Component based software — introduction

Lars-Ake Fredlund

2011-2012

1/47

Course Information

m A series oflecturesin English:

Designing components

Describing components (interfaces, ...)
Implementing components

Validating components

[]
[]
[]
[]
[0 Programming using components
[]

Example of (distributed) component frameworks

m 1-2o0bligatory exercises
m Myemail:l fredl und@i.upm es

m Course web page:
http://babel.ls.fi.upmes/fred/sbc/

2147

Course Information

The course will be an overview of component-based software

We will mention a lot of different languages, frameworks,
technigues, etc

To get something out of the course you have t@bgve:
ask questions during class,

read about items items mentioned in class

(starting atm ki pedi a andgoogl e)

Write programs, install tools and try them out!

Be ambitious with the exercise: do a thorough investigation
the problem and technique you choose

3747

Lecture Plan

Today: introduction to component based systems
Component specification

Validation and verification of components:
testing, formal verification

Software Architectures (for components)
software buses, multitier architectures, ...

Examples of (distributed) component frameworks:

Erlang, Web Services, Mashups, Autosatr, ...
Extras

Your lectures

4147

About the exercise

m Study and use one of the component frameworks,
or specify, implement, and validate a set of components,
or study the impact and/or problems (economic, timewise) of
iIntroducing components in software development,
or study and use software architecture description methods

m Mail suggestions to us beforehand!

Document result:
m Give a presentation (around 30 minutes)
m A report (15-20 pages) — Spanish allowed

m Participate (ask gquestions) at other presentations

5747

About the exercise

It Is not just a literature study; we do not want to read 12 pages of
an introduction to Web Services extracted from Wikipedia

m Learn a framework

m Apply the framework to an interesting example, as part of a
critical Evaluation

Program a solution, write a specification and test, use an
architecture description language to specify an architect
study a development process, ...

m Documenttheresult of applying the framework to the
example, with criticism resulting froryour study:did things
work? what were the benefits compared to not using the
framework?what were the problems®etc

m Do not be afraid to include concrete details in the report:
source code, specifications, etc.

6/47

Motivation: why component-based software

m Classic argumentCost of software development

[1 need to re-use software to reduce costs
00 better to buy off-the-shelf than reimplementing

7147

Motivation: why component-based software

m Classic argumentCost of software development

[1 need to re-use software to reduce costs
00 better to buy off-the-shelf than reimplementing

m More reliable software

[1 more reliable to reuse software than to create

[0 system requirements can force use of certified
components (car industry, aviation, ...)

7147

Motivation: why component-based software

m Classic argumentCost of software development

[0 need to re-use software to reduce costs

00 better to buy off-the-shelf than reimplementing
m More reliable software

[1 more reliable to reuse software than to create

[0 system requirements can force use of certified
components (car industry, aviation, ...)

m Emergence of a component marketplace
Apple’s App Store, Android Market, . ..

7147

Motivation: why component-based software

Classic argumentCost of software development

[1 need to re-use software to reduce costs
00 better to buy off-the-shelf than reimplementing

More reliable software

[1 more reliable to reuse software than to create

[0 system requirements can force use of certified
components (car industry, aviation, ...)

Emergence of a component marketplace
Apple’s App Store, Android Market, . ..

Emergence of distributed and concurrent systems

we need to build systems composed of independent parts, by

necessity

7147

Trends in SW design

m Concurrency — multiple activities at the same time

m Distribution — multiple activities at the same time, at
different locations

Today component frameworks needs to address concurredcy an
distribution because of

m Hardware developments:microprocessors with many cores
(Intel quad —4— cores..., ARM processors for mobile phones)

Leading to renewed interest in concurrent programming

m Software developmentsWeb services communicate to offer
composite services (business processes)

Distribution and fault tolerance to handle 24/7 availapili
requirements

8147

Some History (towards component-based software)

Distributed systems
Open systems
The problem of re-use

Evolution of programming models (including web)

9/47

Distributed Systems

Concurrent programs executing on different hosts that dcimare
memory

m Different communication mechanisms: message passing, RPC
(remote procedure calls), ...

m Typically systems that are online 24/7

m Reliability and fault tolerance is a key concern: hardware a
softwarewill fail , network linkswill fail , software has to
recover from failures

10/ 47

Open Systems

Distributed systems consisting béterogeneougrograms

Programs programmed in different languages, running under
different operating systems, ...

