Fuzzy Prolog

Susana Muñoz-Hernández

Facultad de Informática
Universidad Politécnica de Madrid
28660 Madrid, Spain

susana@fi.upm.es
Overview

● Basics
 – Introduction
 – Description
 – Implementation

● Extensions
 – Incompleteness
 – Constructive negative Queries
 – Discrete Fuzzy Sets
 – Collaborative Fuzzy Agents
 – Fuzzy Rules with Credibility: RFuzzy

● Work proposals
Overview

● Basics
 – Introduction
 – Description
 – Implementation

● Extensions
 – Incompleteness
 – Constructive negative Queries
 – Discrete Fuzzy Sets
 – Collaborative Fuzzy Agents
 – Fuzzy Rules with Credibility: RFuzzy

● Work proposals
Modeling Real World

- Knowledge:
 - Uncertainty
 - Probability
 - Fuzziness
 - Incompleteness
 - Distributed knowledge

- Reasoning:
 - Logic
If we throw the cube... which value will appear at the top?
Uncertainty

\[X = 1 \lor X = 2 \lor X = 3 \lor X = 4 \lor X = 5 \lor X = 6 \]
If we throw the cube... is it probable to obtain 3 at the top?
Probability

$$Pr(X = 3) = \frac{1}{6} = 0.16$$
If we obtain 3 at the top... is it a small value?
small \((X = 3) = 0.6 \)

Value 3 is slightly small
Let’s define the concept of youth
Fuzziness level

Youth

CRISP

Age

0

20 40 60

1
Fuzziness level

CRISP

FUZZY

Youth

0 1

Age 20 40 60
Fuzziness level

CRISP

FUZZY

INTERVAL VALUED FUZZY
Fuzziness level

![Graphs showing CRISP, FUZZY, INTERVAL VALUED FUZZY, and INTERVAL UNION VALUED FUZZY age distributions.](image)
Truth value (Fuzziness level)

The value of youth of a 42 years-old man

- $V = 0$
- $V = 0.5$
- $V \in [0.2, 0.6]$
- $V \in [0.2, 0.5] \cup [0.8, 1]$
Truth value (Fuzziness level)

The value of youth of a 42 years-old man

- $V = 0$

 \[(V = 0)\]

- $V = 0.5$

 \[(V = 0.5)\]

- $V \in [0.2, 0.6]$

 \[(0.2 \leq V \land V \leq 0.6)\]

- $V \in [0.2, 0.5] \cup [0.8, 1]$

 \[(0.2 \leq V \land V \leq 0.5) \lor (0.8 \leq V \land V \leq 1)\]
New Laptop is a branch of computers with two laptop models (VZX and VZY). One model is very slow and the other one is very fast.

- VZX speed $[0.02, 0.08]$
- VZY speed $[0.75, 0.90]$
New Laptop is a branch of computers with two laptop models (VZX and VZY). One model is very slow and the other one is very fast.

- VZX speed $[0.02, 0.08]$
- VZY speed $[0.75, 0.90]$

If a client buys a New Laptop computer, the truth value, V, of its speed will be $[0.02, 0.08] \cup [0.75, 0.90]$

$$(0.02 \leq V \land V \leq 0.08) \lor (0.75 \leq V \land V \leq 0.90)$$
Modeling Real World

- Knowledge:
 - Uncertainty
 - Probability
 - Fuzziness
 - Incompleteness
 - Distributed knowledge

- Reasoning:
 - Prolog ← Logic
Fuzzy Prolog

- Existing Fuzzy Prolog systems:
 - Prolog-Elf
 - Fril Prolog
 - f-Prolog

- Our Fuzzy Prolog approach:
 - Truth Value (union of sub-intervals) $B([0, 1])$
 - Aggregation operators (min, max, luka, ...)
 - CLP(\mathcal{R}) based implementation
Overview

- Basics
 - Introduction
 - **Description**
 - Implementation

- Extensions
 - Incompleteness
 - Constructive negative Queries
 - Discrete Fuzzy Sets
 - Collaborative Fuzzy Agents
 - Fuzzy Rules with Credibility: RFuzzy

- **Work proposals**
Syntax

- If A is an atom, $A \leftarrow v$ is a **fuzzy fact**, where v, a truth value, is an element in $\mathcal{B}([0, 1])$ expressed as constraints over the domain $[0, 1]$.

- Let A, B_1, \ldots, B_n be atoms. A **fuzzy clause** is a clause of the form $A v \leftarrow F B_1 v_1, \ldots, B_n v_n$ where F is an aggregation operator of truth values represented as constraints over the domain $[0, 1]$. The interval-aggregation induces a union-aggregation.

