

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

Level Semantics

RFuzzy Low Level Semantic

Practical applications

The en

Appendi

References

Mejoras de la Expresividad de Lenguajes Lógicos con el Manejo de Información Negativa y Difusa

Víctor Pablos Ceruelo

The Babel Research Group, Facultad de Informática Universidad Politécnica de Madrid, Spain http://babel.ls.fi.upm.es/

June 2015

Extending the Expressiveness of Fuzzy Logic Languages

Motivation & Overview

RFuzzy Synta

Level Semantic

RFuzzy Low Level Semantic

Practical application

C---I....

I he end

Appendi

Reference

- ► Frameworks for modelling fuzzy logic are more focused in efficiency that in functionality (negation, fuzzification functions, default values, similarity, ...) and they are (usually) ad hoc solutions.
- ► They do not implement any semantics allowing to ensure that the subset of real-world cases are represented by a rule (as the multi-adjoint semantics).
- ► They do not allow to reuse the huge amount of information that companies have in non-fuzzy databases.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation & Overview

RFuzzy Synta:

Level Semantics

RFuzzy Low Level Semantics

Practical application

C---!--:

The end

Appendi

efficiency that in functionality (negation, fuzzification functions, default values, similarity, ...) and they are (usually) ad hoc solutions.

Frameworks for modelling fuzzy logic are more focused in

- ► They do not implement any semantics allowing to ensure that the subset of real-world cases are represented by a rule (as the multi-adjoint semantics).
- They do not allow to reuse the huge amount of information that companies have in non-fuzzy databases.

RFuzzy: A framework for modelling fuzziness in logic programming programs.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation & Overview

RFuzzy Synta

Level Semantic

RFuzzy Low Level Semantics

Practical

Conclusions

Appendi

Motivation & Overview

2 RFuzzy Syntax

3 RFuzzy High Level Semantics

4 RFuzzy Low Level Semantics

5 Practical applications

6 Conclusions

7 The end

8 Appendix

Extending the Expressiveness of Fuzzy Logic Languages

Motivation & Overview

RFuzzy Syntax

RFuzzy High

DE...... I

Level Semanti

applications

Conclusion

Appendix

References

RFuzzy Syntax

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

${\sf RFuzzy\ Syntax}$

DB connection VDBT Declarations Dyn. Decl. Defaults Rules

Synonyms

RFuzzy High Level Semant

RFuzzy Low Level Semantics

Practical application

Conclusion

THE CHA

RFuzzy Syntax

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

DB connection

VDBT Declaration

Dyn. Decl.

Rules

Synonyn

Similarit Others

RFuzzy High Level Semanti

Level Semantics

application

Annend

References

% Defines the database location, username and passwd sql_persistent_location(database_id,

$$db('SQL', user, pass, 'host' : port)).$$
 (1)

(3)

% Example

sql_persistent_location(myDatabase,

db('SQL', 'me', 'myPass', 'localhost' : 1521)). (2)

% Links a Prolog predicate to a database table
: -sql_persistent(
 predicate_name(Prolog type for each column),
 database_table_name(columns' names),
 database_id).

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

```
DB connection
```

VDBT Declarations

Declaration: Dvn. Decl.

Defaults

Rules

Synonym

RFuzzy High

RFuzzy Low Level Semantics

Practical applications

Conclusion

I ne enc

D-f----

```
% Example of linkage with restaurant's food type db table
: -sql_persistent(
    rest_food_type(integer, string),
    restaurant_food_type(id, food_type),
    myDatabase). (4)
```

% Example of linkage with restaurant's distance to the center
% database table
: -sql_persistent(
 rest_dist_to_tcc(integer, integer),
 restaurant_dist_to_tcc(id, dist_to_tcc),
 myDatabase). (5)

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

Kruzzy Synta

DB connection

Declaratio

Dyn. Decl. Defaults

Synonyms

Others

RFuzzy Low

Practical

C---I....

The end

Append

References

```
% Example one table with all the information
: -sql_persistent(
    restaurant(integer, string, integer),
    restaurant(id, food_type, dist_to_tcc),
    myDatabase).
```

(8)

(9)

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

DB connection VDBT

Declarations
Dyn. Decl.

Rules Synonyms

Similarity

RFuzzy High Level Semant

Level Semantics

application

D (

```
% Another example of linkage with a database table
: -sql_persistent(
      restaurantAux(integer, string, string, string,
                  integer, integer integer, integer),
      restaurant(restaurant_id, name,
                  restaurant_type, food_type,
                  vears_since_opening.
                  distance_to_the_city_center.
                  price_average, menu_price),
      myDatabase).
                                                      (10)
```

(11)

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

DB connection VDBT Declarations

Dyn. Decl. Defaults

Synonyms

Others RFuzzy Higl

RFuzzy Low Level Semantics

Practical application

Conclusion

The end

```
% Removal of column (Restaurant_id)

restaurant(Name, Restaurant_type,

Food_type, Years_since_opening,

Distance_to_the_city_center,

Price_average, Menu_price):—

restaurant(Restaurant_id,

Name, Restaurant_type,

Food_type, Years_since_opening,

Distance_to_the_city_center,
```

Price_average, Menu_price).

(12)

RFuzzy Syntax - VDBT Definition of the virtual database table

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

DB connection

Declaration

Dyn. Decl. Defaults

Rules

Synonyn

RFuzzy High

RFuzzy Low Level Semantics

Practical application

Annendi

```
% Definition of virtual database table define_database(pT/pA,[(pN, pT')]). (13)
```

```
% Example of definition of virtual database table
define_database(restaurant/7,[
    (name, string_type),
    (restaurant_type, enum_type),
    (food_type, enum_type),
    (years_since_opening, integer_type),
    (distance_to_the_city_center, integer_type),
    (price_average, integer_type),
    (menu_price, integer_type)]).
(14)
```


RFuzzy Syntax - VDBT

Definition of the virtual database table - example cont.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

DB connection

VDBT Declarations

Dyn. Decl.

