
Proof-Directed Debugging and Repair

Louise A. Dennis1, Raul Monroy2 and Pablo Nogueira1

1 School of Computer Science and Information Technology, Univ. of Nottingham,
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UKlad@cs.nott.ac.uk

pni@cs.nott.ac.uk
2 Computer Science Department, ITESM, Estado de México, Carr. Lago de Guadalupe

Km 3.5 Atizaṕan, 52926, Ḿexicoraulm@itesm.mx

Abstract

We describe a project to refine the idea of proof-directed debugging. The intention is
to clarify the mechanisms by which failed verification attempts can be used to isolate
errors in code, in particular by exploiting the ways in whichthe branching structure
of a proof can match the the structure of the functional program being verified. Our
intention is to supply tools to support this process. We thenfurther discuss how the
proof planning paradigm might be used to supply additional automated support for
this and, in particular ways in which the automation of proof-directed debugging with
proof planning would allows code patches to by synthesised at the same time that a
bug is located and diagnosed.

1 INTRODUCTION

Programmers are familiar with the concept of testing, running a program on ase-
lection of inputs and comparing the actual with the expected output. The intention
is that when all the tests are successfully passed by a program then thereshould be
a reasonable expectation that the program is error-free. Intelligent use of testing
can provide a programmer with a great deal of information about the locationand
nature of errors within programs. However testing only provides aguaranteeof
correctness for the specific test cases used, it does not provide a guarantee for other
potential inputs. Programmers are less familiar with verification, which involves
constructing a mathematical proof that a program is correct. The advantageof ver-
ification is that the end result is a much stronger guarantee of the correctness of the
program than can be provided by testing. One short-coming of existing verifica-
tion technology, however, is that it is unclear what the appropriate remedial action
is when a verification attempt fails. Current verification techniques are unable to
fulfill the error location role which is such a fundamental, though perhaps poorly
recognised, function of standard testing.

We intend to develop a theory ofproof-directed debugging, providing a prin-
cipled framework by which verification (the process by which a program is shown
to meet its specification using formal proof) can be conducted in a manner which
will assist in the location and repair of programmer errors (as testing does). It will
be possible to perform proof-directed debugging in a highly interactive fashion,
where the user performs most of the proof guidance. However, to be ofpractical



use to programmers with limited experience of proof, automated versions of proof-
directed debugging will be required. We therefore intend to integrate automated
reasoning into the proof-directed debugging framework. We anticipate thiswill
involve the development of new automated reasoning techniques. We also hope to
develop and integrate methods for the automated patching of erroneous code.

The success of model checking techniques (e.g. [12]) has partly beenattributed
to the fact that model-checkers return counterexamples when they fail. Asa re-
sult, there has been a great deal of interest in the automatic detection of counter-
examples for software programs and protocols (e.g. [18, 4]). Our previous work [6]
has shown that, in many cases, better debugging information can be obtainedfrom
failed proofs than can be obtained by testing and counter-example generation alone.
It should be noted that we believe that testing and counter-example generation re-
main important techniques and propose the use of proof-directed debugging as an
addition to rather than a replacement for these methodologies.

This project ties in with the aims of the Dependable Systems Evolution Grand
Challenge for Computing Research1. To be truly useful, theverifying compiler[10]
will need to incorporate this kind of technology in order to provide appropriate
warnings and error messages to the user. Once again, to be useful in a verifying
compiler, proof-directed debugging will need to be automated. This is an added
incentive for the investigation of automated approaches.

Out intention is to develop a theory of proof-directed debugging by which
failed proofs can be used to create rich debugging information. A particularly
ambitious goal is the production of methods by which, in some cases, a proof-
directed debugger will be able not only todiagnose the problembut alsoautomat-
ically repair the program. The ultimate intent is to define a methodology for the
development of tools which provide rich debugging information to programmers;
can suggest appropriate patches for erroneous code; and which, ifrun successfully
to completion, also provide a guarantee of correctness. Our starting pointin this
project is the development of proof-directed debugging and repair forfunctional
programs, particular for functional programs produced by novices.

