
UNIVERSIDAD POLITÉCNICA DE MADRID

FACULTAD DE INFORMÁTICA

MEJORAS DE LA EXPRESIVIDAD DE

LENGUAJES LÓGICOS CON EL MANEJO DE

INFORMACIÓN NEGATIVA Y DIFUSA

PHD THESIS

Víctor Pablos Ceruelo
Ingeniero en Informática

June 2015

10

2015
M

ej
or

as
de

la
ex

pr
es

iv
id

ad
de

le
ng

ua
je

s
ló

gi
co

s
co

n
el

m
an

ej
o

de
in

fo
rm

ac
ió

n
ne

ga
ti

va
y

di
fu

sa

DEPARTAMENTO DE LENGUAJES Y

SISTEMAS INFORMÁTICOS E INGENIERÍA DE SOFTWARE

FACULTAD DE INFORMÁTICA

UNIVERSIDAD POLITÉCNICA DE MADRID

MEJORAS DE LA EXPRESIVIDAD DE

LENGUAJES LÓGICOS CON EL MANEJO DE

INFORMACIÓN NEGATIVA Y DIFUSA

PRESENTED IN PARTIAL FULFILLMENT OF THE DEGREE OF

DOCTOR IN SOFTWARE AND SISTEMAS

Author: Víctor Pablos Ceruelo

Ingeniero en Informática

Universidad Politécnica de Madrid

Advisor: Susana Muñoz Hernández

Profesor Contratado Doctor

Universidad Politécnica de Madrid

Madrid, June 2015

Thesis Committee:

• Prof. Juan José Moreno-Navarro
Departamento de Lenguajes y Sistemas Informáticos
e Ingeniería de Software, Universidad Politécnica de
Madrid

• Prof. Manuel Ojeda Aciego
Departamento de Matemática Aplicada, ETSI Infor-
mática, Universidad de Málaga

• Prof. João Paulo Carvalho
Instituto de Engenharia de Sistemas e Computadores,
Investigação e Desenvolvimento em Lisboa

• Prof. Nicolas Madrid
Centre of Excellence IT4Innovations,
University of Ostrava

• Prof. Pedro López-García
Madrid Institute for Advanced Studies in Software
Development Technologies (IMDEA Software Institute)

• Prof. José Júlio Alferes
Departamento de Informática Faculdade de Ciências e
Tecnologia da Universidade Nova de Lisboa

• Prof. Miguel Delgado Calvo-Flores
Departamento de Ciencias de la Computación e In-
teligencia Artificial, Universidad de Granada

To my girlfriend,
Sara,

with love.

Contents

Table of Contents i

List of Figures iii

List of Tables v

List of Listings vii

Resumen ix

Summary xi

1 Introduction 1
1.1 A Fuzzy World . 2
1.2 Logic Programming and Logic 4
1.3 Fuzzy Logic . 11

1.3.1 Fuzzy Approaches in Logic Programming 13
1.3.2 Fuzzy Prolog . 14
1.3.3 RFuzzy Approach Motivation 15

1.4 Multi-Adjoint Semantics . 16
1.5 Structure of the Work . 20

2 The initial version of the fuzzy logic framework: RFuzzy v.1 23
2.1 Syntax . 23
2.2 Declarative Semantics . 29

2.2.1 Least Model Semantics 33
2.2.2 Least Fixpoint Semantics 34

2.3 Operational Semantics . 41
2.4 About multi-adjoint logic programming 44
2.5 Using the Framework. Implementation Details 49

2.5.1 The programs syntax . 49
2.5.2 Constructive Answers . 52
2.5.3 Implementation details 52

page i

3 Management of priorities in the framework: RFuzzy v.2 55
3.1 Syntax . 56
3.2 Semantics . 57

4 Extending the framework with similarity and negation: RFuzzy v.3 65
4.1 Syntax . 65
4.2 Syntactic constructions for writing programs 67
4.3 The semantics of the framework’s configuration file 83

4.3.1 Low level semantics . 84
4.3.2 High level semantics . 99

5 Real Application Cases 105
5.1 Emotion Recognition . 105
5.2 Robocup Control Implementation 107
5.3 Fuzzy Granularity Control in Parallel/Distributed Computing . . 108
5.4 FleSe (Flexible Searches in Databases) 108

5.4.1 Preliminaries . 109
5.4.2 Comparison with other approaches 112
5.4.3 The Architecture of the FleSe Application 113
5.4.4 Example of Usage of The Framework User Interface . . . 115

5.5 Chapter final notes . 119

6 Conclusions 121
6.1 About the authorship of the contents 124
6.2 Current Work . 125

Bibliography 127

page ii

List of Figures

1.1.1 The linguistic variable temperature takes the values cold, ok
and hot depending of the water temperature. 4

1.1.2 How much we turn to the left or right (or function to de-
fuzzify), from the decision taken by the expert system. 4

1.3.1 Close fuzzification function. 12
1.3.2 Temperature is a linguistic variable and (here) takes the values

cold, warm and hot. 12

2.5.1 Teenager truth value continuous representation 50
2.5.2 RFuzzy architecture. 53

4.2.1 Dialog to select what you are looking for. 67
4.2.2 Dialog to filter our search . 71
4.2.3 Available characteristics for the thing we are looking for. . . . 71
4.2.4 Available negation and modifier operators for the fuzzy char-

acteristic chosen. 71
4.2.5 Available comparison operators and input field for the value

we want to use in the comparison, for the non-fuzzy charac-
teristic chosen. 72

4.2.6 Available comparison operators and values for the non-fuzzy
characteristic chosen, of type “enum_type”. 72

4.2.7 Cheap function (for restaurant). 77

5.1.1 Methodology of data recognition. 106
5.2.1 System Architecture for RoboCup Soccer Server. 107
5.4.1 Application’s architecture. 114
5.4.2 Select configuration file dialog. 115
5.4.3 Choosing what we are looking for. 116
5.4.4 The available attribute(s) for writing the query. 116
5.4.5 Available options when pressing “show options”. 117
5.4.6 Available connectives to combine the subqueries results. . . . 117
5.4.7 Available modifiers for the fuzzy attribute. 117
5.4.8 Available comparison operators for the non-fuzzy attribute. . 118

page iii

5.4.9 Query example. 118
5.4.10 Answers returned for the query example in Fig. 5.4.9 118
5.4.11 Selection of the fuzzy attribute the user wants to personalize

and introduction of the user definition 119

page iv

List of Tables

1.3.1 Restaurants database . 12

4.1.1 Examples of conjunctors, disjunctors and implicators 67
4.2.1 Comparison operators available by the things characteristics’ type 73
4.3.1 Table with the credibility of the rule “if it is cloudy, it rains” for

some cities . 89
4.3.2 Table representing the situation in which the intersection of

two models is not a model . 94
4.3.3 Summary of the values given “by default” to the variables p,

v, &i, @j (B1, . . . , Bn) and COND. 103
4.3.4 Changes in the values given to the variables p, v, &i and

COND when the tails’ constructions in eqs. 4.2.15, 4.2.17, 4.2.16
are used. 104

page v

List of Listings

1.2.1Peano Numbers (I) . 9
1.2.2Peano Numbers (II) . 10
2.4.1Example taken from [MM08b] 46
2.4.2Execution process, taken from [MM08b] 47

page vii

Resumen

Just the spanish translation of next chapter. To be done. 4000 chars max.

page ix

Summary

In this work we provide a theoretical basis (syntax and semantics) and a
practical implementation of a framework for encoding the reasoning and the
fuzzy representation of the world (as human beings understand it). The interest
for this work comes from two sources: removing the existing complexity
when doing it with a general purpose programming language (one developed
without focusing in providing special constructions for representing fuzzy
information) and providing a tool intelligent enough to answer in a constructive
way, expressive queries over conventional data.

The framework, RFuzzy, allows to encode rules and queries in a syntax very
close to the natural language used by human beings to express their thoughts,
but it is more than that. It allows to encode very interesting concepts, as
fuzzifications (functions to easily fuzzify crisp concepts), default values (used
for providing results less adequate but still valid when the information needed
to provide results is missing), similarity between attributes (used to search
for individuals with a characteristic similar to the one we are looking for),
synonyms or antonyms and it allows to extend the number of connectives and
modifiers (even negation) we can use in the rules. The personalization of
the definition of fuzzy concepts (very useful for dealing with the subjective
character of fuzziness, in which a concept like tall depends on the height of the
person performing the query) is another of the facilities included.

Besides, RFuzzy implements the multi-adjoint semantics. The interest in
them is that in addition to obtaining the grade of satisfaction of a consequent
from a rule, its credibility and the grade of satisfaction of the antecedents we
can determine from a set of data how much credibility we must assign to a rule
to model the behaviour of the set of data. So, we can determine automatically
the credibility of a rule for a particular situation.

Although the theoretical contribution is interesting by itself, specially the
inclusion of the negation modifier, the practical usage of it is equally important.
Between the different uses given to the framework we highlight emotion recog-
nition, robocup control, granularity control in parallel/distributed computing
and flexible searches in databases.

page xi

Chapter 1

Introduction

The information available on the internet is huge, and it is increasing day by
day. This is on one side good. The availability makes it possible to search for
almost anything. But not on the other side, in which search engines are not
able to return the expected answers.

Just suppose we are looking for a fast red car. We just open a web browser,
go to the search form of our favourite search engine, write “fast red car” and
press the button “search”. At this point our web browser communicates our
query to a server and this one answers it with a list of web pages in which the
words “fast”, “red” and “car” appear at some point. This could be the expected
answer for our query, but it is not. We want as answers only those web pages
talking about fast red cars, so the list of results must be reduced.

Leaving apart that the information about web pages is non-structured, we
could think about a database with a list of words grouped by sentences. Even
in that case the results might be erroneous, so pages containing sentences like
“Mary bought a fast red car” could lead us to having in the result’s list a web
page about news and gossip.

All this problems could be solved by modelling the information we have
about the world as we see it, in a fuzzy way, and having tools for querying the
systems in the same way. The existing tools when we started with this work had
a limited set of capabilities, which is why we begun trying to increase them. The
goal of this thesis was providing tools expressive enough to allow us to achieve
this task. To achieve it is why we have developed the theoretical and practical
parts of a framework for representing the world as we, human beings, see it.

In what remains of this chapter we focus in all the previous knowledge
needed to understand the following ones. We start from an informal introduc-
tion to the representation of the real world in the way that we, as human beings,
see it (Sec. 1.1). After it we enter in how all this information can be represented
and treated by a computer, starting by the paradigm chosen, logic programming

page 1

1.1. A FUZZY WORLD

(Sec. 1.2), and continuing by the representation of fuzziness in logic (Sec. 1.3).
And finally we explain in detail the semantics we have chosen for representing
the world and why we decided to use them (Sec. 1.4). All this is complemented
by an explanation of the structure chosen for the document (Sec. 1.5).