Some programs already exists (legacy systems)

Other programs enter and leave the system during its
execution

11/47

Open Systems

Distributed systems consisting béterogeneougrograms

Programs programmed in different languages, running under
different operating systems, ...

Some programs already exists (legacy systems)

Other programs enter and leave the system during its
execution

Example: a Java based system accepting a new applet:

Java Applet

communication<

O e
ON@) R — _)

Java based application Java based application

1 Java Applet .

11/47

Open Systems: Actors

Actors is a classical programming model for open systems
m Active objects
m Asynchronous messages
m Point-to-point communication
m Actors can create other actors (dynamically)

s Communication patterns are dynamic too (communication
endpoint identifiers can be transmitted)

m Languages using an Actor-like communication modalang

12 /47

Open Systems: Coordination Models

m Entities (programs, processes) to control + coordination
medium + coordination laws

13 /47

Open Systems: Coordination Models

m Entities (programs, processes) to control + coordination

medium + coordination laws

m Oriented towards data-sharingnda

s

Linda tuplespace (globally shared memory)

Stored tuples

I} }

!

in - reads a tuple from memory and removes it
rd — nondestructive read
out — writes a tuple to memory

13 /47

Linda example

Operations:
out({(v1,...,v,)) writes the tuplgvy, ..., v,) to memory
in(tupletemplate) destructively reads a tuple from memory (blocking
rd(tupletemplate) nondestructive tuple read (blocking)
eval(process) creates a new process

Examples:
out(* person’ ,'juan’ ,22)
in(‘ person’ , ’name, 7age)

14 /47

Linda example

Operations:
out({(v1,...,v,)) writes the tuplgvy, ..., v,) to memory
in(tupletemplate) destructively reads a tuple from memory (blocking
rd(tupletemplate) nondestructive tuple read (blocking)
eval(process) creates a new process

Examples:
out(* person’ ,'juan’ ,22)
in(‘ person’ , ’name, 7age)

How can we change the age‘gfuan’ ?

14 /47

Open Systems: Coordination Models

m Entities (programs, processes) to control + coordination
medium + coordination laws

15/ 47

Open Systems: Coordination Models

m Entities (programs, processes) to control + coordination
medium + coordination laws

m Oriented towards control: filter/flow-based programming

is A —> - out B

out C

m Data arrives as messages at the filter input

m A filter either manipulates a data item or lets it through
unchanged to its outputs

15/ 47

Open Systems: Coordination Models

m Entities (programs, processes) to control + coordination
medium + coordination laws

m Real-world example: pipes in UNIX

grep sbc

| S creates a file with a filename per line
grep sbc removes all lines that do not contaibc

—>

ﬂ

—>

16 /47

Open Systems: Coordination Models

m Entities (programs, processes) to control + coordination
medium + coordination laws

m Real-world example: pipes in UNIX
|s | grep sbc

| S creates a file with a filename per line
grep sbc removes all lines that do not contaibc

—> S —{ grep sbc —>

m Other exampleMapReducdor distributed computing on
large data sets

16 /47

Coordination Systems: Open Documents

OpenDoc: one of the first component-based systems

m Document centric no main application exists, the document
IS the central information store (compare Linda)

m Compositional: documents are composed from (possibly)
distributed elements that themselves may be documents

17 /47

Coordination Systems: Open Documents

OpenDoc: one of the first component-based systems

s Document centric no main application exists, the document
IS the central information store (compare Linda)

s Compositional documents are composed from (possibly)
distributed elements that themselves may be documents

The Sum of OpenDoc's Parts

s Document elements can be active entities. Ev-
ery element item has an editor (application) as-
sociated with it.

m Created at Apple in the 1990s (compare Mi-
crosoft OLE)

m Very ambitious goals: difficult to realise then
and probably even today (compare the state of
web browsers/servers)

" = =
Fl £
OhulPiZilbs zief- 227, =87 -2t |<fi[y
2 §E38 i3 ERE iFz 2
mEE :

17 /47

Coordination Systems: Mashup web application

= “A web application that combines data from external sources
to create a new service”

18 /47

Coordination Systems: Mashup web application

“A web application that combines data from external sources

to create a new service”

Example: a customized google page:

File Edit View History Bookmarks Tools Help
I ol lg'_l\r\ttp://www.gougle.:omﬂg?hlzen

Most Visitedv [Smart Bookmarks 4 Getting Started Latest BBC Headl...v

| B Software Basado en Compo... £ ‘ ' iGoogle [x] ‘ ~
Web Images Videos Maps News Shopping Gmail more v fredlund1@gmail.com | Classic Home | My Account | Sign out ||

