Proof-Directed Debugging and Repair

Louise A. Denni$, Raul Monroy and Pablo Nogueita

1 School of Computer Science and Information TechnologyyUsfiNottingham,
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB,IlHd@s. not t . ac. uk
pni @s. nott.ac. uk
2 Computer Science Department, ITESM, Estado deidb, Carr. Lago de Guadalupe
Km 3.5 Atizapan, 52926, Mxicor aul m@t esm nx

Abstract

We describe a project to refine the idea of proof-directediggimg. The intention is

to clarify the mechanisms by which failed verification atfgsncan be used to isolate
errors in code, in particular by exploiting the ways in whible branching structure
of a proof can match the the structure of the functional ogbeing verified. Our

intention is to supply tools to support this process. We thetier discuss how the

proof planning paradigm might be used to supply additiondbmated support for

this and, in particular ways in which the automation of prdvécted debugging with

proof planning would allows code patches to by synthesisé¢ldeasame time that a
bug is located and diagnosed.

1 INTRODUCTION

Programmers are familiar with the concept of testing, running a progransen a
lection of inputs and comparing the actual with the expected output. The intention
is that when all the tests are successfully passed by a program theshbetd be
a reasonable expectation that the program is error-free. Intelligentfugsting
can provide a programmer with a great deal of information about the location
nature of errors within programs. However testing only providgsiaranteeof
correctness for the specific test cases used, it does not provideantge for other
potential inputs. Programmers are less familiar with verification, which involves
constructing a mathematical proof that a program is correct. The advarftage
ification is that the end result is a much stronger guarantee of the cossdthe
program than can be provided by testing. One short-coming of existirficaer
tion technology, however, is that it is unclear what the appropriate reiraian
is when a verification attempt fails. Current verification techniques arblera
fulfill the error location role which is such a fundamental, though perhapsly
recognised, function of standard testing.

We intend to develop a theory pfoof-directed debuggingproviding a prin-
cipled framework by which verification (the process by which a prograrmasva
to meet its specification using formal proof) can be conducted in a manrehn wh
will assist in the location and repair of programmer errors (as testing .does)
be possible to perform proof-directed debugging in a highly interactiggion,
where the user performs most of the proof guidance. However, to peaofical

use to programmers with limited experience of proof, automated versioneaff pr
directed debugging will be required. We therefore intend to integrate atedma
reasoning into the proof-directed debugging framework. We anticipatenilis
involve the development of new automated reasoning techniques. We alsacho
develop and integrate methods for the automated patching of erroneais cod

The success of model checking techniques (e.g. [12]) has partlyalteiknited
to the fact that model-checkers return counterexamples when they faih réas
sult, there has been a great deal of interest in the automatic detectionndécou
examples for software programs and protocols (e.g. [18, 4]). Ourquework [6]
has shown that, in many cases, better debugging information can be olftamed
failed proofs than can be obtained by testing and counter-example jenelane.

It should be noted that we believe that testing and counter-example enes
main important techniques and propose the use of proof-directed daguagan
addition to rather than a replacement for these methodologies.

This project ties in with the aims of the Dependable Systems Evolution Grand
Challenge for Computing ReseatcHo be truly useful, theerifying compilef10]
will need to incorporate this kind of technology in order to provide appatgr
warnings and error messages to the user. Once again, to be usefutrifiyang
compiler, proof-directed debugging will need to be automated. This is ardadde
incentive for the investigation of automated approaches.

Out intention is to develop a theory of proof-directed debugging by which
failed proofs can be used to create rich debugging information. A pantigula
ambitious goal is the production of methods by which, in some cases, a proof-
directed debugger will be able not onlydéagnose the problefout alscautomat-
ically repair the program The ultimate intent is to define a methodology for the
development of tools which provide rich debugging information to prograrsmer
can suggest appropriate patches for erroneous code; and wtrigh sificcessfully
to completion, also provide a guarantee of correctness. Our startingipairs
project is the development of proof-directed debugging and repafufational
programs, particular for functional programs produced by novices.

