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Abstract

We explain the gist of how to attain side effects in pure functional programming languages via mon-
ads and unique types with input-output as a motivating example. Our vehicle for illustration is the
strongly type-checked, pure, and non-strict functional language Haskell. The category-theoretical ori-
gins of monads are explained. Some basic notions of Category Theory are also presented in programming
terms. We provide a list of suggested reading material in the references.

FUNCTIONAL PROGRAMMING

Functional programming is based on two central ideas: (1) computation takes place by evaluating ap-
plications of functions to arguments and (2) functions are first-class values. In particular, functions are
higher-order (can be passed to or be returned by other functions) and can be components of data structures.
Functional languages differ on whether they are strongly type-checked, weakly type-checked, or untyped;
whether they are dynamically type-checked or statically type-checked; whether they are pure or impure;
and finally whether they are strict or non-strict.

Pure functional languages lack assignment constructs, an expression produces the same value independ-
ently of when it is evaluated—a property called referential transparency—, and side-effects like input-
output are carefully controlled and separated at the type level by so-called monads and unique types. They
usually have non-strict semantics for functions and their evaluation order is typically lazy (i.e., call-by-
need). In contrast, impure functional languages allow side effects like imperative languages, they have
strict semantics, and evaluation order is eager (i.e., call-by-value). (Recently, a new synthesis of call-by-
value and call-by-name—i.e. call-by-need without the sharing and memoising [Rea89]—has appeared with
the name of call-by-push-value [Lev04].)

In the present introduction we explain the gist of how to attain side effects in pure functional program-
ming languages. Our vehicle for illustration is the strongly type-checked, pure, and non-strict functional
language Haskell1 which is pretty much the ‘standard’ lazy language. Purity and non-strictness are not
just a matter of style. Programs in impure, strict languages will look and work quite differently than their
pure counterparts. The main benefit of purity is referential transparency [BW88]. The main benefits of
non-strictness are higher modularity and lower coupling from evaluation concerns [Hug89, Rea89].

PURITY AND EFFECTS

Purity is not at odds with computations that require side effects like input-output, destructive updates, con-
currency, exceptions, or language inter-operation. How is this possible? It is well-known that expressions
in pure functional languages are referentially transparent so variables are immutable or persistent—they

1http://www.haskell.org
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cannot hold different values at different times. But it is also well-known that stateful computation can be
‘simulated’ functionally by passing the state explicitly from function to function as an extra parameter;
a mechanism somewhat confusingly called ‘threading’ because the state is ‘threaded’ from function to
function. (The terms ‘threading’ and ‘thread’ have acquired a more specific meaning from their use in
concurrency and operating systems so we don’t use them here.)

More precisely, state that changes in time can be modelled in two ways:

1. Imperatively, as a pair or tuple consisting of the value of the program counter and the set of all the
program’s constant and mutable variables together with their current values. (Mutable variables are
those that hold different values at different execution times by means of assignments.) For example,
in an imperative program with only two variables x and y which suffer a series of direct or indirect
assignments during execution, the state at time t would be the tuple

〈 t , {〈x,vx〉,〈y,vy〉} 〉

where vx is the value stored in x, and vy the value stored in y, at time t. Execution is measured in
terms of number of executed instructions so t is the value of the program counter.

2. Purely functionally, as the sequence of immutable state values that are passed and returned from
function to function. Take for instance the assignment x := w. Supposing the assignment takes place
at time t and requires k instructions, the change of state can be depicted as a mapping (assume vw is
the value of expression w):

〈 t , {〈x,vx〉,〈y,vy〉} 〉 → 〈 t + k , {〈x,vw〉,〈y,vy〉} 〉

Let’s name the state to the left of the arrow s0 and the state to the right of the arrow s1. The assignment
command can be modelled by the following function

update 〈x,w〉 s0 = s1

This function takes the variable and expression involved in the assignment plus an initial state, and
returns a new state. In a functional setting, the value of variable s0 holding the state before the
assignment is immutable and so the value of s1.