2 EXAMPLE OF A FAILED VERIFICATION OF A FUNCTIONAL PRO-
GRAM

Consider the following ML program written by a novice programmer. They are
attempting to create a function,removeAll, which removes all occurrences of an
element,x, from a list,l. It is important to note here that in a previous exercise
the student had been asked to create a functionremoveOne which removed one
occurrence ofx from l

fun removeAll _ [] = []
| removeAll x (h::t) = if x = h then removeAll x t

else h::removeOne x t;

1http://www.fmnet.info/gc6/



Presumably the student is programming by analogy, starting with theirremoveOne

function. They have forgotten to change one instance of the recursivestep to
removeAll.

We examined this program, among others, in [6]. Standard testing generated
the following examples and counter-example:

Examples
removeAll 1 [];
output: []
removeAll 1 [1, 1, 1];
output: []
removeAll 1 [1, 2, 1];
output: [2]
Counter-Example
removeAll 1 [1, 1, 2, 3, 4, 1, 1];
output: [2, 3, 4, 1]

These are not particularly informative in terms of diagnosing the error.
We translated the student code into Isabelle [15] – an interactive theorem prover

– and attempted to prove (among other properties):

¬(x∈ removeAll x l),

The proof proceeds by induction immediately generating two branches (where
l equals [] and wherel equalsh :: t). The first branch is successfully dis-
charged – establishing the correctness ofremoveAll _ [] = []. The sec-
ond branch of the proof then splits again on a case analysis of whetherx =
h. The first branch is successfully discharged – establishing the correctness of
if x = h then removeAll x t. The remaining branch becomes “blocked”
at

¬x∈ removeAll x l∧x 6= h ⇒ ¬x∈ removeOnex l.

We are “expecting” to be able to use the induction hypothesis¬x∈ removeAll x lto
discharge the goal at this point but we can’t because the induction conclusion con-
tains the functionremoveOneinstead ofremoveAll. It is easy to see here that the
“blame” lies with the use of the functionremoveOne and it is also possible to work
out a correction. Indeed an automated technique such as difference unification [1]
would be able to generate a patch.

Analysis of this, and similar examples, suggests that the branching of a pro-
gram correctness proof serves a useful role in locating the section of code respon-
sible for an error. However, in order to exploit this the user needs to be able to
recognise when some goal is genuinely blocked rather than the result of aproof
mis-step earlier on.

Another issue here, of course, is where the properties we seek to verify might
come from. A novice, or even experienced, programmer unfamiliar with formal



specification and proof is likely to find this task as challenging as the proof-directed
debugging process itself. For the present we are assuming that an appropriate (and
correct) specification has been provided by an external source suchas a tutor or
specification engineer.

3 PROOF-DIRECTED DEBUGGING

Proof-directed debugging was first suggested by Harper [8]. Harper presents an
example which demonstrates how the failure of the correctness proof leads toboth
the generation of a counter-example and a revision of the specification. This work
does not appear to have been pursued and, as far as we are aware,no attempt
has been made to refine Harper’s ideas into a framework or process withinwhich
proof-directed debugging could take place.

The idea for developing such a framework, rather than relying on a user’s skill
at general proof, is based on the example of Algorithmic debugging [16].Al-
gorithmic debugging provides a tool-supported process for normal debugging. It
has been primarily applied to logic programs but has also been evaluated in other
paradigms, such as imperative and functional programming [7, 14]. The idea is
to construct an execution tree of a run of the program on some input and query
the user each time this tree branches. This identifies branches which are returning
false results and so locates sections of code responsible for errors. There is a clear
relationship here to the branch localisation effect we observe when attempting to
verify buggy programs. There are also some key differences. We do not propose
to construct a tree of the actual program execution trace on some input but rather
to use the combined structure of program and proof to similar effect.

We have therefore some very specific challenges that we need to address.
Proof-directed debuggers will need to guide a proof process rather than an ex-
ecution process, a significantly more challenging task both for the user andthe
system. In general, in the examples reported in [6], we used the automated Isabelle
simplifier to establish the truth of particular branches of a proof but, where the sim-
plifier failed we needed to proceed in a more low-level step-by-step fashion until an
“informative” dead end goal or another branching step was reached.This process
would need to be controlled carefully, preferably with as much automation as pos-
sible, in any proof-directed debugger. A related and important part of this process
was identifying goals that were satisfiable but not always true, existing counter-
example discovery technology clearly has a role to play here. A call to Isabelle’s
quickcheck 2 counter-example finder could assist with this. As mentioned ear-
lier we believe that proof-directed debugging should be viewed as an addition to
existing error location methodologies and, in fact, this analysis suggests thatall
these techniques should worktogetherto assist in the diagnosis and location of an
error.