2 EXAMPLE OF A FAILED VERIFICATION OF A FUNCTIONAL PRO-
GRAM

Consider the following ML program written by a novice programmer. They ar
attempting to create a functionenoveAl | , which removes all occurrences of an
elementx, from a list,l . It is important to note here that in a previous exercise
the student had been asked to create a functermveOne which removed one
occurrence ok from |

fun renoveAll _ [] =[]
| renmoveAll x (h::t) =if x = h then renoveAll x t
el se h::renpveOne x t;

Lhttp://mww.fmnet.info/gcé/

Presumably the student is programming by analogy, starting withrtheirve One
function. They have forgotten to change one instance of the recussigeto
renoveAl | .

We examined this program, among others, in [6]. Standard testing generated
the following examples and counter-example:

Examples

removeAll 1 [];

output: []

removeAll 1 [1, 1, 1];

output: []

removeAll 1 [1, 2, 1];

output: [2]

Counter-Example

renmoveAll 1 [1, 1, 2, 3, 4, 1, 1];
output: [2, 3, 4, 1]

These are not particularly informative in terms of diagnosing the error.
We translated the student code into Isabelle [15] — an interactive theooearp
— and attempted to prove (among other properties):

—(x € removeAll x),

The proof proceeds by induction immediately generating two branchesdwhe
| equals[] and wherel equalsh ::t). The first branch is successfully dis-
charged — establishing the correctnessr efioveAll _ [] = []. The sec-
ond branch of the proof then splits again on a case analysis of whether
h. The first branch is successfully discharged — establishing the toesecof

if x = h then removeAll x t. The remaining branch becomes “blocked”
at

—-Xx € removeAllx INx#h = -xé&removeOnexl|

We are “expecting” to be able to use the induction hypothesis removeAll x to
discharge the goal at this point but we can’t because the inductiofusomt con-
tains the functiomremoveOnénstead ofremoveAll It is easy to see here that the
“blame” lies with the use of the functiarenoveOne and it is also possible to work
out a correction. Indeed an automated technique such as differeffication [1]
would be able to generate a patch.

Analysis of this, and similar examples, suggests that the branching of a pro-
gram correctness proof serves a useful role in locating the sectiadefrespon-
sible for an error. However, in order to exploit this the user needs to leetab
recognise when some goal is genuinely blocked rather than the resufirobf
mis-step earlier on.

Another issue here, of course, is where the properties we seek tp neght
come from. A novice, or even experienced, programmer unfamiliar with forma

specification and proof is likely to find this task as challenging as the prioettdd
debugging process itself. For the present we are assuming that apagier¢and
correct) specification has been provided by an external sourceasuattutor or
specification engineer.

3 PROOF-DIRECTED DEBUGGING

Proof-directed debugging was first suggested by Harper [8]. édapmesents an
example which demonstrates how the failure of the correctness proof leladthto
the generation of a counter-example and a revision of the specificaticgwdlhk
does not appear to have been pursued and, as far as we are awattempt
has been made to refine Harper’s ideas into a framework or process wttfgh
proof-directed debugging could take place.

The idea for developing such a framework, rather than relying on &sielf
at general proof, is based on the example of Algorithmic debugging [A&].
gorithmic debugging provides a tool-supported process for normalgd@iy It
has been primarily applied to logic programs but has also been evaluateain oth
paradigms, such as imperative and functional programming [7, 14]. Heeigd
to construct an execution tree of a run of the program on some inputuery g
the user each time this tree branches. This identifies branches whichuaréng
false results and so locates sections of code responsible for ertmne i€ a clear
relationship here to the branch localisation effect we observe when atteniptin
verify buggy programs. There are also some key differences. Wetdprapose
to construct a tree of the actual program execution trace on some inpather
to use the combined structure of program and proof to similar effect.

We have therefore some very specific challenges that we need to sddres
Proof-directed debuggers will need to guide a proof process ratharah ex-
ecution process, a significantly more challenging task both for the usethand
system. In general, in the examples reported in [6], we used the automaliedids
simplifier to establish the truth of particular branches of a proof but, whersith-
plifier failed we needed to proceed in a more low-level step-by-step fasinitdl an
“informative” dead end goal or another branching step was reachtdd.process
would need to be controlled carefully, preferably with as much automationss p
sible, in any proof-directed debugger. A related and important pari®ptocess
was identifying goals that were satisfiable but not always true, existingteo
example discovery technology clearly has a role to play here. A call tellsab
qui ckcheck 2 counter-example finder could assist with this. As mentioned ear-
lier we believe that proof-directed debugging should be viewed as atcadth
existing error location methodologies and, in fact, this analysis suggestalthat
these techniques should wadgetherto assist in the diagnosis and location of an
error.