Defaults

Synonyn

Similarity

RFuzzy High evel Semantics

RFuzzy Low Level Semantics

Practical application

Conclusion

Append

References

```
% Predicates available from the previous example name(R, Value) : - ... restaurant\_type(R, Value) : - ... food\_type(R, Value) : - ... years\_since\_opening(R, Value) : - ... distance\_to\_the\_city\_center(R, Value) : - ... price\_average(R, Value) : - ... menu\_price(R, Value) : - ... (15)
```


RFuzzy Syntax - VDBT

Definition of the virtual database table - Comparison operators available by the things characteristics' type

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

DB connectio

Declarations
Dvn. Decl.

Defaults Rules Synonyms Similarity

RFuzzy High Level Semant

RFuzzy Low Level Semantics

Practical application

Conclusion

i ne en

пррешан

type	operator	meaning of operator	
boolean_type	=	"is equal to"	
	=/=	"is different from"	
enum_type	= "is equal to"		
	= / = =~=	"is different from"	
	=~=	"is similar to"	
interger_type	=	"is equal to"	
float_type	=/=	"is different from"	
	>	"is bigger than"	
	<	"is lower than"	
	>= =<	"is bigger than or equal to"	
	=<	"is lower than or equal to"	
string_type	=	"is equal to"	
	=/=	"is different from"	

RFuzzy Syntax - Declarations

Declarations: Definition of the truth value of an individual or a set of individuals

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

VDRT

Declarations

Dyn. Decl. Defaults

Synonym:

Similarity

RFuzzy High Level Semantic

Level Semantics

application

Append

ferences

$$fPredName(pT) :\sim value(TV)$$
 (16)

if(pN(pT) comp value) (17)

 $with_credibility(credOp, credVal)$ (18)

only_for_user 'UserName' (19)

$$cheap(restaurant) :\sim value(0.5)$$
 (20)

- comp is a comparison operator and can take the values "is_equal_to", "is_different_from", "is_bigger_than", "is_lower_than", "is_bigger_than_or_equal_to" and "is_lower_than_or_equal_to"
- value can be of type integer_type, enum_type or string_type.

RFuzzy Syntax - Declarations

Declarations: Definition of the truth value of an individual or a set of individuals (examples)

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax DB connectio

DB connectio

Declarations

Deciaration

Dyn. Decl.

Rules

Synonym

RFuzzy High Level Semantics

Level Semantic

Practical application

Conclusion:

Append

References

```
cheap(restaurant) :~ value(0.1)
if(name(restaurant) is_equal_to zalacain). (21)
```

```
cheap(restaurant) :\sim value(0.3)

if(name(restaurant) is\_equal\_to don\_jamon)

with\_credibility(min, 0.8). (22)
```

```
close_to_the_city_center(restaurant) :~ value(0)

if (name(restaurant) is_equal_to zalacain)

only_for_user 'Lara' (23)
```


RFuzzy Syntax - Dyn. Decl.

Dynamic Declarations: Definition of fuzzification functions

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

DR connectio

VDBT

Declarat

Dyn. Decl.

Detaul

Synonyn

Othor

RFuzzy High Level Semanti

RFuzzy Low Level Semantics

application

Concidanc

Appond

Deferences

$$fPredName(pT) :\sim function(pN(pT), [(valIn, valOut)]).$$
 (24)

RFuzzy Syntax - Defaults

Definition of default truth values

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

DB connection

VDB I Declarations

Dyn. Decl.

Defaults

Rules

Synonym

RFuzzy High

RFuzzy Low Level Semantic

Practical application

Conclusion

....

```
fPredName(pT) :\sim defaults\_to(TV) (26)
```

close_to_the_city_center(restaurant)

 $\sim defaults_to(0).$ (27)

 $cheap(restaurant) : \sim defaults_to(0.5).$ (28)

RFuzzy Syntax - Rules Definition of rules

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

DR connection

VDBT

Declaration

Dyn. Decl.

Rules

Rules

Similarit

Others

RFuzzy Low

Level Semantics

application

Concidence

The end

D. C.

```
fPredName(pT) :\sim rule(fPredName2(pT)) (29)
```

$$fPredName(pT) :\sim rule(aggr, (fPredName2(pT), fPredName3(pT), ...))$$
 (30)

% It is a tempting restaurant if the worst value between % being close to the center and being cheap is not so bad. tempting_restaurant(restaurant):~ rule(min,

```
( close_to_the_city_center(restaurant),
  cheap(restaurant) )) (31)
```


RFuzzy Syntax - Synonyms

Definition of a fuzzy characteristic as synonym or antonym of another one

Extending the Expressiveness of Fuzzy Logic Languages

Dvn. Decl.

Synonyms

```
fPredName(pT) : \sim
     synonym_of(fPredName2(pT))
                                           (32)
```

```
unexpensive(restaurant):\sim
     synonym_of(cheap(restaurant))
     with_credibility(prod, 0.9).
                                               (33)
```

$$fPredName(pT) : \sim \\ antonym_of(fPredName2(pT)).$$
 (34)

RFuzzy Syntax - Similarity

Definition similarity between attributes of the individuals in the database

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

DB connection

VDBT

Declaration Dvn. Decl.

Defaults

Rules

Similarity

Others

RFuzzy Low

Practical application

Conclusio

i ne end

$$similarity_between(pT, pN(value1), pN(value2), TV).$$
 (36)

% Tapas restaurants are valid answers if we look % for a spanish restaurant, but not in the other way. similarity_between(restaurant,

food_type(spanish),
food_type(tapas), 0.7)
with_credibility(prod, 1).

(38)

RFuzzy Syntax - Others

New connective (conjunctor, disjunctor, aggregator) definition

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

DB connection

VDBT

Declarations

Dyn. Decl.

Detaults

Synonym

Others

RFuzzy High

RFuzzy Low Level Semantic

Practical application

Conclusion

Annen

Roforonco

RFuzzy Syntax - Others

Extending the Expressiveness of Fuzzy Logic Languages

Overview

RFuzzy Synta:

DR connection

VDBT

Declaration

Dyn. Decl.

Rules

Synonym

Similarit

Others

RFuzzy High Level Semant

RFuzzy Low Level Semantic

Practical application

Conclusio

D 6

 $define_modifier(Name/2, Var_In, Var_Out) : prolog_code. \tag{41}$

 $define_modifier(a_little/2, TV_In, TV_Out) : - TV_Out * TV_Out . = . TV_In.$ (42)

RFuzzy Syntax - Others

New negation operator definition

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

DB connection

VDBT

Declaratio

Dyn. Decl.

