
1 / 47

Component based software – introduction

Lars-Åke Fredlund

2011–2012

Course Information

2 / 47

■ A series oflectures in English:

◆ Designing components

◆ Describing components (interfaces, . . .)

◆ Implementing components

◆ Validating components

◆ Programming using components

◆ Example of (distributed) component frameworks

■ 1–2obligatory exercises

■ My email: lfredlund@fi.upm.es

■ Course web page:
http://babel.ls.fi.upm.es/˜fred/sbc/

Course Information

3 / 47

■ The course will be an overview of component-based software

■ We will mention a lot of different languages, frameworks,
techniques, etc

■ To get something out of the course you have to beactive:
ask questions during class,
read about items items mentioned in class
(starting atwikipedia andgoogle)
Write programs, install tools and try them out!

■ Be ambitious with the exercise: do a thorough investigationof
the problem and technique you choose

Lecture Plan

4 / 47

■ Today: introduction to component based systems

■ Component specification

■ Validation and verification of components:
testing, formal verification

■ Software Architectures (for components)
software buses, multitier architectures, . . .

■ Examples of (distributed) component frameworks:
Erlang, Web Services, Mashups, Autosar, . . .

■ Extras

■ Your lectures

About the exercise

5 / 47

■ Study and use one of the component frameworks,
or specify, implement, and validate a set of components,
or study the impact and/or problems (economic, timewise) of
introducing components in software development,
or study and use software architecture description methods

■ Mail suggestions to us beforehand!

Document result:

■ Give a presentation (around 30 minutes)

■ A report (15–20 pages) – Spanish allowed

■ Participate (ask questions) at other presentations

About the exercise

6 / 47

It is not just a literature study; we do not want to read 12 pages of
an introduction to Web Services extracted from Wikipedia

■ Learn a framework

■ Apply the framework to an interesting example, as part of a
critical Evaluation

Program a solution, write a specification and test, use an
architecture description language to specify an architecture,
study a development process, . . .

■ Documenttheresult of applying the framework to the
example, with criticism resulting fromyour study:did things
work?, what were the benefits compared to not using the
framework?, what were the problems?, etc

■ Do not be afraid to include concrete details in the report:
source code, specifications, etc.

Motivation: why component-based software

7 / 47

■ Classic argument:Cost of software development

◆ need to re-use software to reduce costs

◆ better to buy off-the-shelf than reimplementing

Motivation: why component-based software

7 / 47

■ Classic argument:Cost of software development

◆ need to re-use software to reduce costs

◆ better to buy off-the-shelf than reimplementing

■ More reliable software

◆ more reliable to reuse software than to create

◆ system requirements can force use of certified
components (car industry, aviation, . . .)

Motivation: why component-based software

7 / 47

■ Classic argument:Cost of software development

◆ need to re-use software to reduce costs

◆ better to buy off-the-shelf than reimplementing

■ More reliable software

◆ more reliable to reuse software than to create

◆ system requirements can force use of certified
components (car industry, aviation, . . .)

■ Emergence of a component marketplace
Apple’s App Store, Android Market, . . .

Motivation: why component-based software

7 / 47

■ Classic argument:Cost of software development

◆ need to re-use software to reduce costs

◆ better to buy off-the-shelf than reimplementing

■ More reliable software

◆ more reliable to reuse software than to create

◆ system requirements can force use of certified
components (car industry, aviation, . . .)

■ Emergence of a component marketplace
Apple’s App Store, Android Market, . . .

■ Emergence of distributed and concurrent systems
we need to build systems composed of independent parts, by
necessity

Trends in SW design

8 / 47

■ Concurrency – multiple activities at the same time

■ Distribution – multiple activities at the same time, at
different locations

Today component frameworks needs to address concurrency and
distribution because of

■ Hardware developments:microprocessors with many cores
(Intel quad –4– cores..., ARM processors for mobile phones)

Leading to renewed interest in concurrent programming

■ Software developments:Web services communicate to offer
composite services (business processes)

Distribution and fault tolerance to handle 24/7 availability
requirements

Some History (towards component-based software)

9 / 47

■ Distributed systems

■ Open systems

■ The problem of re-use

■ Evolution of programming models (including web)

Distributed Systems

10 / 47

Concurrent programs executing on different hosts that do not share
memory

■ Different communication mechanisms: message passing, RPC
(remote procedure calls), . . .

