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Erlang – a platform for developing distributed software systems

Lars-Åke Fredlund
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■ Distributed programming ishard

■ Challenges for concurrency:

◆ process coordination and communication

■ And challenges for distributed software:

◆ heterogeneous systems

◆ security, reliability (lack of control)

◆ performance
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Todays contrasts:

■ Vision – easy programming of distributed systems

■ The nightmare/reality – Web services, XML, Apache, SOAP,
WSDL, . . .

■ Why are Web services a nightmare?
Too many standards, too many tools, too many layers, too
complex!

■ Erlang is an Industrially proven solution for developing and
maintaining demanding distributed applications

■ Good qualities of Erlang as a distributed systems platform:
Complexity encapsulated in a programming language, good
performance, efficient data formats, debuggable, not complex
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■ Processesare thecomponents

■ Components (processes) communicate bybinary
asynchronous message passing

■ Component communication does not depend on whether
components are located in the same node, or physically
remote (distribution is seamless)

■ Component programming is facilitated by usingdesign
patterns (client/server patterns, patterns for fault tolerant
systems, etc) andlarger components(web server, database)

■ Componentmaintenance, andfault tolerance is facilitated
by language features and design patterns

■ But the devil is in the details: let’s see them!
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■ Basis: a general purpose functional programming language

■ Automatic Garbage Collection

■ With lightweight processes
(in terms of speed and memory requirements)

■ Typical software can make use of many thousands of
processes;smp supported on standard platforms

■ Implemented using virtual machine technology and
compilation to native code (Intel x86, Sparc, Power PC)
Available on many OS:es (Windows, Linux, Solaris, . . . )

■ Supported by extensive libraries:
OTP– open telecom platform – provides tools such as
components, distributed database, web server, etc
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■ Erlang language born in 1983

■ Used inside and outside Ericsson for telecommunication
applications, for soft real-time systems, . . .

■ Industrial users: Ericsson, Swedish Telecom, T-Mobile (UK),
and many smaller start-up companies (LambdaStream in
A Coruña)

■ Application example: High-speed ATM switch developed in
Erlang (2 million lines of Erlang code), C code (350 000 lines
of code), and 5 000 lines of Java code

■ Other examples: parts of Facebook chat written in Erlang (70
million users), CouchDB (integrated in Ubuntu 9.10), usersat
Amazon, Yahoo, . . .

■ Open-source; install fromhttp://www.erlang.org/
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C and C++ job offers over the last 5 years:

Erlang job offers the last 5 years:
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■ Concurrency and communication model from Erlang are also
influencing other programming languages and libraries like
Scala, Node.js, Clojure, . . .

■ So lets see the main features. . .



Erlang basis
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A simple functional programming language:

■ Simple data constructors:
integers (2), floats (2.3 ), atoms (hola ), tuples ({2,hola })
and lists ([2,hola ],[2|X ]), records
(#process {label=hola }), bit strings (<<1:1,0:1>> )

■ Call-by-value

■ Variables can be assigned once only (Prolog heritage)

■ No static type system!
That is, expect runtime errors and exceptions

■ Similar to a scripting language (python, perl) – why popular?
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fac(N) ->
if

N == 0 -> 1;
true -> N* fac(N-1)

end.

Variables begin with a capital (N)
Atoms (symbols) begin with a lowercase letter (fac ,true )
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■ Example:

fac(N) ->
if

N == 0 -> 1;
true -> N* fac(N-1)

end.

Variables begin with a capital (N)
Atoms (symbols) begin with a lowercase letter (fac ,true )

■ But this also compiles without warning:

fac(N) ->
if

N == 0 -> 1;
true -> "upm" * fac(N-1)

end.

