
TOWARDS CHECKING CODING RULE CONFORMANCE

USING LOGIC PROGRAMMING
G. Marpons(1) M. Carro(1) J. Mariño(1) A. Herranz(1) L. Fredlund(1) J. Moreno-Navarro(1,2)

(1) Universidad Politécnica de Madrid (2) IMDEA Software

Coding Rules

Constrain admissible constructs (e.g. forbidding error-prone

features or coding styles) to help producing safer code.

Standard coding rule sets do exist, e.g.:

MISRA-C (C language): automotive industry standard

High-Integrity C++ (HICPP): sponsored by a private company

Javacard: addressing specific restrictions of Java Smart Cards

Enormous diversity in:

• Program features involved

• Analysis techniques required

• Static enforceability

We focus on structural rules, which deal with relationships between

static entities in the code (classes, member functions, etc.), e.g.:

Rule HICPP 3.3.15:

“Ensure base classes common to more than

one derived class are virtual.”

Natural language is inherently ambiguous: Which inheritance links

must be tagged as “virtual”?

A framework to formalise coding rules is necessary to statically

check that programs conform to a given set. We are developing

such a framework in the environment of the GGCC project.

Knowledge Base
About a Program

A set of classes violating rule HICPP 3.3.15:

::Animal

::Mammal ::WingedAnimal

::Bat

virtual

Program properties gathered during compila-

tion for the above example and relevant to

rule HICPP 3.3.15:

class(’::Animal’).
class(’::Mammal’).
class(’::WingedAnimal’).
class(’::Bat’).
direct_base_of(’::Animal’,’::Mammal’).
direct_base_of(’::Animal’,’::WingedAnimal’).
direct_base_of(’::Mammal’,’::Bat’).
direct_base_of(’::WingedAnimal’,’::Bat’).
virtual_base_of(’::Animal’,’::Mammal’).

The Global GCC Project

• ITEA funded (2006-08) consortium of industrial / research partners

• Goal: improving static analysis capabilities of the GNU Compiler Collection (GCC)

• Global GCC knowledge base: share information among different GGCC analysers

Global GCC Coding Rule Compliance Infrastructure

Coding Rule 
Formalisation

Coding Rule 
Compiler

Prolog Repr. 
of Coding 
Rules

Coding Rule 
Checker

Coding Rule 
Compliance 
Diagnosis

Global GCC 
Knowldege 
Base

Other Global GCC Analysers

Global GCC 
Knowldege 
Base

Global 
Optimiser

Static 
Analysers

GNU Compiler Collection (GCC)

Global GCC 
Knowldege 
Base

GCC 
Front-End

Gimple, SSA, 

and other 

GCC Internal 

Repr.

GCC 
Back-End

Source Files: 
.c, .cpp, .java

Object 
Code

Rule Formalisation

Based on first-order logic and written in a domain-specific

language which is translated into Prolog and that:

• Formalises standard coding rule sets in a declarative style

• Makes it easier for the final user to define additional cod-

ing rules

• Provides a collection of predefined predicates about

program facts (such as class/1, base_of/2, or

in_call_graph_of/2)

• Quantification over certain domains

• Constructive negation

Rule Checking

Rule HICPP 3.3.15 translated into Prolog

violate_hicpp_3_3_15(A, B, C, D) :-

class(A), class(B), class(C), class(D), B \= C,

direct_base_of(A, B), direct_base_of(A, C),

base_of(B, D), base_of(C, D),

\+ virtual_base_of(A, C).

We do not code the rule itself, but its negation. Any program that satisfies

the negated rule thus violates the coding rule.

Predicates coding rule violations are queried against facts describing a pro-

gram. A successful resolution flags a rule violation, providing a witness.

Work partially supported by PROFIT grants FIT-340005-2007-7 and FIT-350400-2006-44 from the Spanish Ministry of Industry, Comunidad Autónoma de Madrid grant

S-0505/TIC/0407 (PROMESAS), Ministry of Education and Science grant TIN2005-09207-C03-01 (MERIT/COMVERS) and EU IST FET grant IST-15905 (MOBIUS).


