
Checking Coding Rules in OO Languages Using CRISP

Guillem Marpons1

Joint work with:
Julio Mariño Manuel Carro Ángel Herranz

Lars-Åke Fredlund Juan José Moreno-Navarro

1Universidad Politécnica de Madrid
gmarpons@fi.upm.es

COST Action IC0701 Meeting, Madrid December 2008

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 1 / 18



Motivation: C++ “Strange” Behavior

class A
{
public:

A();
virtual void func ();

};

class B : public A
{

B() : A() {}
virtual void func ();

};

A::A() {
func ();

}

B *d = new B();

// A::func or B::func?

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 2 / 18



Motivation: C++ “Strange” Behavior

class A
{
public:

A();
virtual void func ();

};

class B : public A
{

B() : A() {}
virtual void func ();

};

A::A() {
func ();

}

B *d = new B();

// A::func or B::func?

Coding Rule:

“Do not invoke virtual methods of the declared class
in a constructor or destructor.”

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 2 / 18



Coding Rules

Definition

Coding Rules constrain admissible constructs of a
language to help produce more reliable and

maintainable code.

Standard coding rule sets do exist, e.g.:

High-Integrity C++ (HICPP): general C++ applications

MISRA-C (C language): automotive industry / embedded systems

Many organisations need to write their own rule sets
or adapt existing ones.

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 3 / 18



Other Tools

Proprietary tools:

Compilers: IAR Systems (C)

QA: Parasoft, Klocwork, Coverity, Semmle Code (Java)

Free software:

Checkstyle (Java)

Gendarme (ECMA CIL, Mono and .Net)

Drawbacks:

Lack of appropriate extensibility mechanisms

Ambiguity in natural language

Interoperability is difficult

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 4 / 18



Proposed Approach

1 Formalize rules in a logic-based specification language
that is executable: CRISP

2 Use GCC for gathering necessary program information

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 5 / 18



Our Rule Checking Procedure

Coding rules
(in English)

C++ project
source files

Coding rules
formalized

in CRISPC++

Coding rule
compiler

g++’

(project build)

Coding rules
compiled

into Prolog

Project facts
in Prolog

Ciao Prolog
engine

Rule viola-
tions report

1 Coding rule(s) written once
in the logic-based formalism

2 Extract program information
(+ analysis information if
available) using GCC, and
store it

3 Search (using a Prolog
engine) for a counterexample

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 6 / 18



Our Rule Checking Procedure

Coding rules
(in English)

C++ project
source files

Coding rules
formalized

in CRISPC++

Coding rule
compiler

g++’

(project build)

Coding rules
compiled

into Prolog

Project facts
in Prolog

Ciao Prolog
engine

Rule viola-
tions report

1 Coding rule(s) written once
in the logic-based formalism

2 Extract program information
(+ analysis information if
available) using GCC, and
store it

3 Search (using a Prolog
engine) for a counterexample

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 6 / 18



Our Rule Checking Procedure

Coding rules
(in English)

C++ project
source files

Coding rules
formalized

in CRISPC++

Coding rule
compiler

g++’

(project build)

Coding rules
compiled

into Prolog

Project facts
in Prolog

Ciao Prolog
engine

Rule viola-
tions report

1 Coding rule(s) written once
in the logic-based formalism

2 Extract program information
(+ analysis information if
available) using GCC, and
store it

3 Search (using a Prolog
engine) for a counterexample

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 6 / 18



Our Rule Checking Procedure

Coding rules
(in English)

C++ project
source files

Coding rules
formalized

in CRISPC++

Coding rule
compiler

g++’

(project build)

Coding rules
compiled

into Prolog

Project facts
in Prolog

Ciao Prolog
engine

Rule viola-
tions report

1 Coding rule(s) written once
in the logic-based formalism

2 Extract program information
(+ analysis information if
available) using GCC, and
store it

3 Search (using a Prolog
engine) for a counterexample

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 6 / 18



CRISP Building Blocks 1: Sorts

Variable, DataMember, LocalVariable

Function, MemberFunction, Constructor

Type, PointerType, Record

Scope, Namespace, Record, CompoundStatement

Operator

ArgumentTypeInFunctionType

ClassMember

Thing

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 7 / 18



CRISP Building Blocks 2: (Binary) Relations

Function calls Function
Record hasImmediateBase Record
Variable hasType NonFunctionType
Function hasType FunctionType
Thing isDefinedIn Scope
Scope isNestedIn Scope
Record hasMember MemberFunction
Record hasMember DataMember
Record hasBase Record
Record isPrivateBaseOf Record
Record isVirtualBaseOf Record
PointerType hasPointedType Type
FunctionType hasReturnType Type
Record hasFriend Record
Record hasFriend MemberFunction
ClassMember hasVisibility Visibility

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 8 / 18



Example of Rule Formalization

Rule HICPP 3.3.13:

“Do not invoke virtual methods of the declared class
in a constructor or destructor.”