■ And this call is permitted (what happens?):fac(0.5)
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■ Concurrency and Communication model inspired by theActor
model (and earlier Ericsson software/hardware products)

■ Processes execute Erlang functions

■ No implicit sharing of data (shared variables) between
proceses

■ Two interprocess communication mechanisms exists:

◆ processes can send asynchronous messages to each other
(message passing)

◆ processes get notified when a related process dies
(failure detectors)



Erlang Processes
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M2 M1 Pid
f(Arg1,...,Argn)

■ Processes execute Erlang functions (f(Arg1, . . . , Argn))

■ A process has a unique name, aprocess identifier(Pid)

■ Messages sent to a process is stored in amailbox (M2,M1)
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■ Sending a message to a process:

Pid !{request, self(), a }

■ Retrieving messages from the process mailbox (queue):

receive
{request, RequestPid, Resource } ->

lock(Resource), RequestPid !ok
end

■ Creating a new process:

spawn(fun () -> locker !{request,B } end)

■ A name server assigns symbolic names to processes:

locker !{request,a }



Communication Primitives, receiving
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Retrieving a message from the process mailbox:
receive

pat1 when g1 -> expr1 ;
. . .;
patn when gn -> exprn
after time -> expr’

end

■ pat
1

is matched against the oldest message, and checked
against the guardg1. If a match, it is removed from the
mailbox andexpr1 is executed

■ If there is no match, patternpat2 is tried, and so on. . .

■ If no pattern matches the first message, it is kept in the
mailbox and the second oldest message is checked, etc

■ after provides a timeout if no message matches any pattern
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end

and the queue isa · {inc, 5} what happens?
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■ Given a receive statement:

receive
{inc,X } -> X+1;
Other -> error

end

and the queue isa · {inc, 5} what happens?

■ Suppose the queue isa · {inc, 5} · b what happens?

■ Suppose the receive statement is

receive
{inc,X } -> X+1

end

and the queue isa · {inc, 5} · b what happens?

■ And if the queue isa · b?
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Messages sent from any process P to any process Q is deliveredin
order (or P or Q crashes)

QP M2 M1

QP M2 M1



Communication Guarantees Part II
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■ But the following situation is possible:

◆ Process P sends a message M1 to process Q

◆ and P then a message M2 to process R

◆ R forwards the message M2 to Q

◆ Process Q may receive M2 from R before M1 from Q

■ Mimics TCP/IP communication guarantees
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facserver() ->
receive

{request, N, Pid }
when is_integer(N), N>0, pid(Pid) ->

spawn(fun () -> Pid !(fac:fac(N)) end),
facserver()

end.
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facserver() ->
receive

{request, N, Pid }
when is_integer(N), N>0, pid(Pid) ->

spawn(fun () -> Pid !(fac:fac(N)) end),
facserver()

end.

1> spawn(server,facserver, []).

<0.33.0>

2> X = spawn(server,facserver, []).

<0.35.0>

3> X!{request,2, self() }.

{request,2,<0.31.0> }

4> X!{request,4, self() }, receive Y -> Y end.

2
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■ Unavoidably errors happen in distributed systems

◆ hardware (computers) fail

◆ network links fail

◆ local resources (memory) runs out

■ Errors happen, good fault-tolerant systems cope with them

■ Many Erlang products have high availability goals: 24/7,
99.9999999% of the time for the Ericsson AXD 301 switch
(31 ms downtime per year!)

■ The Erlang philosophy is to do error detection and recovery,
but not everywhere in the code, only in certain places

■ Higher-level Erlang components offer convenient handlingof
errors
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g(Y) ->
X = f(Y),
case X of

{ok, Result } -> Result;
reallyBadError -> 0 % May crash because of ...

end.
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■ Error handling example:

g(Y) ->
X = f(Y),
case X of

{ok, Result } -> Result;
reallyBadError -> 0 % May crash because of ...

end.

instead one usually writes

g(Y) ->
{ok, Result } = f(Y), Result.

■ The local process will crash; another process is responsible
from recovering (restaring the crashed process)

■ Error detection and recovery is localised to special processes,
to special parts of the code (aspect oriented programming)
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■ Exceptions are generated at runtime due to:

◆ type mismatches (10 ∗ "upm" )

◆ failed pattern matches, processes crashing, . . .

