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Today’s Lecture

■ Explore methods for component specification

■ Methods will cover at least specification of input/output types
and partial descriptions of functional behaviour

■ We will mention extensions to specify concurrent behaviour,
timing behaviour, and so on (check transparencies for more
details)

■ Methods will be based on formal methods
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Formalisations

What do we mean by formalisations?

■ Components (or systems) specified using formal methods

■ Formal Methods are based in sound mathematics and provide
the ability to reason rigourously about programs and
specifications

■ Reasoning may be automatic or manual
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Formal Methods in a Project Design Cycle

Design Phase

Programming

Testing

Normally informal,

but formalizable

A set of tests,
normally a mix of formal and informal

Project Phases Artifact

Program

Design Specification

Test specification

Already formal!

Formal or informal
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Example: formalized Test Specifications

Since formal specifications have a precise meaning, we can use
them for analysis

■ Test Specification: a formalization of which tests to run, using
a formal language
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Example: formalized Test Specifications

Since formal specifications have a precise meaning, we can use
them for analysis

■ Test Specification: a formalization of which tests to run, using
a formal language

■ Analysis possible – measures of how good the testing process
is – how big part of the program covered by tests:

◆ how large percentage of the lines of the program are tested
◆ or: how large percentage of the paths through the program

tested
◆ or: how many states of the program covered by tests
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Model Driven Engineering

■ We construct models of systems

■ A model abstracts from aspects of the real system

■ But can be used to predict some properties of the real system
(e.g., for testing, . . . )

■ Problem: how to keep the model “synchronised” with the
system under development

■ Many initiatives: (Model-drive architecture (MDA) from OMG)
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Non-software models
Building models is standard practice in “normal engineering”:
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Non-software models
Building models is standard practice in “normal engineering”:

A real airplane (Saab Safir):

A 1:72 scale plastic model kit:

assembled by an
experienced tester:
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Benefits of formalized Design Specification

■ Suppose we have a formalized design specification
(a system model)

■ We can then derive system tests from the formal design
specification

■ Test metrics become:

◆ how big part of the design specification tested
◆ That is, which percentage of paths through the design

specification tested against the program, and which
percentage of design specification states have been tested

■ Other uses:
◆ Generating a program (implementation) from the design

specification
◆ Validating/simulating high-level specifications:

do they make sense?
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Why Study Formalisation (and analysis)?

Formal methods have a bad reputation, but are becoming more
and more used

■ To document design decisions (UML)

■ Concise specifications of tests (QuickCheck)

■ In hardware (to verify Intel CPUs)

■ In software:
◆ Microsoft, Linux: security analysis, device driver safety, . . .
◆ Static analysis in compilers to detect runtime errors at

compile time

■ Often works well in limited domain settings (with special rules
for how to write software)

■ In general very useful techniques for verification of safety
critical systems or in situations where failures are very costly

■ Important : formal methods are debugging techniques. They
cannot guarantee correctness, but can make errors less likely
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Formalisation

■ In general formalisation is a big area – we will only introduce
the topic here

■ Today: formalisation examples,

following lecture: analysis examples



- p. 11

Formalisations& Verification – History

■ Turing verified programs

■ Floyd: program flowcharts
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Central Concepts

■ Pre– and post–condition
If a pre–condition pre holds before a statement, the
post–condition post holds after

■ Invariant
A property which holds always during an execution
Loop invariants are used to characterise loop behaviour

■ Termination condition
Specifies under which condition a computation terminates

Usually proved by providing a measure – something which
decreases during a computation, but cannot go on decreasing
forever
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■ Hoare logic: putting pre-and-post conditions in syntactic form:

{Pre} Command {Post}

■ Example proof rules:

{C ∧ I} body {I}

{I } while C do body {¬C ∧ I}

φ′ ⊃ φ ψ ⊃ ψ′ {φ} C {ψ}

{φ′} C {ψ′}

■ An example proof:

{j = N − i}while i>0 do i:=i-1;j:=j+1 {i = 0 ∧ j = N − i}

i = N ∧ j = 0 ⊃ j = N − i i = 0 ∧ j = N − i ⊃ j = N

{i = N ∧ j = 0} while i>0 do i:=i-1;j:=j+1 {j = N}
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Formalisations – History

■ Hoare logic: putting pre-and-post conditions in syntactic form:

{Pre} Command {Post}

■ Example proof rules:

{C ∧ I} body {I}

{I } while C do body {¬C ∧ I}

φ′ ⊃ φ ψ ⊃ ψ′ {φ} C {ψ}

{φ′} C {ψ′}

■ An example proof:

{i > 0 ∧ j = N − i} i := i − 1; j := j + 1 {j = N − i}

{j = N − i}while i>0 do i:=i-1;j:=j+1 {i = 0 ∧ j = N − i}

i = N ∧ j = 0 ⊃ j = N − i i = 0 ∧ j = N − i ⊃ j = N

{i = N ∧ j = 0} while i>0 do i:=i-1;j:=j+1 {j = N}
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Formalisations – History

■ Hoare logic: putting pre-and-post conditions in syntactic form:

{Pre} Command {Post}

■ Example proof rules:

{C ∧ I} body {I}

{I } while C do body {¬C ∧ I}

φ′ ⊃ φ ψ ⊃ ψ′ {φ} C {ψ}

{φ′} C {ψ′}

■ An example proof:

|= (N − i) + 1 = N − (i − 1)

{i > 0 ∧ j = N − i} i := i − 1; j := j + 1 {j = N − i}

{j = N − i}while i>0 do i:=i-1;j:=j+1 {i = 0 ∧ j = N − i}

i = N ∧ j = 0 ⊃ j = N − i i = 0 ∧ j = N − i ⊃ j = N

{i = N ∧ j = 0} while i>0 do i:=i-1;j:=j+1 {j = N}
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Formalisations – History

■ Dijkstra: weakest pre condition: wp(C)

■ Owicki and Gries: extensions to concurrency

■ Lamport: proving an invariant I:

◆ I holds in the initial state of the program

◆ For all program statements S prove {I} S {I}
(if I holds before the statement S, it should afterwards also)
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Correctness claims – classical

For classical terminating programs (or functions) a number of
properties needs to be proved

■ Partial correctness: if the program halts it satisfies a property

■ Termination: the program halts

■ Total correctness: both Partial correctness and Termination
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Correctness claims – reactive systems

■ The previous correctness claims are sufficient for terminating
programs

■ But reactive systems keep on running

■ A reactive systems is a system that responds to stimuli (input)
and responds with actions (output) – a process

■ To formulate correctness properties about reactive systems
people started experimenting with temporal logics, program
equivalences, and so on. . .
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Temporal logic

■ Pneuli 1977: added discrete and linear time operators to
propositional logic, to be able to specify properties of reactive
systems

■ Program meaning (semantics):

◆ a program state s maps the program variables to values

◆ a run of the program is an infinite sequence of program
states (s0, s1, s2, . . .) from an initial state s0

◆ for a terminating system simply add a self-loop in the
terminating state to yield an infinite run

◆ the semantics of a program p is its set of runs, ‖p‖

◆ If the program is nondeterministic (or accepts input) there
will be more than one run of the program
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Runs of concurrent programs: examples

Consider the following simple shared variable program:

if x>0 then x:=x-1 || if x<3 then x:=x+1

where S1 || S2 runs the atomic statements S1 and S2 in
parallel
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Runs of concurrent programs: examples

Consider the following simple shared variable program:

if x>0 then x:=x-1 || if x<3 then x:=x+1

where S1 || S2 runs the atomic statements S1 and S2 in
parallel

Its runs starting from the state x=0 is the infinite set:



















〈x = 0〉 · 〈x = 1〉 · 〈x = 0〉 · . . .

〈x = 0〉 · 〈x = 1〉 · 〈x = 2〉 · 〈x = 1〉 · . . .

〈x = 0〉 · 〈x = 1〉 · 〈x = 2〉 · 〈x = 3〉 · 〈x = 2〉 . . .

. . .
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Program runs

We can also depict the runs


















〈x = 0〉 · 〈x = 1〉 · 〈x = 0〉 · . . .

〈x = 0〉 · 〈x = 1〉 · 〈x = 2〉 · 〈x = 1〉 · . . .

〈x = 0〉 · 〈x = 1〉 · 〈x = 2〉 · 〈x = 3〉 · 〈x = 2〉 . . .

. . .



















as a state graph:



- p. 20

Atomicity

Consider the parallel program

if x>0 then x:=x-1 || if x>0 then x:=x-1

with the starting state 〈x = 3〉



- p. 20

Atomicity

Consider the parallel program

if x>0 then x:=x-1 || if x>0 then x:=x-1

with the starting state 〈x = 3〉

■ If statements are atomic the program has the single run
〈x = 3〉 〈x = 2〉 〈x = 1〉 〈x = 0〉



- p. 20

Atomicity

Consider the parallel program

if x>0 then x:=x-1 || if x>0 then x:=x-1

with the starting state 〈x = 3〉

■ If statements are atomic the program has the single run
〈x = 3〉 〈x = 2〉 〈x = 1〉 〈x = 0〉

■ If statements are not atomic the program has the two runs
{

〈x = 3〉 · 〈x = 2〉 · 〈x = 1〉 · 〈x = 0〉

〈x = 3〉 · 〈x = 2〉 · 〈x = 1〉 · 〈x = 0〉 · 〈x = −1〉

}



- p. 20

Atomicity

Consider the parallel program

if x>0 then x:=x-1 || if x>0 then x:=x-1

with the starting state 〈x = 3〉

■ If statements are atomic the program has the single run
〈x = 3〉 〈x = 2〉 〈x = 1〉 〈x = 0〉

■ If statements are not atomic the program has the two runs
{

〈x = 3〉 · 〈x = 2〉 · 〈x = 1〉 · 〈x = 0〉

〈x = 3〉 · 〈x = 2〉 · 〈x = 1〉 · 〈x = 0〉 · 〈x = −1〉

}

■ Conclusion: programming concurrent programs is hard



- p. 20

Atomicity

Consider the parallel program

if x>0 then x:=x-1 || if x>0 then x:=x-1

with the starting state 〈x = 3〉

■ If statements are atomic the program has the single run
〈x = 3〉 〈x = 2〉 〈x = 1〉 〈x = 0〉