1.1 A Fuzzy World

The world around us is clearly non-fuzzy. What we mean with this sentence is
that we can always quantify it and determine exact values if we find first the
unit measure and how to ascertain the size, amount or degree of the goal of
our measures. Fuzziness comes to life when we, as human beings, try (maybe
unconsciously) to reduce the amount of data that we have to retain in our
memory. In this way, instead of keeping that Clara is 70cm we keep that Clara is
a baby, sentence that offers us much more information at a minor storage cost.

In maths and in computer science we can use the extended version, but then
the translation between the information (and knowldege) we have in mind and
the one used in formulas and automatisms must be done by experts. This is
why fuzzy logic has been so important in the recent years, because it allows the
final user not only to understand easily but to check and extend the existing
information (and knowledge). We provide now an example to illustrate what
we mean with our previous sentences.

Suppose we are taking a bath and we have a shower mixer tap (not one of
those which are thermostatic) and that when turning it to the left cold water
is dispensed, while when turning it to the right hot water is dispensed. This
means that if the water is not as hot as we want we usually turn it to the right,
while if it is too hot we turn it to left. The question is: how much do we turn it
to the left or to the right? 10 degrees? 20 degrees? 2 and a half? Obviously
we never talk using this measures. We just remember that turning it a little
bit changes the temperature a little bit, while turning it completely changes it
completely and use a set of rules similar to:

• If the water is too hot, give the tap a quarter-turn to the left. Wait until
the water changes its temperature and decide again.

• If it is hot, turn the tap to the left a little bit (less than a half-quarter-turn).
Wait until the water changes its temperature and decide again.

• If it is ok, do not touch the tap. Enjoy ! Wait until the water changes its
temperature (it usually does) and decide again.

• If it is cold, turn the tap to the right a little bit (less than a half-quarter-
turn). Wait until the water changes its temperature and decide again.

page 2

CHAPTER 1. INTRODUCTION

• If it is very cold, give the tap a quarter-turn to the right. Wait until the
water changes its temperature and decide again.

Now suppose that we want to encode this “intellegence” into an automatism.
Encoding it using numbers makes it difficult to understand, and complicates
the very simple idea we have in mind, as we see now. Being too hot over 50
degrees, hot over 45, cold under 30, very cold under 20 and “ok” between 30
and 40 we can encode the previous rules as

• if (temperature > 50) then turn_to_the_left(25) and recheck.

• if (46 < temperature <= 50) then turn_to_the_left(12) and recheck.

• if (41 < temperature <= 45) then turn_to_the_left(6) and recheck.

• if (30 <= temperature <= 40) then do nothing. Recheck after a while.

• if (25 <= temperature < 30) then turn_to_the_right(6) and recheck.

• if (20 <= temperature < 25) then turn_to_the_right(12) and recheck.

• if (temperature < 20) then turn_to_the_right(25) and recheck.

The previous example shows that the resulting program is difficult to read and
the more pieces (or sentences) we use to define the actions from the inputs the
more variables we have. This is even more problematic if we want to make
changes or if we need to personalize the temperatures (maybe you prefer the
water temperature to be hotter in winter). With fuzzy logic we can develop
programs that behave more as humans and less as a complex algorithm. Take
the previous example. If we try to encode it with fuzzy logic we start creating a
linguistic variable for the temperature. We will use the function in Fig. 1.1.1 to
fuzzify the real world value.

By using the linguistic variable temperature we can encode our knowledge
in a different way. The one we propose in this case is

• if (warm(temperature)) then turn_to_the_left and recheck.

• if (ok(temperature)) then do nothing.

• if (cold(temperature)) then turn_to_the_right and recheck.

In the previous example we are obviously using fuzzy logic, so when the
conditions are not fully satisfied the conclusions are not fully satisfied. Even
more, note that we have not encoded how much the mixer tap needs to
be turned in any direction. We consider that the defuzzification should not

page 3

1.2. LOGIC PROGRAMMING AND LOGIC

0

1

10 50 degrees

cold ok warm

Figure 1.1.1: The linguistic variable temperature takes the values cold, ok and
hot depending of the water temperature.

0

1

10 90 degrees45

Figure 1.1.2: How much we turn to the left or right (or function to defuzzify),
from the decision taken by the expert system.

interfere in the decision making. Nevertheless, the function used to defuzzify
the decision taken is shown in Fig. 1.1.2.

As example of how this works, if the water has a temperature of 25 degrees
the satisfaction of the previous rules is { 0.5, 0, 0 } and the result is that the
mixer tap turns to the left with a satisfaction of 0.5, which results in 25 degrees
(applying defuzzification to the satisfaction value 0.5).

1.2 Logic Programming and Logic

At the inception of computers construction-related difficulties were clearly
so dominant that the languages for expressing problems and instructing the
computer how to solve them were designed from the perspective of computer
engineering alone. This languages were called Imperative Programming Lan-
guages, because they allow the programmer to impose the machine what to do
now and what to do next. As the problems of building computers were gradually

page 4

CHAPTER 1. INTRODUCTION

understood and solved, the problem of using the programming languages
mounted: a human could not instruct, or program, the computer to do complex
tasks because he was not able to sum up the tasks done by each single code
line into the task done by the whole program. This problem was first solved
by the programmers, who had a repertory of pieces of code for well know
tasks and just copy and paste them into the program under development, but
this became unmanageable. The necessity of programming languages hiding
the pieces of code doing well-known tasks forced the creation of “high level”
programming languages. A “high level” programming language is basically that,
a set of syntactic constructions corresponding to well known pieces of source
code that the programmer can use to develop programs. It started from very
simple schemas and nowadays programming languages include constructions
as conditional loops, procedures, functions, abstract data types, objects, agents,
aspects, and some others appearing day after day.

The existence of the schemas of source code reduce the time spent in coding
programs, but do not remove the possibility of developing programs with errors.
The anonymous quote

To err is human, to really foul things up requires a computer.

says it all: we (humans) introduce errors when coding (because of our natural
being) and computers mess things up because they just obey orders. To
avoid this situations the high level programming include debuggers (to see
at execution time what the computer is doing and determine where the error
is) and checks. This checks are usually limitations in the available syntactical
structures that can be applied to the data structures, so that we cannot add a
number to a string of characters and things like that. This kind of checks can
be static or dynamic, depending on if they are performed at compilation time
(when the program written in the high-level programming language syntax
is translated into the machine language) or at evaluation time (when the
computer runs the machine language program). All this checks reduce the
amounts of errors in programs, but there are some cases where the tests are not
definitive: they can only warn the user to check by hand that the constructions
are used as they should be. When software is not critical we can live with this
solution, but there are some cases in which it is critical and we are forced to
ensure that it is completely correct. Some solutions have been proposed to this
problem: (1) to curtail the expressiveness of the language, (2) to introduce
heuristics in the compilation process, (3) to build software systems “correct by
construction” and (4) to use programming languages with syntax and semantics
closer to the way a human being formalizes a task. In the first group we have
as example the Ada language [The15a], which forbids using constructions as
“goto” in order to improve the quality of the programs. In the second one there

page 5

1.2. LOGIC PROGRAMMING AND LOGIC

are a lot of ongoing works, as [Mar+09], but most of them finally derive into
curtailing the expressiveness of the language or allowing the programmer to
introduce a “I checked this by hand” message for the compiler (so it does not
ask for doing it again). The third one has to be with removing the necessity to
translate by hand the “what we want the computer to do” into the operations
that it must perform to achieve the task. The idea is writing an specification and
letting a translator (a compiler) traduce it into machine code. Some examples
are the B-method [Rob97], VDM [Jon87; Jon90] or the Z notation [Spi89].
The last one tries to reduce the distance between the task to be done and how
to do it, by using Declarative Programming Languages instead of Imperative
Programming Languages.

Declarative Programming Languages allow the programmer to represent
the relation between the inputs and the outputs by using maths and/or logic,
but it is a compiler task to decide the operations that the computer must
perform to obtain the outputs from the inputs. There are mainly two subgroups,
depending on if the language departs from a mathematical point of view of
the world (use of functions to model the world and reason about it) or from a
logic point of view (use of logic to model assumptions or premises and derive
conclusions): Functional Programming Languages and Logic Programming Lan-
guages. Although we know that there are hybrids too, Functional Programming
Languages and hybrids are out of the scope of this contribution. We just point
out that Functional Programming Languages have their roots in lambda calculus
and aim the reader to start by [Gol96] for more information on this class of
declarative programming languages.

Logic Programming languages are programming languages based on logic,
and the beginning of logic is tied with that of scientific thinking [SS94].
Logic provides a precise language for representing a goal, knowledge and
assumptions. Moreover, logic allows consequences to be deduced from premises
to study the truth or falsity of statements from the truth or falsity of others.
This basis allows to develop a programming language with a clear distinction
between declarative and operational semantics. Informally, the declarative
interpretation (or semantics) of a program is concerned with the meaning, the
results, while the procedural or operational interpretation is concerned with
the method used to get the results. While in the declarative interpretation
a program is viewed as a formula, and one can reason about its correctness
without any reference to the underlying computational mechanism, in the
procedural one it is viewed as a description of an algorithm that can be executed.
The operational semantics of logic programs correspond to logical inference,
while their declarative semantics are derived from the term model commonly
referred to as the Herbrand base. This, in principle, makes declarative programs

page 6

CHAPTER 1. INTRODUCTION

easier to understand and to develop because you can focus on what to do
without regarding on how to do it, but all that glitters is not gold: you have to
ensure that the operational and the declarative semantics are equivalent and
this is not always possible. In fact, the existing operational semantics of Prolog
impose restrictions to some program constructions for which the declarative
semantics do not, and this must be taken into account when developing
programs. We enter this problem after describing the historical circumstances
that facilitate the creation of the first logic programming compiler, “Marseille
Prolog”. We owe the historical material in the following two paragraphs to
[PS87].

The basic ideas of logic programming emerged in the late 1960s and
early 1970s from work on automated deduction. Proof procedures based
on Robinson’s resolution principle [Rob65] operate by building values for
unknowns that make a problem statement a consequence of the given premises.
Green [Gre69] observed that resolution proof procedures could thus in principle
be used for computation. Resolution on its own is not a sufficient basis for logic
programming, because resolution proof procedures may not be sufficiently goal-
directed. Thus, Green’s observations linking computation to deduction [Gre69]
had no effective realization until the development of more goal-oriented linear
resolution proof procedures, in particular Kowalski and Kuehner’s SL resolution
[KK71]. This development allowed Kowalski [Kow74a] to suggest a general
approach to goal-directed deductive computation based on appropriate control
mechanisms for resolution theorem provers and the further specialization of SL
resolution to Horn clauses, and the corresponding procedural interpretation of
Horn clauses, was first described in principle by Kowalski [Kow74a; Kow74b].