Detaults

Synonyn

Oil

Others

Level Semanti

Level Semantic

Practical application

Conclusion

Annend

Doforoncoc

$$define_negation_op(Name/2, Var_In, Var_Out) : -$$

$$prolog_code.$$
(43)

$$\begin{split} \textit{define_negation_op(godel_neg/2, } & \textit{TV_In, } & \textit{TV_Out}): - \\ & (& (\textit{TV_In}. = .~0, & \textit{TV_Out}. = .~1) ; \\ & (& + (\textit{TV_In}. = .~0), & \textit{TV_Out}. = .~0)). \end{split}$$

RFuzzy High Level Semantics

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

RFuzzy High Level Semantics

Level Semantics

Defaults Rules

Synonym Similarity

RFuzzy Low Level Semantics

Practical application

Conclusion

I he end

Appendix

D-f----

RFuzzy High Level Semantics

RFuzzy High Level Semantics Intermediate translation

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

RFuzzy High Level Semantics

Level Semantion

Declarations

Default

Synonym

RFuzzy Low

Practical

Conclusio

i ne end

Appendix

The structures with low level semantics are:

$$A \stackrel{(p, v), \&_i}{\leftarrow} @_j(D_1, \dots, D_i, \dots, D_n)$$
 if $COND(A)$ (45)

$$A \stackrel{(p, v), \&_i}{\leftarrow} D \text{ if } COND(A)$$
 (46)

$$A \stackrel{(p, v), \&_i}{\longleftarrow} (p', v') \text{ if } COND(A)$$
 (47)

RFuzzy High Level Semantics - Declarations

Translation of the definition of truth value for an individual or a set of individuals

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semar

Declarations

Dyn.Decl

Rules

Synonyn

RFuzzy Low Level Semantics

application

Conclusio

Annend

. .

 $fPredName(pT) :\sim value(TV)$ (48)

if(pN(pT) comp value) (49)

 $with_credibility(credOp, credVal)$ (50)

only_for_user 'UserName' (51)

is translated into

$$fPredName(Individual) \stackrel{(p, v), \&_i}{\longleftarrow} (1, TV)$$

if $COND$ (52)

where the "by default" values for p, v, $\&_i$ and COND are 0.8, 1, prod (product) and true.

RFuzzy High Level Semantics - Declarations

Summary of the values given "by default" to the variables p, v, $\&_i$, $@_i(B_1, ..., B_n)$ and COND.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

Level Semantic

Declarations

Dyn.Decl Defaults Rules Synonyms Similarity

RFuzzy Low Level Semantic

Practical applications

Conclusion

The end

Appendix

construction	р	V	& _i	$Q_i(B_1,\ldots,B_n)$	COND
fuzzy value	0.8	1	prod	TV	true
synonym	0.8	1	prod	TV	true
antonym	0.8	1	prod	TV	true
fuzzification function	0.6	1	prod	pN(Individual) * (valOut_2-valOut_1) (valIn_2-valIn_1)	valln_1 < pN(Individual) ≤ valln_2
fuzzy rule	0.4	1	prod	$\mathbb{Q}_j (B_1,\ldots,B_n)$	true
default	0	1	prod	TV	true
fuzzy value					

RFuzzy High Level Semantics - Declarations

Changes in the values given to the variables p, v, $\&_i$ and *COND* when the tails' constructions in eqs. 17, 18, 19 are used.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semantics

Declarations
Dyn.Decl
Defaults
Rules
Synonyms
Similarity

RFuzzy Low Level Semantic

application

The end

Appendix

References

tail	р	V	& _i	COND
constr.				
eq. 17	p + 0.05	v	& _i	$COND \land (pN(Individual) comp value)$
eq. 18	р	credVal	credOp	COND
eq. 19	p + 0.1	v	& _i	$COND \land $ $currentUser(Me) \land $ $Me = 'UserName'$

$$fPredName(pT) :\sim value(TV)$$

(53)

RFuzzy High Level Semantics - Dyn.Decl

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Declaration

Dyn.Decl

Defaults

Rules Synonym

RFuzzy Low Level Semantic

Practical application

Conclusio

Appendi

References

$$fPredName(pT) :\sim function(pN(pT), [(valIn, valOut)]).$$
 (56)

is translated into a set of clauses, one for each piece the programmer has defined for the piecewise function. Each one of the resulting clauses has the form

$$fPredName(Individual) \xleftarrow{(p, v), \&_i}$$

$$(1, pN(Individual) * \frac{(valOut_2 - valOut_1)}{(valIn_2 - valIn_1)})$$
if COND (57)

in which p, v, $\&_i$ and COND take by default the values 0.6, 1, prod (product) and

$$(valIn_1 < pN(Individual) \le valIn_2)$$
 (58)

RFuzzy High Level Semantics - Defaults

Translation of the definition of default truth values

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

RFuzzy High

Level Semantic

Dyn.De

Defaults

Synonyn

RFuzzy Low Level Semantics

Practical applications

Conclusio

Tile cild

тррениіх

 $fPredName(pT) :\sim defaults_to(TV)$

(59)

is translated into

$$fPredName(Individual) \stackrel{(p, v), \&_i}{\leftarrow} (1, TV) \text{ if } COND$$
 (60)

where the *by default* values for the variables p, v, $\&_i$ and *COND* are 0, 1, *prod* (product) and *true*.

Extending the

Expressiveness of

RFuzzy High Level Semantics - Rules Translation of rules

Fuzzy Logic Languages

> otivatior verview

RFuzzy Syntax

RFuzzy High Level Semantics

Declarations

Dyn Docl

Rules

Synonyi Similari

Level Semar

applications

The en

Appendix

eferences

```
fPredName(pT) :\sim rule(fPredName2(pT)) (61)
```

 $fPredName(pT) :\sim rule(aggr, (fPredName2(pT), fPredName3(pT), ...))$ (62)

are (respectively) translated into

 $fPredName(Individual) \xleftarrow{(p, v), \&_i} fPredName2(Individual)$ if COND (63)

(64)

```
fPredName(Individual) \xleftarrow{(p, v), \&_i} @( fPredName2(Individual), fPredName3(Individual), ...) if COND
```

where the *by default* values for the variables p, v, $\&_i$ and *COND* are 0.4, 1, *prod* (product) and *true*.