- A **fuzzy query** is a tuple $v \leftarrow A$? where A is an atom, and v is a variable (possibly instantiated) that represents a truth value in $\mathcal{B}([0, 1])$.
A function $f : [0, 1]^n \rightarrow [0, 1]$ that verifies $f(0, \ldots, 0) = 0$, $f(1, \ldots, 1) = 1$, and in addition it is monotonic and continuous, then it is called **aggregation operator**
Aggregation Operators

- A function $f : [0, 1]^n \rightarrow [0, 1]$ that verifies $f(0, \ldots, 0) = 0$, $f(1, \ldots, 1) = 1$, and in addition it is monotonic and continuous, then it is called aggregation operator.

- Given an aggregation $f : [0, 1]^n \rightarrow [0, 1]$ an interval-aggregation $F : \mathcal{E}([0, 1])^n \rightarrow \mathcal{E}([0, 1])$ is defined as follows:

$$F([x_1^l, x_1^u], \ldots, [x_n^l, x_n^u]) = [f(x_1^l, \ldots, x_n^l), f(x_1^u, \ldots, x_n^u)]$$
Given an interval-aggregation $F : \mathcal{E}([0, 1])^n \to \mathcal{E}([0, 1])$ defined over intervals, a union-aggregation $\mathcal{F} : \mathcal{B}([0, 1])^n \to \mathcal{B}([0, 1])$ is defined over union of intervals as follows:

$$\mathcal{F}(B_1, \ldots, B_n) = \bigcup \{ F(\mathcal{E}_1, \ldots, \mathcal{E}_n) \mid \mathcal{E}_i \in B_i \}$$
Interpretation

An interpretation \(I \) consists of the following:

1. a subset \(B_I \) of the Herbrand Base,
2. a mapping \(V_I \), to assign a truth value, in \(B([0, 1]) \), to each element of \(B_I \).

The Borel Algebra \(B([0, 1]) \) is a complete lattice under \(\subseteq_{B_I} \), that denotes Borel inclusion, and the Herbrand Base is a complete lattice under \(\subseteq \), that denotes set inclusion, therefore a set of all interpretations forms a complete lattice under the relation \(\sqsubseteq \) defined as follows.
Def:\textit{interval inclusion }\subseteq_{II}\textit{] Given two intervals }I_1 = [a, b], I_2 = [c, d]\textit{ in }\mathcal{E}(\{0, 1\}), I_1 \subseteq_{II} I_2 \textit{ iff } c \leq a \textit{ and } b \leq d.
Borel Inclusion

Def:[Borel inclusion \(\subseteq_{BI} \)] Given two unions of intervals \(U = I_1 \cup \cdots \cup I_N, U' = I'_1 \cup \cdots \cup I'_M \) in \(\mathcal{B}([0, 1]) \), \(U \subseteq_{BI} U' \) if and only if \(\forall x \in I_i, i \in 1..N, \exists I'_j \in U' \cdot x \in I'_j \) where \(j \in 1..M \).
Interpretation Inclusion - Valuation

Def:[interpretation inclusion] $I \subseteq I'$ iff $B_I \subseteq B_{I'}$ and for all $B \in B_I$, $V_I(B) \subseteq_{BI} V_{I'}(B)$, where $I = \langle B_I, V_I \rangle$, $I' = \langle B_{I'}, V_{I'} \rangle$ are interpretations.

Def:[valuation] A valuation σ of an atom A is an assignment of elements of U to variables of A. So $\sigma(A) \in B$ is a ground atom.
Def: [model] Given an interpretation $I = \langle B_I, V_I \rangle$

- I is a model for a fuzzy fact $A \leftarrow v$, if for all valuation σ, $\sigma(A) \in B_I$ and $v \subseteq_{BI} V_I(\sigma(A))$.

- I is a model for a clause $A \leftarrow_F B_1, \ldots, B_n$ when the following holds: for all valuation σ, if $\sigma(B_i) \in B_I, 1 \leq i \leq n$, and $v = \mathcal{F}(V_I(\sigma(B_1)), \ldots, V_I(\sigma(B_n)))$ then $\sigma(A) \in B_I$ and $v \subseteq_{BI} V_I(\sigma(A))$, where \mathcal{F} is the union aggregation obtained from F.