Even the SL resolution procedure and related theorem-proving methods
were not efficient enough for practical computation, mainly because they had
to cope with the full generality of first-order logic, in particular disjunctive con-
clusions. Further progress required the radical step of deliberately weakening
the language to one that could be implemented with efficiency comparable
to that of procedural languages. This step was mainly due to Colmerauer
and his colleagues at Marseille in the early 1970s. Their work proceeded
in parallel with (and in interaction with) the theoretical developments from
the automated theorem-proving community. Inspired by his earlier Q-systems
[Col70], a tree-matching phrase-structure grammar formalism, Colmerauer
started developing a language that could at the same time be used for language
analysis and for implementing deductive question-answering mechanisms. It
eventually became clear that a particular kind of linear resolution restricted
to definite clauses had just the right goal-directness and efficiency, and also
enough expressive power for linguistic rules and some important aspects of

page 7

1.2. LOGIC PROGRAMMING AND LOGIC

the question-answering problem. Their approach was first described as a tool
for natural-language processing applications [AC73]. The resulting deductive
system, supplemented with a few other computational devices, was the first
Prolog system, known as “Marseille Prolog”. The first detailed description of
Prolog was the language manual for the Marseille Prolog interpreter [Rou75].

From the previous paragraphs we can deduce that Prolog is not as powerful
as they wanted it to be: they had to weaken the language to obtain an
efficiency comparable to that of procedural languages. The resulting system
has two important restrictions. The first: programs must be formed by definite
clauses and the query must be a Horn clause without a positive goal. The
second: the operational semantics depend on encoding the “appropriate”
control mechanisms.

A Horn clause is a disjunction of literals with at most one positive literal.
Horn clauses are usually written as

L ← L1, L2, ..., Ln
(

L ∨ ¬ L1 ∨ ¬ L2 ∨ ...∨ ¬ Ln
)

(1.2.1)

or

← L1, L2, ..., Ln
(
¬ L1 ∨ ¬ L2 ∨ ...∨ ¬ Ln

)
(1.2.2)

where n ≥ 0 and L is the only positive literal. A definite clause is a Horn clause
that has exactly one positive literal (Eq. 1.2.1). A Horn clause without a positive
literal is called a goal (Eq. 1.2.2). Horn clauses express a subset of statements of
first-order logic where there is no bi-implication, disjunction is represented by
having more than one clause with the same head and the variables appearing
in the head are universally quantified while the ones occurring only in the
body are existentially quantified. The reason for this design decisions is that
Prolog has an efficiency comparable with Imperative Programming Languages
by restricting the language to Horn languages, but in some cases we might
need something more: normal logic programs.

A normal logic program clause is a (first order) formula of the form

L ← L1, L2, ..., Ln, ¬ Ln+1, Lm (1.2.3)
or

← L1, L2, ..., Ln, ¬ Ln+1, Lm (1.2.4)

where n ≥ 0, m ≥ 0 and L is always a positive literal. The positive
literal to the left of← is called the clause’s head and the formula to its right
is called the clause’s body. As in horn clauses, there is no bi-implication,
disjunction is represented by having more than one clause with the same
head and the variables appearing in the head are universally quantified while
the ones occurring only in the body are existentially quantified. The only

page 8

CHAPTER 1. INTRODUCTION

difference is the allowance of the negation symbol in the syntax of the clauses’
bodies. Although it seems to be a very small improvement, the inclusion of the
negation symbol in the clause’s bodies incredible increases the expressiveness
of the language. As an example, consider we need to encode the universal
quantification of a variable in the body. We can use the semantic equivalence
∀ X̄ . Formula ≡ ¬ ∃ X̄ . ¬ Formula to convert the universal quantification
into a existential one, and splitting the formula into four clauses we overcome
the syntactic limitations:

p1← ¬p2
p2← p3(X)

p3(X)← ¬p4(X)

p4(X)← Formula (1.2.5)

A normal logic program is a set of normal logic program clauses. A query is a
clause without head, and solving a query consists in finding a substitution for
the variables existentially quantified such that the program entails the query.

The “appropriate” control mechanisms on which the operational semantics
depend to ensure efficiency, have the cost of converting LP into a not-fully
declarative language. The difference between logic and control is attributed to
Kowalski’s paper “Algorithm = Logic + Control” [Kow79] although we prefer
Kunen’s definition in [Kun87]:

The logic component should give us a declarative semantics of
the language which tells us whether or not ∀φσ1 indeed follows
semantically from DB.

The control component consists of guides to the Prolog compiler to
help it decide whether or not a query is a logical consequence of DB.

Suppose the almost identical LP programs in Listings 1.2.1 and 1.2.2, repre-
senting the Peano (natural) numbers, and the query “nat(Y)”, representing
our request for a natural number to the interpreter. In a fully declarative
LP system we should get the same answers for both programs, but we get
0, s(0), s(s(0)), s(s(s(0))), . . . for the program in Listing 1.2.2 while for the one
in Listing 1.2.1 the interpreters fail to halt or halt and print an error.

nat(s(X)) ← nat(X).

nat(0).

Listing 1.2.1: Peano Numbers (I)

1φ is a formula in Prolog’s syntax, σ is a substitution and ∀ is the universal quantification.

page 9

1.2. LOGIC PROGRAMMING AND LOGIC

nat(0).

nat(s(X)) ← nat(X).

Listing 1.2.2: Peano Numbers (II)

This incorrect result is caused by the fixed strategy that LP Interpreters
implement. This strategy defines

(i) the order (usually Top-Down) in which the different program clauses are
selected for solving the current goal (only necessary when the goal can
be unified with the head of multiple clauses)

(ii) (after choosing a clause) which one is the literal in the clauses’ body
that we try to solve first (it is usually Left-To-Right, and only used if the
clause’s body has more than one literal) and

(iii) if our search for answers exhausts the selected clause before trying a
different one (Depth-First, the usual one) or if it exhausts the current
depth’s level before trying the next one (Breadth-First).

LP interpreters suppose that the programmer writes programs taking into
account the fixed strategy and, when the control guides are wrong, they loop
until they reach the machine limits. An example of this is the query “nat(Y)”
against the program in Listing 1.2.1. A LP interpreter

1. chooses the first clause in the program;

2. unifies the query with the clauses’ head nat(s(X)), so now Y = s(X);

3. selects the first atom in the clause, nat(X);

4. tries to solve the new query, nat(X).

As this one is a renaming of the original one it loops (repeats indefinitely the
same four steps) until it reaches the machine limits. If this never happens then
the LP interpreters fail to halt, but if this occurs then they halt and print an error.

In a nutshell, the logic programming paradigm regards a computation
as automated reasoning over a corpus of knowledge, instead of actions that
change the machine state in some way. Facts about the problem domain are
expressed as logic formulas, and programs are executed by applying inference
rules over them until an answer to the problem is found, or the collection of
formulas is proved inconsistent. Nevertheless, Prolog is not a fully declarative
programming language. It is more declarative than others, so it removes the
necessity to specify the flow control in most cases, but the programmer still

page 10

CHAPTER 1. INTRODUCTION

needs to know if the interpreter or compiler implements depth or breadth-first
search strategy and left-to-right or any other literal selection rule. Consider
reading [SS94], [Llo87], [Kow88] or [CR93] for more information on this topic.

The human being has tried to mathematize everything around him since
his origins. When representing the world as the human being understands it
and how he takes decisions and interacts with the first one, we encounter the
problem of representing fuzzy characteristics (it is hot), fuzzy rules (if it is hot,
turn on the fan) and fuzzy actions (since it is not too hot, turn on the fan at
medium speed). So, a machine needs all this information (or knowledge) if we
want it to understand the world as the human being does and take decisions
as the human being does. It is when carrying out this task that Lofti A. Zadeh
found the necessity of fuzzy sets [Zad65] and, some years later, the necessity
of linguistic variables [Zad75a; Zad75b; Zad75c]. A very good justification
of their necessity can be found in his paper named “Is there a need for fuzzy
logic?” [Zad08].

1.3 Fuzzy Logic

At first sight fuzziness and logic might be seen as very different things. Logic
is usually understood as sentences which can be true or false and fuzziness
as sentences which can take any valid value. It is not like that. On one hand
logic is more than bi-valued logic. In fact many-valued logic is part of logic and
allows infinite truth values. On the other one fuzziness measures the range
of values of truthness that we can assign to some sentence and this range
can be given a credibility so there is always a set of values that we can trust.
Together we talk about fuzzy logic, logic that can be used to reason about fuzzy
information and provide results with a credibility.

Take, for example, a database with the contents shown in Table. 1.3.1, the
definition for the function “close” in Fig. 1.3.1 and the question “Is restaurant X
close to the center?” with FL we can deduce that Il tempietto is “definitely”
close to the center, Tapasbar is “almost” close, Ni Hao is “hardly” close and
Kenzo is “not” close to the center. We highlight the words “definitely”, “almost”,
“hardly” and “not” because the usual answers for the query are “1”, “0.9”,
“0.1” and “0” for the individuals Il tempietto, Tapasbar, Ni Hao and Kenzo
and the humanization of the numeric values is done in a subsequent step by
defuzzification.

It was Lotfi Zadeh in 1965 who introduced fuzzy set theory [Zad65], and its
existence was justified in his paper "Is there a need for fuzzy logic?" [Zad08].
Zadeh contributed much more to the fuzzy set theory, as the distinction between
fuzzy sets without uncertainty and fuzzy sets with different levels of uncertainty

page 11

1.3. FUZZY LOGIC

Table 1.3.1: Restaurants database

name distance price avg. food type

Il_tempietto 100 30 italian

Tapasbar 300 20 spanish

Ni Hao 900 10 chinese

Kenzo 1200 40 japanese

0

1

close

100 1000 distance

Figure 1.3.1: Close fuzzification function.

(see [Zad75a; Zad75b; Zad75c]), but we outline here just the ideas needed to
make the contribution self contained.

It is usual when modeling real-world problems the necessity to represent
not only if an individual belongs or not to a set, but the grade in which it
belongs. This grade is what Zadeh tried to model by using a linguistic variable,
a variable which can be assigned real-world adjectives2 as values. For example,
age takes the values young and old and temperature takes the values cold,
warm and hot (Fig. 1.3.2).

But this linguistic variables are no more than part of the fuzzy systems

2Please take into account that values for a linguistic variable are not always adjectives.

Figure 1.3.2: Temperature is a linguistic variable and (here) takes the values
cold, warm and hot.

page 12

CHAPTER 1. INTRODUCTION

which, aimed at encoding in a computation the human way of solving problems,
abstract the real-world facts into fuzzy facts by means of the fuzzification
process, infer fuzzy solutions to the real-world problems by using fuzzy rules
and defuzzify them to work in real-life scenarios.

To illustrate this description, suppose that temperature is 25 degrees and
this measure is fuzzified into temperature(warm) by using the description for
the linguistic variable temperature in Fig. 1.3.2. This fuzzy fact is then taken
into account by the fuzzy rule if temperature(warm) then fan_speed(normal)
and it is concluded fan_speed(normal). At last the conclusion is defuzzified by
a linguistic variable description similar to the one in Fig. 1.3.2, obtaining the
real-world decision to feed the fan with 5 volts3.

