
Web Services and Business Processes: An Overview

Lars-Åke Fredlund



Web Communication: Evolution

■ Classical World Wide Web provided:
Computer (web page) –Human communciation



Web Communication: Evolution

■ Classical World Wide Web provided:
Computer (web page) –Human communciation

■ But soon people started wanting to use the very successful
infrastructure (XML, HTTP) for program–to–program
communication and so the Web Services idea was born:
Web Service – Client Programcommunication



Web Communication: Evolution

■ Classical World Wide Web provided:
Computer (web page) –Human communciation

■ But soon people started wanting to use the very successful
infrastructure (XML, HTTP) for program–to–program
communication and so the Web Services idea was born:
Web Service – Client Programcommunication

■ Nowadays focus is on:
Web Service – Web Servicecommunication
(business processes)



The Web Services Vision

■ Support distributed applications composed of independent
processes which communicate by message passing

■ Targets loosely coupled systems

■ Much like the Erlang vision

■ Except independent of source language:
mappable to Java, C#, C++, . . .

■ Enables communication between web services implemented
in different languages, and by different companies, and on
different platforms



Web Service Framework Development

■ Development of the Web Services framework has been
layer-by-layer and rather ad-hoc

■ Web Servers→ Standard Data Format (XML)→ Message
Passing→ Web Services→ Business Processes→ . . .

■ As a result there is a huge pile of stacked “standards”: XML,
XML Schema, SOAP, WSDL, UDDI, . . .

■ As the web of services is built bottom-up, lacking a single
architect or design team, and evolves rapidly, we get complex
solutions

■ Interested parties are many – there is a lot of money in web
services, and lots of hype!

■ Strong players are Microsoft, Google, IBM, Oracle, SAP, Sun,
BEA, and open source enterprises such as Apache



This Lecture

■ My goal with this lecture is to understand what these standard
provide in terms of acomponent infrastructure and
middleware platform for distributed applications(keep in
mind comparison with Erlang)

■ To investigateBusiness Process Modelling(BPM) techniques
which promises a more ambitious Web Service Framework

■ Intriguingly people have been talking formal methods (the
π-calculus, petri nets) in connection with Business Processes
– we shall look for such a link



A Service Oriented Architecture

The ultimate aim of the web services programme is to build a
service-oriented architecture(SOA) with the properties:

■ Access to services is standardised (interfacesdefined)

■ Network nodes make (reusable) services available to other
nodes, independent of physical location (location
transparency)

■ The publishing of information about available services is
standardised (a service directory)

■ SOA should beindependent of implementation technology–
e.g. services can interoperate regardless of implementation
environment or language (Java, C#, . . . )



Web Services: A Concrete Architecture

A typical web service is implemented and deployed using a
representative stack of protocols and standards which we shall
examine in turn:

Language embeddings:Java, C#, . . .

Web Service Composition:WS-BPEL, WS-CDL

Distributed Middleware:WS-Transaction, WS-Security, . . .

Description:WSDL Advertisement:UDDI

Messaging:SOAP

Transport:HTTP Data Format:XML XML Schema

Web Server:Apache, . . .



Transport: HTTP

■ Asymmetric protocol: has a client and server side

■ A synchronous protocol: one request−→ one reply

■ A stateless protocol: no history of communication between
client and server available to server, every request is
understandable on its own

■ But the statelessness of operations is often too expensive –in
practise mechanisms likecookiesare used:



Transport: HTTP

■ Asymmetric protocol: has a client and server side

■ A synchronous protocol: one request−→ one reply

■ A stateless protocol: no history of communication between
client and server available to server, every request is
understandable on its own

■ But the statelessness of operations is often too expensive –in
practise mechanisms likecookiesare used:

client
request1
−−−−−→ server



Transport: HTTP

■ Asymmetric protocol: has a client and server side

■ A synchronous protocol: one request−→ one reply

■ A stateless protocol: no history of communication between
client and server available to server, every request is
understandable on its own

■ But the statelessness of operations is often too expensive –in
practise mechanisms likecookiesare used:

client
request1
−−−−−→ server

server
response1+cookie(name=value)
−−−−−−−−−−−−−−−−−−−−→ client



Transport: HTTP

■ Asymmetric protocol: has a client and server side

■ A synchronous protocol: one request−→ one reply

■ A stateless protocol: no history of communication between
client and server available to server, every request is
understandable on its own