The difference between the two approaches is clearly underlined by the naming or referencing scheme. In
an imperative program the same variable name can refer to different values at different execution times,
and thus we distinguish between L-values and R-values. This is not the case in a purely functional program,
where a name is just a label for a value; in other words, names are persistent, they stand for R-values.

The key in modelling stateful computation in purely functional terms is thus to pass around the state as an
extra argument from function to function. Take for example the following input-output function

getChar :: File → Char

that reads a character from a file. If used more than once in the program then it cannot be pure, for it
returns a different character depending on the state of the file, a state that changes during the execution of
the program—e.g., it changes after calling getChar as the disk head has advanced one position.

The functional solution is to pass the whole state of the program, which includes the state of the file,
as an extra argument to the function, and make the function return the new state together with the value
computed.

getChar :: File → State → (Char,State)
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The state must be passed on from function to function but, unlike arbitrary values, the state should not be
copied or constructed anew from previous state values or the scheme would be infeasible. A program state
may contain zillions of components! It has to be somehow sneakily updated destructively in an imperative
fashion by the run-time system.

For this to be possible, only one state value can be manipulated or updated at any given time. In other
words, a state variable cannot be shared amongst expressions and all computation involving states must be
serialised.2 For example, the following does not make much sense:

let (c1,s1) = getChar file s0
(c2,s2) = getChar file s0

in...

The two call expressions to getChar share state s0, and the second call reads a character from the initial
state oblivious to fact that a character has already been read from the file.

The composition of two impure unary functions must proceed sequentially with respect to the state:

g :: t0 → State → (t1, State)
f :: t1 → State → (t2, State)

compose f g v0 s0 = let (v1,s1) = g v0 s0
(v2,s2) = f v1 s1

in (v2,s2)

Function g takes a value of type t0, a value of type State, and returns a tuple whose first component is of
type t1 and whose second component is the new value of type State. Function f takes a value of type t1,
returns a value of type t2 and also modifies the state. As the code for compose shows, the state has to be
passed around sequentially and explicitly: first, g is applied to v0 and state s0, producing the value v1 and
state s1, and then f is applied to v1 in state s1, producing the value v2 and state s2, which is the (tuple)
value returned by compose. The explicit serialisation of the state is not only tedious but error-prone.

MONADS

Monads make the state implicit and hidden by wrapping the type of functions with side-effects—i.e., the
type of functions that take the state and return a value along with the updated state—into an abstract
data type. State manipulation takes place only via two operations, one called thenM that serialises the
computation with the state and another called returnM that turns values into stateful computations. (Some
people use the names bind and return).

More precisely, function thenM takes three arguments: (1) a stateful computation, i.e., an expression where
an impure function is applied to its value arguments but not yet to the current state, (2) an impure function,
and (3) the current state. The stateful computation is applied by thenM to the current state producing a new
value and a new state, which are in turn passed to the impure function, which yields a final value-state pair
result.

In the code that follows, a t in a type signature stands for some type of values, v stands for a value variable
and s for a state value variable. Type State is the type of state values that can be managed internally by
the run-time system. In many implementations, what is actually passed around as a state value is a pointer
to a global variable. For convenience, let us define the type synonym

type M t = State → (t,State)

which should be read as “the type M t is the type of stateful computations that take a State value and

2This is not entirely correct. Two state values may coexist as long as they are kept apart and don’t interfere, that is, as long as no
impure function ever works with both. Think of them as the states of two completely independent execution threads.
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return a value of type t and a new state”. Using the synonym, the type of the impure function getChar

can be written more succinctly:

getChar :: File → State → (Char,State)
getChar :: File → M Char

There follows the precise definition of thenM:

thenM :: M t0 → (t0 → M t1) → M t1

h ‘thenM‘ f = λs → let (v1,s1) = h s
in f v1 s1

The inverse quotes in thenM’s definition are Haskell’s syntax for writing curried binary functions in infix
form. In the definition, h is the stateful computation that is applied to the current state s (which must be
passed as an argument), and f is the impure function that is applied to the value and state produced by the
application of h to s. If the current state value is s0 then:

(h ‘thenM‘ f) s0

evaluates to:

f v1 s1

which evaluates to a pair value-state (v2,s2).

