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Abstract

Coding rules are often used in industry for codifying software best practices and avoiding the many hazardous
constructions present in languages such as C or C++. Predictable and customisable tools are needed to
automatically measure adherence to these practices. Many of the properties about software needed for rule
conformance analysis are calculated by modern compilers. We present an extension of the GNU Compiler
Collection (GCC) that flags those code fragments that do not conform to a given set of rules. The user can
define coding rules using a high-level declarative language based on logic programming.
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1 Introduction

Languages such as C or C++ need to be used in a disciplined manner, such that

the hazards of its weaknesses and more error-prone features are minimised. To that
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end, it is common in industry to require that code rely only on a well-defined subset

of the language, following a set of coding rules.

Some standard rule sets do exist listing good general programming practices for

a given language, like High-Integrity C++ (HICPP [4]). MISRA-C [3] is another

leading initiative elaborated by The Motor Industry Software Reliability Association

(MISRA). It contains a list of 141 coding rules aimed at writing robust C code for

critical systems. An important requirement is that many organisations – or even

projects – need to establish their own coding rule sets, or adapt the existing ones.

However, no matter who devises and dictates the coding rule set, for it to be of

practical use, an automatic method to check code for conformance is needed. There

exists a number of commercial compilers and quality assurance tools from vendors

such as IAR Systems (www.iar.com) and Parasoft (www.parasoft.com) that claim

to be able to check code for compliance with a subset of HICPP, MISRA-C or other

standards. Other tools, e.g. Klocwork (www.klocwork.com), define their own list of

informally described checks aimed at avoiding hazards. But, in absence of a formal

definition of rules, it is difficult to be certain about what they are actually checking,

and two different tools could very well disagree about the validity of some particular

piece of code with respect to, e.g., the same MISRA-C rule.

In [2] we propose a framework to precisely specify rule sets and automatically

check (non-trivial) software projects for conformity. On the rule-writer side, a logic-

based language (at time being a subset of Prolog) will make it possible to easily

capture the meaning of coding rules, constituting a more practical mechanism for

user-defined rules than those provided by most of the tools. There have recently

appeared other tools relying on high-level languages for defining code checks, such

as Semmle Code (www.semmle.com), Klocwork Insight or Parasoft RuleWizard, but

to our knowledge, ours is the first one based on logic programming.

In this work we present a new version of our coding rule checker that extracts

all the needed information about C++ programs during compilation with the GNU

Compiler Collection (GCC, gcc.gnu.org). We think that adding this feature to the

day-to-day tool of thousands of developers will facilitate the adoption of coding rules

in many projects. More importantly, as we rely for program analysis on the very

same parser and semantic analysis used for object code generation, we avoid any

possible discrepancy between both tools on how code is interpreted. Moreover, some

static analyses already present in GCC are potentially reused. Both our modified

version of GCC and the Prolog code necessary for rule checking are available at the

website of the GlobalGCC project: www.ggcc.info.

2 Checking Structural Coding Rules

Our procedure for checking a given rule consists of three steps:

(i) Formalise the rule (in fact its violation) – that is written in plain English in

standard rule sets – in (a subset of) Prolog. In the future we plan to facilitate

this step with a completely declarative domain-specific language based on logic

programming, with sorts, constructive negation, and appropriate quantifiers

(find some details in [2]).
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violate_hicpp_3_3_13(Caller ,Called ) :-
has_member (SomeClass ,Caller ),
(

constructor (Caller )
;

destructor (Caller )
),
has_member (SomeClass ,Called ),
virtual_member(Called ),
calls (Caller ,Called ).

violate_hicpp_3_3_15(A,B,C,D) :-
immediate_base_of(A, B),
immediate_base_of(A, C),
B \== C,
base_of (B, D),
base_of (C, D),
\+ virtual_base_of(A, C).

Figure 1. Prolog formalisation of some HICPP rules.

(ii) Transcribe the necessary program information into the same representation,

i.e. Prolog facts. Programs to be analysed are compiled with GCC, with an

added flag -fipa-codingrules for dumping these facts to a file.

(iii) Put together both the rule violation predicate and those Prolog facts giving a

high-level description of the software to be analysed. With a Prolog Engine –

Ciao Prolog [1] – we seek for counterexamples for the rule.

This last step is performed with a command line tool called checkrules that

contains the Prolog interpreter. The other two steps are detailed in the next corre-

sponding sections.

3 Coding Rule Definition in Prolog

We have focused first on what we term structural coding rules: those that have to

do with objects in the code such as classes or functions, their static properties, and

static relations among them such as inheritance, containment or usage.

A good example of this kind of rules is Rule HICPP 3.3.13, that reads “do not

invoke virtual methods of the declared class in a constructor or destructor.” The

rationale behind this requirement is that member functions of the same object are

always statically bound if called from a constructor or a destructor.