■ Exceptions caused by an expressione may be recovered
inside a process using the constructtry e catch m end

■ Example:

try
g(Y)

catch
Error -> 0

end
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■ Within a set of processes, via bidirectional process links set up
using thelink(pid) function call

■ Example:

Initially we have a system of 3 independent processes:

GFED@ABCP2

GFED@ABCP1
GFED@ABCP3
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AA

GFED@ABCP1
GFED@ABCP3



Error Detection and Recovery: process level

22 / 55

■ Within a set of processes, via bidirectional process links set up
using thelink(pid) function call

■ Example:

Result of executinglink(P1) andlink(P3) in P2:

GFED@ABCP2>>

~~}}
}}

}}
}}

} ``

  A
AA

AA
AA

AA

GFED@ABCP1
GFED@ABCP3

■ If P2 dies abnormally thenP1 andP3 canchoose to die
If P1 dies abnormally thenP2 canchoose to die as well



Error Detection and Recovery: process level

22 / 55

■ Within a set of processes, via bidirectional process links set up
using thelink(pid) function call

■ Example:

Result of executinglink(P1) andlink(P3) in P2:

GFED@ABCP2>>

~~}}
}}

}}
}}

} ``

  A
AA

AA
AA

AA

GFED@ABCP1
GFED@ABCP3

■ If P2 dies abnormally thenP1 andP3 canchoose to die
If P1 dies abnormally thenP2 canchoose to die as well

■ Alternatively whenP2 dies bothP1 andP3 receives a message
concerning the termination
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■ Generally intended for long-running programs

■ Processes with state, that perform concurrent (and maybe
distributed) activities

■ Typical is to have a continously running system (24/7)

■ Programs need to be fault-tolerant (because hardware and
software invariably fail)

■ So hardware is typically replicated as well – and thus we have
a need for distributed programming (addressing physically
isolated processors)
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■ Processes run on nodes (computers) in a network

Node 1

Node 2

Process communication between nodes in different process

■ Distribution is (mostly) transparent

◆ No syntactic difference between inter-node or intra-node
process communication

◆ Communication link failure or node failures are
interpreted as process failures (detected using linking)
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■ Processes run on nodes (computers) in a network

Node 1

Node 2

Process communication between nodes in different process

■ Distribution is (mostly) transparent

◆ No syntactic difference between inter-node or intra-node
process communication

◆ Communication link failure or node failures are
interpreted as process failures (detected using linking)

◆ Compare with Java: no references to objects which are
difficult to communicate in messages (copy?)

◆ The only references are process identifiers which have
the same meaning at both sending and receiving process
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■ Using only the basic communication primitives (send/receive)
makes for messy code – everybody invents their own style and
repeats lots of code for every program

■ We need at least a standard way to:

◆ ask processes about their status

◆ a standard way to handle processstart, termination and
restarts

◆ to handlecode upgrading

◆ and maybe more structured communication patterns:
who communicates withwhom, in what role?. . .
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■ We need to structure the code according to some more design
principles, to obtain more ”regular” code

■ For Erlang one generally uses the components and the
framework of theOTP library – Open Telecom Platform –
as an infrastructure

■ Today we are going to illustrate a number of these design
principles, and how they are used in practise
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■ A library of components for typical programming patterns
(e.g., client–server, managing processes, . . . )

■ In contrast to many component frameworks OTP is not
concerned with how tolink components together but with:

◆ operation and management of components

◆ fault-handling for components
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■ A library of components for typical programming patterns
(e.g., client–server, managing processes, . . . )

■ In contrast to many component frameworks OTP is not
concerned with how tolink components together but with:

◆ operation and management of components

◆ fault-handling for components

■ OTP components uses similar behaviour wrt management
concerns such as

◆ Starting a component

◆ Terminating a component

◆ Dynamic code update (change code at runtime)