RFuzzy High Level Semantics - Synonyms

Translation of the definition of a fuzzy characteristic as the synonym of another one

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

RFuzzy High Level Semantic

Level Semantic

Dyn.D Defaul

Synonyms

RFuzzy Low

Practical applications

Conclusio

References

$$fPredName(pT) : \sim synonym_of(fPredName2(pT))$$
 (65)

is translated into

$$fPredName(Individual) \xleftarrow{(p, \ v), \ \&_i} fPredName2(Individual)$$

$$if \ COND \qquad (66)$$

where the *by default* values for the variables p, v, $\&_i$ and *COND* are 0.8, 1, *prod* and *true*.

RFuzzy High Level Semantics - Synonyms

Translation of the definition of a fuzzy characteristic as the antonym of another one

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

RFuzzy High Level Semantic

Level Semantic

Declarations

Dyn.D Defaul

Synonyms

RFuzzy Low Level Semantics

Practical applications

Conclusio

References

$$fPredName(pT) : \sim$$
 $antonym_of(fPredName2(pT))$ (67)

is translated into

$$fPredName(Individual) \xleftarrow{(p, v), \&_i} \\ not(fPredName2(Individual)) \\ if COND$$
 (68)

where the *by default* values for the variables p, v, $\&_i$ and *COND* are 0.8, 1, *prod* and *true*.

RFuzzy High Level Semantics - Similarity

Translation of the definition of similarity between atributes

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

RFuzzy High Level Semantics

Declarations

Defaults

Synonyms

RFuzzy Low

application

Conclusio

Appendix

References

$$similarity_between(pT, pN(value1), pN(value2), TV).$$
 (69)

is translated into

$$fuzzy_comparator('=\sim=',\ pN,\ value1,\ Individual) \\ \xleftarrow{(p,\ v),\ \&_i} \ TV$$
 if $pN(Individual,\ value2)$ (70)

so that we can ask for the similarity between the characteristic entered in argument *value1* and the value that the individual *Individual* has for the same characteristic.

The *by default* values for the variables p, v, $\&_i$ and *COND* are 0.8, 1, *prod* and *true*.

RFuzzy Low Level Semantics

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semantic

RFuzzy Low Level Semantics

Priority inclusion Modifiers inclusion Low level syntax

Practical

Conclusion

Appendix

References

RFuzzy Low Level Semantics

RFuzzy Low Level Semantics - Priority inclusion

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

RFuzzy Low

Priority inclusion

inclusion Low level syntax

application

Annendix

References

Definition (\mathbb{KT})

$$\mathbb{KT} = \{\bot\} \ \cup \ \{ \ (p, \ v) \mid v \ \in \ [0, \ 1] \ \land \ p \ \in \ [0, \ 1] \ \} \quad \mbox{(71)}$$

Definition ($\preccurlyeq \mathbb{KT}$)

The ordering between the values in \mathbb{KT} is fixed by the definition of \leq \mathbb{KT} :

where < is defined as usually (remember that v_i and p_j are just real numbers between 0 and 1). It is obvious that the pair (\mathbb{KT} , \leq \mathbb{KT}) forms a complete lattice.

RFuzzy Low Level Semantics - Priority inclusion

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semantics

Level Semantics

Priority inclusion

inclusion
Low level syntax

Practical

Conclusion

Appendix

References

For each kind of connective we define how to obtain the priority of the result from the priority of the inputs.

$$x \circ_{\&} y = \frac{x + y}{2} \tag{72}$$

$$z \circ_{\leftarrow} y = max(0, min(1, 2 * z - y))$$
 (73)

$$x \circ_{\vee} y = \frac{x + y}{2} \tag{74}$$

$$x \circ_{\mathbf{0}} y = \frac{x + y}{2} \tag{75}$$

$$\circ_{\neg}(x) = x \tag{76}$$

$$\circ_{\Diamond}(x) = x \tag{77}$$

RFuzzy Low Level Semantics - Priority inclusion

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semantic

RFuzzy Low Level Semantics

Priority inclusion Modifiers inclusion Low level syntax

Practical

Conclusion

....

References

- ► The functions are extended as usual when applied to more than two input values.
- ▶ The aim of taking into account the priority of every single root (each D_i , $i \in 1 \dots n$) involved in the inference process removes the possibility to use mathematical operators in which the result remains unchanged when some input does not (i.e. min, max, etc).
- ▶ the operator must be defined for each possible connective.

RFuzzy Low Level Semantics - Modifiers inclusion

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semanti

Priority inclusion

Modifiers

Modifiers inclusion Low level syntax

Practical

Conclusion

Appendix

References

Definition (Basic formula)

A basic formula can be an atom (Eq. 78), the application of a modifier or a negation operator to an atom (Eqs. 79 and 80 resp.) or the application of a negation operator to the application of a modifier to an atom (Eq. 81).

Α	(78)	hot
$\Diamond(A)$	(79)	very(hot)
$\neg(A)$	(80)	not(hot)
$\neg(\lozenge(A))$	(81)	not(very(hot))

RFuzzy Low Level Semantics - Low level syntax

Extending the Expressiveness of Fuzzy Logic Languages

Motivation & Overview

RFuzzy Syntax

RFuzzy High Level Semantics

RFuzzy Low Level Semantic

Priority inclusion

Modifiers

Low level syntax

applicatio

The end

Appendi

References

Definition (Multi-Adjoint Logic Program)

A multi-adjoint logic program is a set of clauses of the form

$$\{ A \stackrel{(p, v), \&_i}{\longleftarrow} @_j(D_1, \dots, D_i, \dots, D_n)$$
 if $COND(A) \}$ (82)

where $(p, v) \in \mathbb{KT}$, $\&_i$ is a conjunctor, $@_i$ an aggregator, A an atom, each D_i , $i \in [1..n]$, a basic formula (see Def. 3) and COND(A) a first-order formula (a boolean condition that needs to be satisfied for A to get the value computed by the rule) formed by the predicates in $TB_{\Pi,\Sigma,V}$, the predicates =, \neq , \geq , \leq , > and < restricted to terms from $TU_{\Sigma,V}$, the symbol t and the conjunction \land and disjunction \lor in their usual meaning.