■ If statements are not atomic the program has the two runs
{

〈x = 3〉 · 〈x = 2〉 · 〈x = 1〉 · 〈x = 0〉

〈x = 3〉 · 〈x = 2〉 · 〈x = 1〉 · 〈x = 0〉 · 〈x = −1〉

}

■ Conclusion: programming concurrent programs is hard

■ The Erlang programming language we shall hear about soon
has goodconcurrency primitives
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Temporal logic – operators

Classical linear temporal operators (defined over runs):

■ Always φ

φ holds in all future states of the run

■ Eventually φ

φ holds in some future state of the run

■ Next φ

φ holds in the next state

■ φ1 Until φ2

φ1 holds in all states until φ2 holds

■ And the normal ones: negation ¬ φ, conjunction φ1 ∧ φ2,
implication φ1 ⊃ φ2, . . .

■ And propositional operators (over variables): x < y , even(z),
. . .
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Temporal logic – meaning

■ A program p satisfies a formula φ when all the runs of the
program are satisfied by the formula

■ The logic is linear because it doesn’t talk about the branching
structure of the state graph of the program (what is set of the
possible next states of the program)

■ So called branching time logics do consider the branching
structure of the state graph of the program
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Temporal logic – examples

Consider the atomic parallel program

if x>0 then x:=x-1 || if x<3 then x:=x+1

with the starting state 〈x = 3〉 and the state graph
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Consider the atomic parallel program

if x>0 then x:=x-1 || if x<3 then x:=x+1

with the starting state 〈x = 3〉 and the state graph

■ Does Always x ≥ 0 hold?

■ Yes; if x=0 then the guard prevents further decrease

■ Does Always (x = 3 ⊃ Eventually x = 0) hold?
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Temporal logic – examples

Consider the atomic parallel program

if x>0 then x:=x-1 || if x<3 then x:=x+1

with the starting state 〈x = 3〉 and the state graph

■ Does Always x ≥ 0 hold?

■ Yes; if x=0 then the guard prevents further decrease

■ Does Always (x = 3 ⊃ Eventually x = 0) hold?

■ No; there is a run 〈x = 3〉 · 〈x = 2〉 · 〈x = 3〉 · 〈x = 2〉 · . . .
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General temporal logic patterns

■ Eventually φ ≡ ¬ Always (¬ φ)
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■ A safety property expresses that something bad – φ – never
happens: Always ¬ φ
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eventually happens: Eventually φ
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General temporal logic patterns

■ Eventually φ ≡ ¬ Always (¬ φ)

■ A safety property expresses that something bad – φ – never
happens: Always ¬ φ

■ A liveness property expresses that something good – φ –
eventually happens: Eventually φ

■ Often one uses fairness assumptions to rule out bad program
behaviours

φ eventually holds under the assumption that ψ doesn’t
always hold:

(¬Always ψ) ⊃ (Eventually φ)
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Temporal logic

■ Many variants exists:
◆ Continuous time, time interval models

◆ Additional operators (e.g., talking about past time)

◆ Branching time logics: A φ – φ holds on all program
states that are reachable from the current one

■ In general temporal logics are good for expressing program
correctness properties

■ But it is difficult to give complete descriptions of what a correct
program behaviour is

■ More on algorithms and tools for checking programs against
properties later on. . .
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Specification Languages

■ A specification is an abstract definition of what the correct
behaviour of a program is

■ A specification abstracts away from irrelevant details

■ Verification techniques (later) permits to check whether a
program satisfies its specification

■ Two large families of specification languages:
◆ abstract model based (Z, VDM, Slam-SL)
◆ and algebraic specifications (CCS, π calculus)
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An model based language: Z

■ Based on mathematical logic (first-order predicate logic) and
set theory

■ Objects are typed

■ Schemas permits to specify in a modular fashion both static
(data) and dynamic (behaviour) properties of a system

■ The acceptable data states of a program are specified using
predefined mathematical concepts (sequences, sets, . . . )

■ Operations upon states are characterised using pre– and
post–conditions
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The Z specification language

Different Schema Types:

■ State schemas characterises reachable states of a system
using a state invariant; defines what must be respected by
operations

■ Operation schemas describe how operations with input
parameters cause state changes, and return parameters

■ Operation schemas are given using pre– and post–conditions
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Z schema example: static part

Result ::= ok
∣

∣ nospace

Queue

queue : seq N

#queue < 10

Init

Queue

queue = 〈〉
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Z schema example, dynamic part

InsertOk

∆Queue

insert? : N

result! : Result

#queue < 10

queue′ = queue a 〈insert?〉
result! = ok

InsertWithError

ΞQueue

insert? : N

result! : Result

#queue ≥ 10
result! = nospace

Insert = InsertOk ∨ InsertWithError
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Abstract models – Z

Proof challenges (for a theorem prover):

■ An initial state exists

■ The pre-condition of each operation guarantees that the
resulting state exists (is a proper state). Consider:

BadOp

∆Queue

insert? : N

result! : Result

queue′ = queue a 〈insert?〉
result! = ok

Violates the state invariant
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Z limitations and extensions

■ Serious limitations with respect to:
◆ Lack of modularisation and Object Orientation

◆ Specifying reactive systems, realtime, concurrency

■ Has been used in quite a few industrial projects (in the UK)

■ A mathematical clean notation, expressive, but rather abstract
(can be difficult to implement)

■ To implement a Z spec one can use program derivation and
program refinement techniques (in Z itself)

■ Object-oriented extensions exists: Object-Z and Z++

■ Nowadays the B method receives more attention
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Axiomatic Specifications

■ A system is specified as a set of abstract data types

■ Operations on data are characterised as axioms of equality

■ Rewrite rules define transitions between system states
(instances of the data types)

■ Specifications are executable

■ Examples: Maude/rewriting logic, OBJ, FOOPS
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Maude

■ Home page: http://maude.cs.uiuc.edu/

■ Origin at Stanford, USA
(Messeguer and others, big Spanish community)

■ Rewriting of equations modulo commutativity, associativity
and idem-potency

■ Equations are evaluated nondeterministically, in parallel

■ Permits specification of reactive (and concurrent) systems

■ Reflexive language (Maude can be represented in Maude)
and object-oriented (inheritance, polymorphism)

■ Uses reflection to control which equations and rewrite rules to
apply (rewriting strategies)
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Maud example

fmod NatQueue is

sorts NatQueue .

protecting NAT .

op empty : -> NatQueue [ctor] .

op enq : Nat NatQueue -> NatQueue [ctor] .

op head : NatQueue -> Nat .

op deq : NatQueue -> NatQueue .

vars N N1 : Nat . vars Q : NatQueue .

eq head(enq(N,empty)) = N .

eq head(enq(N,enq(N1,Q))) = head(enq(N1,Q)) .

eq deq(enq(N,empty)) = empty .

eq deq(enq(N,enq(N1,Q))) = enq(N,deq(enq(N1,Q))) .

endfm
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Usage examples

■ What is the head of the queue after inserting 3 and then 2?

red head(enc(2,enc(3,empty))) .
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Usage examples

■ What is the head of the queue after inserting 3 and then 2?

red head(enc(2,enc(3,empty))) .

■ Answer: result NzNat: 3
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Maud example: with rewrite rules

Rewrite rules express transitions between states:

mod CommChannel is

protecting NatQueue .

vars N : Nat .

vars Q : NatQueue .

rl [receive] :

enq(N,Q) => deq(enq(N,Q)) .

rl [loose_msg] :

enq(N,Q) => Q .

rl [duplicate_msg] :

enq(N,Q) => enq(N,enq(N,Q)) .

endm
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Usage examples

■ What are the possible queues resulting after at most two
transitions from the state 2 · 1?

search [,2] enq(2,enq(1,empty)) =>+ q:NatQueue .

■ Answer: 11 states:

ǫ

2 1

2 · 2 1 · 1 2 · 1

2 · 2 · 1 2 · 1 · 1

2 · 2 · 2 · 1 2 · 2 · 1 · 1 2 · 1 · 1 · 1

■ Path to 2 · 1 · 1 · 1:
Maude> show path 10 .

state 0, NatQueue: enq(2, enq(1, empty))

===[ rl enq(N, Q) => enq(N, enq(N, Q)) [label duplicate_msg] . ]===>

state 4, NatQueue: enq(2, enq(1, enq(1, empty)))

===[ rl enq(N, Q) => enq(N, enq(N, Q)) [label duplicate_msg] . ]===>

state 10, NatQueue: enq(2, enq(1, enq(1, enq(1, empty))))
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Maude conclusions

■ Useful for developing executable prototypes rapidly

■ Yields reasonable efficient prototypes

■ But specifications become pretty algorithmic (not abstract)



- p. 40

Specifying real-time and hybrid systems

■ Specification languages generally tailored to the task of
constructing verifyable models

■ Typical system: network of clocked automata

■ Languages and verification systems: UPPAAL
(http://www.uppaal.com)

■ Alternatives: modelling using real-time UML variants
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A Lamp Example in UPPAAL

A lamp that has two intensities (low and bright), and a user:

press?

press?

press?

press!y >= 5

y := 0

y < 5
off low bright

idle

press?

If the user presses the button (press!) twice within 5 time units
the intensity of the lamp is set to bright
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Formalisation of Concurrency and Distribution

■ Petri-Nets: a mainly graphical notation for transition systems:

Nondeterministic, highly concurrent
Intuitive with a good notation, but do they scale?

■ State machines that communicate by exchanging messages:
SDL, Promela, I/O-automatons, cleanly written Erlang, . . .

Often serious specification languages useful for checking
complex systems

■ Process algebras: CCS, CSP, π-calculus, ambient calculus

Mathematically clean formalisms, often less suited for
specifying larger systems
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Process Algebras

■ A large variant of calculi for providing a mathematically
elegant theory of concurrency

◆ For basic concerns: CCS, CSP

◆ With extensions to mobility: π-calculus

◆ With extensions to distribution: mobile ambients

◆ With abstract data types: LOTOS, µCRL

◆ With (many) extensions to real-time, to stochastic
behaviours, to . . .