◆ Inspecting components

◆ Handling errors
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■ Declarative specifications are preferred

■ Callback style– Component descriptions are composed of
two parts:

◆ A generic part containg the generic component code

◆ A concrete one where the default behaviour is
specialised to the concrete application by supplying
function definitions

■ As a result: a weak object-orientation style (very weak type
checking of component specialisation)

■ Except it is based on processes, a pretty powerful concept



OTP components
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Example OTP components:

■ Application
– provides bigger building blocks like a database (Mnesia)

■ Supervisor
– used to start and bring down a set of processes, and to
manage processes when errors occur

■ Generic Server
– provides a client–server communication facility

■ Event Handling
– for reporting system events to interested processes

■ Finite State Machine
– provides a component facilitating the programming of finite
state machines in Erlang



Event Handling: Processes
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■ An implementation of a publish-and-subscribe behaviour

■ An Event manager controls the publishing of events

■ Event handlers register interest to receive events from a
particular event manager by sending a message to the event
manager

■ Some process generates an event, which is sent to all the
interested event handlers (Event generator)
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(1): The event handlers registers themselves:

A

B

Mgr

P

Q

R

Event Generator

Event Generator

Event Handler

Event Handler

Event Handler

Event Manager

register Event Handler(P)

register Event Handler(Q)

register Event Handler(R)
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(2): Some process generates an event:

A

B

Mgr

P

Q

R

Event Generator

Event Generator

Event Handler

Event Handler

Event Handler

Event Manager

genEvent(Ev)
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(3): The event is handled by the event handlers:

A

B

Mgr

P

Q

R

Event Generator

Event Generator

Event Handler

Event Handler

Event Handler

Event Manager

gotEvent(Ev)

gotEvent(Ev)

gotEvent(Ev)
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Events can be delivered synchronously or asynchronously. The
synchronous case means returning a reply to the event generator:
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Events can be delivered synchronously or asynchronously. The
synchronous case means returning a reply to the event generator:

(4): All event handlers return their status to the event handler when
they have finished:

A

B

Mgr

P

Q

R

Event Generator

Event Generator

Event Handler

Event Handler

Event Handler

Event Manager

handledEvent(Ev)

handledEvent(Ev)

handledEvent(Ev)
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Events can be delivered synchronously or asynchronously. The
synchronous case means returning a reply to the event generator:

(5): And the event handler tells the event generator when it has
finished its execution

A

B

Mgr

P

Q

R

Event Generator

Event Generator

Event Handler

Event Handler

Event Handler

Event Manager

allHandlersReadyWith(Ev)



Event Handling, behaviour overview
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■ Works distributedly, like all other components (behaviours)

■ Includes managerial aspects:

◆ Error handling: what happens if an event handler
crashes?

◆ Permits changing event handlers

◆ Permits shutting down event handlers

◆ Includes code upgrade facility



The Supervisor Component
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■ Applications are often structured assupervision trees,
consisting ofsupervisors andworkers

Supervisor process

Worker process

■ A supervisor starts child processes, monitors them, handles
termination and stops them on request

■ The actions of the supervisor are described in a declarative
fashion (as a text description)

■ A child process may itself be a supervisor



Supervision Dynamics

35 / 55

Supervisor process

Worker process

S

S2 S3

C1 C2 C3

■ When a child process C1 dies (due to an error condition), its
supervisor S3 is notified and can elect to:

◆ do nothing

◆ itself die (in turn notifying its supervisor S)

◆ restart the child process (and maybe its siblings)

◆ kill all the sibling processes (C2,C3) of the dead process
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Supervisor process

Worker process

S

S2 S3

C1 C2 C3

■ When a child process C1 dies (due to an error condition), its
supervisor S3 is notified and can elect to:

◆ do nothing

◆ itself die (in turn notifying its supervisor S)

◆ restart the child process (and maybe its siblings)