RFuzzy Low Level Semantics - Low level syntax Low level syntax

Extending the Expressiveness of Fuzzy Logic Languages

Low level syntax

Definition (Multi-Adjoint Logic Program (cont.))

If n = 1 then Q_i is omitted (there is no need for an aggregator to combine the tuples of two or more basic formulas D_i because there is only one) and we represent it with the form

$$A \xleftarrow{(p, v), \&_i} D \tag{83}$$

If n = 0 the clause is intended to be used for assigning a truth value to an atom, with more or less credibility. In this case there is no aggregator nor basic formulas in the clause's body and we represent it as follows

$$A \stackrel{(p, v), \&_i}{\longleftarrow} (p', v') \tag{84}$$

where (p', v') is the truth value and priority assigned to the fact ((p, v) is still the credibility assigned to the rule).

RFuzzy Low Level Semantics - Low level syntax The negation problem

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semantics

Modifiers

Low level syntax

application

The end

Appendix

Reference

Suppose a program \mathbb{P} formed by the set of rules

$$A \leftarrow \neg(B)$$
$$B \leftarrow (1, 0.1)$$

and assume that the definition of the negation operator is

$$Output = 1 - Input$$

The following interpretations are models of our program \mathbb{P} :

$$I_1 = \{ (B, (1, \hat{0}.1)), (A, (1, \hat{0}.9)) \}$$

 $I_2 = \{ (B, (1, \hat{0}.4)), (A, (1, \hat{0}.6)) \}$

But their least model (the infimum between the interpretations) cannot be its declarative semantics since it is no more a model of \mathbb{P} :

$$I_3 = \{ (B, (1, \hat{0}.1)), (A, (1, \hat{0}.6)) \}$$

RFuzzy Low Level Semantics - Low level syntax Low level syntax

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

RFuzzy High Level Semantics

Priority inclusio Modifiers

Low level syntax

application

Conclusio

Annendi

References

Definition (Stratification, adapted and extended from the definition proposed by Przymusinski in [Prz89])

A general program \mathbb{P} is stratified if and only if it is possible to decompose the set S of all predicates of \mathbb{P} into disjoint sets S_1, \ldots, S_r , called strata, so that for every clause $Cl_i \in \mathbb{P}$ of the form

$$\{A \stackrel{(p, v), \&_i}{\longleftarrow} @_j(D_1, \ldots, D_j, \ldots, D_n) \text{ if } COND(A)\}, (85)$$

$$\forall i \ stratum(A) \ge stratum(D_i) \ \text{if} \ D_i$$
has the form $B \ \text{or} \ \lozenge B$ (86)

$$\forall \ i \ stratum(A) > stratum(D_i) \ \ \text{if} \ \ D_i$$
has the form $\neg B$ or $\neg \lozenge B$ (87)

Practical applications

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

RFuzzy High

RFuzzy Low

Practical applications

Emotion recognition RoboCup Soccer Fuzzy Granularity Control in Parallel/Distributed Computing

Conclusion

The er

Append

D (

Practical applications

Practical applications - Emotion recognition

Extending the Expressiveness of Fuzzy Logic Languages

Motivation

RFuzzy Synta:

Level Semantics

RFuzzy Low Level Semantic

Practical application

Emotion recognition

Fuzzy
Granularity
Control in Parallel/Distributed
Computing

Conclusion

The en

Appendi

References

Figure: Methodology of data recognition, from [FM09].

Practical applications - RoboCup Soccer

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

RFuzzy High

RFuzzy Low

Practical application

Emotion

RoboCup Soccer

Fuzzy Granularity Control in Para lel/Distributed Computing

Conclusion

The en

Appendi

Reference:

Figure: System Architecture for RoboCup Soccer Server.

Practical applications - Fuzzy Granularity Control in Parallel/Distributed Computing

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

Level Semanti

Level Semantic

application

recognition

Fuzzy Granularity Control in Parallel/Distributed Computing

riese

Conclusion

.

проспан

In [TLGM10; TLGMH10] T. Trigo de la Vega, P. López-García and S. Muñoz-Hernández present an study in which they relax the (conservative) conditions taken into account for deciding not to parallelize a task (communication costs and others) by using fuzzy logic.

In the experimental assessment included in the study they show that the new fuzzy conditions implemented in RFuzzy select the optimal type of execution in most cases.

Practical applications - FleSe

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semantic

RFuzzy Low Level Semantic

application

Emotion recognition

Fuzzy Granularity Control in Para lel/Distributed

FleSe

Conclusio

...

Doforonco

FleSe Demo

FleSe: Flexible Searches in Databases

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

RFuzzy High

RFuzzy Low

Practical application

Conclusions

Improvements with respect to other fuzzy logic frameworks

Disseminati results

Impact of RFuzzy and apps developed with it

The en

Reference

Conclusions

Improvements with respect to other fuzzy logic frameworks

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

Level Semantics

Level Semantic

application

Conclusion

Improvements with respect to other fuzzy logic frameworks

results
Impact of
RFuzzy and apps
developed with it

The er

Appendi

References

- Overloading of fuzzy predicates (cheap(car) and cheap(house) do not behave in the same way).
- Priorities, allowing to have different rules for the same goal and obtaining the result from the rule with more priority instead of from the rule obtaining the highest truth value. Useful for:
 - Default value rules (We can give more importance to those rules using less default information)
 - Rules for subsets of individuals
 - Personalized rules
- Modifiers (very cheap) and negation (not cheap). And they can be used in programs and queries.
- Synonyms and Antonyms.
- Similarity between non-fuzzy attributes, (ask for spanish restaurants and obtain tapas restaurants).

Improvements with respect to other fuzzy logic frameworks

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semantic

RFuzzy Low Level Semanti

application

Conclusion

Improvements with respect to other fuzzy logic frameworks

Dissemination

Impact of RFuzzy and apps developed with it

The en

D-f----

We can group individuals to get rules where credibility is not as small as before, getting rules that represent better the world behaviour and results much more accurate than before.