2|sabelle’squi ckcheck should not be confused with Claessen and Hughes’ QuickCheck tool.
Both of these are clearly highly relevant to our research and this naemaging is therefore very
unfortunate.

We anticipate that powerful existing automated reasoners such Isalsathe’s
plifier andqui ckcheck will be important components in proof-directed debug-
ging but our examples also suggest that we will need to develop novehated
reasoning techniques specifically tailored towards the proof-directedgdeng
context in order that necessary user guidance of the proof preeessot only
be kept to a minimum, but also made reasonably comprehensible to a programmer.
We believe such automation can be achieved using proof planning4{sbat we
think it important, at this point, to stress the need to separate the theory d proo
directed debugging from the use of proof planning to automate the precess
other automation frameworks may be proposed and developed in future.

4 PROOF PLANNING

Proof planning [2] is an Artificial Intelligence based technique for the rmatmon
of proof. It aims to provide a generic framework for the automation ofaeiag
with a focus on explainable reasoning. Key features of proof planhgrg the
use of meta-logical information to make heuristic choices; hierarchical, misto
able proof strategiesvhich dictate the expected structure of the proof; prubf
critics which modify the existing proof tree in response to a proof failure.

The ideas of expected structure, explainable reasoning and failulgsiana
make proof planning a good candidate underlying architecture for thenauto
tion of proof-directed debugging. As an additional advantage, préofning
has already made considerable progress in the automated discoverypahioo
variants [17] and induction schemes [3] both of which will be necesgangrbof-
directed debuggers. A further incentive is the existing body of researcorrec-
tive predicate construction and middle-out reasondgl() which already exists in
the proof planning field [13, 3, 9, 11]. A key part of our project, there, is the
use of proof planning as the underlying automation technology for piwetted
debugging. Our plan is to start with a simple proof planning strategy in which a
proof is guided in a step-by-step fashion using a limited set of simple tectmique
until a branch point occurs, individual branches are probed usimg{iorce au-
tomated reasoners and counter-example finders, and the user is quieeiedhe
system is unable to determine an appropriate way forward. We expee\tiat
ation of this on a corpus of functional programs produced by novicegaviéal
areas where additional automated support can be added.

4.1 Patching Erroneous Code

We also intend to develop a theory for how proof-directed debuggingatuce
candidate patches for erroneous code. There are a number oflptssitnologies
we could explore here (eg. [1]) however we intend to focus on two tgqaks.

4.1.1 Middle-out Reasoning

The deductive synthesis of a program from a constructive proof apiesifica-
tion presents many challenges to automated reasoning methods. Work within the
proof planning paradigm has focused on an approach temiédle-out reason-
ing. The key idea in middle-out reasoning is to postpone choices about ksy pa
of the theorem or proof for as long as possible. This is typically perforipyem-
placing some part of the theorem goal (generally created by the introdwaftam
existential witness) with a higher-order meta-variable. This meta-variabletis th
gradually instantiated during the course of the proof until the appropridtess
term is synthesised.

Consider our erroneous program fagnoveAl | . We have identified a prob-
lem with the use of enoveOne so we could replace this with a meta-variable,
X:

fun renmoveAll _ [] =[]
| removeAll x (h::t) =if x = h then removeAll x t
else h:: (X h x t);
The failing branch of the proof attempt discusseg2mow simplifies to

—Xx € removeAll X INx#h= —-xe (X hxt).

If we now attempt to exploit our induction hypothesis by unifying it with the con-
clusion of the goal theiX is unified toAx,y,z removeAllyz The process has
correctly synthesised a patch for this particular program.