◆ kill all the sibling processes (C2,C3) of the dead process

■ One can control the frequency of restarts, and the maximum
number of restarts to attempt – it is no good having a process
continuing to restart and crash
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■ A file streaming application:

If the sender crashes, its supervisor restarts it
(and vice versa for the receiver)
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■ A file streaming application:

If the sender crashes, its supervisor restarts it
(and vice versa for the receiver)

■ A file transfer application (with acknowledgment handling):

If the sender crashes, both it and the receiver is restarted
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■ gen server is the most used component in Erlang systems

■ Provides a standard way to implement a server process,
and interface code for clients to access the server

■ The client–server model has a central server, and an arbitrary
number of clients:

Client C

Client BServer

Client A

request

reply



The Generic Server Component
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Client C

Client BServer

Client A

request

reply

■ Clients makesrequests to the server, who optionallyreplies

■ A server has a state, which is preserved between requests

■ A generic server is implemented by providing a callback
module specifying the concrete actions of the server (server
state handling, and response to messages)
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39 / 55

(1): A client sends a request:

Q

R

P

Server Process

Client

Client

Client

request

State0
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(2): The server does some internal processing to answer, resulting
in a new server stateState1:

Q

R

P

Server Process

Client

Client

Client

Internal processing

State1
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(3a): And eventually sends the reply to the client:

Q

R

P

Server Process

Client

Client

Client

reply

State1
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(3b): Or it doesn’t send a reply, but may do so in the future, and in
the meanwhile accepts a new request:

Q

R

P

Server Process

Client

Client

Client

request

State1



Generic Server: client interface
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Client interface:

■ Res = gen_server:call(ServerName, Message)

A call to ServerName (a pid) with a return value

■ gen_server:cast(ServerName, Message)

When no return value is expected



Generic Server: server interface
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Server interface:

■ init(Args) – at startup, returns the initial state of the server

■ handle_call(Message, ClientId, ServerState)

called when agen_server:call is made,ServerState is
the current state of the server.
Should return a new server state

■ handle_cast(Message, ServerState)

called when agen_server:cast is made.
Should return a new server state



Generic Server: server returns
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Server return values:

■ {reply, Value, NewState }

server replies withValue , and new server state isNewState

■ {noreply, NewState }

server send no reply (yet), but may do so in the future, the
new server state isNewState

■ {stop, Value }

server stops but first returnsValue to the current request



A simple generic server example
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■ We want to implement a simple serverlocker that grants
access to a resource for only a single client at a time

■ Clients request access to the server using a messagerequest

■ Once a client has finished with the resource it is released by
sending the messagerelease

■ A client function that requests the resource, applies a function
F on the resource, and then releases:

client(F) ->
{ok, Resource } = gen_server:call(locker, request),
%% We have resource, call F
NewResource = apply(F, [Resource ]),
gen_server:call(locker, {release, NewResource }).



Server side: server state example
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■ The state of the server is a tuple of two components:

◆ the current value of the resource, and

◆ a list where the first element is the client currently
accessing the resource, and the rest of the list is the
queue of clients wanting to access it

■ The initial state is{Res, []} –
no clients accessing

■ An example state:{Res, [Pid1,Pid2,Pid3 ]} –
Pid1 is accessing the resource,Pid2,Pid3 are awaiting their
turn



Server side: callback module example
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init(Res) -> {ok, {Res, []}}.
%% No clients queued

handle_call(request, Client, {Res,Queue }) ->
if

Queue==[] -> {reply, {ok,Res }, {Res, [Client ]}};
Queue=/= [] -> {noreply, {Res, Queue++ [Client ]}}

end;

handle_call( {release,Res }, Client, {_, Queue }) ->
case Queue of

[Client ] ->
{reply, done, {Res, []}};