‘m.ms.mm

iGoogle

s Tose
| Google search || I'm Feeling Lucky |
New! Add soclal gadgets to post updates and play games with friends. Change theme from Classic | Add stuff »
SHome @ =
S Google Calendar = | | BusconRAE. Wikipedia

e « October2009 » busconRAE’ " — e Wl

Wikipedia
TR - |
alabra
b 27 28 12 3
Google Calendar 4 5 7 8 9 10 Bisqueda: | Aproximada | [Buscar | Gmail
Google Map Search 1t 15 16 17
Clouds 18 19 20 21 22 23 24 - Inbox -~ Sompose M
25 26 27 28 29 30 31 y
Y el [Weatner) Angel-Blog y aringa - —
Updates hitp:/iverdoux.wordpress.comiportraits/
Frieus B et | | Wadrd Madrid -] bagas189 - Schedule - Ive shared thisem o
- 2. hJ B 20°C Sureitclear —! with you using Google Docs. To open it, just "2
@ Chat Erlang User Conference and Protest midterm works (ib) wind: N at 3 km/m 3
ik ! Humidity: 43% || neubec- NASSSE-ServiceWave 2008 o |
Search, add orinvite| | Fri, Nov 13 U Workshop Proposal,
© Lars-Ake FredUNC | £yono oer Conference and Protest midterm workshd Tue Wed Thu _Fri [PLAYSTATION - Information aboutpolicy 0.
Sign into chat ¥ - - u 5
Showing events unlil 11/15. Look for more o] o] o CRANDES - PLAYBTATION(e
L ..M i [DoNoiReply@ac.piays. -Welcome lo 7508
24°10° 247 |8 21°(F 18" |2 ! PLAYSTATION(RINetwork - Dear Karl,
SidiBel Abbes
RPN 23°C Current Mosty Clouay Goagle Map Search =8
T 23°C Gineing e 10 e i =
Today | Add [=) Humidity: 78% =

Tue Wed Thu Fri
olelele

29°110° 28°|9° 27°|11" 26°|8°

Humidity: 81%

—
2=C Current: Cloudy
Wind: N at 24 km/h
Tue Wed Thu Fri
O, &

0" 5T et 507

Google [search the map

18 /47

Reuse of Software

The age-old problem in software industry: how to reuse sarféw

m At the most basic levekource code reuse

19/ 47

Reuse of Software

The age-old problem in software industry: how to reuse sarféw

m At the most basic levekource code reuse

m Old solution example: reuse of code for regular expressions

evaluation in UNIX (replicated in many applicatiorg: ep,
bash, sed,...)

19/ 47

Reuse of Software

The age-old problem in software industry: how to reuse sarféw

At the most basic levekource code reuse

Old solution example: reuse of code for regular expressions
evaluation in UNIX (replicated in many applicatiorgs: ep,
bash, sed,...)

Advantages:

0 Good productivity
[0 Consistency (regular expressions work the same)
[0 No need to test re-used software pieces

Everything is reused (analysis, design, code, documentati

Normally put in code libraries

19/ 47

Software Reuse: Source Code Libraries

Problems with re-use at the source code library level:

m When a library is modified one has to recompile and relink all
applications making use of the library piece

m Hard to maintain different library versions for different
applications

m Difficult to sell

20/ 47

Software Reuse: Binary Libraries

m No need to recompile and relink applications upon library
change (dynamic libraries)

m Easier to sell (no need to distribute code)

But:

m Because of weak interfaces (at most type checked) it is
difficult to know what impact a library change has on the
corresponding application (we have to test and test and
test...)

m Difficult to have cross-language libraries (although waiks
some extent...)

m Binaries usable on one (processor, OS) architecture only

m The result will be multiple library versions in a running
system (hard to maintain)

211747

Solving the problems of Binaries

A common solution to the problem of binary compatibility esuse
Intermediate code instead of native (Intel X86) machinescod

m A compiler translate a high-level programming language to
Intermediate code (not specific to the target architecture)

m An abstract machine (virtual machine) executes intermedia
code (probably somewhat specific to the target architecture

m Example of languages that use such an implementation
strategy: Java (Java Virtual Machine), C#, Erlang

m Using an abstract machine technology can be a way in which

to permit multiple languages to communicate: example CRL
(Common Language Runtime) for C#

22 147

Programming Models

Natural evolution:

m Module-based programming (Modula)
m Object-oriented programming (Java,C++)
m Aspect-oriented programming (AspectJ)

m Component-based programming (WWW example)