4.1.2 Corrective Predicates

Another technique for the correction of faulty theoremsagective predicate syn-
thesis This method aims to build a definition forcarrective predicateP, for any
(potentially erroneous) theore®, such that/x. P(x) = G(x). A prototype correc-
tive predicate synthesis system already exists based @lah&proof planner [13].
In this system any theorem proving attempt includes a corrective prediepte-
sented at the outset by a higher-order meta-variable. The definitioncfthetive
predicate is built using middle-out reasoning during the proof. The instimtiaf
the predicate divides into cases where the proof branches and whsa Bads to
a goal which is neither provable nor disprovable, the predicate is instahtiate
abduction

Consider the following program written by a novice ML programmer. They
are attempting to write a program to produce all possible lists gained by inserting
an elementy, at some point in a list, (this is part of an exercise that builds up to
a permutation function). The student has forgotten to provide a basisarabeir
recursive program.

fun inserteverywhere n (x::xs) =
(ni:(x::xs))::(map (fnl = (x::1))
(i nserteverywhere n xs))

Using theClam-based system we attempted to prove the equivalence of this pro-
gram to one produced by a tutor

fun Tinserteverywhere n [] = (n::[])::]]
| Tinserteverywhere n (Xx::xs) =
(nii(x::xs))::(map (fn 1 = (x::1))
(Ti nserteverywhere n xs))
The goat we attempted was:
vn,I.P(n,l) = inserteverywher@,) = Tinserteverywheie, |)
The system first attempted induction bleaving two goals
P(n,[]) = inserteverywher@, [|) = Tinserteverywhei@, [])

P(n,x:: xs) = inserteverywher@, x :: xs) = Tinserteverywhei@, X :: xs)
The proof attempt of the second goal succeeds automatically instantiatimgeme
of the predicate definitiorP(n,x :: xs) = P(n,xs).

The base case yields an “abducible” goal, namely:

inserteverywher@, []) = (N :: []) = []
which instantiates the other case of the corrective predicate (by abduction
P(n,[]) = inserteverywher@, []) = (N :: []) = []
So the final theorem synthesized is:
P(N,I) = inserteverywher@,|) = Tinserteverywhei@,|)

where

P(N,[]) = inserteverywhem,[])= (N:[])]
PIN,H:T) = P(N,T)

The recursive structure can be eliminated from this predicate so it becomes
P(N,L) = inserteverywher\,[]) = (N :: []) 2]
and so our theorem simplifies to:

inserteverywherN,[|) = (N:[) [=
inserteverywherdN,l) = Tinserteverywhei@,|)

effectively synthesizing the correct answer.

3TheClamsystem uses curried syntax, hence the shift in style here.

We have applied this system to a number of our erroneous functionakonsg
The results are encouraging and, in particular, where parts of thehaagebeen
omitted (as above) the technique can successfully synthesise the missérfgegpd
ments. Several challenges remain: in the case of erroneous as opposes-
ing information, such as appears in themoveAl | example, the current system
fails to synthesise an appropriate patch. Consider the following piecedeffoo
i nserteverywhere

fun inserteverywhere n [] =[]::]]
| inserteverywhere n (x::xs) =
(n:(x::xs))::(map (fn 1 = (x::1))
(inserteverywhere n xs))
In this case the student has supplied an incorrect base case andttime systhe-
sises the following predicate:

P([]) = false
PH:=T) = P(T)

which can be simplified t®(L) = false. The unsimplified structure of this pred-
icate can be analysed to indicate which branch of the program is incbutnb
patch has been suggested. While this serves the error location functqrabf-
directed debugger it is insufficient in terms of patch generation.

We are interested in extending the corrective predicate idea so that iecan p
form more consistently on our examples. One idea might be to interleave the con
struction of the corrective predicate with selective deletion of cases girtiggam
allowing patches to be synthesized as if in the case of missing information. The
corrective predicate methodology contrasts with the two-stage procésedun
84.1.1 where we first attempted a proof to locate the error and then re-rprothfe
with a meta-variable in place. We believe that both approaches desergtigave
tion.

5 CONCLUSION

We believe that the verification process can serve two important roles gngmo
construction: that of guaranteeing the correctness of a program; anaof taiding
in the identification, localisation and repair of errors. The second of thesmles
is poorly supported by existing verification tools.