- I is a model of a fuzzy program, if it is a model for the facts and clauses of the program.
Given a program P, the three semantics:

1. **Least model** $lm(P)$, under the \subseteq ordering.
2. **Declarative meaning** $lf_P(T_P)$, least fixpoint for a consequence operator $T_P(I)$.
3. **Success set** $SS(P)$ of a transitional system.

are equivalent: $SS(P) = lf_P(T_P) = lm(P)$.
Operational Semantics

- A sequence of transitions between different states of a system
- State: \(\langle \text{Goal, Valuation, Constraint} \rangle \)
- Initial State: \(\langle A, \emptyset, \text{true} \rangle \)
- Final State: \(\langle \emptyset, \sigma, S \rangle \)

Examples:
\[
\langle p(X, Y), \emptyset, \text{true} \rangle, \; \ldots \; , \; \langle \emptyset, \{ X = 3, Y = 3 \}, \text{true} \rangle
\]
\[
\langle \text{bachelor}(S, M), \emptyset, \text{true} \rangle, \; \ldots \; , \; \langle \emptyset, \{ S = \text{completed} \}, M \geq 5 \rangle
\]
Operational Semantics

A transition in the transition system is defined as:

1. \(\langle A \cup a, \sigma, S \rangle \rightarrow \langle A \theta, \sigma \cdot \theta, S \land \mu_a = v \rangle \)
 if \(h \leftarrow v \) is a fact of the program \(P \), \(\theta \) is the mgu of \(a \) and \(h \), and \(\mu_a \) is the truth variable for \(a \), and \(\text{solvable}(S \land \mu_a = v) \). (\(\text{solvable}(c) \equiv c \) has solution in \([0, 1]\) of \(R \))

2. \(\langle A \cup a, \sigma, S \rangle \rightarrow \langle (A \cup B) \theta, \sigma \cdot \theta, S \land c \rangle \)
 if \(h \leftarrow^F B \) is a rule of the program \(P \), \(\theta \) is the mgu of \(a \) and \(h \), \(c \) is the constraint that represents the truth value obtained applying the union-aggregator \(F \) on the truth variables of \(B \), and \(\text{solvable}(S \land c) \).

3. \(\langle A \cup a, \sigma, S \rangle \rightarrow \text{fail} \) if none of the above are applicable.
Overview

● Basics
 − Introduction
 − Description
 − Implementation

● Extensions
 − Incompleteness
 − Constructive negative Queries
 − Discrete Fuzzy Sets
 − Collaborative Fuzzy Agents
 − Fuzzy Rules with Credibility: RFuzzy

● Work proposals
tall(john, V):~ [0.8, 0.9].
tall(john, [0.8, 0.9]):~.

good_player(X, V):~min tall(X, Vt), swift(X, Vs).

f_digit :#
 fuzzy_digit/1.

not_small :#
 fnot_small/2.
Fuzzy \rightarrow CLP(\mathcal{R}) Translation

\[
\text{good_player}(X,V) : \sim \min \text{\tall}(X,Vt), \text{\swift}(X,Vs).
\]

\[
\text{good_player}(X,V) :\minim([Vt,Vs],V), V.\geq.0, V.\leq.1.
\]

\[
\text{not_small} : \#
\text{\fnot\small}(X,V).
\]

\[
\text{not_small}(X,V) :\small(X,Vs), V.\equals.1 - Vs.
\]
Syntactic Sugar

fuzzy_predicate([[0,1),
 (35,1),
 (45,0),
 (90,0)]]).

young(X,1):-
 X .>=. 0,
 X .<. 35.
young(X,V):-
 X .>=. 35,
 X .<. 45,
 10*V.=.45-X.
young(X,0):-
 X .>=. 45,
 X .=<. 120.
Initial Evaluation

- Implementation over CLP(\(\mathcal{R}\)): **SIMPPLICITY**
- Aggregation operator: **GENERALITY**
- Definition of new operators: **FLEXIBILITY**
- Using Prolog resolution: **EFFICIENCY**

Available implementation:

http://clip.dia.fi.upm.es/Software/Ciao/
Overview

• Basics
 – Introduction
 – Description
 – Implementation

• Extensions
 – Incompleteness
 – Constructive negative Queries
 – Discrete Fuzzy Sets
 – Collaborative Fuzzy Agents
 – Fuzzy Rules with Credibility: RFuzzy

• Work proposals
Combining Crisp and Fuzzy Logic

student(john).
student(peter).

age_about_15(john,1):
age_about_15(susan,0.7):
age_about_15(nick,0):

teenager_student(X,V):
 student(X), % CRISP
 age_about_15(X,Va). % FUZZY

?- student(john).
yes
?- student(nick).
no FALSE

?- age_about_15(john,V).
V = 1
?- age_about_15(nick,V).
V = 0
?- age_about_15(peter,V).
no UNKNOWN