■ As a summary: popular as a (mathematical) tool for reasoning
about concurrency; for real programs?

■ Due to their popularity one should have a basic knowledge of
the field
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Process Algebras: CCS

■ CCS is a very basic process algebra (due to Milner 1980)

■ Basic entities are processesand ports (used for binary
communication between two processes)

■ We let P,Q,R, . . . stand for processes and a, b, c, . . . for ports

■ A process/port graph:
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CCS syntax

■ Communication by synchronisation: (a is a port)
output action a(v)
input action a(x)
or internal action τ

If there is no value being sent or received we omit the action
parameter: a(v) becomes a and a(x) becomes a

■ Sequential composition: α.P
where α is an action (input or output action, or internal τ )
Behaviour: after performing a it behaves as P

■ Choice: P + Q can behave as P or as Q

■ Parallel behaviour: the agent P | Q behaves as P running in
parallel with Q

■ The agent which can do nothing: 0
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A simple example: a coffee/tea machine

■ A simple (one-use) coffee machine:

coin.
(

coffee.0 + tea.0
)
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■ A user that always wants tea:

coin.tea.0
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A simple example: a coffee/tea machine

■ A simple (one-use) coffee machine:

coin.
(

coffee.0 + tea.0
)

■ A user that always wants tea:

coin.tea.0

■ The combination of a user and the coffee machine:

coin.
(

coffee.0 + tea.0
)

| coin.tea.0
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Process Algebras: CCS operators part II

■ Restriction: the agent P
∖

{a} cannot communicate with the
environment using the port a

■ Relabelling: in communications with its environment the agent
P[f ] relabels all channel names using the relabelling function f

■ Recursive agents can be defined: P
def
= a.(P | b.0)

■ And simple test on boolean conditions: if b then P else Q
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A simple example: a coffee/tea machine continued

■ A simple coffee machine:

CM1 def
= coin.

(

coffee.CM1 + tea.CM1
)

■ A user that always wants tea:

User def
= coin.tea.0

■ The combination of a user and the coffee machine:

(User | CM1)
∖

{coffee, tea, coin}
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Defining the Behaviour of CCS Agents

■ A transition rule based semantics, defined using the syntactic
shape of terms, is often called a structured operational
semantics(abbreviated SOS)

■ Such semantics are used to define the meaning of many
programming languages and systems

■ One should at least have a basic grasp of how to read such
semantic definitions

■ We use an operational semantics to define the behaviour of
CCS agents
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CCS, Operational behaviour

Semantics defined by transition rules:

■ prefix
α.P

α

−→ P

■ choice
P

α

−→ P′

P + Q
α

−→ P′
,

P
α

−→ P′

Q + P
α

−→ P′

■ interleaving
P

α

−→ P′

P | Q
α

−→ P′ | Q
,

P
α

−→ P′

Q | P
α

−→ Q | P′

■ synchronisationl
P

a(x)
−−→ P′ Q

a(v)
−−→ Q′

P | Q
τ

−→ P′[v/x] | Q′

■ synchronisationr
Q

a(x)
−−→ Q′ P

a(v)
−−→ P′

P | Q
τ

−→ P′[v/x] | Q′
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CCS, Operational behaviour part II

■ restriction
P

α

−→ P′ a 6∈ fn(α)

P
∖

{a}
α

−→ P′
∖

{a}

where [fn(α) ≡











{a} if α = a(v)

{a} if α = a(x)

{} if α = τ











■ relabelling
P

α

−→ P′

P[f ]
f(α)
−−→ P′[f ]

■ recursion
P[v/x]

α

−→ P′ N(x)
def
= P

N(v)
α

−→ P′

■ eval
P

α

−→ P′ b true

if b then P else Q α

−→ P′
,

P
α

−→ P′ b false

if b then Q else P α

−→ P′
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CCS examples

■ Coffee machine 1 always work:

CM1 def
= coin.

(

coffee.CM1 + tea.CM1
)
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CCS examples

■ Coffee machine 1 always work:

CM1 def
= coin.

(

coffee.CM1 + tea.CM1
)

■ Coffee machine 2 sometimes (unspecified when) only allows
the coffee choice:

CM2 def
= coin.

(

coffee.CM2 + tea.CM2 + τ.coffee.CM2
)
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CCS examples

■ Coffee machine 1 always work:

CM1 def
= coin.

(

coffee.CM1 + tea.CM1
)

■ Coffee machine 2 sometimes (unspecified when) only allows
the coffee choice:

CM2 def
= coin.

(

coffee.CM2 + tea.CM2 + τ.coffee.CM2
)

■ A typical user that always wants tea:

User def
= coin.tea.0



- p. 52

CCS examples

■ Coffee machine 1 always work:

CM1 def
= coin.

(

coffee.CM1 + tea.CM1
)

■ Coffee machine 2 sometimes (unspecified when) only allows
the coffee choice:

CM2 def
= coin.