■ Typically systems that are online 24/7

■ Reliability and fault tolerance is a key concern: hardware and
softwarewill fail , network linkswill fail , software has to
recover from failures

Open Systems

11 / 47

■ Distributed systems consisting ofheterogeneousprograms

■ Programs programmed in different languages, running under
different operating systems, . . .

■ Some programs already exists (legacy systems)

■ Other programs enter and leave the system during its
execution

Open Systems

11 / 47

■ Distributed systems consisting ofheterogeneousprograms

■ Programs programmed in different languages, running under
different operating systems, . . .

■ Some programs already exists (legacy systems)

■ Other programs enter and leave the system during its
execution

■ Example: a Java based system accepting a new applet:

Open Systems: Actors

12 / 47

Actors is a classical programming model for open systems

■ Active objects

■ Asynchronous messages

■ Point-to-point communication

■ Actors can create other actors (dynamically)

■ Communication patterns are dynamic too (communication
endpoint identifiers can be transmitted)

■ Languages using an Actor-like communication model:Erlang

Open Systems: Coordination Models

13 / 47

■ Entities (programs, processes) to control + coordination
medium + coordination laws

Open Systems: Coordination Models

13 / 47

■ Entities (programs, processes) to control + coordination
medium + coordination laws

■ Oriented towards data-sharing:Linda

Linda tuplespace (globally shared memory)

Processes

rd − nondestructive read
out − writes a tuple to memory

in − reads a tuple from memory and removes it

Stored tuples

Linda example

14 / 47

Operations:
out(〈v1, . . . , vn〉) writes the tuple〈v1, . . . , vn〉 to memory
in(tupletemplate) destructively reads a tuple from memory (blocking)
rd(tupletemplate) nondestructive tuple read (blocking)
eval(process) creates a new process

Examples:
out〈‘person’,‘juan’,22〉
in〈‘person’, ?name, ?age〉

Linda example

14 / 47

Operations:
out(〈v1, . . . , vn〉) writes the tuple〈v1, . . . , vn〉 to memory
in(tupletemplate) destructively reads a tuple from memory (blocking)
rd(tupletemplate) nondestructive tuple read (blocking)
eval(process) creates a new process

Examples:
out〈‘person’,‘juan’,22〉
in〈‘person’, ?name, ?age〉

How can we change the age of‘juan’?

Open Systems: Coordination Models

15 / 47

■ Entities (programs, processes) to control + coordination
medium + coordination laws

Open Systems: Coordination Models

15 / 47

■ Entities (programs, processes) to control + coordination
medium + coordination laws

■ Oriented towards control: filter/flow-based programming

■ Data arrives as messages at the filter input

■ A filter either manipulates a data item or lets it through
unchanged to its outputs

Open Systems: Coordination Models

16 / 47

■ Entities (programs, processes) to control + coordination
medium + coordination laws

■ Real-world example: pipes in UNIX
ls | grep sbc

ls creates a file with a filename per line
grep sbc removes all lines that do not containsbc

Open Systems: Coordination Models

16 / 47

■ Entities (programs, processes) to control + coordination
medium + coordination laws

■ Real-world example: pipes in UNIX
ls | grep sbc

ls creates a file with a filename per line
grep sbc removes all lines that do not containsbc

■ Other example:MapReducefor distributed computing on
large data sets

Coordination Systems: Open Documents

17 / 47

OpenDoc: one of the first component-based systems

■ Document centric: no main application exists, the document
is the central information store (compare Linda)

■ Compositional: documents are composed from (possibly)
distributed elements that themselves may be documents

Coordination Systems: Open Documents

17 / 47

OpenDoc: one of the first component-based systems

■ Document centric: no main application exists, the document
is the central information store (compare Linda)

■ Compositional: documents are composed from (possibly)
distributed elements that themselves may be documents

■ Document elements can be active entities. Ev-
ery element item has an editor (application) as-
sociated with it.