Another example is trying to determine if a train will stop because of its
speed decrease and we should take our baggage, but without knowing if the
speed reduction is high, normal or low4. We could say that speed_reduction
is normal, but we are not completely sure about it and this should be taken
into account. For that purpose we measure how much we trust our per-
ception by means of a real number in the interval [0, 1]5, 0.6 here. This
number is called the credibility of the rule. The fuzzification process result
(“speed_reduction(normal) with cred 0.6”) is then taken into account by the
fuzzy rule “if train_speed_reduction(normal) then train_stops(soon)” to infer
the conclusion “train_stops(soon) with cred 0.6”, which is still not the solution
expected by the deffuzification process. We need to apply another rule to this
result6, “if train_stops(soon) then take_your_baggage(now)” and the result
here is “take_your_baggage(now) with cred 0.6”. Finally the defuzzification
process tries to deffuzify the last conclusion, but it is not strong enough to fire
a real-world action. So, it does not suggest us to take our baggage.

1.3.1 Fuzzy Approaches in Logic Programming

Introducing Fuzzy Logic into Logic Programming resulted in the development
of several fuzzy systems over Prolog. As Shapiro argues in [Sha83], Logic
Programming has traditionally been used in knowledge representation and
reasoning, which is why it is perfectly well-suited to implement fuzzy reasoning

3suppose that the linguistic variable fan_speed has the following description: when its
value is fast we feed the fan with 10 volts, when normal with 5 volts, when low with 2.5 volts
and when stop with 0 volts.

4Suppose we are just passengers that feel something but can not measure it.
5As usually, 0 means we do not trust the rule and 1 we trust it completely. We could use here

a linguistic variable again, but we think a number between 0 and 1 makes it easy to understand.
6This second inference step is included to highlight that we can model problems much

more complex than the previous one, solved in only three inference steps.

page 13

1.3. FUZZY LOGIC

tools. It is just interesting to highlight that there is no common method for
fuzzifying Prolog, as noted by Shen in [SDM89]. The only common denominator
of all the existing fuzzy systems is that they implement in some way the fuzzy
set theory introduced by Lotfi Zadeh in 1965 [Zad65].

Some of these systems replace its inference mechanism, SLD-resolution,
with a fuzzy variant that is able to handle partial truth, introduced by
Lee [Lee72].

Some only consider fuzziness on predicates whereas other systems consider
fuzzy facts or fuzzy rules. There is no agreement about which fuzzy logic should
be used. Most of them use min-max logic (for modelling the conjunction and
disjunction operations), other systems just use Łukasiewicz logic [KK94] 7.

There is also an extension of constraint logic programming [BR01], which
can model logics based on semiring structures. This framework can model
min-max fuzzy logic, which is the only logic with semiring structure.

Another theoretical model for fuzzy logic programming without negation
has been proposed by Vojtáš in [Voj01], which deals with many-valued implica-
tions.

Leaving apart the theoretical frameworks, as [JMP05; Voj01], and focusing
on frameworks having an implementation, the ones we knew about when we
started this work were

• the Prolog-Elf system [IK85],

• the FRIL Prolog system [BMP95],

• the F-Prolog language [LL90],

• the FuzzyDL reasoner [BS08],

• the Fuzzy Logic Programming Environment for Research (FLOPER)
[MM08a; MM08b], and

• the Fuzzy Prolog system [GMHV04; VGMH02].

1.3.2 Fuzzy Prolog

One of the most promising fuzzy tools for Prolog was the “Fuzzy Prolog” system
[GMHV04; VGMH02]. The most important advantages in comparison to the
other approaches are:

7A good survey on many-valued logics (Gödel logics, Łukasiewicz logic, Product logic) can
be found in [Got01; Got05].

page 14

CHAPTER 1. INTRODUCTION

1. A truth value is represented as a finite union of sub-intervals on [0, 1]. An
interval is a particular case of union of one element, and a unique truth
value (a real number) is a particular case of having an interval with only
one element.

2. A truth value is propagated through the rules by means of an aggregation
operator. The definition of this aggregation operator is general and it
subsumes conjunctive operators (triangular norms [KMP00] like min,
prod, etc.), disjunctive operators [TCC95] (triangular co-norms, like max,
sum, etc.), average operators (averages as arithmetic average, quasi-
linear average, etc) and hybrid operators (combinations of the above
operators [PTC02]).

3. Crisp and fuzzy reasoning are consistently combined [MHVG02].

Fuzzy Prolog adds fuzziness to a Prolog compiler using CLP(R) instead of
implementing a new fuzzy resolution method, as other former fuzzy Prolog
systems do. It represents intervals as constraints over real numbers and
aggregation operators as operations with these constraints. Thus, Prolog’s built-
in inference mechanism is used to handle the concept of partial truth.

1.3.3 RFuzzy Approach Motivation

Over the last few years several papers have been published by Medina et al.
([MOAV01a; MOAV01b; MOAV01c]) about multi-adjoint programming. They
describe a theoretical model, but no means of serious implementations apart
from promising prototypes [AMM07] and recently the FLOPER tool [MM08a;
MM08b; Mor06].

The FLOPER implementation is inspired by Fuzzy Prolog [GMHV04] and
adds the possibility to use multi-adjoint logic. On the one hand, Fuzzy Prolog
is more expressive in the sense that it can represent continuous fuzzy functions
and its truth values are more general (unions of intervals of real numbers
as opposed to real numbers); on the other hand, Fuzzy Prolog’s syntax is so
flexible and general that can be complex for non-expert programmers that are
just interested in modelling simple fuzzy problems.

This is the reason why we herein propose the RFuzzy8 approach. It is simpler
for the user than Fuzzy Prolog because the truth values are simple real numbers
instead of the general structures of Fuzzy Prolog. RFuzzy allows to model

8In RFuzzy’s name, the “R” means Real, because the truth value that it uses is a real number
instead of an interval or union of intervals as in Fuzzy Prolog. RFuzzy should not be confused
with the term “R-Fuzzy set” [Wan+07; YH10] that means rough fuzzy set.

page 15

1.4. MULTI-ADJOINT SEMANTICS

multi-adjoint logic and moreover provides some interesting improvements with
respect to FLOPER:

• default values,

• partial default values (just for a subset of data),

• typed predicates,

• useful syntactic sugar (for representing facts, rules and functions),

• similarity between fuzzy predicates,

• similarity between attributes of non-fuzzy predicates,

• modifiers (even negation modifiers) and

• definition of new connectives and modifiers.

Additionally, RFuzzy inherits Fuzzy Prolog characteristics that makes it more
expressive than other tools. Examples of this are:

• RFuzzy uses Prolog-like syntax, providing flexibility in the queries’ syntax,

• it allows the programmer to combine crisp and fuzzy predicates,

• it provides general connectives to combine truth values and

• it provides constructive answers when querying data or truth values.

1.4 Multi-Adjoint Semantics

The structure used to give semantics to the programs written in the syntax
accepted by RFuzzy is a particular case of the multi-adjoint (MA) algebra,
presented by Medina, Ojeda-Aciego and Vojtáš in [MOAV01a; MOAV01b;
MOAV01c; MOAV02; MOAV04; MO02]. The interest in using this structure is
twofold: on one hand generalised logic programs’ semantics require a notion
of consequence (implication) different from the usual one9. The multi-adjoint
algebra satisfies a generalised modus ponens rule and allows us to manage the
rules’ consequences in a very natural way. On the other one the multi-adjoint
algebra allows us to obtain the credibility for the rules that we write from real-
world data. There are other mechanisms for this purpose, as the one proposed

9The usual one is (a← b) ≡ t iff a ≡ t whenever b ≡ t.

page 16

CHAPTER 1. INTRODUCTION

by Palacios, Gacto and Alcalá-Fdez in [PGAF12], but we think that the one
offered by the multi-adjoint algebra is more natural than the other ones.

As stated in the papers cited before, the multi-adjoint semantics are a
common denominator of the residuated lattices and fairly general conjunctors
and their adjoints. It allows several adjoint pairs in the residuated lattice,
leading what Vojtáš calls multi-adjoint algebra in [Voj01] and what Medina,
Ojeda-Aciego and Vojtáš call multi-adjoint (semi-) lattice in [MOAV04]. We
copy here the definitions of these three concepts together with the definitions
needed to understand them (all of them taken from [MOAV01c]). The defini-
tion of the multi-adjoint algebra (the basis of the multi-adjoint semantics) is
straightforward from the definitions of adjoint pair and multi-adjoint lattice.

Definition 1.4.1 (Graded set, from [MOAV01c]). A graded set is a set Ω with a
function which assigns to each element ω ∈ Ω a number n ≥ 0, called the arity
of ω.

Definition 1.4.2 (Ω-Algebra, from [MOAV01c]). Given a graded set Ω, an Ω-
Algebra U is a pair < A, I > where A is a nonempty set called the carrier, and I
is a function which assigns maps to the elements of Ω as follows:

1. Each element ω ∈ Ωn, n > 0, is interpreted as a map I(ω) : An → A,
denoted by ΩU.

2. Each element c ∈ Ω0 (i.e., c is a constant) is interpreted as an element I(c)
in A, denoted by c U.

Definition 1.4.3 (Adjoint Pair, from [MOAV01c]. Firstly introduced in a logical
context by Pavelka [Pav79]). Let <P, �> be a partially ordered set and (←, &)
a pair of binary operations in P such that:

1. Operation & is increasing in both arguments, i.e. if x1, x2, y ∈ P such that
x1 � x2 then (x1 & y) � (x2 & y) and (y & x1) � (y & x2);

2. Operation ← is increasing in the first argument (the consequent) and
decreasing in the second argument (the antecedent), i.e. if x1, x2, y ∈ P
such that x1 � x2 then (x1 ← y) � (x2 ← y) and (y← x2) � (y← x1);

3. For any x, y, z ∈ P, we have that x � (y ← z) holds if and only if
(x & z) � y holds.

Then (←, &) is called an adjoint pair in <P, �>.

page 17

1.4. MULTI-ADJOINT SEMANTICS

Definition 1.4.4 (Multi-Adjoint Lattice, from [MOAV01c]). Let
< L, �> be a lattice. A multi-adjoint lattice L is a tuple

(L, �, ←1, &1, . . . , ←n, &n) (1.4.1)

satisfying the following items:

1. < L,�> is bounded, i.e. it has bottom (⊥) and top (>) elements;

2. (←i, &i) is an adjoint pair in < L,�> for i = 1, . . . , n;

3. > &i v = v &i > = v for all v ∈ L for i = 1, . . . , n.

Remark. A lattice with only one adjoint pair is called somewhere a residuated
lattice (see [DP00; DP01]), and when more that one pair is introduced we get
to a multi-adjoint lattice.