[Client,FirstWaiter|RestQueue ] ->
gen_server:reply(FirstWaiter, {ok,Res }),
{reply, done, {Res, [FirstWaiter|RestQueue ]}}

end.
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■ But what happens if the client crashes while it has access to
the resource
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■ But what happens if the client crashes while it has access to
the resource

■ . . . – well the server will stay locked for ever

■ We had better handle this case; the callback function
handle_info will be called whenever a linked process
terminates



Handling Errors in the example
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Modifying handle call to link to the client requesting access:

handle_call(request, Client, {Res,Queue }) ->
link(Client),
if

Queue==[] -> {reply, {ok,Res }, {Res, [Client ]}};
Queue=/= [] -> {noreply, {Res, Queue++ [Client ]}}

end;



Handling Errors in the example
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Adding the function which handles errors:

handle_info( {’EXIT’,Client,_ }, {Res,Queue }) ->
case Queue of

[Client,FirstWaiter|RestQueue ] ->
gen_server:reply(FirstWaiter, {ok, Res }),
{noreply, {Res, [FirstWaiter|RestQueue ]}};

_ ->
{noreply, {Res,remove(Client,Queue) }}

end.



Error Handling in the Generic Server component
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Note some nice properties of error handling in generic servers:

■ only handling errors in one (1) place in the code

■ only handling errors at very controlled points in time (when
not processing a request)

■ We control error handling –
we do not letting error handling control us!

■ Such separation of concerns (between error handling and
normal processing) is the real key to the power of the OTP
components!



Generic Server Actions
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■ Not shown:

◆ handling timeouts

■ Generic behaviours handled mostly automatically by the
component:

◆ How to trace and log the actions of the server

◆ How to terminate and restart a server



Generic Server Code Upgrades
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■ Since components are alive for a long time, it may be
necessary to update the code of a component (its
implementation) during its lifetime

■ The generic server behaviour, like other Erlang behaviours,
offers a standard method to do this

◆ Upgrades are handled through the
code_change(Info1,OldState,Info2) callback
function which is called when a code change has taken
place

◆ OldState is the state of the server running the old
version of the code

◆ The callback should return a tuple{ok,NewState }



Code Update in the example server
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■ Suppose that we want to add a fieldNumOfRequest to the
server state for counting the number of a requests made to the
resource

■ Recall that the state is{Res, WaitingClients }

■ To do a code upgrade we provide in the new server
implementation the function:

code_change(_, {Res,WaitingClients }, _) ->
{ok,

{Res,
WaitingClients,
length(WaitingClients) }}.



Server Component – messages handling philosophy
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■ The generic server component processes messages in strict
sequential (oldest first) order

■ Good: makes for good performance (no searching of
mailbox), bounded queues (no messages left in queue)

■ Bad: can make for complex processing logic
(e.g., how to cleanly implement a one-bit buffer with two
messages:push andpop )

■ Normally leads to a more complex server state
(having queues inside the server state)

■ Other more stateful components are possible,
accepting different messages at different times

But how is low-level performance impacted, and
how are unexpected messages handled (growing queues)?

■ A central problem in the design of Erlang processes!



Erlang/OTP Tools
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■ Mnesia database– relational/object data model, soft-real time
properties, transactions, language integration, persistence,
monitoring . . .

■ Yaws web server– for serving dynamic content produced by
Erlang code (good performance, elegant – everything written
in Erlang; no need for Perl)

■ Interfacesto other applications and systems: SQL databases,
libraries for communicating with Java, XML parsers. . .

◆ languages: port concept

◆ databases

■ And SASL (release upgrade, alarm handling), SNMP, . . .



Validating Erlang Programs
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■ Dialyzer– type checking by static analysis (necessary because
of dynamic run-time typing)

■ As usual, testing:QuickCheck
(http://www.quiviq.com ) - a testing tool both for the
sequential and the concurrent part of Erlang

■ Trace log inspection (ad-hoc)

■ Model checking – my toolMcErlang
(http://babel.ls.fi.upm.es/˜fred/McErlang )
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