23 /47

Programming Models

Example: Java

m Object-oriented language

m Single inheritance

m Automatic garbage collection: no pointers

m Abstract machine technology: Java Virtual Machine (JVM)

m Applets: small Java applications that can be sent between
computers, and executed at the receiving side

24 [47

Security Models for Java Applets

m Applets: small Java applications that can be sent between
computers, and executed at the receiving side

m Different security models for applets:

25147

Security Models for Java Applets
m Applets: small Java applications that can be sent between
computers, and executed at the receiving side

m Different security models for applets:

[0 Applets are put in dandbox where they cannot harm
the host (so can only do limited actions)

25147

Security Models for Java Applets

m Applets: small Java applications that can be sent between
computers, and executed at the receiving side

m Different security models for applets:

[0 Applets are put in dandbox where they cannot harm
the host (so can only do limited actions)

0 Applets come with a (behaviour) certificate issued by
someauthority (which one can trust or not)

25147

Security Models for Java Applets

m Applets: small Java applications that can be sent between
computers, and executed at the receiving side

m Different security models for applets:

[0 Applets are put in dandbox where they cannot harm
the host (so can only do limited actions)

0 Applets come with a (behaviour) certificate issued by
someauthority (which one can trust or not)

[0 Applets come with a description of their behaviour, and a
checkable proof of compliancerof-carrying code)

25147

Programming Models: Aspect-oriented programming

Programs are decomposed into different aspects, eachtaspec
responsible for one requirement (security, logging,
fault-tolerance, concurrency, ...)

The aspects can be largely independently developed,
sometimes even in different programming languages

Weaver. the task of combining different aspects into a whole
program

Attractive development model but still not very mature

Example:AspectJfor aspect-oriented programming in Java

26 [47

WWW for component-based programming

m First WWW generation: documents published using
HTTP/HTML

m Second generation: dynamic generation of documents, using
forms and databases (CGl)

27 147

WWW

Third generation: everything is part of the Web
Data is structured in a standard way (XML)
Documents become (web) services

Web services become accessible by other (web) services

28 [47

A web-based service development model

Web services communicating using Web standards:

Web connection: HTTP

Web service search: UDDI
Data definition: XML
Messaging: SOAP

Web service interface: WSDI
Transactions: WS-Transactic
Service composition: WS-BF

29 [47

Components

What is a component?
One definition:

m Encapsulatedi.e., with well definednterfacesand with an
unknowable interior

m Composablewith other components (using a well establish
composition mechanism)

m Multiple-use (i.e., not a restricted resource)
m Not context dependent(usable in multiple systems)

m A unit of independent deploymentand versioning
(independent of other components)

30/47

Fundamental Concepts

Component interface describes the operations (method
calls, messages, ...) that a component implements and that
other components may use

Composition mechanism the manner in which different
components can be composed to work together to accomplish
some task.

For example, using message passing

Component platform: A platform for the development and
execution of components

31/47

Component-based Applications

Example: The~irefox web browser:

m Extensible architecture (usimdugins — components)

m New plug-ins can be added (Adobe flash, spell checkers, ...)
At runtime?

m A well-defined plugin architecture: no need for plug-in
developers to know all the internals of Firefox

m Separationof plug-ins from other plugins and the main
application: a faulty plug-in should not crash Firefox
(compareiGoogle Chrome

m Different providers

32/47

Component-based Systems

Linux:

m New hardware drivers from different providers
(can be added at runtime?)

m |solation of core OS and drivers very important (but difftgul

m Language independent?

GNOME (desktop environment):

m Consistent application configurationqonf)

m Reuseof components foconsistency file browser, printer
selector, secret key storage (keyring) ...

m D Bus for component intercommunication

33747

Component-based Systems: examples

Autosar:
m A software architecture for the car industry
m Goal:reduce costs

m \Vehicle producer’s want third-party companies to develop
their software (but are still responsible for txeerall quality)

m Or use standard software pieces (components), but adapted t
the vehicle manufacturer, moving towards a software
component marketplace

m Problems:cost reductions, complex standards

34147

Why build software using components?

An economic argumentand asafety argument. .

m Developingcomponents is hard: a job for (expensive) experts

m Constructing systems @omposingcomponents is easier: let
less expensive programmers do the job

m Or: Buy components off-the-shelf instead of constructing
them

35/47

Tasks

Tasks

= How toprogram a component?