Definition 1.4.5 (Multi-Adjoint Ω-Algebra, from [MOAV01c]). Let Ω be a
graded set containing operators ←i and &i for i = 1, . . . , n and possibly some
extra operators, and let L = (L, I) be an Ω-algebra whose carrier set L is a lattice
under �.

We say that L is a multi-adjoint Ω-algebra with respect to the pairs (←i, &i)
for i = 1, . . . , n if

L = (L, �, I(←1), I(&1), . . . , I(←n), I(&n)) (1.4.2)

is a multi-adjoint lattice.

From this definitions the important part is the relation between adjoint
pairs (←i, &i), which makes it possible to evaluate in the many-valued modus
ponens the truth value (y) of the head (A) of a rule (A←i B) from the truth
value (z) of the body (B) and the weight (v) of the rule:

(B, z), (A←i B, v)
(A, y)

, (1.4.3)

v � (y←i z) iff (v & z) � y (1.4.4)

This relation is used to define satisfaction (Def. 1.4.7), and the immediate
consequences operator (Def. 1.4.8). We include first the definition of multi-
adjoint logic program (Def. 1.4.6), needed to understand them10.

10This definition is not the one in [MOAV01c]. We just changed some syntactic constructions
to avoid explaining the syntax used in [MOAV01c].

page 18

CHAPTER 1. INTRODUCTION

Definition 1.4.6 (Multi-Adjoint Logic Program). A multi-adjoint logic program
is a set of clauses of the form

< A ←i F(B1, . . . , Bn), c > (1.4.5)

where c ∈ [0, 1] is the credibility assigned to the rule, i a conjunctor &, F an
aggregator @i and A and Bi, i ∈ [1..n], atoms. When the satisfiability of A depends
on the satisfiability of only one atom B the aggregator F is omitted, resulting in
< A ←i B, v >. This representation is used too when referring to a rule in which
we do not know if the atom A depends on only one atom B or more than one.

Definition 1.4.7 (Satisfaction, from [MOAV01c]). Given an interpretation I ∈
IL, where IL is the set of all interpretations of the formulas defined by the Ω-
algebra F in the Ω-algebra L, a weighted rule < A←i B, v > is satisfied by I if
and only if (iff) v � Î(A←i B).

Definition 1.4.8 (Immediate consequences operator TL
P , from [MOAV01c]).

Let P be a multi-adjoint logic program. The immediate consequences operator
TL
P : IL → IL, mapping interpretations to interpretations, is defined by consider-

ing
TL
P (I)(A) = sup { v &̂i Î(B) | < A ←i B, v > ∈ P }

The definitions of satisfaction (Def. 1.4.7), and immediate consequences
operator (Def. 1.4.8) are used to give meaning the programs, as usually. Suppose
a program in the syntax the papers cited define and a query. In order to give an
answer to the query the program is instantiated or grounded, the atoms are
given an interpretation and this interpretation is extended to the formulas in
the language. In bi-valued logic the interpretations are just { true, f alse } while
here it is (usually) a number v ∈ [0, 1], but in both cases the expected result is
the maximum (or supreme) of the values obtained by the different rules. So,
we select all the rules whose head unify with the query, take their respective
interpretations and compute the maximum. This is the result for the query.

We provide the following examples to illustrate the theoretical concepts
introduced before.

Example 1.4.1 Suppose we have four fuzzy facts, A, B, C and D. D is always
satisfied with at least the maximum truth value of A, B, and C. From this
knowledge we can extract the following rule:

D 1, Gödel←−−−− max(A, B, C) (1.4.6)

The interesting point is that the rule’s credibility value, 1, has been computed
from the real-world data. From Gödel’s implication operator definition

b X, Gödel←−−−−− a =
{

1 if a ≤ b
b if b < a

}
(1.4.7)

page 19

1.5. STRUCTURE OF THE WORK

and knowing that the satisfaction of D is always higher than the satisfaction of
A, B and C we can obtain the rule’s credibility value.

Example 1.4.2 Suppose we have four fuzzy facts, A, B, C and D and the
rule in Eq. 1.4.6. Knowing that A, B and C are satisfied with, at least, the values
0.3, 0.4 and 0.5 we can compute how much satisfied is D:

D̂ = min(1, max(0.3, 0.4, 0.5)) = 0.5 (1.4.8)

1.5 Structure of the Work

In the following pages we present the contributions of this thesis, published
in a set of research papers. Chapter. 2 corresponds to [MHPCS11], Chapter. 3
to [PCMH11] and Chapter. 4 to [PCMH15]. Chapter. 5 corresponds to the real
applications developed using RFuzzy and their impact. It contains material
belonging to [MHPCS11] and [PCMH15].

The papers [MHPCS11] and [PCMH15] are respectively improved ver-
sions of the publications [MHPCS09; PCMHS08; PCSMH09; SMHPC09] and
[PCMH14a; PCMH14b; PCMH14c; PCMH14d; PCMH14e], which is why we
have taken them instead of the original ones.

The three research papers chosen to build the thesis [MHPCS11; PCMH11;
PCMH15] belong to the research idea of increasing the expressiveness of fuzzy
logic languages. To achieve it we have developed a framework, RFuzzy. RFuzzy
is a framework with a clear and easy syntax that allows us to encode fuzzy
logic in programs and obtain results to fuzzy queries.

The first part of the work (Chapter. 2) corresponds to the first version of
RFuzzy. In this part RFuzzy allows to encode fuzzy rules, to obtain default truth
values when no better value can be computed and to encode the translation
between crisp and fuzzy values by using piecewise functions. In this part we
solve problems as obtaining the correct truth value when more than one rule is
applicable. This is needed mainly due to the existence of rules for encoding
“default truth values”, truth values that are returned by the system when no
better value can be computed. After an informal introduction we include too
the syntax and semantics developed, in which an incipient priorities system
helps to provide plenty of facilities, including the ones mentioned before.

In the second part (Chapter. 3) we develop a priorities system for RFuzzy
much more powerful than the previous one. The main difference with respect
to the previous one is that this one is not restricted to the usage of just three
symbols, allowing the introduction of an infinite amount of priorities and the
assignment of different priorities to each construction. With its inclusion RFuzzy
gain, between others, the capability to define personalized rules, rules that work

page 20

CHAPTER 1. INTRODUCTION

differently depending on the user posing the query. In this chapter we provide
too the syntax and semantics developed, focusing in the mechanism used to
translate each one of the constructions created using the new priorities system.

In the third part of the work (Chapter. 4) we include syntactic structures to
model synonyms, antonyms, similarity between attributes (allowing to search
for a Mediterranean restaurant and get Spanish restaurants as valid answers),
and the use and definition of modifiers (very, too much or even negation).
In this part we have focused in providing a negation mechanism with a clear
syntax and semantics, which is why the semantics have changed so much from
the original ones.

In the three chapters mentioned (Chapter. 2, Chapter. 3 and Chapter. 4)
we provide detailed information about the three releases of the framework
developed: syntax, semantics and links to the source code publicly available.

In Chapter. 5 we present some applications that have been developed using
RFuzzy. We highlight two between all of them: Emotion Recognition and FleSe
(Flexible Searches in databases). Emotion recognition had a lot of impact and
some companies show interest on how it works. FleSe is an easy-to-use web
interface framework to pose fuzzy queries in almost natural language. It makes
use of all the facilities provided by RFuzzy. It is a good example to show all the
capabilities that RFuzzy offers to the final user.

At last it is worth to highlight that no source code is included to increase
the weight of this document. In contrast and since everything is free and
public available, we provide links to it. The links point to the open-source code
available and we include a link to a working installation of FleSe. This working
installation is automatically updated from FleSe’s last release and allows users
to pose fuzzy queries to (their, our or somebody’s) non-fuzzy databases.

page 21

Chapter 2

The initial version of the fuzzy
logic framework: RFuzzy v.1

The RFuzzy framework is a Prolog-based tool for representing and reasoning
with fuzzy information. Its advantages in comparison to previous tools along
this line of research are its easy, user-friendly syntax, and its expressivity
through the availability of default values and types.

Here we describe the formal syntax, the operational semantics and the
declarative semantics of RFuzzy (based on a lattice). A least model semantics,
a least fixpoint semantics and an operational semantics are introduced and
their equivalence is proven. We provide a real implementation that is free and
available.1

We start by introducing the formal syntax of RFuzzy (Section 2.1) and its
declarative and operational semantics (Sections 2.2 and 2.3, respectively), to
arrive at the justification of the sentence “RFuzzy allows to model multi-adjoint
logic” (Section 2.4). Afterwards we board RFuzzy implementation and usage
(Section 2.5).

2.1 Syntax

We will use a signature Σ of function symbols and a set of variables V to “build”
the term universe TUΣ,V (whose elements are the terms). It is the minimal set
such that each variable is a term and terms are closed under Σ-operations. In
particular, constant symbols are terms.

Similarly, we use a signature Π of predicate symbols to define the term
base TBΠ,Σ,V (whose elements are called atoms). Atoms are predicates whose

1It can be downloaded from [PC15d]

page 23

2.1. SYNTAX

arguments are elements of TUΣ,V. Atoms and terms are called ground if they
do not contain variables. As usual, the Herbrand universe HU is the set of all
ground terms, and the Herbrand base HB is the set of all atoms with arguments
from the Herbrand universe. To capture different interdependencies between
predicates, we will make use of a signature Ω of many-valued connectives2:

• conjunctions &1, &2, ..., &k

• disjunctions ∨1,∨2, ...,∨l

• implications←1,←2, ...,←m

• aggregations @1, @2, ..., @n

• real numbers v ∈ [0, 1] ⊂ R. These connectives are of arity 0 (v ∈ Ω(0))
and symbolise dependency on no other predicate.

While Ω denotes the set of connective symbols, Ω̂ denotes the set of their
respective associated truth functions. Instances of connective symbols and truth
functions are denoted by F and F̂ respectively.

Truth functions for conjunctions are conjunctors F̂ : [0, 1]2 → [0, 1] mono-
tone and non-decreasing in both coordinates. Truth functions for disjunctions
are disjunctors F̂ : [0, 1]2 → [0, 1] monotone in both coordinates. Truth
functions for implications are implicators F̂ : [0, 1]2 → [0, 1] non-increasing in
the first and non-decreasing in the second coordinate. Truth functions for aggre-
gation operators are functions F̂ : [0, 1]n → [0, 1] that verify F̂(0, . . . , 0) = 0
and F̂(1, . . . , 1) = 1. At last, truth functions for connectives v ∈ Ω(0) are
functions of arity 0 (constants) that coincide with the connectives (F̂ = F).

A n-ary truth function for a connective is called monotonic in the i-th
argument (i ≤ n), if x ≤ x′ implies

F̂(x1, . . . , xi−1, x, xi+1, . . . , xn) ≤ F̂(x1, . . . , xi−1, x′, xi+1, . . . , xn).

