / 55

■ Not shown:

◆ handling timeouts

■ Generic behaviours handled mostly automatically by the
component:

◆ How to trace and log the actions of the server

◆ How to terminate and restart a server

Generic Server Code Upgrades

51 / 55

■ Since components are alive for a long time, it may be
necessary to update the code of a component (its
implementation) during its lifetime

■ The generic server behaviour, like other Erlang behaviours,
offers a standard method to do this

◆ Upgrades are handled through the
code_change(Info1,OldState,Info2) callback
function which is called when a code change has taken
place

◆ OldState is the state of the server running the old
version of the code

◆ The callback should return a tuple{ok,NewState }

Code Update in the example server

52 / 55

■ Suppose that we want to add a fieldNumOfRequest to the
server state for counting the number of a requests made to the
resource

■ Recall that the state is{Res, WaitingClients }

■ To do a code upgrade we provide in the new server
implementation the function:

code_change(_, {Res,WaitingClients }, _) ->
{ok,

{Res,
WaitingClients,
length(WaitingClients) }}.

Server Component – messages handling philosophy

53 / 55

■ The generic server component processes messages in strict
sequential (oldest first) order

■ Good: makes for good performance (no searching of
mailbox), bounded queues (no messages left in queue)

■ Bad: can make for complex processing logic
(e.g., how to cleanly implement a one-bit buffer with two
messages:push andpop)

■ Normally leads to a more complex server state
(having queues inside the server state)

■ Other more stateful components are possible,
accepting different messages at different times

But how is low-level performance impacted, and
how are unexpected messages handled (growing queues)?

■ A central problem in the design of Erlang processes!

Erlang/OTP Tools

54 / 55

■ Mnesia database– relational/object data model, soft-real time
properties, transactions, language integration, persistence,
monitoring . . .

■ Yaws web server– for serving dynamic content produced by
Erlang code (good performance, elegant – everything written
in Erlang; no need for Perl)

■ Interfacesto other applications and systems: SQL databases,
libraries for communicating with Java, XML parsers. . .

◆ languages: port concept

◆ databases

■ And SASL (release upgrade, alarm handling), SNMP, . . .

Validating Erlang Programs

55 / 55

■ Dialyzer– type checking by static analysis (necessary because
of dynamic run-time typing)

■ As usual, testing:QuickCheck
(http://www.quiviq.com) - a testing tool both for the
sequential and the concurrent part of Erlang

■ Trace log inspection (ad-hoc)

■ Model checking – my toolMcErlang
(http://babel.ls.fi.upm.es/˜fred/McErlang)

	Problems of distributed systems
	Distributed Programming Today
	Erlang as a component platform: a summary
	Erlang/OTP
	Erlang/OTP History
	Erlang is becoming popular
	Erlang as a source of inspiration
	Erlang basis
	Erlang basis, II
	Concurrency and Communication
	Erlang Processes
	Erlang Communication and Concurrency Primitives
	Communication Primitives, receiving
	Receive Examples
	Communication Guarantees
	Communication Guarantees Part II
	A Simple Concurrent Program
	Erlang and Errors
	Erlang and Errors, part II
	Error Detection and Recovery: local level
	Error Detection and Recovery: process level
	What is Erlang suitable for?
	Distributed Erlang
	Erlang Programming Styles
	Erlang Software Architecture
	OTP – an Erlang library of components
	Component/Behaviour Style
	OTP components
	Event Handling: Processes
	Event Handling: Behaviour
	Event Handling: Behaviour part II
	Event Handling, behaviour overview
	The Supervisor Component
	Supervision Dynamics
	Supervision Examples
	The Generic Server Component
	The Generic Server Component
	Generic Server Interaction
	Generic Server: client interface
	Generic Server: server interface
	Generic Server: server returns
	A simple generic server example
	Server side: server state example
	Server side: callback module example
	example: handling errors
	Handling Errors in the example
	Handling Errors in the example
	Error Handling in the Generic Server component
	Generic Server Actions
	Generic Server Code Upgrades
	Code Update in the example server
	Server Component – messages handling philosophy
	Erlang/OTP Tools
	Validating Erlang Programs