■ But the statelessness of operations is often too expensive –in
practise mechanisms likecookiesare used:

client
request1
−−−−−→ server

server
response1+cookie(name=value)
−−−−−−−−−−−−−−−−−−−−→ client

client
request2+cookie(name=value)
−−−−−−−−−−−−−−−−−−−→ server



Transport: HTTP

■ Asymmetric protocol: has a client and server side

■ A synchronous protocol: one request−→ one reply

■ A stateless protocol: no history of communication between
client and server available to server, every request is
understandable on its own

■ But the statelessness of operations is often too expensive –in
practise mechanisms likecookiesare used:

client
request1
−−−−−→ server

server
response1+cookie(name=value)
−−−−−−−−−−−−−−−−−−−−→ client

client
request2+cookie(name=value)
−−−−−−−−−−−−−−−−−−−→ server

■ Universal addressing of resources(URIs)

■ HTTPS– for encryption using SSL/TLS



REST – Representational State Transfer

A software architecture style for hypermedia – the core of HTTP

■ A stateless client/server protocol for resource access

■ Defines a few basic operations that involve state transfers:

◆ GET (resource) – from server

◆ PUT (resource) – to server

◆ POST (resource) – submit new resource to a server

◆ DELETE (resource)

■ GET, PUT should beidempotent
that is multiple sequential requests should yield same answer

■ A universal syntax for resource identification

■ Allows for easy caching(no strange session dependencies)



Data Formats: XML

■ XML ≡ Extensible Markup Language: a general purpose
markup language

■ Human readable as well as machine readable format

■ Data is described verbosely, using text, in a tree hierarchy

■ Basic elements are: characters, containers (elements), and
attributes (name-value pairs) on containers

■ Example:

<country>
<name castellano="francia">france</name>
<population>59.7</population>

</country>



XML Advantages

■ Text format makes forreadability, understanding and easier
debugging of services on top of XML

■ Easy to define new formats on top of XML

■ Makes forextensible documents: a tool doesn’t need to know
everything about a format to extract information useful to
itself



XML Drawbacks

■ Data is described hierarchically rather that relationally.
For example: what is the hierarchy between actors and
movies?

■ Can be complex to parse and unparse

■ XML is inefficient for many uses: makes for slow applications
and communication

■ Binary data is stored using Base64 encoding, which increases
the size 1.33 times (problems for transmission of movies,
audio data, . . . )

■ And so attempts to improve exists: JSON (JavaScript Object
Notation), YAML, Binary XML, compressed and binary
XML (Fast Infoset, BiM – Binary MPEG format for XML)



XML Typing

■ XML Schema

◆ Also know as XSD (XML Schema Definition)

◆ Constrains XML documents –types for XML

◆ Defines allowable combinations of elements

◆ Characterises data types

◆ Basic types: decimal, float, string, base64Binary, list,
union, restriction. . .

◆ Complex types: defines allowed elements and attributes

■ Alternative: Relax NG – a more compact format



XML and XML Schema Example

■ Schema definition (country.xsd):

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="country" type="Country"/>
<xs:complexType name="Country">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="population" type="xs:decimal"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

■ Schema instance:

<country
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation="country.xsd">
<name>France</name>
<population>59.7</population>

</country>



Messaging: SOAP

■ Embeds XML into messages

■ Supports remote procedure calls (RPC)

■ Messages have a header and a body in an envelope

■ Fault information (for RPC:s) can be communicated

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap
<soap:Body>
<getProductDetails

xmlns="http://warehouse.example.com/ws">
<productID>827635</productID>

</getProductDetails>
</soap:Body>

</soap:Envelope>

■ As can be seen, a lot of text overhead. . . – but understandable!

■ Normally uses HTTP for transport



WSDL – Web Service Description Language

■ An XML format for describing how to communicate with web
services

◆ Describes thepublic abstract interface to the service,
i.e.,which operations the interface provides

◆ Describes abinding – how to exchange messages with a
server implementing the service interface (e.g., using
SOAP and HTTP)

◆ Describeswhere the service is available
That is, at which URL address the service is located

■ Normally used with SOAP (messages) and XML Schema
(defining data structures)



WSDL – Web Service Description Language

■ The abstract service interface of a web service description
provides operations (interactions between client and service)

■ These operations are composed of messages (either input or
output), or faults, whose format is typically defined in XML

■ An operation can be

◆ request--response,

◆ input only,

◆ output only,

◆ robust-in-only (in case of an error a reply is
delivered to the client),

◆ . . .