■ Created at Apple in the 1990s (compare Mi-
crosoft OLE)

■ Very ambitious goals: difficult to realise then
and probably even today (compare the state of
web browsers/servers)

Coordination Systems: Mashup web application

18 / 47

■ “A web application that combines data from external sources
to create a new service”

Coordination Systems: Mashup web application

18 / 47

■ “A web application that combines data from external sources
to create a new service”

■ Example: a customized google page:

Reuse of Software

19 / 47

The age-old problem in software industry: how to reuse software

■ At the most basic level:source code reuse

Reuse of Software

19 / 47

The age-old problem in software industry: how to reuse software

■ At the most basic level:source code reuse

■ Old solution example: reuse of code for regular expressions
evaluation in UNIX (replicated in many applications:grep,
bash, sed, . . .)

Reuse of Software

19 / 47

The age-old problem in software industry: how to reuse software

■ At the most basic level:source code reuse

■ Old solution example: reuse of code for regular expressions
evaluation in UNIX (replicated in many applications:grep,
bash, sed, . . .)

■ Advantages:

◆ Good productivity

◆ Consistency (regular expressions work the same)

◆ No need to test re-used software pieces

■ Everything is reused (analysis, design, code, documentation)

■ Normally put in code libraries

Software Reuse: Source Code Libraries

20 / 47

Problems with re-use at the source code library level:

■ When a library is modified one has to recompile and relink all
applications making use of the library piece

■ Hard to maintain different library versions for different
applications

■ Difficult to sell

Software Reuse: Binary Libraries

21 / 47

■ No need to recompile and relink applications upon library
change (dynamic libraries)

■ Easier to sell (no need to distribute code)

But:

■ Because of weak interfaces (at most type checked) it is
difficult to know what impact a library change has on the
corresponding application (we have to test and test and
test. . .)

■ Difficult to have cross-language libraries (although worksto
some extent. . .)

■ Binaries usable on one (processor, OS) architecture only

■ The result will be multiple library versions in a running
system (hard to maintain)

Solving the problems of Binaries

22 / 47

A common solution to the problem of binary compatibility is to use
intermediate code instead of native (Intel X86) machine code

■ A compiler translate a high-level programming language to
intermediate code (not specific to the target architecture)

■ An abstract machine (virtual machine) executes intermediate
code (probably somewhat specific to the target architecture)

■ Example of languages that use such an implementation
strategy: Java (Java Virtual Machine), C#, Erlang

■ Using an abstract machine technology can be a way in which
to permit multiple languages to communicate: example CRL
(Common Language Runtime) for C#

Programming Models

23 / 47

Natural evolution:

■ Module-based programming (Modula)

■ Object-oriented programming (Java,C++)

■ Aspect-oriented programming (AspectJ)

■ Component-based programming (WWW example)

Programming Models

24 / 47

Example: Java

■ Object-oriented language

■ Single inheritance

■ Automatic garbage collection: no pointers

■ Abstract machine technology: Java Virtual Machine (JVM)

■ Applets: small Java applications that can be sent between
computers, and executed at the receiving side

Security Models for Java Applets

25 / 47

■ Applets: small Java applications that can be sent between
computers, and executed at the receiving side

■ Different security models for applets:

Security Models for Java Applets

25 / 47

■ Applets: small Java applications that can be sent between
computers, and executed at the receiving side

■ Different security models for applets:

◆ Applets are put in asandbox, where they cannot harm
the host (so can only do limited actions)

Security Models for Java Applets

25 / 47

■ Applets: small Java applications that can be sent between
computers, and executed at the receiving side

■ Different security models for applets:

◆ Applets are put in asandbox, where they cannot harm
the host (so can only do limited actions)

◆ Applets come with a (behaviour) certificate issued by
someauthority (which one can trust or not)

Security Models for Java Applets

25 / 47

■ Applets: small Java applications that can be sent between
computers, and executed at the receiving side

■ Different security models for applets:

◆ Applets are put in asandbox, where they cannot harm
the host (so can only do limited actions)

◆ Applets come with a (behaviour) certificate issued by
someauthority (which one can trust or not)

◆ Applets come with a description of their behaviour, and a
checkable proof of compliance (proof-carrying code)

Programming Models: Aspect-oriented programming

26 / 47

■ Programs are decomposed into different aspects, each aspect
responsible for one requirement (security, logging,
fault-tolerance, concurrency, . . .)