A truth function is called monotonic if it is monotonic in all arguments.
Immediate examples for connectives that come to mind are

• for conjunctors: Łukasiewicz logic (F̂(x, y) = max(0, x + y− 1)), Gödel
logic (F̂(x, y) = min(x, y)), product logic (F̂(x, y) = x · y).

• for disjunctors: Łukasiewicz logic (F̂(x, y) = min(1, x + y)), Gödel logic
(F̂(x, y) = max(x, y)), product logic (F̂(x, y) = x · y).

2Note that in Fuzzy Prolog (and in previous RFuzzy works) the term “aggregation operator”
subsumes conjunctions, disjunctions and aggregations. In this work we distinguish between
them and include a new one (implications).

page 24

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

• for implicators: Łukasiewicz logic (F̂(x, y) = min(1, 1− x + y)), Gödel
logic (F̂(x, y) = y if x > y else 1), product logic (F̂(x, y) = x · y).

• for aggregation operators3: arithmetic mean, weighted sum or a mono-
tone function learned from data.

Definition 2.1.1. Let Ω be a connective signature, Π a predicate signature, Σ a
term signature and V a set of variables.

A fuzzy clause is written as

A c,Fc←− F(B1, . . . , Bn)

where A ∈ TBΠ,Σ,V is called the head, B1, . . . , Bn ∈ TBΠ,Σ,V is called the body,
c ∈ [0, 1] is the credibility value, and Fc ∈ {&1, . . . , &k} ⊂ Ω(2) and F ∈ Ω(n)

are connectives symbols (for the credibility value and the body, respectively)
A fuzzy fact is a special case of a clause where c = 1, Fc is the usual

multiplication of real numbers “·” and n = 0 (thus F ∈ Ω(0)). It is written as
A←− F (we omit c and Fc).

A fuzzy query is a pair 〈A, v〉, where A ∈ TBΠ,Σ,V and v is either a “new”
variable that represents the initially unknown truth value of A or it is a concrete
value v ∈ [0, 1] that is asked to be the truth value of A.

Intuitively, a clause can be read as a special case of an implication: we
combine the truth values of the body atoms with the connective associated to
the clause to yield the truth value for the head atom.

Example 1. Consider the following clause, that models to what extent cities
can be deemed good travel destinations – the quality of the destination depends
on the weather and the availability of sights:

good-destination(X)
1.0,·←− · (nice-weather(X), many-sights(X)) .

The credibility value of the rule is 1.0, which means that we have no doubt
about this relationship. The connective used here in both cases is the usual
multiplication of real numbers. We enrich the knowledge base with facts about
some cities and their continents:

nice-weather(madrid)←− 0.8 ,
nice-weather(istanbul)←− 0.7 ,
nice-weather(moscow)←− 0.2 ,

many-sights(madrid)←− 0.6 ,
many-sights(istanbul)←− 0.7 ,
many-sights(sydney)←− 0.6 ,

3Note that the above definition of aggregation operators subsumes all kinds of minimum,
maximum or mean operators.

page 25

2.1. SYNTAX

city-continent(madrid, europe)←− 1.0 ,
city-continent(moscow, europe)←− 1.0 ,
city-continent(sydney, australia)←− 1.0 ,
city-continent(istanbul, europe)←− 0.5 ,
city-continent(istanbul, asia)←− 0.5 .

Some queries to this program could ask if Madrid is a good destination,
〈good-destination(madrid), v〉. Another query could check if Istanbul is the
perfect destination, 〈good-destination(istanbul), 1.0〉.The result of the first
query will be the real value 0.48 and the second one will fail. It can be seen that
no information about the weather in Sydney or sights in Moscow is available
although these cities are “mentioned”. �

In the above example, the knowledge that we represented using fuzzy
clauses and facts was not only vague but moreover incomplete. Indeed, this is
the general case in real applications. Information is sometimes missing for some
or all of the cases and it is necessary to provide an alternative semantics for
these situations. The open world assumption (OWA) introduces the concept of
unknown or absent information. It is very common in logic programming (for
example in Prolog programming) to use the closed world assumption (CWA) for
supposing false information that is not explicitly present or not derivable from
the program. There are other works (like [LS05]) that allow any assumption.

We have chosen to use CWA enriched with a mechanism of default rules
for assigning default values when information about truth values is absent in a
program. In particular, we have been able to provide a rich syntax for defining
default values to subsets of elements satisfying a particular condition.

Definition 2.1.2. A default value declaration for a predicate p ∈ Π(n) is written
as

default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm]

where δi ∈ [0, 1] for all i. The ϕi are first-order formulas restricted to terms from
TUΣ,{X1,...,Xn}, the predicates = and 6=, the symbol t and the conjunction ∧ and
disjunction ∨ in their usual meaning.

Example (continued). Let us add the following default value declarations to
the knowledge base and thus close the mentioned gaps.

default(nice-weather(X)) = 0.5,
default(many-sights(X)) = 0.2,

page 26

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

default(good-destination(X)) = 0.3

They could be interpreted as: when visiting an arbitrary city of which nothing
further is known, it is likely that you have nice weather but you will less likely
find many sights. Irrespective of this, it will only to a small extent be a good
travel destination.

To model the fact that a city is not on a continent unless stated otherwise,
we add another default value declaration for city-continent:

default(city-continent(X, Y)) = 0.0.

Notice that in this example m = 1 and ϕ1 = t for all the default value
declarations. �

The default values allow our knowledge base to answer arbitrary questions
about predicates that occur in it. But will the answers always make sense? To
stay in the above example, if we ask a question like “What is the truth value of
nice-weather(australia)?” we will get the answer “0.5” which does not make
too much sense since Australia is not a city, but a continent.

To address this issue, we introduce types into the language. Types in RFuzzy
are subsets of terms of the Herbrand base of the program. When we assign types
to the arguments of a predicate, we are restricting their domains. This contrasts
with [Sch+08] and similar works, most of them variants of the proposal of
Mycroft and O’Keefe [MO84] that was an adaption of the type system of
Hindley and Milner [Mil78]. These works are more oriented to input/output
type checking while in RFuzzy types are used for the constructive generation of
answers (see Section 2.5.2).

Definition 2.1.3. Types are built from terms t ∈HU. A term type declaration
assigns a type τ ∈ T to a term t ∈HU and is written as t : τ. A predicate type
declaration assigns a type (τ1, . . . , τn) ∈ Tn to a predicate p ∈ Πn and is written
as p : (τ1, . . . , τn), where τi is the type of p’s i-th argument. The set composed by
all term type declarations and predicate type declarations is denoted by T.

Example (continued). Using the set of types T = {City, Continent}, we add
some term type declarations to our knowledge base:

madrid : City,
istanbul : City,
sydney : City,

moscow : City;
africa : Continent,

page 27

2.1. SYNTAX

america : Continent,
antarctica : Continent,

asia : Continent,
europe : Continent.

We also type the predicates in the obvious way (i.e. providing the predicate
type declarations):

nice-weather : (City),
many-sights : (City),

good-destination : (City),
city-continent : (City, Continent).

�

For a ground atom A = p(t1, . . . , tn) ∈HB we say that it is well-typed with
respect to T iff p : (τ1, . . . , τn) ∈ T implies (ti : τi) ∈ T for 1 ≤ i ≤ n. For a

ground clause A c,Fc←− F(B1, . . . , Bm) we say that it is well-typed w.r.t. T iff A
is well-typed whenever all Bi are well-typed for 1 ≤ i ≤ m (i.e. if the clause
preserves well-typing). We say that a non-ground clause is well-typed iff all its
ground instances are well-typed.

Example (continued). With respect to the given type declarations,
city-continent(moscow, antarctica) is well-typed, city-continent(asia, europe) is
not. �

A fuzzy logic program P is a triple P = (R, D, T) where R is a set of
fuzzy clauses, D is a set of default value declarations and T is a set of type
declarations.

From now on, when speaking about programs, we will implicitly assume
the signature Σ to consist of all function symbols occurring in P, the signature
Π to consist of all the predicate symbols occurring in the program, the set T to
consist of all types occurring in type declarations in T, and the signature Ω of
all the connective symbols.

Lastly, we introduce the important notion of a well-defined program.

Definition 2.1.4. A fuzzy logic program P = (R, D, T) is called well-defined iff

• for each predicate symbol p/n occurring in R, there exist both a predicate
type declaration and a default value declaration;

• all clauses in R are well-typed;

page 28

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

• for each default value declaration

default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm],

the formulas ϕi are pairwise contradictory and ϕ1 ∨ · · · ∨ ϕm is a tautology,
i.e. exactly one default truth value applies to each element of p/n’s domain.

Besides, a well-defined fuzzy logic program can not have clauses that depend,
directly or indirectly (i.e. via other clauses) on themselves. This is considered a
program error and neither our semantics nor our implementation is capable of
dealing with this kind of programs.

2.2 Declarative Semantics

The possibility to define default truth values for predicates offers us a great
deal of flexibility and expressivity. But it also has its drawbacks: reasoning
with defaults is inherently non-monotonic – we might have to withdraw some
conclusions that have been made in an earlier stage of execution. To capture
this formally, we attach to each truth value an attribute that indicates how
this value has been concluded. These attributes could be ordered numbers (as
in [TB04] where real numbers in [0, 1] are used) but we decided, for clarity
reasons, to restrict the possible scenarios to three cases that are characterised
by three different symbols depending on the origin of the truth values:

• exclusively by application of program facts and clauses, represented by
the symbol H denoting the attribute value safe,

• by indirect use of default values, represented by the symbol � denoting
the attribute value unsafe (mixed), or

• directly via a default value declaration, represented by the symbol N
denoting the attribute value unsafe (pure).

We need to be able to compare the attributes (in order to be able to prefer
one conclusion over another) and to combine them to keep track of default
value usage in the course of computation. This is formalised by setting the
ordering <a on truth value attributes such that N <a � <a H.

The operator ◦ : {N,�,H} × {N,�,H} → {�,H} is then defined as:

x ◦ y :=

{
H if x = y = H

� otherwise

page 29

2.2. DECLARATIVE SEMANTICS

The operator ◦ is designed to keep track of attributes during computation: only
when two “safe” truth values are combined, the result is known to be “safe”, in
all other cases it is “unsafe”. It should be noted that “◦” is monotonic.

The truth values that we use in the description of the semantics will be real
values v ∈ [0, 1] with an attribute (i.e. a z ∈ {N,�,H}) attached to it. We will
write them as zv, and the set of possible truth values as T. So, zv ∈ T. The
ordering 4 on the truth values will be the lexicographic product of <a, the
ordering on the attributes, and the standard ordering < of the real numbers.
The set of truth values is thus totally ordered as follows:

⊥ ≺ N0 ≺ · · · ≺ N1 ≺ �0 ≺ · · · ≺ �1 ≺ H0 ≺ · · · ≺ H1.