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 9 / 18



Example of Rule Formalization

Rule HICPP 3.3.13:

“Do not invoke virtual methods of the declared class
in a constructor or destructor.”

rule HICPP 3.3.13’

violated by Caller : MemberFunction; Callee : VirtualFunction

when exists R : Record such that

(

R hasMember Caller

and R hasMember Callee

and

(

Caller is Constructor

or Caller is Destructor

)

and Caller calls+ Callee

)

.

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 9 / 18



Auxiliary Sorts and Relations

relation F : Function oveloads F’ : Function

when exists S : Scope ; N : String such that

(

F isDefinedIn S

and F’ isDefinedIn S

and F hasUnqualifiedName N

and F’ hasUnqualifiedName N

and F \= F’

)

.

sort M : ClassMember is PrivateClassMember

when exists V : Visibility such that

(

M hasVisibility V and V is ‘private’

)

.

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 10 / 18



Integration into GCC

GlobalGCC Project (Eureka/ITEA). Enhance the GNU compiler
collection with:

I Project-wide static analysis
I Global optimization
I Coding rule checking

Huge potential user base

All facts of a project in a single file
User interface. Two steps:

1 g++ -fipa-codingrules -fipa-codingrules-file=FILENAME

Pass appropriate CXX to ./configure
2 checkrules -s RULE SET [-r RULES] FILENAME

Code available at http://www.ggcc.info

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 11 / 18



Experimental Results

PROJECT KLOC LOAD TIME # VIOLATIONS (CHECKING TIME)
3.3.1 3.3.2 3.3.11 3.3.15

Bacula 20 0.24 0 (0.0) 3 (0.0) 0 (0.0) 0 (0.0)
CLAM 46 1.62 1 (0.0) 15 (0.5) 115 (0.1) 0 (0.2)
Firebird 439 2.61 16 (0.0) 60 (1.0) 115 (0.2) 0 (0.3)
IT++ 39 0.42 0 (0.0) 6 (0.0) 12 (0.0) 0 (0.0)
OGRE 209 3.05 0 (0.0) 15 (0.9) 79 (0.2) 0 (0.3)
Orca 89 1.17 1 (0.0) 12 (0.4) 0 (0.1) 0 (0.2)
Qt 595 10.42 15 (0.0) 75 (10.5) 1155 (1.3) 4 (1.2)

All times expressed in seconds.

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 12 / 18



Work in Progress

1 Implement / Enrich the CRISP Language

2 Implement more rules with information given by other tools

3 Open our abstract representation of programs to external tools

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 13 / 18



Implement / enrich the CRISP language

Quantification and true negation needed
I Both performed over certain domains (sorts)
I Infinite domains may appear with templates / generics
I We have an implementation of constructive intensional negation

Goals automatically reordered

Extend CRISP to other languages: Java, Ada, C, Fortran, . . .

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 14 / 18



Examples of Rules that Need Specific Analysis

Rule HICPP 3.3.13:

“Do not invoke virtual methods of the declared class in a constructor or
destructor.”

Rule HICPP 3.2.5:

“Ensure destructors release all objects owned by the object”

Rule HICPP 3.4.2:

“Do not return non-const handles to class data from const member
functions”

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 15 / 18



Examples of Rules that Need Specific Analysis

Rule HICPP 3.3.13:

“Do not invoke virtual methods of the declared class in a constructor or
destructor.”

Rule HICPP 3.2.5:

“Ensure destructors release all objects owned by the object”

Rule HICPP 3.4.2:

“Do not return non-const handles to class data from const member
functions”

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 15 / 18



Examples of Rules that Need Specific Analysis

Rule HICPP 3.3.13:

“Do not invoke virtual methods of the declared class in a constructor or
destructor.”

Rule HICPP 3.2.5:

“Ensure destructors release all objects owned by the object”

Rule HICPP 3.4.2:

“Do not return non-const handles to class data from const member
functions”

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 15 / 18



Integration of Information from External Analyzers

Coding rules
(in English)

C++ project
source files

Coding rules
formalized

in CRISPC++

Coding rule
compiler

g++’

(project build)

Coding rules
compiled

into Prolog

Project facts
in Prolog

Ciao Prolog
engine

Rule viola-
tions report

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 16 / 18



Integration of Information from External Analyzers

Coding rules
(in English)

C++ project
source files

Coding rules
formalized

in CRISPC++

Coding rule
compiler

g++’

(project build)

Knowledge Base about the compiled program

Ciao Prolog
engine

Rule viola-
tions report

External
Analyzer

Translation

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 16 / 18



Open the Knowledge Base to External Tools

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 17 / 18



Thanks for your Attention!

Questions?

Comments?

Guillem Marpons et al. (UPM) Coding Rule Checking Madrid December 2008 18 / 18