WSDL 2.0 example – room reservation

<interface name = "reservationInterface" >

<fault name = "invalidDataFault"
element = "ghns:invalidDataError"/>

<operation name="opCheckAvailability"
pattern="http://www.w3.org/2006/01/wsdl/in-out"
style="http://www.w3.org/2006/01/wsdl/style/iri"
wsdlx:safe = "true">

<input messageLabel="In"
element="ghns:checkAvailability" />

<output messageLabel="Out"
element="ghns:checkAvailabilityResponse" />

<outfault ref="tns:invalidDataFault"
messageLabel="Out"/>

</operation>
</interface>



WSDL 2.0 example – data definitions

<types>
<xs:schema ..>

<xs:element name="checkAvailability"
type="tCheckAvailability"/>

<xs:complexType name="tCheckAvailability">
<xs:sequence>
<xs:element name="checkInDate"

type="xs:date"/>
<xs:element name="checkOutDate"

type="xs:date"/>
<xs:element name="roomType"

type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:schema>

...
</types>



Binding to protocols

<binding name="reservationSOAPBinding"
interface="tns:reservationInterface"
type="http://www.w3.org/2006/01/wsdl/soap"
wsoap:protocol="http://www.w3.org/2003/05/soap/bindings

<fault ref="tns:invalidDataFault"
wsoap:code="soap:Sender"/>

<operation ref="tns:opCheckAvailability"
wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response

</binding>



Address information

<service name="reservationService"
interface="tns:reservationInterface">

<endpoint name="reservationEndpoint"
binding="tns:reservationSOAPBinding"
address="http://greath.example.com/2004/reservation"/>

</service>



Service Publishing & Discovery

Remember the SOA (services-oriented architecture:

■ We need a method to publish information about available
services (a service directory)

■ And methods tosearchthe directory for “suitable” web
services

■ For web services theUDDI directory service can be used



Web Service Publish & Discovery: UDDI

■ UDDI (Universal Description, Discovery and Integration) for
publishing&discovery of web services

■ UDDI was heavily hyped:

1. UDDI would provide a universalregistry for business to
provide service listings (web service descriptions, etc)

2. web service discovery: UDDI would spawn a service
broker infrastructure where a client looking for a service
searchers for a suitable provider in the UDDI registry

■ Nowadays the basic aspects of UDDI is emphasised: publish
and search for web services, and private (in-business) use

■ An UDDI description has three parts:

◆ details on the business providing the service

◆ functional characterisation of service (WSDL)

◆ technical details: access to service, transport mechanism



Status Check – Web Services

What have we got so far?



Status Check – Web Services

What have we got so far?

■ A stack of standards for describing operations, data formats,
and the locations at which the operations are available



Status Check – Web Services

What have we got so far?

■ A stack of standards for describing operations, data formats,
and the locations at which the operations are available

■ And a set of bindings to concrete programming languages
such as Java, C# for invoking and providing web services



Status Check – Web Services

What have we got so far?

■ A stack of standards for describing operations, data formats,
and the locations at which the operations are available

■ And a set of bindings to concrete programming languages
such as Java, C# for invoking and providing web services

■ But this is not very different from earlier attempts like
CORBA??

◆ Except we have “cool” Web Servers that implement Web
Services instead of “boring” CORBA Servers and
applications

◆ But the connection of WebServices and language (Java)
is indirect leading to ugly, complex and slow solutions



Status Check: Positive

In truth: more interactivity and easier debugging through better data
formats like XML

■ Seeing your data instead of decoding it is very rewarding

■ Possibly a key to the success of scripting languages too –
easy construction/deconstruction of data leads to less
separation of code and data!



Missing So Far

■ Are Web Services (as we have seen them so far) suitable for
implementing a (distributed) component framework?



Missing So Far

■ Are Web Services (as we have seen them so far) suitable for
implementing a (distributed) component framework?

■ No: several features from other frameworks are missing:

◆ To enable communication between Web Services we
need to establish various basic rules regarding
communications:

■ communication guarantees

■ security mechanism

■ trust model, . . .



Missing So Far

■ Are Web Services (as we have seen them so far) suitable for
implementing a (distributed) component framework?

■ No: several features from other frameworks are missing:

◆ To enable communication between Web Services we
need to establish various basic rules regarding
communications:

■ communication guarantees

■ security mechanism

■ trust model, . . .