Conclusions Dissemination results

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semantic

Practical

applications

Improvements with respect to

other fuzzy logic frameworks Dissemination results

Impact of RFuzzy and apps developed with it

The en

Appendi

Doforoncoo

The work is the result of a very fertile research. We have published our results in

- ▶ a workshop, ([PCMHS08]),
- eight conferences ([MHPCS09; PCMH11; PCMH14a; PCMH14b; PCMH14c; PCMH14d; PCSMH09; SMHPC09].
- a journal paper ([MHPCS11])
- and we have sent a second journal paper that we expect to be published soon ([PCMH15]).

Impact of RFuzzy and apps developed with it

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

KFuzzy Synta:

RFuzzy High Level Semantic

Level Semantics

application:

Conclusion

with respect to other fuzzy logic frameworks Dissemination results

Impact of RFuzzy and apps developed with it

The er

Appendi

Deference

- ➤ An American university ([Duk15]) was trying to determine if the emotion of a CEO CFO, manager, analyst, ... could affect the stock market
- ▶ An Spanish company ([Inn12]) was interested in using RFuzzy as we do it in FleSe to represent fuzzy concepts and translate fuzzy queries into queries that can be run against a non-fuzzy database.
- Some companies ([Emo12; Mar15]) showed interest for the emotion recognition application presented by Farooque and Muñoz-Hernández.

The end

Extending the Expressiveness of Fuzzy Logic Languages

Motivation & Overview

RFuzzy Syntax

Level Semantics

RFuzzy Low Level Semantic

Practical application

Conclusion

The end

Appendix

References

Thank you for coming

Any question?

Appendix

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

KFuzzy Syntax

Level Semantic

RFuzzy Low Level Semantic

application

Conclusion

The end

Appendix

Linguistic Variables Credibility necessity Multi-Adjoint

Semantics References

Appendix

Appendix Linguistic Variables

Extending the Expressiveness of Fuzzy Logic Languages

Motivation & Overview

RFuzzy Syntax

RFuzzy High Level Semantics

RFuzzy Low Level Semantic

Practical

Conclusion

The end

Appendi

Linguistic Variables Credibility necessity Multi-Adjoint

Semantics References

Appendix Linguistic Variables

Extending the Expressiveness of Fuzzy Logic Languages

Motivation of Overview

RFuzzy Syntax

Level Semantics

RFuzzy Low Level Semantics

Practical

Conclusio

The en

Appendix Linguistic

Variables Credibility necessity Multi-Adjoint

References

Rules:

if temperature(warm) then
fan_speed(normal)

Appendix Linguistic Variables

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

RFuzzy High Level Semantics

Level Semantics

Practical

Conclusio

The er

Linguistic

Variables Credibility necessity Multi-Adjoin

References

Rules:

if temperature(warm) then
fan_speed(normal)

Fan_speed	Voltage	
fast	10 volts	
normal	5 volts	
slow	2.5 volts	
stop	0 volts	

Appendix Credibility necessity

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

Level Semantics

Level Semant

Practical

applications

The er

Appendi

Variable:

Credibility necessity

Reference

Name Swift Tall Good **Player** Tim 0.9 0.9 0.2 John 8.0 0.7 0.7 Sarah 0.7 8.0 0.7

Without credibility

if swift and tall then good_player

aggregator: minimum

Tim: $min(0.9, 0.9) = 0.9 \neq 0.2$ WRONG!!

John: min(0.8, 0.7) = 0.7 = 0.7

Sarah: min(0.7, 0.8) = 0.7 = 0.7

Appendix Credibility necessity

Extending the Expressiveness of Fuzzy Logic Languages

Motivation & Overview

RFuzzy Syntax

RFuzzy High Level Semantics

Level Semantics

Practical

Conclusi

-1

Appendi

Credibility

necessity
Multi-Adjoin

Reference

Name Swift Tall Good Player Tim 0.9 0.9 0.2 John 8.0 0.7 0.70.7 Sarah 0.7 0.8

With Credibility

if swift and tall then good_player with credibility 0.2

aggregator: minimum

conjunctor: minimum (Gödel

Logic)

 $Tim: min(0.2, min(0.9, 0.9)) = 0.2 \le 0.2$

John: $min(0.2, min(0.8, 0.7)) = 0.2 \le 0.7$

Sarah: $min(0.2, min(0.7, 0.8)) = 0.2 \le 0.7$

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

Level Semantic

Level Semantic

Practical application

Conclusion

The en

Appendix Linguistic Variables Credibility necessity

Multi-Adjoint Semantics

Reference:

In our humble opinion, the multi-adjoint semantics [MOAV01a; MOAV01b; MOAV01c; MOAV02; MOAV04; MO02] are the best way to link together the real-world data and the credibility of our rules.

Departing from a Poset (a partially ordered set) $< P, \le >$ and introducing a pair of operations (&, \leftarrow), we say that the operations form an adjoint pair if

- (1) & is increasing in both arguments,
- (2) ← is increasing in its first argument and decreasing in the second one and
- (3) (the adjoint property) for any $x, y, z \in P$ we have that $z \le (x \leftarrow y)$ holds if and only if $z \& y \le x$.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation & Overview

RFuzzy Synta:

RFuzzy High Level Semantic

RFuzzy Low

Practical

application

Appendix Linguisti Variable

necessity Multi-Adjoint Semantics

Reference

The interesting point about the adjoint property is that for a fuzzy rule

if B then A with credibility z

where truth values for B and A are y and x respectively we can evaluate x from y and z or z from x and y:

$$z \leq (x \leftarrow y)$$
 iff $z \& y \leq x$

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

RFuzzy High

RFuzzy Low Level Semantics

Practical application

Caralinata

The en

Linguist

necessity

Multi-Adjoint

Semantics References

Example

Suppose we have four fuzzy facts, A, B, C and D. D is always satisfied with at least the maximum truth value of A, B, and C. From this knowledge we can extract the following rule:

$$D \stackrel{1, G\"{o}del}{\longleftarrow} max(A, B, C)$$
 (88)

The interesting point is that the rule's credibility value, 1, has been computed from the real-world data. From Gödel's implication operator definition

$$b \stackrel{X, G\"{o}del}{\longleftarrow} a = \left\{ \begin{array}{ccc} 1 & \text{if} & a \leq b \\ b & \text{if} & b < a \end{array} \right\}$$
 (89)

and knowing that the satisfaction of D is always higher than the satisfaction of A, B and C we can obtain the rule's credibility value.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation & Overview