2Isabelle’squickcheck should not be confused with Claessen and Hughes’ QuickCheck tool.
Both of these are clearly highly relevant to our research and this name overloading is therefore very
unfortunate.



We anticipate that powerful existing automated reasoners such Isabelle’ssim-
plifier andquickcheck will be important components in proof-directed debug-
ging but our examples also suggest that we will need to develop novel automated
reasoning techniques specifically tailored towards the proof-directed debugging
context in order that necessary user guidance of the proof processcan not only
be kept to a minimum, but also made reasonably comprehensible to a programmer.
We believe such automation can be achieved using proof planning (see§4) but we
think it important, at this point, to stress the need to separate the theory of proof-
directed debugging from the use of proof planning to automate the processsince
other automation frameworks may be proposed and developed in future.

4 PROOF PLANNING

Proof planning [2] is an Artificial Intelligence based technique for the automation
of proof. It aims to provide a generic framework for the automation of reasoning
with a focus on explainable reasoning. Key features of proof planning [5] are the
use of meta-logical information to make heuristic choices; hierarchical, customis-
ableproof strategieswhich dictate the expected structure of the proof; andproof
critics which modify the existing proof tree in response to a proof failure.

The ideas of expected structure, explainable reasoning and failure analysis
make proof planning a good candidate underlying architecture for the automa-
tion of proof-directed debugging. As an additional advantage, proof planning
has already made considerable progress in the automated discovery of loop in-
variants [17] and induction schemes [3] both of which will be necessary for proof-
directed debuggers. A further incentive is the existing body of research on correc-
tive predicate construction and middle-out reasoning (§4.1) which already exists in
the proof planning field [13, 3, 9, 11]. A key part of our project, therefore, is the
use of proof planning as the underlying automation technology for proof-directed
debugging. Our plan is to start with a simple proof planning strategy in which a
proof is guided in a step-by-step fashion using a limited set of simple techniques
until a branch point occurs, individual branches are probed using brute-force au-
tomated reasoners and counter-example finders, and the user is queriedwhen the
system is unable to determine an appropriate way forward. We expect thatevalu-
ation of this on a corpus of functional programs produced by novices willreveal
areas where additional automated support can be added.

4.1 Patching Erroneous Code

We also intend to develop a theory for how proof-directed debugging canproduce
candidate patches for erroneous code. There are a number of possibly technologies
we could explore here (eg. [1]) however we intend to focus on two techniques.



4.1.1 Middle-out Reasoning

The deductive synthesis of a program from a constructive proof of itsspecifica-
tion presents many challenges to automated reasoning methods. Work within the
proof planning paradigm has focused on an approach termedmiddle-out reason-
ing. The key idea in middle-out reasoning is to postpone choices about key parts
of the theorem or proof for as long as possible. This is typically performedby re-
placing some part of the theorem goal (generally created by the introduction of an
existential witness) with a higher-order meta-variable. This meta-variable is then
gradually instantiated during the course of the proof until the appropriate witness
term is synthesised.

Consider our erroneous program forremoveAll. We have identified a prob-
lem with the use ofremoveOne so we could replace this with a meta-variable,
X:

fun removeAll _ [] = []
| removeAll x (h::t) = if x = h then removeAll x t

else h::(X h x t);

The failing branch of the proof attempt discussed in§2 now simplifies to

¬x∈ removeAll x l∧x 6= h⇒¬x∈ (X h x t).

If we now attempt to exploit our induction hypothesis by unifying it with the con-
clusion of the goal thenX is unified toλx,y,z. removeAll y z. The process has
correctly synthesised a patch for this particular program.