?- teenager_student(john,V).
V =. 1
?- teenager_student(susan,V).
V =. 0
?- teenager_student(peter,V).
no UNKNOWN
Solution: Default Knowledge

\[
\text{student}(john). \\
\text{student}(peter). \\
\text{-default}(f_student/2,0). \\
f_student(X,1):- \\
\quad \text{student}(X). \\
\text{--------------------}
\]

\[
\text{-default}(\text{age_about_15}/2,[0,1]). \\
\text{age_about_15}(john,1):~. \\
\text{age_about_15}(susan,0.7):~. \\
\text{age_about_15}(nick,0):~. \\
\text{--------------------}
\]

\[
\text{-default}(\text{teenager_student}/2,[0,1]). \\
\text{teenager_student}(X,V):~ \\
\quad f_student(X,Vs), \\
\quad \text{age_about_15}(X,Va). \\
\]

?- f_student(john,V).
\quad V = 1 \\
?- f_student(nick,V).
\quad V = 0 \quad \text{FALSE}

?- age_about_15(john,V).
\quad V = 1 \\
?- age_about_15(nick,V).
\quad V = 0 \\
?- age_about_15(peter,V).
\quad V \geq 0, V \leq 1 \quad \text{UNKNOWN}

?- teenager_student(john,V).
\quad V = 1 \\
?- teenager_student(susan,V).
\quad V = 0 \\
?- teenager_student(peter,V).
\quad V \geq 0, V \leq 1 \quad \text{UNKNOWN}
Default Value

We assume there is a function `default` which implement the Default Knowledge Assumptions. It assigns an element of $B([0, 1])$ to each element of the Herbrand Base.

- If the **Closed World Assumption** is used, then
 $\text{default}(A) = [0, 0]$ for all A in Herbrand Base.
- If **Open World Assumption** is used instead,
 $\text{default}(A) = [0, 1]$ for all A in Herbrand Base.
An interpretation I consists of the following:
1. a subset B_I of the Herbrand Base,
2. a mapping V_I, to assign
 (a) a truth value, in $B([0, 1])$, to each element of B_I, or
 (b) default(A), if A does not belong to B_I.
Operational Semantics

A transition in the transition system is defined as:

1. \(\langle A \cup a, \sigma, S \rangle \rightarrow \langle A \theta, \sigma \cdot \theta, S \wedge \mu_a = v \rangle \)
 if \(h \leftarrow v \) is a fact of the program \(P \), ...

2. \(\langle A \cup a, \sigma, S \rangle \rightarrow \langle (A \cup B) \theta, \sigma \cdot \theta, S \wedge c \rangle \)
 if \(h \leftarrow_F B \) is a rule of the program \(P \), ...

3. \(\langle A \cup a, \sigma, S \rangle \rightarrow fail \) if none of the above are applicable.
A *transition* in the *transition system* is defined as:

1. \(\langle A \cup a, \sigma, S \rangle \rightarrow \langle A \theta, \sigma \cdot \theta, S \land \mu_a = v \rangle \)
 if \(h \leftarrow v \) is a fact of the program \(P \), ...

2. \(\langle A \cup a, \sigma, S \rangle \rightarrow \langle (A \cup B) \theta, \sigma \cdot \theta, S \land c \rangle \)
 if \(h \leftarrow_{F} B \) is a rule of the program \(P \), ...

3. \(\langle A \cup a, \sigma, S \rangle \rightarrow fail \) if none of the above are applicable.
 \(\langle A \cup a, \sigma, S \rangle \rightarrow \langle A, \sigma, S \land \mu_a = v \rangle \)
 if none of the above are applicable and
 \(solvable(S \land \mu_a = v) \) where \(\mu_a = default(a) \).
Example (I) - Shifts Compatibility