■ The aspects can be largely independently developed,
sometimes even in different programming languages

■ Weaver: the task of combining different aspects into a whole
program

■ Attractive development model but still not very mature

■ Example:AspectJfor aspect-oriented programming in Java

WWW for component-based programming

27 / 47

■ First WWW generation: documents published using
HTTP/HTML

■ Second generation: dynamic generation of documents, using
forms and databases (CGI)

WWW

28 / 47

■ Third generation: everything is part of the Web

■ Data is structured in a standard way (XML)

■ Documents become (web) services

■ Web services become accessible by other (web) services

A web-based service development model

29 / 47

Web services communicating using Web standards:

■ Web connection: HTTP

■ Web service search: UDDI

■ Data definition: XML

■ Messaging: SOAP

■ Web service interface: WSDL

■ Transactions: WS-Transaction

■ Service composition: WS-BPEL

Components

30 / 47

What is a component?

One definition:

■ Encapsulatedi.e., with well definedinterfacesand with an
unknowable interior

■ Composablewith other components (using a well establish
composition mechanism)

■ Multiple-use (i.e., not a restricted resource)

■ Not context dependent(usable in multiple systems)

■ A unit of independent deploymentand versioning
(independent of other components)

Fundamental Concepts

31 / 47

■ Component interface: describes the operations (method
calls, messages, . . .) that a component implements and that
other components may use

■ Composition mechanism: the manner in which different
components can be composed to work together to accomplish
some task.
For example, using message passing

■ Component platform: A platform for the development and
execution of components

Component-based Applications

32 / 47

Example: TheFirefox web browser:

■ Extensible architecture (usingplugins – components)

■ New plug-ins can be added (Adobe flash, spell checkers, . . .)
At runtime?

■ A well-defined plugin architecture: no need for plug-in
developers to know all the internals of Firefox

■ Separationof plug-ins from other plugins and the main
application: a faulty plug-in should not crash Firefox
(compareGoogle Chrome)

■ Different providers

Component-based Systems

33 / 47

Linux :

■ New hardware drivers from different providers
(can be added at runtime?)

■ Isolation of core OS and drivers very important (but difficult)

■ Language independent?

GNOME (desktop environment):

■ Consistent application configuration (gconf)

■ Reuseof components forconsistency: file browser, printer
selector, secret key storage (keyring) . . .

■ D-Bus for component intercommunication

Component-based Systems: examples

34 / 47

Autosar:

■ A software architecture for the car industry

■ Goal: reduce costs

■ Vehicle producer’s want third-party companies to develop
their software (but are still responsible for theoverall quality)

■ Or use standard software pieces (components), but adapted to
the vehicle manufacturer, moving towards a software
component marketplace

■ Problems:cost reductions, complex standards

Why build software using components?

35 / 47

An economic argumentand asafety argument. . .

■ Developingcomponents is hard: a job for (expensive) experts

■ Constructing systems bycomposingcomponents is easier: let
less expensive programmers do the job

■ Or: Buy components off-the-shelf instead of constructing
them

Tasks

36 / 47

Tasks

36 / 47

■ How toprogram a component?

Tasks

36 / 47

■ How toprogram a component?

■ How to accurately describe theinterface of a component?

Tasks

36 / 47

■ How toprogram a component?

■ How to accurately describe theinterface of a component?

■ How tocheckthat a component fulfills its interface
specification?

Tasks

36 / 47

■ How toprogram a component?

■ How to accurately describe theinterface of a component?

■ How tocheckthat a component fulfills its interface
specification?

■ How tocomposecomponents?

Tasks

36 / 47

■ How toprogram a component?

■ How to accurately describe theinterface of a component?

■ How tocheckthat a component fulfills its interface
specification?

■ How tocomposecomponents?

■ And vitally important: how tomaintain a system constructed
from components . . .

Software using components: criticism

37 / 47

Does the economic argument about the facility/cheapness of
composition hold?