4.1.2 Corrective Predicates

Another technique for the correction of faulty theorems iscorrective predicate syn-
thesis. This method aims to build a definition for acorrective predicate, P, for any
(potentially erroneous) theorem,G, such that∀x. P(x)⇒G(x). A prototype correc-
tive predicate synthesis system already exists based on theClamproof planner [13].
In this system any theorem proving attempt includes a corrective predicate, repre-
sented at the outset by a higher-order meta-variable. The definition of thecorrective
predicate is built using middle-out reasoning during the proof. The instantiation of
the predicate divides into cases where the proof branches and when a case leads to
a goal which is neither provable nor disprovable, the predicate is instantiated via
abduction.

Consider the following program written by a novice ML programmer. They
are attempting to write a program to produce all possible lists gained by inserting
an element,x, at some point in a list,l (this is part of an exercise that builds up to
a permutation function). The student has forgotten to provide a basis casefor their
recursive program.

fun inserteverywhere n (x::xs) =
(n::(x::xs))::(map (fn l ⇒ (x::l))

(inserteverywhere n xs))



Using theClam-based system we attempted to prove the equivalence of this pro-
gram to one produced by a tutor

fun Tinserteverywhere n [] = (n::[])::[]
| Tinserteverywhere n (x::xs) =

(n::(x::xs))::(map (fn l ⇒ (x::l))
(Tinserteverywhere n xs))

The goal3 we attempted was:

∀n, l .P(n, l) ⇒ inserteverywhere(n, l) = Tinserteverywhere(n, l)

The system first attempted induction onl leaving two goals

P(n, []) ⇒ inserteverywhere(n, []) = Tinserteverywhere(n, [])

P(n,x :: xs) ⇒ inserteverywhere(n,x :: xs) = Tinserteverywhere(n,x :: xs)

The proof attempt of the second goal succeeds automatically instantiating onecase
of the predicate definition:P(n,x :: xs) ⇒ P(n,xs).

The base case yields an “abducible” goal, namely:

inserteverywhere(N, []) = (N :: []) :: []

which instantiates the other case of the corrective predicate (by abduction) to

P(n, []) ⇒ inserteverywhere(N, []) = (N :: []) :: []

So the final theorem synthesized is:

P(N, l) ⇒ inserteverywhere(N, l) = Tinserteverywhere(N, l)

where

P(N, []) = inserteverywhere(N, []) = (N :: []) :: []

P(N,H :: T) = P(N,T)

The recursive structure can be eliminated from this predicate so it becomes

P(N,L) = inserteverywhere(N, []) = (N :: []) :: []

and so our theorem simplifies to:

inserteverywhere(N, []) = (N :: []) :: [] ⇒

inserteverywhere(N, l) = Tinserteverywhere(N, l)

effectively synthesizing the correct answer.
3TheClamsystem uses curried syntax, hence the shift in style here.



We have applied this system to a number of our erroneous functional programs.
The results are encouraging and, in particular, where parts of the codehave been
omitted (as above) the technique can successfully synthesise the missing code frag-
ments. Several challenges remain: in the case of erroneous as opposedto miss-
ing information, such as appears in theremoveAll example, the current system
fails to synthesise an appropriate patch. Consider the following piece of code for
inserteverywhere

fun inserteverywhere n [] = []::[]
| inserteverywhere n (x::xs) =

(n::(x::xs))::(map (fn l ⇒ (x::l))
(inserteverywhere n xs))

In this case the student has supplied an incorrect base case and the system synthe-
sises the following predicate:

P([]) = false

P(H :: T) = P(T)

which can be simplified toP(L) = false. The unsimplified structure of this pred-
icate can be analysed to indicate which branch of the program is incorrectbut no
patch has been suggested. While this serves the error location function ofa proof-
directed debugger it is insufficient in terms of patch generation.

We are interested in extending the corrective predicate idea so that it can per-
form more consistently on our examples. One idea might be to interleave the con-
struction of the corrective predicate with selective deletion of cases of theprogram
allowing patches to be synthesized as if in the case of missing information. The
corrective predicate methodology contrasts with the two-stage process outlined in
§4.1.1 where we first attempted a proof to locate the error and then re-ran theproof
with a meta-variable in place. We believe that both approaches deserve investiga-
tion.