◆ Design-by-contract: where are the abstract contract
descriptions of web services?
(post– and pre–conditions, invariants)



Distributed Middleware Concerns

There are a large number of “add-on” specifications that provide
support for web service design and interaction:



Distributed Middleware Concerns

There are a large number of “add-on” specifications that provide
support for web service design and interaction:

■ WS-Addressing: embedding address information in XML
(including reply information)



Distributed Middleware Concerns

There are a large number of “add-on” specifications that provide
support for web service design and interaction:

■ WS-Addressing: embedding address information in XML
(including reply information)

■ WS-ReliableMessaging: provides reliable SOAP message
delivery



Distributed Middleware Concerns

There are a large number of “add-on” specifications that provide
support for web service design and interaction:

■ WS-Addressing: embedding address information in XML
(including reply information)

■ WS-ReliableMessaging: provides reliable SOAP message
delivery

■ WS-Transactions: transaction support for web services



Distributed Middleware Concerns

There are a large number of “add-on” specifications that provide
support for web service design and interaction:

■ WS-Addressing: embedding address information in XML
(including reply information)

■ WS-ReliableMessaging: provides reliable SOAP message
delivery

■ WS-Transactions: transaction support for web services

■ WS-Security: provides end-to-end security (message
confidentiality, integrity)



Distributed Middleware Concerns

There are a large number of “add-on” specifications that provide
support for web service design and interaction:

■ WS-Addressing: embedding address information in XML
(including reply information)

■ WS-ReliableMessaging: provides reliable SOAP message
delivery

■ WS-Transactions: transaction support for web services

■ WS-Security: provides end-to-end security (message
confidentiality, integrity)

■ WS-Trust: manages trust (credentials, who has the permission
to do an operation)



Distributed Middleware Concerns

There are a large number of “add-on” specifications that provide
support for web service design and interaction:

■ WS-Addressing: embedding address information in XML
(including reply information)

■ WS-ReliableMessaging: provides reliable SOAP message
delivery

■ WS-Transactions: transaction support for web services

■ WS-Security: provides end-to-end security (message
confidentiality, integrity)

■ WS-Trust: manages trust (credentials, who has the permission
to do an operation)

■ WS-Policy: permits web services to announce policies
(Quality–of–service, security), and users to state requirements
upon web services



Guarantees for Message Passing

■ Delivery assurances for message passing (promises to clients
and servers)



Guarantees for Message Passing

■ Delivery assurances for message passing (promises to clients
and servers)

■ As an example recall the Erlang message delivery assurances:

Messages sent from any process P to any process Q is
delivered in order (or P or Q crashes)

QP M2 M1

QP M2 M1

■ Implies no duplication of messages, and no loss of messages
in the middle of a communication



WS-ReliableMessaging

Provides delivery assurances for messages:

■ AtLeastOnce: each message will be delivered at least once to
the receiver (or an error returned to the sender)

■ AtMostOnce: each message delivered at most once

■ ExactlyOnce: each message delivered exactly once

■ InOrder : messages delivered in order (combines with other
assurances)



WS-ReliableMessaging

Provides delivery assurances for messages:

■ AtLeastOnce: each message will be delivered at least once to
the receiver (or an error returned to the sender)

■ AtMostOnce: each message delivered at most once

■ ExactlyOnce: each message delivered exactly once

■ InOrder : messages delivered in order (combines with other
assurances)

Erlang communication guarantees?



WS-ReliableMessaging

Provides delivery assurances for messages:

■ AtLeastOnce: each message will be delivered at least once to
the receiver (or an error returned to the sender)

■ AtMostOnce: each message delivered at most once

■ ExactlyOnce: each message delivered exactly once

■ InOrder : messages delivered in order (combines with other
assurances)

Erlang communication guarantees?AtMostOnce, InOrder



Transactions

Classical transaction guarantees:ACID (atomicity, consistency,
isolation, durability)

■ atomicity: a sequence of operationsop1, op2, op3, . . . either
all occur ornone occurs



Transactions

Classical transaction guarantees:ACID (atomicity, consistency,
isolation, durability)

■ atomicity: a sequence of operationsop1, op2, op3, . . . either
all occur ornone occurs

■ consistency: the database is kept consistent by a transaction
(if a transaction invalidates an integrity constraint it is
aborted)

■ isolation: a transaction runs in isolation from other
transactions. That is, conceptually there are never two
concurrent transactions executing

■ durability : if the user is informed of a successful transaction
then the transaction is persistent (survives system failures)



WS-Transaction

Web based transaction standards:

■ WS-AtomicTransaction implements a classical two-phase
atomic commit protocol for short transactions (intended for
classical applications like managing access to data bases)

■ WS-BusinessActivitypermits transactions with a longer
lifetime



WS-BussinessActivity

■ A transaction may last a long time (in contrast to
WS-AtomicTransaction one cannot exclusively reserve
resources for the whole duration of the transaction)



WS-BussinessActivity

■ A transaction may last a long time (in contrast to
WS-AtomicTransaction one cannot exclusively reserve
resources for the whole duration of the transaction)

■ A business transaction may involve human actors



WS-BussinessActivity

■ A transaction may last a long time (in contrast to
WS-AtomicTransaction one cannot exclusively reserve
resources for the whole duration of the transaction)

■ A business transaction may involve human actors

■ Participating in a “business transaction” may have a cost



WS-BussinessActivity

■ A transaction may last a long time (in contrast to
WS-AtomicTransaction one cannot exclusively reserve
resources for the whole duration of the transaction)

■ A business transaction may involve human actors

■ Participating in a “business transaction” may have a cost

■ If some partner (process) decides to back-out it may be
nontrivial for other processes to also back-out of the
transaction



WS-BussinessActivity

■ A transaction may last a long time (in contrast to
WS-AtomicTransaction one cannot exclusively reserve
resources for the whole duration of the transaction)

■ A business transaction may involve human actors

■ Participating in a “business transaction” may have a cost

■ If some partner (process) decides to back-out it may be
nontrivial for other processes to also back-out of the
transaction

■ Instead ofaborting a transaction (undoing only the actions
of the transaction) the aim is tocompensating for the failed
transaction (reaching an acceptable state for all processes
involved in the failed transaction)



WS-BusinessActivity Example

■ A business transaction:

Operation 1: Company A pays for delivery of goods via DHL to
a company B

Operation 2: DHL delivers goods to company B

Operation 3: and receives payment afterwards from company B



WS-BusinessActivity Example

■ A business transaction:

Operation 1: Company A pays for delivery of goods via DHL to
a company B

Operation 2: DHL delivers goods to company B

Operation 3: and receives payment afterwards from company B

■ What happens if company B goes bankrupt during the
transaction?



WS-BusinessActivity Example

■ A business transaction:

Operation 1: Company A pays for delivery of goods via DHL to
a company B

Operation 2: DHL delivers goods to company B

Operation 3: and receives payment afterwards from company B

■ What happens if company B goes bankrupt during the
transaction?

◆ Where should the goods be delivered by DHL?

◆ Who should pay the price of shipping via DHL?



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:init (success example)



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:asking participants to prepare



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:participants have prepared



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:coordinator tells everyone to commit



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:participants commits locally



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:transaction completed successfully



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:init (failure example)



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:asking participants to prepare



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:preparation fails



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:asking participants torollback



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:participants rollback locally



WS-AtomicTransaction

Provides a two-phase commit protocol:

■ A coordinator process (Coordinator)

■ A set of participants (P,Q,R)

Transaction state:transaction failed



Web Services: continued. . .

■ Ok, so we have middleware support as well (WS-Addressing,
WS-Transactions, WS-ReliableMessaging, WS-Security, . .. )

■ Compare propaganda for “Enterprise Service Buses”

■ But we still have no way of describing (web service/process)
behaviour!



Processes and Interactivity

■ One solution for more directly defining the concrete behaviour
of processes is usingbusiness process work flow diagrams

■ In defining business processes it is common to define

◆ needed tasks

◆ how tasks are ordered, and

◆ how one task can invoke other task to solve a task using
such work flows



Processes and Interactivity

■ One solution for more directly defining the concrete behaviour
of processes is usingbusiness process work flow diagrams

■ In defining business processes it is common to define

◆ needed tasks

◆ how tasks are ordered, and

◆ how one task can invoke other task to solve a task using
such work flows

■ What if you (roughly) combine work flows with web
services?

■ You get:business processes andbusiness process web
standards!



Why are Business Processes interesting to us?

■ They are more ambitious than Web Service definition
languages like WSDL which only talk about static service
properties

■ Business process languages directly address behaviour
aspects; i.e., not only which operations are madeavailable but
what is theireffect

■ They address concurrency and distribution directly

■ An often stated claim is that they are based on formal
standards (petri nets,π-calculus)−→ could lead to verifiable
web services!