(

coffee.CM2 + tea.CM2 + τ.coffee.CM2
)

■ A typical user that always wants tea:

User def
= coin.tea.0

■ The combination of a user and machine 1 (let
S ≡ {coffee, tea, coin}):

(User | CM1)
∖

S
τ

−→
τ

−→ (0 | CM1)
∖

S
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CCS examples

■ Coffee machine 1 always work:

CM1 def
= coin.

(

coffee.CM1 + tea.CM1
)

■ Coffee machine 2 sometimes (unspecified when) only allows
the coffee choice:

CM2 def
= coin.

(

coffee.CM2 + tea.CM2 + τ.coffee.CM2
)

■ A typical user that always wants tea:

User def
= coin.tea.0

■ The combination of a user and machine 1 (let
S ≡ {coffee, tea, coin}):

(User | CM1)
∖

S
τ

−→
τ

−→ (0 | CM1)
∖

S

■ The combination of a user and machine 2 may deadlock after
two machine steps:

(User | CM2)
∖

S
τ

−→
τ

−→ (tea.0 | coffee.CM2)
∖

S
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Specifications for Process Algebras

Suppose that we have written a complex agent P, and we want
to develop a simpler specification for that agent. What can we
do?

Two options:

■ Write the specification as a temporal logic formula φ, and
show that P : φ (P satisfies φ)

■ Write the specification as another CCS agent S, and show
that P = S, with regards to some notion of equality “=”
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Process algebra – process equality

Crucial question: when do two processes P and Q exhibit the
same behaviour?

■ First question: what does it mean for P and Q to have the
same behaviour?

■ Do we require that they have (almost) the same set of traces?
In practise this is often too weak, e.g., CM1 and (a slight
variant of) CM2 have the same set of traces but have very
different behaviour

■ Or do we need a stronger notion of equivalence?
There are many options out there: strong equivalence,
observation equivalence, . . .
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Proving processes equal

■ Most algebras have an axiomatic theory, e.g., a set of
equations of the type P + Q = Q + P, P | 0 = P and so on. . .

■ Hence two processes P and Q are equal if we can prove
P = Q using the axioms

■ A more behavioural alternative is to find a bisimulation relation
relating P and Q

■ Two process P and Q are (strong bisimulation) equivalent if we
can find a bisimulation relation S containing the pair (P,Q)

A pair (P,Q) ∈ S if and only if

◆ If P
α

−→ P′ for some α and P′ then there exists a Q′ such
that Q

α

−→ Q′, and (P′,Q′) ∈ S

◆ If Q
α

−→ Q′ for some α and Q′ then there exists a P′ such
that P

α

−→ P′, and (P′,Q′) ∈ S

Often it is far easier to find a bisimulation relation than to use
equational reasoning
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π calculus

■ CCS is a fairly static calculus – what if we allow names
(channels) to be communicated?

■ The result is the π calculus (Milner, Walker and Parrow –
1989)

■ A process that receives a new name can later communicate
using it (new communication capabilities arise during the
execution)

■ The distinction between channels and data is removed

■ A very basic calculus (but expressive!) for experimenting with
one form of mobility

■ Nowadays very popular – inspiration for some standards
proposals for composition languages of web services
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π calculus operators

■ Most operators come from CCS: 0 – the inactive process,
choice P + Q, parallelism P | Q

■ Communication primitives are different:
◆ output: x y .P: the name y is sent over the name x; then

behaves as P

◆ input: x(w).P: a name y is received on the channel x; then
behaves as P[y/w] (P with y substituted for w)

■ Matching: [x = y ]P behaves as P if x is the same name as y ,
otherwise as 0

■ Private names: (x)P creates a new name x that is private to P

■ Replication: !P is equivalent to !P | P
(an infinite number of copies of P in parallel)
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π calculus: name mobility

■ Mobility example:

Receive a new name at a and use the new name to send z:
a(x). x z. P

■ Evolution of communication capabilities, let:

P(x, y)
def
= x y .P′(x) and Q(x)

def
= x(z).Q′(x, z)

■ The following action is enabled
P(x, y) | Q(x) | R(y)

τ

−→ P′(x) | Q′(x, z)[y/z] | R(y)

■ Evolution of communication capabilities depicted graphically:
'&%$ !"#P

y

??
??

??
??

/.-,()*+Qx

/.-,()*+R

τ

−→ 76540123P′ 76540123Q′

x

y
~~

~~
~~

~~

/.-,()*+R
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Example: encoding of data in the π calculus

■ An encoding of True and False:

False(x)
def
= !(query, false, true) x query.query false.query true.false.0

True(x)
def
= !(query, false, true) x query.query false.query true.true.0
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Example: encoding of data in the π calculus

■ An encoding of True and False:

False(x)
def
= !(query, false, true) x query.query false.query true.false.0

True(x)
def
= !(query, false, true) x query.query false.query true.true.0

■ Lets define a process P(x) that behaves as P1 if its argument x
represents true and P2 if it represents false:

P(x)
def
= x(query).query(false).query(true). (true.P1 + false.P2)
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Example: encoding of data in the π calculus

■ An encoding of True and False:

False(x)
def
= !(query, false, true) x query.query false.query true.false.0

True(x)
def
= !(query, false, true) x query.query false.query true.true.0

■ Lets define a process P(x) that behaves as P1 if its argument x
represents true and P2 if it represents false:

P(x)
def
= x(query).query(false).query(true). (true.P1 + false.P2)

■ If we execute P(x) | True(x) we will eventually end up in the
new state P1 | 0 | True(x) = P1 | True(x)
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Example: encoding of data in the π calculus

■ An encoding of True and False:

False(x)
def
= !(query, false, true) x query.query false.query true.false.0

True(x)
def
= !(query, false, true) x query.query false.query true.true.0

■ Lets define a process P(x) that behaves as P1 if its argument x
represents true and P2 if it represents false:

P(x)
def
= x(query).query(false).query(true). (true.P1 + false.P2)

■ If we execute P(x) | True(x) we will eventually end up in the
new state P1 | 0 | True(x) = P1 | True(x)

■ The syntax is ugly; it is better in the polyadic π-calculus:

False(x)
def
= !(false, true) x 〈false, true〉 .false.0

P(x)
def
= x(false, true). (true.P1 + false.P2)
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π-calculus transition rules

act
α.P

α

−→ P
sum

P
α

−→ P′

P + Q
α

−→ P′

par
P

α

−→ P′ bn(α) ∩ fn(Q) = ∅

P | Q
α

−→ P′ | Q
repl

P |!P
α

−→ P′

!P
α

−→ P′

equiv
Q

α

−→ Q′ P ≡ Q P′ ≡ Q′

P
α

−→ P′

The rules uses the congruence ≡ which is defined:
■ P | Q == Q | P

■ P + Q ≡ Q + P

■ [x = x]P ≡ P

■ if A(x)
def
= P′ then A(y) ≡ P′[y/x]

■ P ≡ Q if P and Q are α-equivalent, i.e., only bound variables
are different, e.g., (x)y x.0 ≡ (z)y z.0
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Transition rules, part II

l-com P
x y
−→ P′ Q

x(z)
−−→ Q′

P | Q
τ

−→ P′ | Q′[y/z]

close P
x(y)
−−→ P′ Q

x(y)
−−→ Q′

P | Q
α

−→ (y)(P′ | Q′)

res
P

α

−→ P′ y 6∈ n(α)

(y)P
α

−→ (y)P′

open
P

x y
−→ P′ y 6= x

(y)P
x(y)
−−→ P′
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π-calculus: variants and implementations

■ Asynchronous π-calculus
Only 0 allowed after an output prefix
x u.0 is ok, x u.x(z).0 is not!

■ Higher-order π-calculus:
communicating of processes as well as names

■ spi-calculus
A variant of the π-calculus for reasoning about security

■ Ambient calculus: a process algebra for reasoning about
distribution

■ Pict: a programming language based on the asynchronous
π-calculus

■ WS-CDL: a web choreography language inspired by the
π-calculus
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π-calculus variant: the spi-calculus

■ spi-calculus: a variant of the π-calculus for reasoning about
security

■ Specially suited for reasoning about shared key cryptography

■ Extends the normal π-calculus with a few new primitives:

◆ {M}N represents the ciphertext obtained by encrypting M
under the key N

◆ case L of {x}N in P attempts to decrypt the term L with the
key N. If L is a ciphertext of the form {M}N, then the
process behaves as P[M/x]. Otherwise, the process is
stuck.

◆ . . .

■ The normal operational semantics of the π-calculus is
extended, i.e., we get a lot of reasoning power for free
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Spi Example: Wide Mouthed Frog protocol

A B

S

K AB K AS sent with 11: New key 
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Spi Example: Wide Mouthed Frog protocol

A B

S

K AB K AS
K SBK AB

3: secure comm between A and B using new key

 sent with 1 2: New key 1: New key  sent with 

Message 1: A → S: {KAB}KAS on cAS

Message 2: S → B: {KAB}KSB on cSB

Message 3: A → B: {M}KAB on cAB
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Spi Example: Wide Mouthed Frog protocol

A B

S

K AB K AS
K SBK AB

3: secure comm between A and B using new key

 sent with 1 2: New key 1: New key  sent with 

Message 1: A → S: {KAB}KAS on cAS

Message 2: S → B: {KAB}KSB on cSB

Message 3: A → B: {M}KAB on cAB

In the spi-calculus:

A(M) ≡ ν(KAB)(cAS〈{KAB}KAS〉.cAB〈{M}KAB〉)

S ≡ cAS(x).case x of {y}KAS in cSB〈{y}KSB〉

B ≡ cSB(x).case x of {y}KSB in cAB(z).case z of {w}y in F(w)
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Part I: The Ambient Calculus

■ Due to Cardelli and Walker

■ For modelling mobile computation – mobile code that moves
between locations (ambients)

■ Used to reason about administrative domains – when does a
program have the right to migrate from one computing location
to another computing location and start computing there?

■ An ambient is a bounded place where computation takes
place

■ An ambient can be nested in other ambients

■ Each ambient has a name used to control access, and a set
of local agents (processes) that control the actions of the
ambient

■ A name is something that can be created, communicated and
from which capabilities can be extracted
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Ambient Calculus: operators

■ As in the π-calculus: 0 (the process which can do nothing),
P | Q – parallel composition, replication !P and creation of a
new name n in (n)P.