Timetables of compatible shifts

Fuzzy Prolog – p. 41
Example (II) - Crisp and Fuzzy

\[
\text{compatible}(T_1, T_2, V) : \sim \min \\
\text{correct_shift}(T_1), \\
\text{correct_shift}(T_2), \\
\text{disjoint}(T_1, T_2), \\
\text{append}(T_1, T_2, T), \\
\text{number_of_days}(T, D), \\
\text{few_days}(D, V_f), \\
\text{number_of_free_hours}(T, H), \\
\text{without_gaps}(H, V_w).
\]
Example (III) - Default Values

\[
f_{\text{correct_shift}}(T,1) :\quad \text{correct_shift}(T).
\]

\[
:~\text{default}(f_{\text{correct_shift}}/2,[0,0]). \quad \% \text{CWA}
\]

\[
f_{\text{disjoint}}(T1,T2,1) :\quad \text{disjoint}(T1,T2).
\]

\[
:~\text{default}(f_{\text{disjoint}}/3,[0,0]). \quad \% \text{CWA}
\]

\[
f_{\text{few_days}}(D,V) :\quad \ldots
\]

\[
:~\text{default}(f_{\text{few_days}}/2,[0.25,0.75]). \quad \% \text{DEFAULT}
\]

\[
f_{\text{without_gaps}}(H,V) :\quad \ldots
\]

\[
:~\text{default}(f_{\text{without_gaps}}/2,[0,1]). \quad \% \text{OWA}
\]
Example (IV) - Constructive Answers

?- compatible(
 [(mo,9), (tu,10), (we,8), (we,9)],
 [(mo,8), (we,11), (we,12), (D,H)],
 V), V .> . 0.7 .

V = 0.9, D = we, H = 10 ;
V = 0.75, D = mo, H = 10 ;
no
Evaluation

- Representation of real problems: INCOMPLETENESS
- Crisp + Fuzzy logic: EXPRESIVITY
- $[0, 1]$ to represent total uncertainty ($0 \leq v \wedge v \leq 1$). Lack of information do not stop the evaluation: ACCURACY
- Provides answers: CONSTRUCTIVE
Evaluation and Further Work

- Representation of real problems: **INCOMPLETENESS**
- Crisp + Fuzzy logic: **EXPRESIVITY**
- $[0, 1]$ to represent total uncertainty ($0 \leq v \land v \leq 1$). Lack of information do not stop the evaluation: **ACCURACY**
- Provides answers: **CONSTRUCTIVE**

Further Work:

- Constructive negative queries
- Discrete fuzzy sets
- Applications (collaborative agents)
Overview

- Basics
 - Introduction
 - Description
 - Implementation

- Extensions
 - Incompleteness
 - Constructive negative Queries
 - Discrete Fuzzy Sets
 - Collaborative Fuzzy Agents
 - Fuzzy Rules with Credibility: RFuzzy

- Work proposals

Fuzzy Prolog – p. 47
Negation in Prolog - As Failure

student(john).
student(peter).

POSITIVE QUERIES

?- student(john).
yes
?- student(rick).
no

NEGATIVE QUERIES

?- +\ student(john).
no
?- +\ student(rick).
yes

?- student(X).
X = john ? ;
X = peter ? ;
no

?- +\ student(X).
no
student(john).
student(peter).

POSITIVE QUERIES

?- student(john).
s
no

?- student(rick).
no

NEGATIVE QUERIES

?- +\ student(john).
no
?- +\ student(rick).
s

?- student(X).
X = john ? ;
X = peter ? ;
no

?- neg(student(X)).
X = rick ?;
X = anne ?;
X = rose ?;
...
Negation in Prolog - Constructive

student(john).
student(peter).

------------------------------------POSITIVE QUERIES------------------------------------
?- student(john).
yes
?- student(rick).
no

?- student(X).
X = john ? ;
X = peter ? ;
no

------------------------------------NEGATIVE QUERIES------------------------------------
?- +\ student(john).
no
?- +\ student(rick).
yes

?- neg(student(X)).
X =/= john, X =/= peter ?;
no
Constructive Negation

?- neg(member(X, [1,2])).
X =/= 1, X =/= 2 ;
no

?- neg((X =/= 0, member(X, [1,2]))).
X = 0 ?;
X =/= 0, X =/= 1, X =/= 2 ?;
no
student(john).
student(peter).

f1_student(X,V):-
 student(X),!,V .=. 1.
 f1_student(X,0).

f2_student(X,V):-
 student(X),V .=. 1.
 f2_student(X,V):-
 neg(student(X)),V .=. 0.

?- f1_student(X,1).
X = john ? ;
X = peter ? ;
no

?- f1_student(X,0).
no

?- f2_student(X,0).
X =/= john, X =/= peter ? ;
no
Example (V) - Constructive Answers

?- compatible(
 [(mo,9), (tu,10),
 (we,8), (we,9)],
 [(mo,8), (we,11),
 (we,12), (D,10)], V),
V .> . 0 .