RFuzzy Syntax

Level Semantic

RFuzzy Low Level Semantics

Practical application

The en

Appendix Linguisti Variable

> Multi-Adjoint Semantics

References

Example

Suppose we have four fuzzy facts, A, B, C and D and the rule in Eq. 88. Knowing that A, B and C are satisfied with, at least, the values 0.3, 0.4 and 0.5 we can compute how much satisfied is D:

$$\hat{D} = min(1, max(0.3, 0.4, 0.5)) = 0.5$$
 (90)

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Syntax

Level Semantics

RFuzzy Low

Practical application

Conclusio

I he en

Linguisti Variable:

Multi-Adjoint Semantics

References

Name	Swift	Tall	Good Player
Tim	0.9	0.9	0.2
John	0.8	0.7	0.7
Sarah	0.7	8.0	0.7

if swift and tall then good_player with credibility z

aggregator: minimum

conjunctor: minimum (Gödel

Logic)

implicator: $\hat{\leftarrow}(x, y) =$

x if x < y else 1 (Gödel Logic)

Tim: min(0.9, 0.9) = 0.9; since 0.9 > 0.2 then 0.2

John: min(0.8, 0.7) = 0.7; since 0.7 = 0.7 then 1

Sarah: min(0.7, 0.8) = 0.7; since 0.7 = 0.7 then 1

z = infimum(0.2, 1, 1) = 0.2

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

RFuzzy High Level Semantics

RFuzzy Low Level Semantic

Practical applications

Conclusion

The end

Appendix

Linguistic Variables Credibility

Multi-Adjoint Semantics

References

References

Extending the Expressiveness of Fuzzy Logic Languages

otivatior Verview

RFuzzy Synta

RFuzzy High Level Semantic

Practical

application

The en

Appendi

References

[Duk15] Duke University. Duke University site. [Online;

accessed March 23, 2015]. 2015.

[Emo12] Emotion Explorer Lab. Emotion Explorer Lab

site. [Online; accessed October 14, 2012]. 2012.

[FM09] Mahfuza Farooque and

Susana Muñoz-Hernández. "Easy Fuzzy Tool for

Emotion Recognition: Prototype from Voice Speech Analisys". In: *Proceeding of ICFC 2009 -*

First International Conference on Fuzzy
Computation. Ed. by J. Kacprzyk J. Filipe and

A. Dourado. Madeira, Portugal: INSTICC Press,

2009.

[Inn12] Innovation4Information. Innovation4Information

site. [Online; accessed October 14, 2012]. 2012.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

Level Semantics

Practical application

C I

i ne en

References

[Mar15] Marketing de Servicios. *Marketing de Servicios* (MDS) site. [Online; accessed March 23, 2015].

2015.

[MOAV01a] Jesús Medina, Manuel Ojeda-Aciego, and

Peter Vojtáš. "A Completeness Theorem for Multi-Adjoint Logic Programming". In:

FUZZ-IEEE. 2001, pp. 1031–1034.

[MOAV01b] Jesús Medina, Manuel Ojeda-Aciego, and

Peter Vojtáš. "A Procedural Semantics for Multi-adjoint Logic Programming". In: *EPIA*. Ed. by Pavel Brazdil and Alípio Jorge. Vol. 2258. Lecture Notes in Computer Science. Springer.

Lecture Notes in Computer Science. Springer, 2001, pp. 290–297. ISBN: 3-540-43030-X.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semantics

Practical

Practical applications

Append

References

[MOAV01c] Jesús Medina, Manuel Ojeda-Aciego, and Peter Vojtáš. "Multi-adjoint Logic Programming with Continuous Semantics". In: LPNMR. Ed. by Thomas Eiter, Wolfgang Faber, and Miroslaw Truszczynski. Vol. 2173. Lecture

Notes in Computer Science. Springer, 2001, pp. 351–364. ISBN: 3-540-42593-4.

[MOAV02] Jesús Medina, Manuel Ojeda-Aciego, and

Peter Vojtáš. "A Multi-Adjoint Approach to Similarity-Based Unification". In: *Electronic Notes in Theoretical Computer Science* 66.5 (2002). UNCL'2002, Unification in Non-Classical Logics (ICALP 2002 Satellite Workshop), pp. 70 –85. ISSN: 1571-0661. DOI: DOI: 10.1016/S1571-0661 (04) 80515-2.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

Level Semantics

Level Semantics

application

Appendix References [MOAV04]

Jesús Medina, Manuel Ojeda-Aciego, and

Peter Vojtáš. "Similarity-based unification: a multi-adjoint approach". In: Fuzzy Sets and

Systems 146.1 (2004), pp. 43–62.

[MO02]

Jesús Medina Moreno and

Manuel Ojeda-Aciego. "On First-Order

Multi-Adjoint Logic Programming". In: 11th

Spanish Congress on Fuzzy Logic and

Technology. 2002.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

RFuzzy High Level Semantics

RFuzzy Low Level Semantic

Practical application

Caralinata

I he en

Appendix

[MHPCS09] Susana Muñoz-Hernández,

Víctor Pablos-Ceruelo, and Hannes Strass. "RFuzzy: An Expressive Simple Fuzzy Compiler". In: *IWANN (1)*. Ed. by Joan Cabestany, Francisco Sandoval, Alberto Prieto, and Juan M. Corchado. Vol. 5517. Lecture Notes in Computer Science. Springer, 2009, pp. 270–277. ISBN:

978-3-642-02477-1. DOI:

http://dx.doi.org/10.1007/978-3-642-02478-8 34.

Extending the Expressiveness of Fuzzy Logic Languages

References

[MHPCS11] Susana Muñoz-Hernández,

Víctor Pablos-Ceruelo, and Hannes Strass. "RFuzzy: Syntax, Semantics and Implementation Details of a Simple and Expressive Fuzzy Tool over Prolog". In: Information Sciences 181.10 (2011). Special Issue on Information Engineering Applications Based on Lattices, pp. 1951 –1970. ISSN: 0020-0255. DOI:

10.1016/j.ins.2010.07.033.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

RFuzzy High Level Semantic

Level Semantic

application

Conclusion

The end

Appendix

[PCMH11]

Víctor Pablos-Ceruelo and Susana Muñoz-Hernández. "Introducing priorities in RFuzzy: Syntax and Semantics". In: *CMMSE 2011 : Proceedings of the 11th International Conference on Mathematical Methods in Science and Engineering.* Vol. 3. Benidorm (Alicante), Spain, 2011, pp. 918–929. ISBN: 978-84-614-6167-7.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

RFuzzy High Level Semantics

Level Semanti

application

Conclusio

.