Another example is Rule 3.3.15 of HICPP that says: “ensure base classes com-

mon to more than one derived class are virtual.” With the help of the justification

that accompanies the rule, we can reformulate it as follows:

Rule 3.3.15 is violated if there exist classes A, B, C, and D such that: class A is a

base class of D through two different paths, and one of the paths has class B as

an immediate subclass of A, and the other has class C as an immediate subclass

of A, where B and C are different classes. Moreover A is not a virtual base of C.

Formalising the rules requires a set of language-specific predicates representing

structural information about, e.g., the inheritance graph of the checked program.

Table 1 shows some C++ predicates used for defining some rules, as the two given

above. These predicates constitute the programming interface for writing rules and

are defined on top of the information generated by the compiler, as explained in

Sect. 4. Fig. 1 shows the Prolog formalisation of the aforementioned HICPP rules.

4 Using GCC for Gathering Program Information

The middle-end (ME) of GCC contains a set of lowering and optimisation passes

that are independent from both the compiled language and the target architecture.
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Table 1
A subset of the predicates necessary to describe structural relations in C++ code.

Predicate Meaning

immediate base of(a, b) Class b directly inherits from a.

base of(a, b) Transitive closure of immediate base of/2.

public base of(a, b) Class b immediately inherits from class a with

public accessibility. There are analogous

predicates for other accessibility choices and

also for virtual inheritance.

declares member(a,m) Class a (re-)declares a member m.

has member(c,m) Class c has defined a member m (data or

function). m can be inherited from a base class.

constructor(c), destructor(d) Member c is a constructor (destructor).

virtual member(v) Member function v is dynamically dispatched.

calls(a, b) (Member) function a has in its text an

invocation of (member) function b.

Since it is simple and clean to add a new pass to the ME, and no overhead exists

if the pass is not enabled with the corresponding flag, this has been our first step

towards a facility for program feature extraction integrated into GCC.

Some of the program features needed for writing rules are common to many

languages and have a representation in the ME – even if the semantics is not exactly

the same in different languages. Other properties or constructs (e.g. templates and

friends in C++) are language-specific. We plan to also instrument the C++ front-

end in the future (and maybe other front-ends).

Our pass writes to a file Prolog facts describing structural properties of the

analysed software, that can be either a program or a library. All the source files in a

project have to be analysed because structural rules involve project-wide properties.

This is carried out by relying on the building process used in the project (e.g. make,

scons, ant, etc.) and accumulating all the Prolog facts of different compilation

units in a single file, that is subsequently analysed with checkrules.

For every relevant entity in the code a Prolog term of the form

entity(GLOBAL KEY ) is generated, where entity is one of enum, enum value,

union, record, function, global var, method, field, and bit field.

GLOBAL KEY is a project wide identifier of the entity, based on name mangling.

Mangled names are a special encoding of names of functions, variables, etc. gen-

erated by the compiler for the linker and other tools. They resolve, among other

possible name clashes, overloaded function names, including overloading originated

by templates. There is also a naming scheme for local entities (local variables,

function arguments, etc.) not described here.

Following this identification scheme, a Prolog predicate exists for every relevant

property of global entities, and terms are generated in the output for every occur-
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Table 2
Structure of some Prolog terms representing properties and relations among C++ global entities.

ACCESS SPECIFIER is one of public, protected, or private.

virtual(method(GLOBAL KEY ))

accessibility(method(GLOBAL KEY ),ACCESS SPECIFIER)

contains(namespace(GLOBAL KEY ),entity)

contains(record(GLOBAL KEY ),entity)

enumerates(enum(GLOBAL KEY 1 ),enum value(GLOBAL KEY 2 ))

extends(record(GLOBAL KEY 1 ),record(GLOBAL KEY 2 ))

virtual(extends(record(GLOBAL KEY 1 ),record(GLOBAL KEY 2 )))

rence of the property. These terms have the structure shown in Table 2 for some

example properties: virtual and accessibility. Besides individual properties,

relations among global entities exist. Some examples of binary relations among

global entities can also be found in Table 2: contains, enumerates, and extends.

Relations such as extends can also have properties attached, like virtual.

Some terms are generated for representing types and attaching types to entities,

and also for associating code locations to entities (needed for user output).

The predicates used in Table 1 are defined on top of the predicates described

in this section. Those predicates are of a higher level, closer to abstractions used

in defining coding rules. They follow the usual terminology used for talking about

C++ programs (base classes, member functions, etc.), facilitating the formalisation

of the rules for a C++ expert.

5 Conclusions

We present a tool for structural coding rule validation where rules for C++ are

formally defined by means of a declarative rule definition language. Users can

define their own rules and the tool is seamlessly integrated into the work-flow of the

developers. Basic information about programs is taken from the very same compiler

used to generate object code, which avoid inconsistencies. Only about 20% of the

rules in HICPP are purely structural. In order to implement more rules we need

to modify other parts of the compiler and gain access to syntactic information

unavailable in the ME, and to the result of sophisticated analyses performed by

GCC in its optimisation steps. We plan to extend our rule definition language to

support new logic formalisms that help in the definition of non-structural rules. The

approach should be easily adapted to other languages supported by GCC.
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