Functional programming appears to be an ideal paradigm within which to ex-
plore this second role of verification. Functional programs are compehagasy
to reason about, allowing us to focus on the processes necessaiggioosing and
repairing errors. Furthermore there are many aspects of functioogitgms that
novices generally find challenging and it is therefore possible to acquamea
corpus of erroneous programs which nevertheless are extremelybteafritam a
reasoning point of view again allowing researchers to focus on thegsaf error
location and repair.

Our intention therefore is use functional programming as a platform upon
which we can develop a theory of proof-directed debugging and autdnaate
sistance for the task of using verification for error diagnosis and repair

ACKNOWLEDGMENTS

This research was funded by EPSRC grant GR/S01771/01 and Nottingh&
grant 3051.

REFERENCES

[1] D. A. Basin and T. Walsh. Difference unification. In R. Bsy, editor,]JJCAI-93
pages 116-122. Morgan Kaufmann, 1993.

[2] A. Bundy. A science of reasoning. In J.-L. Lassez and @tkh, editors,Com-
putational Logic: Essays in Honor of Alan Robinsgrages 178-198. MIT Press,
1991.

[3] A. Bundy, L. Dixon, J. Gow, and J. D. Fleuriot. Construngfiinduction rules for
deductive synthesis proofs. GLASE'05 ENTCS. Elsevier, 2005. To Appear.

[4] K. Claessen and J. Hughes. Quickcheck: a lightweight fmorandom testing of
haskell programs. ItCFP '00, pages 268-279. ACM Press, 2000.

[5] L. A. Dennis, M. Jamnik, and M. Pollet. On the comparisdrpmof planning sys-
tems: Lambda-clam, omega and isaplanneCatculemus 2008ENTCS, 2005. To
Appear.

[6] L. A. Dennis and P. Nogueira. What can be learned from dajpeoofs of non-
theorems? In J. Hurd, E. Smith, and A. Darbari, editdRHOLs 2005: Emerging
Trends Proceedinggages 45-58, 2005. Technical Report PRG-RP-05-2, Oxford
University Computer Laboratory.

[7] P. Fritzson, N. Shahmehri, M. Kamkar, and T. Gyimothy. n€&glized algorithmic
debugging and testingACM Lett. Program. Lang. Systl(4):303—-322, 1992.

[8] R.Harper. Proof-directed debugginBpurnal of Functional Programmin®(4):471—
477, 1999.

[9] J. Hesketh, A. Bundy, and A. Smaill. Using middle-out seaing to control the
synthesis of tail-recursive programs. In D. Kapur, edi@A\DE 11 volume 607 of
LNAI, pages 310-324, 1992.

[10] C. A.R. Hoare. The verifying compiler, a grand challerigr computing research. In
R. Cousot, editor\erification, Model Checking, and Abstract Interpretatigth In-
ternational Conference, VMCAI 200%olume 3385 0. NCS pages 78-78. Springer,
2005.

[11] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning $ynthesis and induction.
JAR 16(1-2):113-145, 1996. Also available from Edinburgh A$ Research Paper
729.

[12] K. L. McMillan. Symbolic Model Checkindluwer Academic Publisher, 1993.

[13] R. Monroy. Predicate synthesis for correcting fauliy@ctures: The proof planning
paradigm.Automated Software Engineerint(3):247-269, 2003.

[14] H. Nilsson and P. Fritzson. Algorithmic debugging fazy functional languages.
Journal of Functional Programmingt(3):337-370, July 1994.

[15] T. Nipkow, L. C. Paulson, and M. Wenzellsabelle/HOL: A Proof Assistant for
Higher-Order Logic volume 2283 of NCS Springer, 2002.

[16] E. Y. Shapiro.Algorithmic Program DeBuggingMIT Press, 1983.

[17] J. Stark and A. Ireland. Invariant discovery via fail@aof attempts. In P. Flener,
editor, Logic-Based Program Synthesis and Transformatiamiume 1559 oLNCS
pages 271-288. Springer, 1998.

[18] G. Steel, A. Bundy, and E. Denney. Finding counterexasifo inductive conjectures
and discovering security protocol attackdSB Journal 1(2):169-182, 2002.