Software using components: criticism

37 / 47

Does the economic argument about the facility/cheapness of
composition hold?

■ Puzzle pieces may be easy to compose; we can tell just by the
shapeif it composes with another piece

Software using components: criticism

37 / 47

Does the economic argument about the facility/cheapness of
composition hold?

■ Puzzle pieces may be easy to compose; we can tell just by the
shapeif it composes with another piece

■ And so there are attempts to do the same for software:
give components a shape by characterising the type of inputs
and outputs

Software using components: criticism

37 / 47

Does the economic argument about the facility/cheapness of
composition hold?

■ Puzzle pieces may be easy to compose; we can tell just by the
shapeif it composes with another piece

■ And so there are attempts to do the same for software:
give components a shape by characterising the type of inputs
and outputs

■ But even for puzzles things are not so easy:

Component Specification: Dimensions

38 / 47

■ Software components are hard to compose;
there are many extradimensionsto a software component

■ A user has to consider these extra dimensions when deciding
whether to use a component

“Dimensions” of components:

Component Specification: Dimensions

38 / 47

■ Software components are hard to compose;
there are many extradimensionsto a software component

■ A user has to consider these extra dimensions when deciding
whether to use a component

“Dimensions” of components:

■ Input/output types

■ Functional behaviour

■ Concurrent behaviour

■ Timing behaviour

■ Resource usage

■ Security

Component Specification Examples: Input/Output

39 / 47

Input/output types

■ Lets specify the operations on a component storing a set of
integers:

initialise()
add(Integer)
member(Integer) -> Bool
...

■ We also may needexceptions– handling exceptional
(nonstandard) behaviour

■ The operationremove is used to remove an existing element
from a set

remove(Integer)
throws exception
// when element to remove is absent

Component Specification Examples: Functionality

40 / 47

Functionality: what is the behaviour of an operation?

■ What is the relation between input and output parameters of a
component and its state?

■ Lets describe the integer set component again (not a program):

component integer_set
var state : set

initialise():
state’ = ∅

add(element):
state’ = state ∪ {element}

Component Specification Examples: Concurrency

41 / 47

Concurrent behaviour

■ Are concurrent calls to operations permitted?

■ If yes, how are concurrent calls coordinated?

■ What happens if a component invokes the operationadd(2)
at the same time as another component invokes the operation
initialise()?

■ Does the resulting set contain2 or not?

Component Specification Examples: Timing

42 / 47

Timing behaviour

■ What is the time complexity of invoking an operation? (when
is an answer returned)

■ For example, what is the worst-case time complexity of
invoking the operationmember(element)?

Constant time (some hashing scheme used) or linear time (a
list used in the implementation)?

■ Are there any timers associated with the behaviour of the
component?

Component Specification Examples: Resource Usage

43 / 47

Resource Usage

■ Example: how much memory does a component consume?

■ For example, how much memory is used to store a hundred
million integers using the operationadd(element)?

Component Specification Examples: Security

44 / 47

Security – what are the security implications of operations?

■ Example: assume that a credit card component provides
validateCard(CardNumber,Pin) -> Bool
for checking a pin code against a credit card

■ To use thevalidateCard operation we want to know that
the pin code is not leaked in any way from the credit card
component:

Component Specification Examples: Security

44 / 47

Security – what are the security implications of operations?

■ Example: assume that a credit card component provides
validateCard(CardNumber,Pin) -> Bool
for checking a pin code against a credit card

■ To use thevalidateCard operation we want to know that
the pin code is not leaked in any way from the credit card
component:

◆ the operation communicates the pin to a third party

Component Specification Examples: Security

44 / 47

Security – what are the security implications of operations?

■ Example: assume that a credit card component provides
validateCard(CardNumber,Pin) -> Bool
for checking a pin code against a credit card

■ To use thevalidateCard operation we want to know that
the pin code is not leaked in any way from the credit card
component:

◆ the operation communicates the pin to a third party

◆ if the operation saves the pin, and lets another operation
communicate it

Component Specification Examples: Security

44 / 47

Security – what are the security implications of operations?