Function returnM takes a pure value and returns a function that given a state, returns that very value and
the state unchanged—i.e., if v is a value, the application returnM v is a stateful computation that returns
that value without affecting the state; hence, thenM is the sinful operation that allows us to turn pure values
(which live in a stateless world) into impure ones (which live in a stateful world). And once you go impure,
there is no possible redemption: we have not defined an operation that takes a stateful computation and
gets the value and ignores the state. The definition of returnM is:

returnM :: t → M t
returnM = λv → (λs → (v,s))

Impure functions can be composed using these two operations. In fact, impure function composition itself
can be defined as follows:

compose f g v0 s0 =
((g v0) ‘thenM‘ (λv1 → (f v1) ‘thenM‘ (λv2 → returnM v2))) s0

where impure function g is applied to v0 in the initial state s0, and the value it computes, v1, is passed by
thenM to its second argument, which is the (nameless) function

λv1 → (f v1) ‘thenM‘ (λv2 → returnM v2)

that is, a function that takes a value v1 and calls thenM again but feeding v1 to f—which produces a value
that thenM passes to a second nameless function that calls returnM to turn that last value into a value-state
pair. State values are passed behind the scences by thenM from one impure function to the next, i.e., from
g to f. Compose would have to execute in an initial state but it can be passed automatically by the run-time
system. Indeed, we could have omitted the initial state s0 in the definition of compose:

compose f g v0 =
(g v0) ‘thenM‘ (λv1 → (f v1) ‘thenM‘ (λv2 → returnM v2))

Notice that there are no state variables mentioned in the definition! Moreover, it can be made to look even
more imperative if written using the syntactic sugar known as the do-notation. The actions (computations)
within a do take place sequentially.

4



compose f g v0 = do v1 ← g v0 -- ’thenM’ implicit here
v2 ← f v1 -- ’thenM’ implicit here
returnM v2

The state is finally encapsulated when the polymorphic type M is defined as an abstract data type rather
than as a type synonym. In Haskell, for the case of input-output, type abstract type M is called IO; therefore:

getChar :: File → IO Char

Figure 1 shows an example of usage: the impure function getString reads a string (a sequence of char-
acters) from a file. The first box shows the function written in terms of thenM and returnM. The second
box is a rendering of the first box in much more readable do-notation, which is also more imperative in
style. Notice the use of recursion in both.

getString :: File → IO String

getString file =
(getChar file) ‘thenM‘

(λc → if c == EOF then (returnM [])
else ((getString file) ‘thenM‘ (λs → returnM (c:s))))

getString file = do c ← getChar file
if c == EOF then returnM []

else do s ← getString file
returnM (c:s)

Figure 1: Impure function getString reads a string from a file.

UNIQUE TYPES

Unique types rely on the uniqueness of values to combine purity and effects. The idea is to signal to the
type checker when arbitrary values, not just state values, are not shared. Take for example the input-output
function putChar that writes a character to a file.

putChar :: Char → File → File

If its file argument is not shared by any other expression there is the guarantee that it will not be used by the
program after the function call and therefore it can be garbage-collected. However, instead of constructing
a new file value, we can destructively update the old one and return it again re-using its memory space.
Uniqueness is enforced by the type checker based on programmer’s annotations. We would write the type
of the function as follows

putChar :: Char → *File → *File

where the star signals to the type checker that the value passed as a second argument to putChar must not
be shared by two or more expressions and that it must enforce the same property for the value returned.