What is a Business Process

One definition:

■ has astate, upon which tasks operate

■ is long-running(i.e., the process spans hours, days, months or
more)

■ the state should bepersistent(i.e., stored in a database)

■ bursty, sleeps most of the time (responds to triggering events)

■ the system is responsible fororchestrationof system or human
communication
(the system manages the communication of human and
system agents)



Travel Agency Example



A Typical Business Process
A travel agent business process can contain the following tasks:

1. Get a customers itinerary (travel and time plans)

2. For each item in the itinerary, attempt to book it (flights with
airlines, rooms with hotels, cars with rental agency)

3. If all bookings succeed, get payment from customer and send
confirmation to customer

4. If at least one booking fail, report problem to customer

5. If customer wants to continue return to task (1) otherwisestop



A Typical Business Process
A travel agent business process can contain the following tasks:

1. Get a customers itinerary (travel and time plans)

2. For each item in the itinerary, attempt to book it (flights with
airlines, rooms with hotels, cars with rental agency)

3. If all bookings succeed, get payment from customer and send
confirmation to customer

4. If at least one booking fail, report problem to customer

5. If customer wants to continue return to task (1) otherwisestop

■ Note that task 1 must be done before 2, whereas all tasks in 2
can proceed in parallel, but all tasks must complete before
task 3 begins, and so on

■ Languages for Business Processes typically talk about such
task flow relations (in sequence, in parallel , . . . )



Combining manual and automatic tasks

■ Business processes typically combine automated tasks and
manual (involving people)

■ For instance, getting a customers itinerary and attemptingto
book them could be mainly automatic tasks

■ If a booking fail, a human should contact the customer with
this information and offer to provide assistance and resolve
the problem

■ There is amanagement component: typically human travel
agents will see a screen of ongoing failed reservation attempts
and can choose to focus on a particular one to resolve it



Business Process Advantages

For a company, using computer supported tools for tracking and
steering business process offers clear advantages:

■ Quick status: what is the status of a certain business order

■ Mechanising simple steps (eliminating expensive humans)

■ Letting human experts (experienced travel agents) focus on
difficult problems

■ Optimising other resources



Process Composition

■ A set of standards have been developed for integrating
business process modelling with web services

■ These address the question of how one web service can utilise
other web services to achieve its goals (web service - web
service communication)

Roughly these standards can be separated into two differentstyles,
depending on how such web service cooperations are defined:



Process Composition

■ A set of standards have been developed for integrating
business process modelling with web services

■ These address the question of how one web service can utilise
other web services to achieve its goals (web service - web
service communication)

Roughly these standards can be separated into two differentstyles,
depending on how such web service cooperations are defined:

■ Orchestration: the system behaviour is defined only from the
point of view of a single process, and how it interacts with the
outside world



Process Composition

■ A set of standards have been developed for integrating
business process modelling with web services

■ These address the question of how one web service can utilise
other web services to achieve its goals (web service - web
service communication)

Roughly these standards can be separated into two differentstyles,
depending on how such web service cooperations are defined:

■ Orchestration: the system behaviour is defined only from the
point of view of a single process, and how it interacts with the
outside world

■ Choreography: the behaviour is defined as an multi-party
collaboration (a “dance”) between several processes



Orchestration versus Choreography

■ In other words:

◆ orchestration is about defining one web service,

◆ choreography is about describing collaboration among
web services

■ Choreography is (supposedly) important for
business-to-business communication:defining contracts
between peers

■ Note similarities between web service choreography and
(distributed) protocol definitions



Choreography

Showing protocol negotiation:

Consumer Retailer Warehouse

purchase request

instock? query

instock! response ok response

not instock response failure response

not available

mscExample



Orchestration

Focusing on the Consumer:

Consumer Retailer Warehouse

purchase request

instock! response

not available

mscExample



Business Process Languages

■ For orchestration:BPEL – Business Process Execution
Language

■ For choreography:WS-CDL– Web Services Choreography
Description Language

■ Flow-based graphical notation:BPMN – Business Process
Modeling Notation (OMG)



Talking with the outside world: BPEL

■ BPEL – Business Process Execution Languageis a popular
standard for defining business processes as web services

■ It is used to describe theorchestration of Web Services

■ Comprises a language of basic behavioural constructs

■ A BPEL specification of a business process has two parts:

◆ Web Service Definitions (in WSDL) ofinterfaces
implemented by, and called by, the defined process

◆ A definition in BPEL which encodes in XML the
definition of thebehaviour of the web service



BPEL process behaviours

■ Basic control structures: sequences,while, if...else
(choice over data)