Tasks

= How toprogram a component?

m How to accurately describe tivaterface of a component?

Tasks

m How toprogram a component?
m How to accurately describe tivaterface of a component?

m How tocheckthat a component fulfills its interface
specification?

36/47

Tasks

How to program a component?
How to accurately describe tivaterface of a component?

How to checkthat a component fulfills its interface
specification?

How to composecomponents?

36/47

Tasks

How to program a component?
How to accurately describe tivaterface of a component?

How to checkthat a component fulfills its interface
specification?

How to composecomponents?

And vitally important: how tamaintain a system constructed
from components ...

36/47

Software using components: criticism

Does the economic argument about the facility/cheapness of
composition hold?

37147

Software using components: criticism

Does the economic argument about the facility/cheapness of
composition hold?

m Puzzle pieces may be easy to compose; we can tell just by the
shapdf it composes with another piece

5P + 85 = B3

37147

Software using components: criticism

Does the economic argument about the facility/cheapness of
composition hold?

m Puzzle pieces may be easy to compose; we can tell just by the
shapdf it composes with another piece

5P + 85 = B3

s And so there are attempts to do the same for software:
give components a shape by characterising the type of inputs
and outputs

37147

Software using components: criticism

Does the economic argument about the facility/cheapness of
composition hold?

m Puzzle pieces may be easy to compose; we can tell just by the
shapdf it composes with another piece

5P + 85 = B3

s And so there are attempts to do the same for software:
give components a shape by characterising the type of inputs
and outputs

m But even for puzzles things are not so easy:

*-+§§—>R’

37147

Component Specification: Dimensions

m Software components are hard to compose;
there are many ext@dimensiongo a software component

m A user has to consider these extra dimensions when deciding
whether to use a component

“Dimensions” of components:

381747

Component Specification: Dimensions

m Software components are hard to compose;
there are many ext@dimensiongo a software component

m A user has to consider these extra dimensions when deciding
whether to use a component

“Dimensions” of components:
= [nput/output types
m Functional behaviour
m Concurrent behaviour
m Timing behaviour
m Resource usage

m Security

381747

Component Specification Examples: Input/Output

Input/output types

m Lets specify the operations on a component storing a set of
Integers:
Initialise()
add(| nt eger)
menber (I nteger) -> Bool

m We also may needxceptions— handling exceptional
(nonstandard) behaviour

m The operatiom enove is used to remove an existing element
from a set

renove(|l nt eger)
t hrows exception
[/ when elenent to renpbve I s absent

39/47

Component Specification Examples: Functionality

Functionality: what is the behaviour of an operation?

s What is the relation between input and output parameters of a
component and its state?

m Lets describe the integer set component again (not a prggram

conponent integer_set
var state : set

Initialise():
state’ = ()

add(el enent) :
state’ = state U {elenent}

40/ 47

Component Specification Examples: Concurrency

Concurrent behaviour

m Are concurrent calls to operations permitted?
m |f yes, how are concurrent calls coordinated?

s What happens if a component invokes the operaida(2)
at the same time as another component invokes the operation
Initialise()?

m Does the resulting set conta?nor not?

41 | 47

Component Specification Examples: Timing

Timing behaviour

= What is the time complexity of invoking an operation? (when
IS an answer returned)

m For example, what is the worst-case time complexity of
Invoking the operatiomenber (el enent) ?

Constant time (some hashing scheme used) or linear time (a
list used in the implementation)?

m Are there any timers associated with the behaviour of the
component?

42 | 47

Component Specification Examples: Resource Usage

Resource Usage

s Example: how much memory does a component consume?

m For example, how much memory is used to store a hundred
million integers using the operati@add(el enent) ?

43 1 47

Component Specification Examples: Security

Security — what are the security implications of operations?

m Example: assume that a credit card component provides
val | dat eCar d(Car dNunber, Pin) -> Bool
for checking a pin code against a credit card

m To use theval | dat eCar d operation we want to know that
the pin code is not leaked in any way from the credit card
component:

44 | 47

Component Specification Examples: Security

Security — what are the security implications of operations?

m Example: assume that a credit card component provides
val | dat eCar d(Car dNunber, Pin) -> Bool
for checking a pin code against a credit card

m To use theval | dat eCar d operation we want to know that
the pin code is not leaked in any way from the credit card
component:

[0 the operation communicates the pin to a third party

44 | 47

Component Specification Examples: Security

Security — what are the security implications of operations?