D =/= tu ? ;
no
Overview

• Basics
 – Introduction
 – Description
 – Implementation

• Extensions
 – Incompleteness
 – Constructive negative Queries
 – **Discrete Fuzzy Sets**
 – Collaborative Fuzzy Agents
 – Fuzzy Rules with Credibility: RFuzzy

• Work proposals
A discrete-interval

\([X_1, X_N]_d\) is a set of a finite number of values,\n
\(\{X_1, X_2, \ldots, X_{N-1}, X_N\}\),\n
between \(X_1\) and \(X_N\),\n
\(0 \leq X_1 \leq X_N \leq 1\),\n
such that\n
\(\exists 0 < \epsilon < 1. X_i = X_{i-1} + \epsilon, \ i \in \{2..N\}\).
Discrete Union Aggregation

- Given a discrete-interval-aggregation $F : \mathcal{E}_d([0, 1])^n \to \mathcal{E}_d([0, 1])$ defined over discrete-intervals, a discrete-union-aggregation $\mathcal{F} : \mathcal{B}_d([0, 1])^n \to \mathcal{B}_d([0, 1])$ is defined over union of discrete-intervals as follows:

$$\mathcal{F}(B_1, \ldots, B_n) = \bigcup \{ F(\mathcal{E}_{d,1}, \ldots, \mathcal{E}_{d,n}) \mid \mathcal{E}_{d,i} \in B_i \}$$
Introduction to CLP(\mathcal{FD})

- **CLP(\mathcal{FD})**: (Arithmetical) constraints over Finite Domains \mathcal{FD}: Each variable ranges over a finite set of integers

- **Resolution** is a combination of:
 - **Propagation**: excludes problem inconsistent values from the range of the variables (deterministic)
 - **Labeling**: assigns values to variables (expensive search process which fires more propagation)
Example:

\[
\text{main}(X,Y,Z) :- \\
[X,Y,Z] \text{ in } 1..5, \\
X-Y =. 2 \times Z, \\
X+Y \geq Z, \\
\text{labeling([X,Y,Z])}.
\]
Fuzzy → CLP(\(\mathcal{FD}\)) Translation

\[
youth(45,V) :: \sim [0.2,0.5] \lor [0.8,1]
\]

\[
youth(45,V) :- V \text{ in } 2..5, V \text{ in } 8..10.
\]

\[
good_player(X,V) :: \sim \min \text{ tall}(X,Vt), \text{ swift}(X,Vs).
\]

\[
good_player(X,V) :- \text{ tall}(X,Vt), \text{ swift}(X,Vs), \text{ minim}([Vt,Vs],V), V \text{ in } 0..100.
\]
Overview

● Basics
 – Introduction
 – Description
 – Implementation

● Extensions
 – Incompleteness
 – Constructive negative Queries
 – Discrete Fuzzy Sets
 – Collaborative Fuzzy Agents
 – Fuzzy Rules with Credibility: RFuzzy

● Work proposals
Constraint Satisfaction Problems (CSP)

CANDIDATES

0.55
0.32
0.89
0.31
0.15
0
1
...

GOAL
V = ?

CONSTRAINTS

0.1 + V < W
0.5 > V
W < V
X > W + X
Distributed CSP

CANDIDATES

0.55 0.15
0.32 0
0.89 ...
0.31

CONSTRAINTS

GOAL
V = ?

A1
0.1 + V < W

A2
0.5 > V
W < V
X > W + X

A3

Fuzzy Prolog – p. 62
Distributed CSP (I)

CANDIDATES

0.55
0.32
0.89
0.15
0
1
0.31

GOAL
V = ?

CONSTRAINTS – AGENTS

A2
0.5 > V

A1
0.1 + V < W

A3
W < V
X > W + X
Distributed CSP (II)

CANDIDATES

0.55
0.32
0.89
0.15
0
1
0.31

GOAL
V = ?

CONSTRAINTS – AGENTS

A1
0.1 + V < W

A2
0.5 > V

A3
W < V
X > W + X

C1
C2
C3

Fuzzy Prolog – p. 64
CANDIDATES

0.55
0.32
0.89
0.15
0
1
0.31

GOAL
V = ?