■ Basic data operations (XPath and other sublanguages)

■ A BPEL process addresses other processes through
bidirectionalpartner links (identifying communication roles)

■ Communication: other web services can be called using
invoke; reception of messages usingreceive or pick. A
received messages can be replied to usingreply

■ Flows describes temporal dependencies between activities

■ Fault handlers handle exceptional events

■ Long Running Transaction failure recovery is handled through
compensation clauses (rememberWS-BusinessActivity)



BPEL flows

■ Suppose there are three activities A, B, C that should run in
parallel, and when all three have finished D should execute:

<flow>
A B C

</flow>
D

■ More flexible process flows can be set up by explicit links
between activities (similar to Petri Nets)

■ A link has exactly onesource activity and onetarget activity



BPEL Flow Example

■ Suppose activities A and B run in parallel

■ When A has terminated activity C can run;
when either A or B has terminated D can run

<flow>
<links>

<link name="AC"/> <link name="AD"/> <link name="BD"/>
</links>

</flow>

<invoke partnerLink="A" ...>
<source linkName="AC"> <source linkName="AD">

</invoke>

<invoke partnerLink="B" ...>
<source linkName="BD"> </invoke>

<invoke partnerLink="C" ...>
<target linkName="AC"> </invoke>

<invoke partnerLink="D" ...>
<target linkName="AD"> <target linkName="BD">

</invoke>



BPEL evaluation

■ Currently very popular

■ It is animplementation language

■ Severalexecution engines permit execution of BPEL
processes

■ BPEL language less useful for describing detailed data
dependent behaviour – more intended for describing process
flow and communication

■ BPELJ is a combination of Java (for data behaviour) and
BPEL for flow and communication

■ Several alternative languages (BPMN,. . . ) exists that provide
a graphical notation for XML based business process
languages



WS-CDL: choreography of web services

WS-CDL≡ Web Services Choreography Description Language

■ In contrast to web service orchestration language BPEL,
WS-CDL is a language forchoreography of web services

■ orchestrationis about defining one web service,choreography
describes collaboration among web services

■ WS-CDL is used for describing protocols involving several
cooperating parties (processes having roles)

■ Provides aglobal service view– sonot directly
implementable(unlike BPEL)

■ However the communication end-points may be extracted and
implemented (in BPEL or. . . )

■ WS-CDL is a W3C Candidate Recommendation



WS-CDL: the language

Has a static part (providing type definitions) and a dynamic part
(defining interactions)

■ The static part defines:

◆ roles(participants in interactions),

◆ relationships(binary relations between roles),

◆ message formats(usually XML Schemas),

◆ and thechannelsover which information is passed

■ Roles have variables, that are not globally accessible

■ Channels play a central role in the language, as information
carriers, and have very detailed types



WS-CDL dynamics

The dynamic part defines interactions

■ An interaction takes place between two roles (i.e.binary
communication is assumed)

■ A choreography (or dialogue) between a number of web
services is composed of interactions between role types

■ Interactions can occur in parallel, in sequence, or can be
alternatives (inspired by theπ-calculus)

■ Interactions typically involve data movement: data moves
from the initiator to the responder (and vice versa in a reply)

■ Activities can depend on data conditions (guards, looops, .. . )



WS-CDL example

■ A highly stylised example:

1. A consumer issues a buying request to a retailer,

2. the retailer checks with the warehouse,

3. if the warehouse contains the item the warehouse
responds directly to the consumer,

4. otherwise the warehous replies to the retailer,

5. that in turn informs the consumer



WS-CDL example, part II

Consumer Retailer Warehouse

purchase request

instock? query

instock! response ok response

not instock response failure response

not available

mscExample



WS-CDL example, part III

As the language is based on XML specifications quickly grow large
– below a small part of the formalised example:

<interaction name="createPO"
channelVariable="tns:RetailerChannel"
operation="handlePurchaseOrder" >

<participate relationshipType="tns:ConsumerRetailerRelationship"
fromRoleTypeRef="tns:Consumer" toRoleTypeRef="tns:Retailer"/>

<exchange name="request"
informationType="tns:purchaseOrderType" action="request">
<send variable="cdl:getVariable(’tns:purchaseOrder’,’’,’’)" />
<receive variable="cdl:getVariable(’tns:purchaseOrder’,’’,’’)"

recordReference="record-the-channel-info" />
</exchange>

<exchange name="response"
informationType="purchaseOrderAckType" action="respond">