m Example: assume that a credit card component provides
val | dat eCar d(Car dNunber, Pin) -> Bool
for checking a pin code against a credit card

m To use theval | dat eCar d operation we want to know that
the pin code is not leaked in any way from the credit card
component:

[0 the operation communicates the pin to a third party

O if the operation saves the pin, and lets another operation
communicate it

44 | 47

Component Specification Examples: Security
Security — what are the security implications of operations?

m Example: assume that a credit card component provides
val | dat eCar d(Car dNunber, Pin) -> Bool
for checking a pin code against a credit card

m To use theval | dat eCar d operation we want to know that
the pin code is not leaked in any way from the credit card
component:

[0 the operation communicates the pin to a third party

O if the operation saves the pin, and lets another operation
communicate it

O if the operation saves the pin, and reveals it by clever
timing of operations

44 | 47

Component Specification Examples: Security
Security — what are the security implications of operations?

m Example: assume that a credit card component provides
val | dat eCar d(Car dNunber, Pin) -> Bool
for checking a pin code against a credit card

m To use theval | dat eCar d operation we want to know that
the pin code is not leaked in any way from the credit card
component:

[0 the operation communicates the pin to a third party

O if the operation saves the pin, and lets another operation
communicate it

O if the operation saves the pin, and reveals it by clever
timing of operations

O if the operation saves the pin, and reveals it by clever use
of resources (memory, power usage!)

44 | 47

Component Specification Examples: Security
Security — what are the security implications of operations?

m Example: assume that a credit card component provides
val | dat eCar d(Car dNunber, Pin) -> Bool
for checking a pin code against a credit card

m To use theval | dat eCar d operation we want to know that
the pin code is not leaked in any way from the credit card
component:

[0 the operation communicates the pin to a third party

O if the operation saves the pin, and lets another operation
communicate it

O if the operation saves the pin, and reveals it by clever
timing of operations

O if the operation saves the pin, and reveals it by clever use
of resources (memory, power usage!)

m An information-flow property (hard to verify) 441 47

Component Specification Examples

Maintainability : components may have a long lifetime — how do
we maintain them?

m |nspection:

0 What are the interfaces of a component?

0 What is the state of a component, or a component
Interconnection mechanism?

« How many requests has the component served?

= Average waiting time until a request is served?

« How many times has the component been restarted?

= Are the queues used for component communication
overloaded? (memory usage)

45147

Component Specification Examples

Maintainability : components may have a long lifetime — how do
we maintain them?

m |nspection:

0 What are the interfaces of a component?

0 What is the state of a component, or a component
Interconnection mechanism?

« How many requests has the component served?

= Average waiting time until a request is served?

« How many times has the component been restarted?

= Are the queues used for component communication
overloaded? (memory usage)

m Code upgrade:how to update components on-line, without
taking down the whole system

45147

Another Component Dimension: Reliability

s Many component-based systems has to work 24/7, with
high reliability (5 nines, i.e., 99.999%)

m Fault tolerance: can the component recover from hardware
failures?

m A goodcomponent framework provides support to design and
use components that ariable, fault tolerantand
maintainable

46 1 47

Next Lecture

Component specifications

m Specifying components
m Using abstractions (modelling), using formal methods

m Special emphasis on concurrent aspects

47 | 47

	Course Information
	Course Information
	Lecture Plan
	About the exercise
	About the exercise
	Motivation: why component-based software
	Trends in SW design
	Some History (towards component-based software)
	Distributed Systems
	Open Systems
	Open Systems: Actors
	Open Systems: Coordination Models
	Linda example
	Open Systems: Coordination Models
	Open Systems: Coordination Models
	Coordination Systems: Open Documents
	Coordination Systems: Mashup web application
	Reuse of Software
	Software Reuse: Source Code Libraries
	Software Reuse: Binary Libraries
	Solving the problems of Binaries
	Programming Models
	Programming Models
	Security Models for Java Applets
	Programming Models: Aspect-oriented programming
	WWW for component-based programming
	WWW
	A web-based service development model
	Components
	Fundamental Concepts
	Component-based Applications
	Component-based Systems
	Component-based Systems: examples
	Why build software using components?
	Tasks
	Software using components: criticism
	Component Specification: Dimensions
	Component Specification Examples: Input/Output
	Component Specification Examples: Functionality
	Component Specification Examples: Concurrency
	Component Specification Examples: Timing
	Component Specification Examples: Resource Usage
	Component Specification Examples: Security
	Component Specification Examples
	Another Component Dimension: Reliability
	Next Lecture