5 CONCLUSION

We believe that the verification process can serve two important roles in program
construction: that of guaranteeing the correctness of a program; and that of aiding
in the identification, localisation and repair of errors. The second of thesetwo roles
is poorly supported by existing verification tools.

Functional programming appears to be an ideal paradigm within which to ex-
plore this second role of verification. Functional programs are comparatively easy
to reason about, allowing us to focus on the processes necessary for diagnosing and
repairing errors. Furthermore there are many aspects of functional programs that
novices generally find challenging and it is therefore possible to acquire alarge
corpus of erroneous programs which nevertheless are extremely tractable from a
reasoning point of view again allowing researchers to focus on the process of error
location and repair.



Our intention therefore is use functional programming as a platform upon
which we can develop a theory of proof-directed debugging and automated as-
sistance for the task of using verification for error diagnosis and repair.

ACKNOWLEDGMENTS

This research was funded by EPSRC grant GR/S01771/01 and Nottingham NLF
grant 3051.

REFERENCES

[1] D. A. Basin and T. Walsh. Difference unification. In R. Bajcsy, editor,IJCAI-93,
pages 116–122. Morgan Kaufmann, 1993.

[2] A. Bundy. A science of reasoning. In J.-L. Lassez and G. Plotkin, editors,Com-
putational Logic: Essays in Honor of Alan Robinson, pages 178–198. MIT Press,
1991.

[3] A. Bundy, L. Dixon, J. Gow, and J. D. Fleuriot. Constructing induction rules for
deductive synthesis proofs. InCLASE’05, ENTCS. Elsevier, 2005. To Appear.

[4] K. Claessen and J. Hughes. Quickcheck: a lightweight tool for random testing of
haskell programs. InICFP ’00, pages 268–279. ACM Press, 2000.

[5] L. A. Dennis, M. Jamnik, and M. Pollet. On the comparison of proof planning sys-
tems: Lambda-clam, omega and isaplanner. InCalculemus 2005, ENTCS, 2005. To
Appear.

[6] L. A. Dennis and P. Nogueira. What can be learned from failed proofs of non-
theorems? In J. Hurd, E. Smith, and A. Darbari, editors,TPHOLs 2005: Emerging
Trends Proceedings, pages 45–58, 2005. Technical Report PRG-RP-05-2, Oxford
University Computer Laboratory.

[7] P. Fritzson, N. Shahmehri, M. Kamkar, and T. Gyimothy. Generalized algorithmic
debugging and testing.ACM Lett. Program. Lang. Syst., 1(4):303–322, 1992.

[8] R. Harper. Proof-directed debugging.Journal of Functional Programming, 9(4):471–
477, 1999.

[9] J. Hesketh, A. Bundy, and A. Smaill. Using middle-out reasoning to control the
synthesis of tail-recursive programs. In D. Kapur, editor,CADE 11, volume 607 of
LNAI, pages 310–324, 1992.

[10] C. A. R. Hoare. The verifying compiler, a grand challenge for computing research. In
R. Cousot, editor,Verification, Model Checking, and Abstract Interpretation6th In-
ternational Conference, VMCAI 2005, volume 3385 ofLNCS, pages 78–78. Springer,
2005.

[11] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and induction.
JAR, 16(1–2):113–145, 1996. Also available from Edinburgh as DAI Research Paper
729.

[12] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.

[13] R. Monroy. Predicate synthesis for correcting faulty conjectures: The proof planning
paradigm.Automated Software Engineering, 10(3):247–269, 2003.



[14] H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional languages.
Journal of Functional Programming, 4(3):337–370, July 1994.

[15] T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 ofLNCS. Springer, 2002.

[16] E. Y. Shapiro.Algorithmic Program DeBugging. MIT Press, 1983.

[17] J. Stark and A. Ireland. Invariant discovery via failedproof attempts. In P. Flener,
editor,Logic-Based Program Synthesis and Transformation, volume 1559 ofLNCS,
pages 271–288. Springer, 1998.

[18] G. Steel, A. Bundy, and E. Denney. Finding counterexamples to inductive conjectures
and discovering security protocol attacks.AISB Journal, 1(2):169–182, 2002.