■ An ambient is written n[P]
where n is the name and P is the process running inside the
ambient

■ If P −→ P′ then n[P] −→ n[P′]

■ The general shape of an ambient is
n[P1 | . . . | Pn | m1[. . .] | . . . | mk [. . .]] where Pi is a non-ambient
process and mi [. . .] is a subambient of n

■ In graphical notation:
n

P1 | . . . | Pn |
m1

· · ·
| . . . |

mk

· · ·
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Ambient Calculus: operators

■ An action prefix is written M.P, where M enters, exits or opens
an ambient

■ Entry capability: in m.P instructs the ambient surrounding
in m.P to enter a sibling named m

n

in m.P | Q
|

m

R
−→

m

n

P | Q
| R

■ Exit capability: out m.P instructs the ambient surrounding
out m.P to exit its parent named m

m

n

out m.P | Q
| R

−→
n

P | Q
|

m

R
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Open capability and communication

■ Open capability: open m.P which provides a way of dissolving
the boundary of an ambient m located at the same level as
openm.P

open m.P |
m

Q
−→ P | Q

■ The full calculus adds two items:

◆ Capabilities can be paths M.M′

◆ A communication rule between processes in the same
ambient: (x)P | 〈M〉 −→ P[M/x] where (x)P is an input prefix
and 〈M〉 an output



- p. 69

Ambient example

Motivating example: an agent P leaves its home ambient and
later comes back (with authentification)

Home [

(n)

(

open n.0

| Agent[out home.in home.n[out Agent.open Agent.P]]

)

]

or graphically:

Home

(n)(open n.0 |

Agent

out home.in home.
n

out Agent.open Agent.P
)
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Evaluation of the Example

Home[(n) (open n.0 | Agent[out home.in home.n[out Agent.open Agent.P]])]
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Evaluation of the Example

Home[(n) (open n.0 | Agent[out home.in home.n[out Agent.open Agent.P]])]

≡ (n)Home[open n.0 |
Agent[out home.in home.n[out Agent.open Agent.P]]]
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Evaluation of the Example

Home[(n) (open n.0 | Agent[out home.in home.n[out Agent.open Agent.P]])]

≡ (n)Home[open n.0 |
Agent[out home.in home.n[out Agent.open Agent.P]]]

↓ out home
(n) (Home[open n.0] | Agent[in home.n[out Agent.open Agent.P]])
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Evaluation of the Example

Home[(n) (open n.0 | Agent[out home.in home.n[out Agent.open Agent.P]])]

≡ (n)Home[open n.0 |
Agent[out home.in home.n[out Agent.open Agent.P]]]

↓ out home
(n) (Home[open n.0] | Agent[in home.n[out Agent.open Agent.P]])

↓ in home
(n) (Home[open n.0 | Agent[n[out Agent.open Agent.P]]])
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Evaluation of the Example

Home[(n) (open n.0 | Agent[out home.in home.n[out Agent.open Agent.P]])]

≡ (n)Home[open n.0 |
Agent[out home.in home.n[out Agent.open Agent.P]]]

↓ out home
(n) (Home[open n.0] | Agent[in home.n[out Agent.open Agent.P]])

↓ in home
(n) (Home[open n.0 | Agent[n[out Agent.open Agent.P]]])

↓ out Agent
(n) (Home[open n.0 | n[open Agent.P] | Agent[]])
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Evaluation of the Example

Home[(n) (open n.0 | Agent[out home.in home.n[out Agent.open Agent.P]])]

≡ (n)Home[open n.0 |
Agent[out home.in home.n[out Agent.open Agent.P]]]

↓ out home
(n) (Home[open n.0] | Agent[in home.n[out Agent.open Agent.P]])

↓ in home
(n) (Home[open n.0 | Agent[n[out Agent.open Agent.P]]])

↓ out Agent
(n) (Home[open n.0 | n[open Agent.P] | Agent[]])

↓ open n
(n) (Home[0 | open Agent.P | Agent[]])
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Evaluation of the Example

Home[(n) (open n.0 | Agent[out home.in home.n[out Agent.open Agent.P]])]

≡ (n)Home[open n.0 |
Agent[out home.in home.n[out Agent.open Agent.P]]]

↓ out home
(n) (Home[open n.0] | Agent[in home.n[out Agent.open Agent.P]])

↓ in home
(n) (Home[open n.0 | Agent[n[out Agent.open Agent.P]]])

↓ out Agent
(n) (Home[open n.0 | n[open Agent.P] | Agent[]])

↓ open n
(n) (Home[0 | open Agent.P | Agent[]])

↓ open Agent
(n) (Home[0 | P | 0]) ≡ Home[P]
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Tools for CCS and the π-calculus

There exists a set of tools for CCS and the π-calculus that
permits to:

simulate specifications,

to check whether two specifications are equivalent,

to check a specification against a property in temporal logic,
and so on. . .

Tools:

For CCS: Concurrency workbench, Concurrency Workbench of
the New Century (CWB-NC), . . .

For π-calculus: Mobility workbench, . . .
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