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Coding Rules

Constrain admissible constructs (e.g. forbidding error-prone

features or coding styles) to help producing safer code.

Standard coding rule sets do exist, e.g.:

MISRA-C (C language): automotive industry standard

High-Integrity C++ (HICPP): sponsored by a private company

Javacard: addressing specific restrictions of Java Smart Cards

Enormous diversity in:

• Program features involved

• Analysis techniques required

• Static enforceability

We focus on structural rules, which deal with relationships between

static entities in the code (classes, member functions, etc.), e.g.:

Rule HICPP 3.3.15:

“Ensure base classes common to more than

one derived class are virtual.”

Natural language is inherently ambiguous: Which inheritance links

must be tagged as “virtual”?

A framework to formalise coding rules is necessary to statically

check that programs conform to a given set. We are developing

such a framework in the environment of the GGCC project.

Knowledge Base
About a Program

A set of classes violating rule HICPP 3.3.15:

::Animal

::Mammal ::WingedAnimal

::Bat

virtual

Program properties gathered during compila-

tion for the above example and relevant to

rule HICPP 3.3.15:

class(’::Animal’).
class(’::Mammal’).
class(’::WingedAnimal’).
class(’::Bat’).
direct_base_of(’::Animal’,’::Mammal’).
direct_base_of(’::Animal’,’::WingedAnimal’).
direct_base_of(’::Mammal’,’::Bat’).
direct_base_of(’::WingedAnimal’,’::Bat’).
virtual_base_of(’::Animal’,’::Mammal’).

The Global GCC Project

• ITEA funded (2006-08) consortium of industrial / research partners

• Goal: improving static analysis capabilities of the GNU Compiler Collection (GCC)

• Global GCC knowledge base: share information among different GGCC analysers

Global GCC Coding Rule Compliance Infrastructure
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Rule Formalisation

Based on first-order logic and written in a domain-specific

language which is translated into Prolog and that:

• Formalises standard coding rule sets in a declarative style

• Makes it easier for the final user to define additional cod-

ing rules

• Provides a collection of predefined predicates about

program facts (such as class/1, base_of/2, or

in_call_graph_of/2)

• Quantification over certain domains

• Constructive negation

Rule Checking

Rule HICPP 3.3.15 translated into Prolog

violate_hicpp_3_3_15(A, B, C, D) :-

class(A), class(B), class(C), class(D), B \= C,

direct_base_of(A, B), direct_base_of(A, C),

base_of(B, D), base_of(C, D),

\+ virtual_base_of(A, C).

We do not code the rule itself, but its negation. Any program that satisfies

the negated rule thus violates the coding rule.

Predicates coding rule violations are queried against facts describing a pro-

gram. A successful resolution flags a rule violation, providing a witness.
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