The state is also hidden, but unique types impose a form of serialisation and sharing discipline on the
programmer which must be aware of these constraints when writing the program and make sure they satisfy
the type checker. The sharing discipline becomes straightforward when expressions are represented directly
as graphs. Unique types are related to linear types (and consequently to linear logic due to the Curry-
Howard Isomorphism that identifies types with formulae in constructive logics and functional programs
with proofs). Unique types provide information about the way a specific function is applied (in a linear
way, never shared) whereas linear types provide information about the way an expression is used within a
function.
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SUGGESTED READING

We have only glossed over the bare basics of monads and unique types from a programming perspective
and particularly in relation to input-output. The following are some further references:

• The short online tutorial What the Hell are Monads? by Noel Winstanley is a good starting point. It
can be found at

http://www.bercrombiegroup.co.uk/˜noel/uploads/research/monads.html

• Philip Wadler wrote a series of articles that popularised monads inside and outside the functional
programming community. They can be found on his web site:

http://homepages.inf.ed.ac.uk/wadler/topics/monads.html

• The tutorial article by Meijer and Jeuring, Merging Monads and Folds for Functional Programming,
published in [JM95], shows how monads integrate swiftly with classical functional programming
assets such as recursion patterns and higher-order functions. They present examples of what are
nowadays called monadic folds.

• The title of Simon Peyton Jones’ tutorial says it all: Tackling the Awkward Squad: Monadic In-
put/Output, Concurrency, Exceptions, and Foreign-language Calls in Haskell. It can be found at
http://research.microsoft.com/˜simonpj/papers/marktoberdorf

• Many other articles and introductions about monads can be found on the Haskell web site:

http://www.haskell.org/bookshelf/#monads

• Unique types are heavily employed by the functional programming language Clean, especially in
its Object-I/O library. The book [PVV93] is a good introduction to Clean and unique types. More
information is available at the Clean web site http://www.cs.kun.nl/˜clean

MONADS AND CATEGORY THEORY

The concept of a monad is slightly more elaborate than we have described. It originated from Category
Theory, an abstract branch of mathematics that deals with abstract structures and the relationships between
them. According to folklore, the relation between monads and computation was discovered by Eugenio
Moggi [Mog91] and then popularised and applied to functional programming by Philip Wadler. Moggi
proposed the category-theoretic notion of monad as a means of parameterising programming language
semantics by a stateful computation that produces a value—in short, to avoid passing the state explicitly
from semantic function to semantic function and have it passed internally, as explained above.

The term ‘monad’ has nothing to do with Leibniz’s monads (sort of spiritual or mental atoms) but was
formed by combining monoid and triad (i.e., triple). In Algebra, a set of elements for which there is a
binary operation with identity and associativity is called a monoid. In Category Theory, a triple consists
of a functor and two natural transformations which satisfy certain properties. In our description, a functor
corresponds to the type hiding the state and the natural transformations to the parametrically polymorphic
operations themM and returnM. The combination of the two terms into the term ‘monad’ is suggested by
the fact that the monoid operation is composition in the particular category.

Category theory is heavily used in programming language theory, especially in denotational semantics,
algebraic specification, and program construction. The central concepts of these disciplines are usually
wielded in their categorical formulation.

To give a rough idea, a category is a collection of ‘structure-preserving’ mappings (called arrows) between
certain ‘sets with structure’ (called objects). Arrows are closed under composition, which must be an
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associative operation, and there is an identity arrow for every object. These axioms describing what con-
stitutes a category are rather general and wildly different mathematical structures can be ‘categorised as
categories’.

Many important properties of arrows do not depend on the particular structures under consideration and can
be studied abstractly and independently of them. These universal properties are expressible externally, that
is, purely in terms of composition of arrows. Unlike, for example, set theory, where we are concerned with
the internal structure of sets and mappings, the ‘categorical’ approach abstracts away from this detail and
concentrates on the external relationships between the sets. For example, in set theory injective functions
are characterised in terms of a property held by the elements of their domain and codomain sets, whereas
from a categorical perspective the equivalent concept (monic arrows) is defined in terms of the properties
under composition of these mappings.

Category theory gets really interesting when we start considering structure-preserving arrows between cat-
egories, called functors, and structure-preserving arrows between functors, called natural transformations.
In programming terms, the category of interest is the category of types, where objects are non-parametric
or manifest types and arrows are monomorphic functions between them. Functors are parametrically
polymorphic type operators and their map operation; natural transformations are polymorphic functions
between such type operators. For example, the type List is a functor. It is a type operator taking a
manifest type T to the manifest type List T and has a map operation

mapList :: (a → b) → List a → List b

The type signature tells us that given a function (arrow) f from manifest type (object) a to manifest type
(object) b, then mapList f produces a function (arrow) from the manifest type (object) obtained after
applying functor List to a, to the manifest type (object) obtained after applying functor List to b.

