TOWARDS CHECKING CODING RULE CONFORMANCE
USING LOGIC PROGRAMMING

G. Marpons" M. CarroV)
(1) Universidad Politécnica de Madrid

J. Marino® A. Herranz») L. Fredlund® J. Moreno-Navarro(!:?)
(2) IMDEA Software

Standard coding rule sets do exist, e.g.:

Enormous diversity in:
e Program features involved
e Analysis techniques required

e Static enforceability

MISRA-C (C language): automotive industry standard
High-Integrity C++ (HICPP): sponsored by a private company

Javacard: addressing specific restrictions of Java Smart Cards

Knowledge Base
About a Program

A set of classes violating rule HICPP 3.3.15:

::Animal \

virtual

::Mammal ::WingedAnimal

7

::Bat |

rule HICPP 3.3.15:

class(’::Animal’).
class(’::Mammal’).
class(’::WingedAnimal’) .
class(’::Bat’).

Program properties gathered during compila-
tion for the above example and relevant to

|

direct_base_of(’::Animal’,’: :Mammal’).
direct_base_of(’::Animal’,’::WingedAnimal’).
direct_base_of(’::Mammal’,’::Bat’).
direct_base_of(’::WingedAnimal’,’::Bat’).
virtual_base_of(’::Animal’,’::Mammal’).

(

ing rules

program facts (such as class/1,
in_call_graph_of/2)

e Quantification over certain domains

e Constructive negation

Rule Formalisation

Based on first-order logic and written in a domain-specific
language which is translated into Prolog and that:

e Formalises standard coding rule sets in a declarative style

e Makes it easier for the final user to define additional cod-

e Provides a collection of predefined predicates about
base_of/2, or

| Coding Rules |

Constrain admissible constructs (e.g. forbidding error-prone We focus on structural rules, which deal with relationships between
features or coding styles) to help producing safer code. static entities in the code (classes, member functions, etc.), e.g.:

Rule HICPP 3.3.15:

“Ensure base classes common to more than
one derived class are virtual.”

Natural language is inherently ambiguous: Which inheritance links
must be tagged as “virtual”?

A framework to formalise coding rules is necessary to statically
check that programs conform to a given set. We are developing
such a framework in the environment of the GGCC project.

| The Global GCC Project |

e ITEA funded (2006-08) consortium of industrial / research partners

~

e Goal: improving static analysis capabilities of the GNU Compiler Collection (GCC)

¢ Global GCC knowledge base: share information among different GGCC analysers

GCC Object
Back-End Code

Other Global GCC Analysers

GNU Compiler Collection (GCC)

3
Gimple, SSA,
and other
GCC Internal
Repr.

Source Files: GCC
.C, .cpp, -java Front-End

Global
Optimiser

Global GCC
Knowldege
Base

Static
Analysers

— 3
Prolog Repr.

Coding Rule

Coding Rule Coding Rule _ Coding Rule Compliance
ules

-

| Rule Checking |

Rule HICPP 3.3.15 translated into Prolog

violate_hicpp_3_3_15(A, B, C, D) :-
class(A), class(B), class(C), class(D), B \= C,
direct_base_of (A, B), direct_base_of(A, C),
base_of (B, D), base_of(C, D),
\+ virtual_base_of(A, C).

We do not code the rule itself, but its negation. Any program that satisfies
the negated rule thus violates the coding rule.

Predicates coding rule violations are queried against facts describing a pro-
gram. A successful resolution flags a rule violation, providing a witness.

s

Work partially supported by PROFIT grants FIT-340005-2007-7 and FIT-350400-2006-44 from the Spanish Ministry of Industry, Comunidad Auténoma de Madrid grant
S-0505/TIC/0407 (PROMESAS), Ministry of Education and Science grant TIN2005-09207-C03-01 (MERIT/COMVERS) and EU IST FET grant IST-15905 (MOBIUS).