References

[PCMH14a] Víctor Pablos-Ceruelo and

Susana Muñoz-Hernández. "Enriching Traditional Databases with Fuzzy Definitions to Allow Flexible and Expressive Searches". In: *Proceedings of the International Conference on Fuzzy Computation Theory and Applications*. Ed. by António Dourado, José M. Cadenas, and Joaquim Filipe. Rome, Italy, 2014, pp. 111–118. ISBN: 978-989-758-053-6. DOI: http://dx.doi.org/10.5220/0005074101110118.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

RFuzzy High Level Semantics

Level Semant

Practical application

Conclusio

References

[PCMH14b] Víctor Pablos-Ceruelo and

Susana Muñoz-Hernández. "FleSe: A Tool for Posing Flexible and Expressive (Fuzzy) Queries to a Regular Database". In: Distributed Computing and Artificial Intelligence, 11th International Conference. Ed. by Sigeru Omatu, Hugues Bersini, Juan M. Corchado Rodríguez, Sara Rodríguez, Pawel Pawlewski, and Edgardo Bucciarelli. Vol. 290. Advances in Intelligent Systems and Computing. DCAI 2014. Salamanca, Spain: Springer, 2014, pp. 157–164. ISBN: 978-3-319-07592-1

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

RFuzzy High Level Semantic

Level Semant

application

Conclusio

. .

References

[PCMH14c]

Víctor Pablos-Ceruelo and Susana Muñoz-Hernández. "Introducing Similarity Relations in a Framework for Modelling Real-World Fuzzy Knowledge". In: IPMU (3). Ed. by Anne Laurent, Olivier Strauss, Bernadette Bouchon-Meunier, and Ronald R. Yager. Vol. 444. Communications in Computer and Information Science. online isbn: 978-3-319-08852-5, series issn: 1865-0929. Springer International Publishing, 2014, pp. 51-60. ISBN: 978-3-319-08851-8. DOI: 10.1007/978-3-319-08852-5_6.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

Level Semantic

Level Semant

application

Conclusion

Annend

References

[PCMH14d] Víctor Pablos-Ceruelo and

Susana Muñoz-Hernández. "On modelling real-world knowledge to get answers to fuzzy and flexible searches without human intervention". In: *Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on.* Beijing, China, 2014, pp. 2329–2336. ISBN:

978-1-4799-2073-0. doi:

10.1109/FUZZ-IEEE.2014.6891723.

[PCMH15] Víctor Pablos-Ceruelo and Susana Muñoz-Hernández. "FleSe". In:

unknown 0.0 (2015). to be published, pp. 0-0.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta:

Level Semantic

Level Semanti

applications

Conclusion

References

[PCMHS08] Víctor Pablos-Ceruelo,

Susana Muñoz-Hernández, and Hannes Strass. "RFuzzy framework". In: 18th Workshop on Logic-based methods in Programming Environments, WLPE 2008. Ed. by Puri Arenas and Damiano Zanardini. Vol. abs/0903.2188. Udine, Italy, 2008, pp. 62–76.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

Kruzzy Synta

Level Semantics

RFuzzy Low Level Semanti

Practical application

Conclusio

A -----

References

[PCSMH09] Víctor Pablos-Ceruelo, Hannes Strass, and

Susana Muñoz-Hernández. "RFuzzy—A framework for multi-adjoint Fuzzy Logic Programming". In: Fuzzy Information Processing Society, 2009. NAFIPS 2009. Annual Meeting of the North American Fuzzy Information Processing Society Annual

Conference. Cincinnati, Ohio, USA, 2009, pp. 1–6. ISBN: 978-1-4244-4575-2. DOI:

10.1109/NAFIPS.2009.5156427.

[Prz89] Teodor C. Przymusinski. "On the Declarative and Procedural Semantics of Logic Programs".
 In: Journal of Automated Reasoning 5.2 (1989),

pp. 167–205.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

RFuzzy High Level Semantics

Level Semantic

application

Conclusion

The end

Appendix References [SMHPC09]

Hannes Strass, Susana Muñoz-Hernández, and Víctor Pablos-Ceruelo. "Operational Semantics for a Fuzzy Logic Programming System with Defaults and Constructive Answers". In: IFSA/EUSFLAT Conf. Ed. by João Paulo Carvalho, Didier Dubois, Uzay Kaymak, and João Miguel da Costa Sousa. 2009, pp. 1827–1832. ISBN: 978-989-95079-6-8.

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

RFuzzy High Level Semantics

Level Semanti

application

Conclusio

References

[TLGM10]

Teresa Trigo de la Vega, Pedro López-García, and Susana Muñoz-Hernández. "A Fuzzy Approach to Resource Aware Automatic Parallelization". In: Computational Intelligence -Revised and Selected Papers of the International Joint Conference, IJCCI 2010, Valencia, Spain, October 2010. Ed. by Kurosh Madani, António Dourado Correia, Agostinho C. Rosa, and Joaquim Filipe. Vol. 399. Studies in Computational Intelligence. Springer, 2010, pp. 229–245. ISBN: 978-3-642-27533-3. DOI: 10.1007/978-3-642-27534-0 15.

[TLGMH10]

Extending the Expressiveness of Fuzzy Logic Languages

Motivation Overview

RFuzzy Synta

RFuzzy High Level Semantics

RFuzzy Low Level Semantic

Practical application

Conclusion

. ..

References

Teresa Trigo de la Vega, Pedro López-García, and Susana Muñoz-Hernández. "Towards Fuzzy Granularity Control in Parallel/Distributed Computing". In: *IJCCI (ICFC-ICNC)*. Ed. by Joaquim Filipe and Janusz Kacprzyk. Best Student Paper Award ICFC 2010. SciTePress, 2010. pp. 43–55. ISBN: 978-989-8425-32-4.