CONSTRAINTS – AGENTS

A1
0.1 + V < W

A2
0.5 > V

A3
W < V
X > W + X

C1
C2
C3
Asynchronous Backtracking Algorithm (ABT)

- Each agent owns exactly one variable and asynchronously assigns a value to its variable and sends it to the other agents (for evaluation).
- Each agent has a partial knowledge of the problem determined by the agents connected to it: *agent view*.
- Messages exchanged:
 - *ok?:* assignment made by the agent.
 - *nogood*: *agent view* which detects an inconsistency.
 - *ack*: acknowledgement (\equiv consistency).
Extended ABT (I)

- CLP(\mathcal{FD}) resolution simplifies having multiple variables in each agent.
- Coordination between distributed propagation and labeling.
- We use the Chandy-Lamport algorithm for detecting when an agent is stable if:
 - It has no queued message.
 - Its agent view is complete (there are no messages in transit).
Extended ABT (II)

• Distributed propagation ends when termination is detected (all agents are in a stable state) → obtains a global fixpoint without inconsistent values

• We use Dijkstra-Scholten algorithm that provide a reduction of the search space → minimal exchange of propagation messages: minimal spanning tree
Collaborative Fuzzy Problems

- Collaborative Fuzzy Problems can be modelled using a combination of:
 - Discrete Fuzzy Prolog
 - An implementation of Extended ABT (for distributed reasoning)
- CLP(FD) is the link between these components
- This work has been implemented in Ciao Prolog
Example (I)

- Criminal identification of suspects
- Distributed knowledge about:
 - physical aspects (V_p)
 - psychical aspects (V_s)
 - evidences (V_e)
Example (II)

- **Discrete fuzzy program:**

 \[
 \text{suspect}(\text{Person}, V) :: \sim \text{inter}_m \\
 \hspace{1cm} \text{allocate}_\text{vars}([V_p, V_s, V_e]), \\
 \hspace{1cm} \text{physically}_\text{suspect}(\text{Person}, V_p, V_s), \\
 \hspace{1cm} \text{psychically}_\text{suspect}(\text{Person}, V_s, V_p), \\
 \hspace{1cm} \text{evidences}(\text{Person}, V_e, V_p, V_s).
 \]

- **Transformed CLP(\text{FD}) program:**

 \[
 \text{suspect}(\text{Person}, V) :- \\
 \hspace{1cm} \text{allocate}_\text{vars}([V_p, V_s, V_e]), \\
 \hspace{1cm} V \text{ in } 0..10, \\
 \hspace{1cm} \text{physically}_\text{suspect}(\text{Person}, V_p, V_s), \\
 \hspace{1cm} \text{psychically}_\text{suspect}(\text{Person}, V_s, V_p), \\
 \hspace{1cm} \text{evidences}(\text{Person}, V_e, V_p, V_s), \\
 \hspace{1cm} \text{inter}_m([V_p, V_s, V_e], V).
 \]
Distributed Knowledge

- **Partial knowledge** stored in each agent is formulated in terms of **constraint expressions**

 Cp: `physically_suspect(Person, Vp, Vs) :-
 scan_portrait_database(Person, Vp),
 Vp * Vs .>=. 50 @ a1.`

 Cs: `psychically_suspect(Person, Vs, Vp) :-
 psicologist_diagnostic(Person, Vs),
 Vs .<. Vp @ a2.`

 Ce: `evidences(Person, Ve, Vp, Vs) :-
 police_database(Person, Ve),
 (Ve .>=. Vp,
 Ve .>=. Vs) @ a3.`

 scan_portrait_database(peter, Vp) :- Vp in 4..10.
 psicologist_diagnostic(peter, Vs) :- Vs in 3..10.
 police_database(peter, Ve) :- Ve in 7..10.
Agent Interaction (I)

- Collaborative fuzzy agents interaction for

\[\text{suspect} (peter, V) : \]

Diagram:

- T1: a1 (Vp) <-> a2 (Vs) <-> a3 (Ve)
- T2: a1 (Vp) <-> a2 (Vs) <-> a3 (Ve)
- T3: a1 (Vp) <-> a2 (Vs) <-> a3 (Ve)
- T4: a1 (Vp) <-> a2 (Vs) <-> a3 (Ve)
- T5: a1 (Vp) <-> a2 (Vs) <-> a3 (Ve)

- Cp: ok Cp?
- Cs: ok CsCp?
- CpCe: ack CpCe
- CsCpCe: ack CsCpCe

Fuzzy Prolog – p. 73
Agent Interaction (II)

- Collaborative fuzzy agents interaction for

\[\text{suspect}(\text{jane}, V) : \]

\[\text{Vp, Vs, Vp, Vs, Vp, Vs, Vp, Vs} \]

\[\text{a1, a2, a3, a1, a2, a3, a1, a2} \]

\[\text{T1, T2, T3, T4} \]

\[\text{ok Cp?} \]

\[\text{nogood} \]

\[\text{Ce} \]
Overview

- Basics
 - Introduction
 - Description
 - Implementation

- Extensions
 - Incompleteness
 - Constructive negative Queries
 - Discrete Fuzzy Sets
 - Collaborative Fuzzy Agents
 - Fuzzy Rules with Credibility: RFuzzy