<send variable="cdl:getVariable(’tns:purchaseOrderAck’,’’,’’)" />
<receive variable="cdl:getVariable(’tns:purchaseOrderAck’,’’,’’)" />

</exchange>
</interaction>



WS-CDL dynamics

■ The dynamic part is extended with:

◆ Exceptions

◆ Finalizer blocks

◆ Alignment of variables (between invoker and responder)

■ To implement a choreography one may need to add new
messages as there can be hidden dependencies between
processes

■ An example is when two processes must agree whether a
choreography ends with an exception or not
(a coordinated choreography)

■ Channel types are very expressive. One can specify that an
instance can only be used by a single process



WS-CDL evaluation

■ Descriptions become pretty long; graphical syntax missing

■ Who are the users? (not for implementing)

■ BPEL can in theory be derived from WS-CDL descriptions



Tool support for WS-CDL

■ Pi4soais an Eclipse-based tool which can be used to
experiment with WS-CDL specifications (offering a
choreography editor, simulator, generating WS-BPEL. . . )



Tool support for WS-CDL

■ Pi4soais an Eclipse-based tool which can be used to
experiment with WS-CDL specifications (offering a
choreography editor, simulator, generating WS-BPEL. . . )

■ SAVARA (for JBoss)



Popular Web Service Frameworks

■ Apache Axis

■ Web Services Interoperability Technology (SUN)

■ Windows Communication Foundation (Microsoft,
.NET-based)

■ . . .

All implement at least WS-Addressing, WS-ReliableMessaging and
WS-Security



Coordination Systems: Mashup web application

■ “A web application that combines data from external sources
to create a new service”



Coordination Systems: Mashup web application

■ “A web application that combines data from external sources
to create a new service”

■ Example: a customized google page:



EzWeb: a Spanish Mashup Web Application



EzWeb as a component based platform

■ A Telefónica initiative (http://ezweb.tid.es)

■ Strong connection with component-based thinking

■ But the component platform is rather weak (bad concurrency
model,. . . )



Conclusions

Web services as a component platform:

■ Lots of money in Web Services – as a result a lot of hype
driven by companies such as Microsoft, SUN, IBM, Oracle

■ Early standards approach yields clumsy solutions

■ Layered standards further result in clumsy approaches

■ SOA and Enterprise Service Bus are attempts at a more
elegant framework – but implemented using the same base
standards (XML, SOAP, WSDL)

■ Still lacking semantic contract specifications (compare
design-by-contract for programming languages)

■ Formal methods link for Business Processes Modelling? So
far just hype!


	Web Communication: Evolution
	The Web Services Vision
	Web Service Framework Development
	This Lecture
	A Service Oriented Architecture
	Web Services: A Concrete Architecture
	Transport: HTTP
	REST – Representational State Transfer
	Data Formats: XML
	XML Advantages
	XML Drawbacks
	XML Typing
	XML and XML Schema Example
	Messaging: SOAP
	WSDL – Web Service Description Language
	WSDL – Web Service Description Language
	WSDL 2.0 example – room reservation
	WSDL 2.0 example – data definitions
	Binding to protocols
	Address information
	Service Publishing & Discovery
	Web Service Publish & Discovery: UDDI
	Status Check – Web Services
	Status Check: Positive
	Missing So Far
	Distributed Middleware Concerns
	Guarantees for Message Passing
	WS-ReliableMessaging
	Transactions
	WS-Transaction
	WS-BussinessActivity
	WS-BusinessActivity Example
	WS-AtomicTransaction
	Web Services: continued…
	Processes and Interactivity
	Why are Business Processes interesting to us?
	What is a Business Process
	Travel Agency Example
	A Typical Business Process
	Combining manual and automatic tasks
	Business Process Advantages
	Process Composition
	Orchestration versus Choreography
	Choreography
	Orchestration
	Business Process Languages
	Talking with the outside world: BPEL
	BPEL process behaviours
	BPEL flows
	BPEL Flow Example
	BPEL evaluation
	WS-CDL: choreography of web services
	WS-CDL: the language
	WS-CDL dynamics
	WS-CDL example
	WS-CDL example, part II
	WS-CDL example, part III
	WS-CDL dynamics
	WS-CDL evaluation
	Tool support for WS-CDL
	Popular Web Service Frameworks
	Coordination Systems: Mashup web application
	EzWeb: a Spanish Mashup Web Application
	EzWeb as a component based platform
	Conclusions