We remark that the pair (T,4) forms a complete lattice.
A valuation σ : V → HU is an assignment of ground terms to variables.

Each valuation σ uniquely constitutes a mapping σ̂ : TBΠ,Σ,V → HB that is
defined in the obvious way.

A fuzzy Herbrand interpretation (or short, interpretation) of a fuzzy logic
program is a mapping I : HB→ T that assigns truth values to ground atoms.
The domain of an interpretation is the set of all atoms in the Herbrand Base,
although for readability reasons we usually omit those atoms to which the truth
value ⊥ is assigned (interpretations are total functions). This mapping can be
seen as a set of pairs (A, zv) such that A ∈ HB and zv ∈ T \ {⊥}, meaning
for an atom not being in the set that its truth value is ⊥.

For two interpretations I and J , we say I is less than or equal to J,
written I v J, iff I(A) 4 J(A) for all A ∈ HB. Two interpretations I
and J are equal, written I = J, iff I v J and J v I. Minimum and
maximum for interpretations are defined from 4 as usually.

Accordingly, the infimum (or intersection) and supremum (or union) of
interpretations are, for all A ∈HB, defined as (I u J)(A) := min(I(A), J(A))
and (I t J)(A) := max(I(A), J(A)).

The pair (IP,v) of the set of all interpretations of a given program with
the interpretation ordering forms a complete lattice. This follows readily from
the fact that the underlying truth value set T forms a complete lattice with the
truth value ordering 4.

Definition 2.2.1 (Model). Let P = (R, D, T) be a fuzzy logic program.

For a clause r ∈ R of the form A c,Fc←− F(B1, . . . , Bn) we say that I is a model
of the clause r and write

I
 A c,Fc←− F(B1, . . . , Bn)

iff for all valuations σ, we have:

page 30

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

if I(σ(Bi)) = zivi � ⊥ for all i then4 I(σ(A)) < z′v′

where z′ = z1 ◦ · · · ◦ zn and v′ = F̂c(c, F̂(v1, . . . , vn)).
For a clause r ∈ R of the form A←− v we say that I is a model of the clause

r and write

I
 A←− v

iff for all valuations σ, we have I(σ(A)) < Hv.
For a default value declaration d ∈ D we say that I is a model of the default

value declaration d and write

I
 default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm]

iff for all valuations σ, we have:

I(σ(p(X1, . . . , Xn))) < Nδj

where ϕj is the only formula that holds for σ(ϕj) (1 ≤ j ≤ m). Notice that, as
δi ∈ [0, 1] for all i (see Definition 2.1.2) and zv = Nδj, we force the truth values
defined in defaults to be different from ⊥ and lower than �0.

We write I
 R if I
 r for all r ∈ R and similarly I
 D if I
 d for
all d ∈ D. Finally, we say that I is a model of the program P and write I
 P
iff I
 R and I
 D.

Proposition 2.2.1. Let P = (R, D, T) be a well-defined fuzzy logic program and
I a model of P, I
 P. For all ground atoms A in TBΠ,Σ,V we can assume that

I(A) � ⊥

Proof. Trivial from the definitions of well-defined fuzzy logic program and
model: For being a well-defined fuzzy logic program every predicate has a
default value declaration for every ground atom A in TBΠ,Σ,V, so we have a
default value declaration

default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm]

such that σ(p(X1, . . . , Xn)) = A and σ(ϕi) is the only ϕi that holds. By
I
 D, this implies that

I(A) = Nδi

As for I
 P we need I
 D and this implies I
 d for every d, we have that
I(A) < Nδi, and Nδi � ⊥.

4Note that here we use ’then’ and not ’iff’, so if I(σ(Bi)) = zivi = ⊥ then the value of

I(σ(A)) is not restricted but I
 A c,Fc←− F(B1, . . . , Bn) .

page 31

2.2. DECLARATIVE SEMANTICS

Note that this proposition allows us to assure that a computation will not
stop when the truth value of some atom is unknown in some interpretation. It
is not possible (due to default value definitions) to have a truth value unknown
for an atom. The following proposition affirms that a default value declaration
is not used when a clause can be used to determine the truth value of an atom.

Proposition 2.2.2. Let P = (R, D, T) be a well-defined fuzzy logic program, I a
model of P, I
 P and A′ a ground atom such that A′ ∈ TBΠ,Σ,V. For a clause
r ∈ R of the form

A c,Fc←− F(B1, . . . , Bn) ∈ R or A←− v ∈ R

and a default declaration

default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm] ∈ D

such that for some valuations σ1 and σ2 we have

σ1(A) = A′ = σ2(p(X1, . . . , Xn))

and the rule r ∈ R (if r is of the form A c,Fc←− F(B1, . . . , Bn)) fulfills

I(σ1(Bi)) = zivi � ⊥ for all i

and the default declaration fulfills

σ2(ϕi) holds

then
I(A′) < z′v′ � Nδi

where z′v′ are obtained as in Definition 2.2.1.

Proof. Trivial from the definition of model of well-defined fuzzy logic program
and the definition of the operator ◦. As the image of the operator ◦ is {�,H}
and for rules r ∈ R of the form A ←− v we have that z′ = H it is easy to see
that z′ ∈ {�,H}. So, truth values obtained from clauses (when applicable) have
always a truth value higher than the one obtained by the application of defaults:

� � N and H � N

This is the intended meaning, so the lack of information on the truth value of
some atom never stops a computation if an approximate value for it (obtained
from a default declaration) can be used, but the approximate value is never
preferred over a truth value determined by a rule.

page 32

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

2.2.1 Least Model Semantics

Every program has a least model, which is usually regarded as the intended
interpretation of the program, since it is the most conservative model. The
following proposition will be an important prerequisite to define the least model
semantics. It states that the infimum (or intersection) of a non-empty set of
models of a program will again be a model. The existence of a least model is
then obvious and easily defined as the intersection of all models.

Proposition 2.2.3 (Model intersection property). Let P = (R, D, T) be a well-
defined fuzzy logic program and I be a non-empty set of interpretations. Then

I
 P for all I ∈ I implies
l

I∈I
I
 P

Proof. We start by defining J =
d

I∈I I. From Definition 2.2.1 we know that we
have three cases to check:

1. Let A c,Fc←− F(B1, . . . , Bn) ∈ R be a fuzzy clause and σ a valuation.

From Proposition 2.2.1, the premise that for each I ∈ I we have that
I
 P and the definition of

d
it is clear that for all ground atoms C in

TBΠ,Σ,V we have J(C) =
d

I∈I I(C) � ⊥. As σ(Bi) is a ground atom in
TBΠ,Σ,V, J(σ(Bi)) i∈1...n � ⊥.

As J(σ(Bi)) i∈1...n � ⊥, for J to be model of P it has to be true that

J(σ(A)) < z′Jv
′
J,

where z′J = z1 ◦ · · · ◦ zn, v′J = F̂c(c, F̂(v1, . . . , vn)) and
zivi = J(σ(Bi)) =

d
I∈I I(σ(Bi)).

As each I ∈ I makes true I
 P we have

I(σ(A)) < z′Iv
′
I,

where z′I = z1 ◦ · · · ◦ zn, v′I = F̂c(c, F̂(v1, . . . , vn))) and
zivi = I(σ(Bi))

5.

It is easy to see from J(σ(Bi)) 4 I(σ(Bi)) and the fact that Fc, F and “◦”
are non-decreasing functions that z′Jv

′
J 4 z′Iv

′
I, so

J(σ(A)) < z′Iv
′
I < z′Jv

′
J

5Note that we use two different definitions for zivi in the same proof. There is no clash as
one of them is used for calculating z′Jv

′
J and the other one for calculating z′Iv

′
I .

page 33

2.2. DECLARATIVE SEMANTICS

zivi =
d

I∈I I(σ(Bi)) makes ⊥ 4 zivi 4 I(σ(A)) for every I ∈ I

since ⊥ 4 J(σ(Bi)) 4 I(σ(Bi)) for every I ∈ I and from the
fact that Fc, F and “◦” are non-decreasing functions we can assure that
I(A) < J(A) < z′v′, so J
 P.

2. Let A←− v ∈ R be a fuzzy clause and σ a valuation.

From the premise that for each I ∈ I we have that I
 P we know that

I(A)I∈I < Hv

and, from the definition of
d

, it is clear that

J(A) =
l

I∈I
I(A) < Hv

so J
 P.

3. Let default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm] ∈ D be a default
declaration and σ a valuation such that for a ground atom A in TBΠ,Σ,V
we have A = σ(p(X1, . . . , Xn)).

From the premise that for each I ∈ I we have that I
 P we know that
for exactly one ϕi it must be that σ(ϕi) holds and this implies that

I(σ(p(X1, . . . , Xn)))I∈I < Nδi

and, from the definition of
d

, it is clear that

J(A) <
l

I∈I
I(A) < Nδi

so J
 P.

Definition 2.2.2. Let P be a well-defined fuzzy logic program. The least model
of P is defined as lm(P) :=

l

I
 P

I.

2.2.2 Least Fixpoint Semantics

Definition 2.2.3 (TP operator). Let P = (R, D, T) be a well-defined fuzzy logic
program, I an interpretation, and recall that ground(R) denotes the set of all
ground instances of clauses in R. The operator TP is defined as follows:

page 34

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

TP(I) := TR(I) t TD(I)

where

TD(I) :=
A 7→ Nδj

∣∣∣∣∣∣∣∣∣∣∣∣
default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm] ∈ D,

A = σ(p(t1, . . . , tn)) and

there exists a 1 ≤ j ≤ m such that σ(ϕj) holds.


TR(I) := (

⊔
r∈R {A 7→ zv | condition})

where {A 7→ zv | condition} can beA 7→ zv

∣∣∣∣∣∣∣∣∣
A c,Fc←− F(B1, . . . , Bn) ∈ ground(R),

I(Bi) = zivi � ⊥ for all i,

z = z1 ◦ · · · ◦ zn and v = F̂c(c, F̂(v1, . . . , vn))


or A 7→ zv

∣∣∣∣∣∣ A←− v ∈ ground(R) and

z = H


Note that if for a ground atom A both a program clause with body atoms

from I’s domain and a default value declaration exist, the truth value that
comes from the clause is preferred, since TR(I) � TD(I)6.

As it is usual in the logic programming framework, the semantics of a
program is characterised by the pre-fixpoints of TP.

Theorem 2.2.1. Let P be a well-defined fuzzy logic program and I an interpreta-
tion.

I
 P iff TP(I) v I.

6TR(I) � TD(I) comes from the fact that TR(I) � N1 , TD(I) ≺ �0 and H � � � N.

page 35

2.2. DECLARATIVE SEMANTICS

Proof. “if”: Let TP(I) v I and A′ ∈ HB be an arbitrary ground atom. For
I
 P we need I
 R and I
 D, so we have to check both cases.