- Work proposals
Multi-adjoint logic

• Rules with a truth degree of credibility
 \[< R; \alpha > \]

• Fuzzy Prolog rule syntax
 \[f\text{pred}(\text{args}) \text{cred} (aggrC, \alpha) :\sim \; aggrO \]
 \[f\text{pred1}(\text{args1}), \ldots, f\text{predN}(\text{argsN}). \]

• Example
 \[\text{good_player}(J) \text{cred} (\text{prod}, 0.8) :\sim \; \text{prod} \]
 \[\text{swift}(J), \; \text{tall}(J), \; \text{experience}(J). \]
Multi-adjoint logic

- Fuzzy Prolog fact syntax

\[f_{pred}(args) \text{ value truth_value}. \]

- Example

experience(john) value 0.9 .
experience(karl) value 0.9 .
experience(mike) value 0.9 .
experience(lebron) value 0.4 .
experience(deron) value 0.3 .
Default values

- Represent incomplete information
- Fuzzy Prolog default value syntax

\[: \leftarrow \text{default}(f\text{pred}/\text{arity}, \text{default_value}). \]

- Example

\[
: \leftarrow \text{default}(\text{experience}/1, 0.9). \\
\text{experience}(\text{lebron}) \text{ value } 0.4. \\
\text{experience}(\text{deron}) \text{ value } 0.3.
\]
Type Properties

• Fuzzy Prolog type properties syntax

\[: \rightarrow \text{prop } type_name/arity. \]

\[: \rightarrow \text{set_prop } fpred(args) \rightarrow type_name(args). \]

• Example

\[-prop typePlayer/1.\]
\text{typePlayer(john).}\n\[\ldots \]
\text{typePlayer(deron).}\n\[-set_prop experience(J) \rightarrow typePlayer(J).\]
```prolog
:- module(good_player,_,[rfuzzy]).
:- prop typePlayer/1.

(good_player(J) cred (prop,0.8)) :- prop
  swift(J), tall(J), experience(J).

typePlayer(john).
...
typePlayer(deron).

:- set_prop experience(J) >= typePlayer(J).
```
Complete Example II

:- default (experience/1, 0.9).
experience(lebron) value 0.4 .
experience(deron) value 0.3 .

:- default (tall/1, 0.6).
tall(john) value 0.4 .
tall(karl) value 0.8 .

:- default (swift/1, 0.7).
swift(john) value 1 .
Fuzzy Queries

- Fuzzy Prolog queries syntax

 \[? \leftarrow fpred(\text{args}, V). \]

- Example

 \[?\leftarrow \text{good_player}(\text{john}, V). \]

 \[V = 0.288 \]

 no
Overview

- Basics
 - Introduction
 - Description
 - Implementation

- Extensions
 - Incompleteness
 - Constructive negative Queries
 - Discrete Fuzzy Sets
 - Collaborative Fuzzy Agents
 - Fuzzy Rules with Credibility: RFuzzy

- Work proposals
Work proposals

• “Models of Inexact Reasoning” work
 – Modeling a Problem with Fuzzy/RFuzzy Prolog
 – Semantics for Fuzzy queries language
 – ...

• Practical Project / Master thesis
 – Implementation of credibility with intervals
 – Fuzzy web interface
 – New Fuzzy Prolog version with credibility
 – Comparison with other Fuzzy Prolog (tool & semantics)
 – Credibility with intervals
 – ...

Fuzzy Prolog – p. 84
Work “Models of Inexact Reasoning”

- Choose a topic (with the acknowledge of the professor)
- Send **Feb 20th** by e-mail to *susana@fi.upm.es*
 - Source files of the report (better .tex, otherwise .doc)
 - Report with tests, explanations, etc. (.pdf)
 - Source files of the developed code (.pl)
 - Examples files (.pl)
Overview

● Basics
 – Introduction
 – Description
 – Implementation

● Extensions
 – Incompleteness
 – Constructive negative Queries
 – Discrete Fuzzy Sets
 – Collaborative Fuzzy Agents
 – Fuzzy Rules with Credibility: RFuzzy

● Work proposals
Fuzzy Prolog

Susana Muñoz-Hernández

Facultad de Informática
Universidad Politécnica de Madrid
28660 Madrid, Spain

susana@fi.upm.es