■ Example: assume that a credit card component provides
validateCard(CardNumber,Pin) -> Bool
for checking a pin code against a credit card

■ To use thevalidateCard operation we want to know that
the pin code is not leaked in any way from the credit card
component:

◆ the operation communicates the pin to a third party

◆ if the operation saves the pin, and lets another operation
communicate it

◆ if the operation saves the pin, and reveals it by clever
timing of operations

Component Specification Examples: Security

44 / 47

Security – what are the security implications of operations?

■ Example: assume that a credit card component provides
validateCard(CardNumber,Pin) -> Bool
for checking a pin code against a credit card

■ To use thevalidateCard operation we want to know that
the pin code is not leaked in any way from the credit card
component:

◆ the operation communicates the pin to a third party

◆ if the operation saves the pin, and lets another operation
communicate it

◆ if the operation saves the pin, and reveals it by clever
timing of operations

◆ if the operation saves the pin, and reveals it by clever use
of resources (memory, power usage!)

Component Specification Examples: Security

44 / 47

Security – what are the security implications of operations?

■ Example: assume that a credit card component provides
validateCard(CardNumber,Pin) -> Bool
for checking a pin code against a credit card

■ To use thevalidateCard operation we want to know that
the pin code is not leaked in any way from the credit card
component:

◆ the operation communicates the pin to a third party

◆ if the operation saves the pin, and lets another operation
communicate it

◆ if the operation saves the pin, and reveals it by clever
timing of operations

◆ if the operation saves the pin, and reveals it by clever use
of resources (memory, power usage!)

■ An information-flow property (hard to verify)

Component Specification Examples

45 / 47

Maintainability : components may have a long lifetime – how do
we maintain them?

■ Inspection:

◆ What are the interfaces of a component?

◆ What is the state of a component, or a component
interconnection mechanism?

■ How many requests has the component served?
■ Average waiting time until a request is served?
■ How many times has the component been restarted?
■ Are the queues used for component communication

overloaded? (memory usage)

Component Specification Examples

45 / 47

Maintainability : components may have a long lifetime – how do
we maintain them?

■ Inspection:

◆ What are the interfaces of a component?

◆ What is the state of a component, or a component
interconnection mechanism?

■ How many requests has the component served?
■ Average waiting time until a request is served?
■ How many times has the component been restarted?
■ Are the queues used for component communication

overloaded? (memory usage)

■ Code upgrade:how to update components on-line, without
taking down the whole system

Another Component Dimension: Reliability

46 / 47

■ Many component-based systems has to work 24/7, with
high reliability (5 nines, i.e., 99.999%)

■ Fault tolerance: can the component recover from hardware
failures?

■ A goodcomponent framework provides support to design and
use components that arereliable, fault tolerantand
maintainable

Next Lecture

47 / 47

Component specifications

■ Specifying components

■ Using abstractions (modelling), using formal methods

■ Special emphasis on concurrent aspects

	Course Information
	Course Information
	Lecture Plan
	About the exercise
	About the exercise
	Motivation: why component-based software
	Trends in SW design
	Some History (towards component-based software)
	Distributed Systems
	Open Systems
	Open Systems: Actors
	Open Systems: Coordination Models
	Linda example
	Open Systems: Coordination Models
	Open Systems: Coordination Models
	Coordination Systems: Open Documents
	Coordination Systems: Mashup web application
	Reuse of Software
	Software Reuse: Source Code Libraries
	Software Reuse: Binary Libraries
	Solving the problems of Binaries
	Programming Models
	Programming Models
	Security Models for Java Applets
	Programming Models: Aspect-oriented programming
	WWW for component-based programming
	WWW
	A web-based service development model
	Components
	Fundamental Concepts
	Component-based Applications
	Component-based Systems
	Component-based Systems: examples
	Why build software using components?
	Tasks
	Software using components: criticism
	Component Specification: Dimensions
	Component Specification Examples: Input/Output
	Component Specification Examples: Functionality
	Component Specification Examples: Concurrency
	Component Specification Examples: Timing
	Component Specification Examples: Resource Usage
	Component Specification Examples: Security
	Component Specification Examples
	Another Component Dimension: Reliability
	Next Lecture