The polymorphic function reverse that reverses a list is a typical example of a natural transformation:

reverse :: List a → List a

The reason for this is the equation

reverse ◦ (mapList f) == (mapList f) ◦ reverse

where function f has type a→b. The equation tells us that if we map a list of type List a into a list
of type List b and then reverse the latter, we get the same result by first reversing the original list and
then mapping it afterwards. This is because reverse is a natural transformation. In general, a natural
transformation η is an arrow between two functors F and G, such that for any two objects a and b of the
category, the following equation holds

ηb ◦ (mapF f ) = (mapG f ) ◦ ηa

where

ηa :: F a→ G a

ηb :: F b→ G b

mapF f :: F a→ F b

mapG f :: G a→ G b

In our example with reverse, F = G = List.

It is common practice to blur the distinction between mapF and F (e.g., to use the same name List for
both the type operator and the map function on lists) and write the equation as follows:

ηb ◦ (F f ) = (G f ) ◦ ηa

7



Things don’t stop here. Special objects like products, limits, pullbacks, etc, and their duals all have a neat
programming interpretation. They shed light on the semantics of programs and help in guiding language
design, program construction, program proving, and program transformation.

SUGGESTED READING IN CATEGORY THEORY

There are many sources on category theory addressed specifically to computer scientists. Here are some
suggestions:

• The vintage, out-of-print book by Robert Goldblatt [Gol79] deals mostly with Categorical Logic, but
the first chapters present the central concepts of Category Theory inductively from Set Theory. This
is an asset and a hazard. An asset because most concepts are abstracted away from set-theoretical
intuitions. A hazard because the reader might not ‘abstract’ enough and could become too tied to the
set-theoretical motivation.

• Joseph Goguen’s Categorical Manifesto [Gog91] explains why category theory is useful in Comput-
ing Science.

• Benjamin Pierce’s book [Pie91] is often recommended, but more than a textbook it is a short compen-
dium of definitions and examples, some adapted or taken from other sources like [Gol79]. Solutions
are not provided for most exercises. It has an excellent annotated bibliography.

• A. Schalk and H. Simmons’s Introduction to Category Theory in Four Easy Movements is just de-
lightful. It reads swiftly from beginning to end, a rare quality in most presentations of the subject.
Concepts and their duals are presented in parallel, followed or preceded by illuminating examples.
The chapter on (co)limits is terrificly clear. The book is online and can be downloaded from Harold
Simmon’s webpage:

http://www.cs.man.ac.uk/˜hsimmons

• Most texts in category theory indulge in their own verbose proof style. An exception is Fokkinga’s
treatment of category theory from a calculational standpoint [Fok92]. The calculational style uni-
formly permeates the definitions, theorems and proofs. This style of presentation is very common
amongst the squiggol community of functional programmers interested in program construction by
program transformation.

• A fresh approach to the topic can be found in Category Theory as Coherently Constructive Lattice
Theory by Backhouse, Bijsterveld, van Geldrop, and van der Woude. This tutorial draws on Lattice
Theory as the intuitive ground from which to grasp the abstract notions and definitions of category
theory, and it quite demystifies the subject. The paper can be found at

http://www.cs.nott.ac.uk/˜rcb/papers/abstract.html#CatTheory

• The first chapters of The Algebra of Programming book [BdM97] introduce categories in the context
of types, functional programming, and their use in program construction and transformation. From
the way it is written, it presupposes some acquaintance with the basic intuitions.

• Walter’s textbook [Wal91] focuses on the algebra of functions and has a chapter devoted to the
categorical description of data types.

• Chris Hillman’s [Hil01] and Barry Jay’s [Jay] tutorials are not specifically addressed to computer
scientists, but they have a wealth of examples taken from varied mathematical disciplines.

• The often-cited classic, and at times hard, references are [AL88], [BW99], and of course [Mac71].
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