Before starting, note that for all ground atom C ∈ HB we have
TP(I)(C) � ⊥ since TP(I)(C) = TR(I)(C) t TD(I)(C)
and for a well-defined fuzzy logic program TD(I)(C) � ⊥. As
TP(I)(C) v I(C), I(C) < TP(I)(C) � ⊥.

I
 R: We need I
 r for every r ∈ R, and r can be of the form

A c,Fc←− F(B1, . . . , Bn) ∈ R or A ←− v ∈ R.

Let A c,Fc←− F(B1, . . . , Bn) ∈ R be a fuzzy clause and σ a valuation
such that A′ = σ(A). The ground clause used to evaluate

TP(I)(A′) will be σ(A c,Fc←− F(B1, . . . , Bn)) ∈ ground(R).
As I(C) � ⊥ for all C ∈HB, I(σ(Bi)) = zivi � ⊥ for all i .
So, for I
 R we need I(A′) < z′v′ , where z′ = z1 ◦ · · · ◦ zn,
v′ = F̂c(c, F̂(v1, . . . , vn)) and z′ ∈ { H, � }.
By definition of TP we have TP(I)(A′) = TR(I)(A′) = z′v′, where
z′ = z1 ◦ · · · ◦ zn, v′ = F̂c(c, F̂(v1, . . . , vn)) and z′ ∈ { H, � }.
From the premise TP(I) v I we get I(A′) < z′v′, so I
 R.

Let A ←− v ∈ R be a fuzzy clause and σ a valuation such that
A′ = σ(A). The ground clause used to evaluate TP(I)(A′) will be
σ(A ←− v) ∈ ground(R).
So, for I
 R we need I(A′) < z′v′ , where z′ = H and v′ = v.
By definition of TP we have TP(I)(A′) = Hv � ⊥.
From the premise TP(I) v I we get I(A′) < Hv.

I
 D: Let default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm] ∈ D,
σ be a valuation, and let A′ := σ(p(X1, . . . , Xn)) be well-typed.
Since P is well-defined, there exists a j such that σ(ϕj) holds and
thus TP(I)(A′) = Nδj. From the premise TP(I) v I , we again
get I(A′) < Nδj.

“only if”: Let I
 P and A′ ∈HB be an arbitrary ground atom. From I
 P
we have that I
 R and I
 D.

from I
 D: for A′ we know that there are a default declaration
default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm] ∈ D, a
valuation σ such that A′ := σ(p(X1, . . . , Xn)) is well-typed and,

page 36

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

since P is well-defined, a j such that σ(ϕj) holds and makes
I(A′) < Nδj.
From definition of TD in TP it is easy to see that TD = Nδj,
but for TP we can only say (for now, we continue below) that
TP(I)(A′) = TR(I)(A′) t TD(I)(A′) < Nδj.
The important fact that is derived from I
 D is that for every A′

we have I(A′) < Nδj < ⊥.

from I
 R: for A′ we know that if there is a rule r ∈ R of the form
A c,Fc←− F(B1, . . . , Bn) ∈ R or A ←− v ∈ R and there exists
a σ such that A′ = σ(A) then

if r is of the form A c,Fc←− F(B1, . . . , Bn) ∈ R : From I
 D
we know that for every σ(Bi) we have I(σ(Bi)) < ⊥, so
I(A′) < z′v′ , where z′ = z1 ◦ · · · ◦ zn, z′ ∈ { H, � }
and v′ = F̂c(c, F̂(v1, . . . , vn)).
From definition of TR it is easy to see that if there is
such a rule, there will be a ground version of that rule

σ(A c,Fc←− F(B1, . . . , Bn)) ∈ ground(R) such that we can assure
that TR(I)(A′) < z′v′.

if r is of the form A ←− v ∈ R : I(A′) < z′v′ , where
z′ = H and v′ = v.
From definition of TR it is easy to see that if there is
such a rule, there will be a ground version of that rule
σ(A ←− v) ∈ ground(R) such that we can assure that
TR(I)(A′) < z′v′.

Note that we have only proved that for d ∈ D a default declaration
TD(I)(A′) < Nδj and that if there is a rule r ∈ R then TR(I)(A′) < z′v′.
This is caused by the fact that in model definition we have to check that
for every rule r ∈ R it holds that I(A′) < z′v′, while in TP definition we
collect each one of the values of each rule and evaluate the maximum
value between them.

So, if there is no rule r ∈ R of the form A c,Fc←− F(B1, . . . , Bn) ∈ R or
A ←− v ∈ R such that for some valuation σ we have A′ = σ(A)
then TP(I)(A′) = TR(I)(A′) t TD(I)(A′) = ⊥ t Nδj = Nδj, and
this results in TP(I)(A′) = Nδj 4 I(A′), so TP(I)(A′) v I(A′).

But if there are k clauses r ∈ R of the form
A c,Fc←− F(B1, . . . , Bn) ∈ R or A ←− v ∈ R such that for some
valuations σ1 . . . σk we have A′ = σ l (A) for 1 ≤ l ≤ k,

page 37

2.2. DECLARATIVE SEMANTICS

then from I
 P we have I(A′) < max l ∈ [1 .. k] (z′ l v′ l), where
z′ l = z1 ◦ · · · ◦ zn, z′ l ∈ { H, � } , v′ l = F̂c(c, F̂(v1, . . . , vn))
and I(Bi) = zivi.

Instead of this procedure of finding the maximum value in model defini-
tion, in TP this is achieved by using the join operator t:

TP(I)(A′) = TR(I)(A′) t TD(I)(A′) =

(
⊔

l = 1...k

z′ l v′ l) t Nδj =

⊔
l = 1...k

z′ l v′ l .

As
⊔

l = 1...k

z′v′ l 4 I(A′), we have TP(I)(A′) v I(A′).

Thus, if I is a model of P, then for every A occurring in the program we
have that TP(I)(A) 4 I(A), which means that I is a pre-fixpoint of TP.

Proposition 2.2.4 (TP is monotonic). Let P be a well-defined fuzzy logic program
and Ii and Ii+1 two interpretations.

if Ii v Ii+1 then TP(Ii) v TP(Ii+1)

Proof. From definition of Ii v Ii+1 we have that Ii(A) 4 Ii+1(A) for
all A ∈ HB, and from definition of TP we have

TP(I) := TR(I)
⊔

TD(I).

Since the operator t is monotonic and the value of TD(I) depends only on the
default declarations in the program (it is shared by both interpretations Ii and
Ii+1) , TD(Ii) = TD(Ii+1). For the value of TR(I) it is rather different, since

TR(I) :=

(⊔
r∈R
{A 7→ zv | condition}

)
where {A 7→ zv | condition} can beA 7→ zv

∣∣∣∣∣∣∣∣∣
A c,Fc←− F(B1, . . . , Bn) ∈ ground(R),

I(Bi) = zivi � ⊥ for all i,

z = z1 ◦ · · · ◦ zn and v = F̂c(c, F̂(v1, . . . , vn))



page 38

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

or A 7→ zv

∣∣∣∣∣∣ A←− v ∈ ground(R) and

z = H


For those clauses in the program with the form A ←− v ∈ R the
mapping A 7→ zv remains untouched, but for clauses with the form

A c,Fc←− F(B1, . . . , Bn) ∈ R the mapping depends on the values Ii(Bj) and
Ii+1(Bj) , j ∈ [1 .. n].

As t is monotone, for those clauses we need to justify that Ii(A) 4 Ii+1(A)
for all A ∈ HB implies that the mappings obtained for Ii, A 7→ (zv)Ii ,
and Ii+1, A 7→ (zv)Ii+1 , fulfill (zv)Ii 4 (zv)Ii+1.

We use for that the knowledge about the truth functions for the connectives
F and FC . We know that both are monotone and non-decreasing, so
from the premise Ii(Bj) 4 Ii+1(Bj) for all Bj ∈ HB we can deduce
(zv)Ii 4 (zv)Ii+1.

Due to the monotonicity of the immediate consequences operator, the
semantics of P is given by its least model which, as shown by the Knaster-
Tarski fixpoint theorem [Kna28; Tar55], is exactly the least fixpoint of TP.7

We now prove that our TP is continuous, so Kleene’s fixpoint theorem
[Kle52] can be used to prove that the least fixed point can be reached in ω steps.

Proposition 2.2.5 (TP is continuous). Let P be a well-defined fuzzy logic program
and I0 v I1 v . . . a countably infinite increasing sequence of interpretations. Then

TP

(
∞⊔

n=0
In

)
=

∞⊔
n=0

TP(In).

Proof. We use the following facts:

1. Since I0 v I1 v . . . and from definition of v we have that
Ii(A) 4 Ii+1(A) for every ground term A ∈ HB. As

⊔
takes by

definition the maximum interpretation,
⊔n

i=0 Ii = In.

2. We have that TP(I0) v TP(I1) v . . . since I0 v I1 v . . . and TP is
monotonic (Proposition 2.2.4). Again by using definitions of v and⊔

we obtain
⊔n

i=0 TP(Ii) = TP(In).

7As usually, the least fixpoint of TP can be obtained by transfinitely iterating TP from
the least interpretation ⊥.

page 39

2.2. DECLARATIVE SEMANTICS

TP

(
∞⊔

n=0
In

)
=1 TP (I∞) =2

∞⊔
n=0

TP(In)

We now recall the definition of ordinal powers of an operator. Let T be
an operator and α be an ordinal number. The ordinal power α of T is
defined as follows:

T↑α :=

{
T(T↑α− 1) if α is a successor ordinal⊔

α′<α T↑α′ if α is a limit ordinal

Theorem 2.2.2. Let P be a well-defined fuzzy logic program. Then the least
fixpoint of TP exists and is equal to TP↑ω.

Proof. The existence of the least fixpoint of TP follows from the facts that
(IP,v) forms a complete lattice, TP is monotone (Proposition 2.2.4), and the
Knaster-Tarski fixpoint theorem [Kna28; Tar55]. Its equality to TP ↑ ω
follows from the facts that (IP,v) forms a complete lattice, TP is continuous
(Proposition 2.2.5), and the Kleene fixpoint theorem [Kle52].

Since the least fixpoint always exists, we can define a semantics based on it.

Definition 2.2.4. Let P be a well-defined fuzzy logic program. Then the least
fixpoint semantics of P is defined as lfp(P) = TP↑ω(⊥). Here, ⊥ denotes the
interpretation mapping everything to ⊥ (thus being the least element of the lattice
(IP,v)).

Theorem 2.2.3. For a well-defined fuzzy logic program P, we have

lm(P) = lfp(P).

Proof.

lm(P) =
l

I
 P

I (by definition)

=
l

TP(I)vI

I (by Lemma 2.2.1)

= TP↑ω(⊥) (by the Kleene fixpoint theorem)
= lfp(P) (by definition)

page 40

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

2.3 Operational Semantics

The operational semantics will be formalised by a transition relation that
operates on (possibly only partially instantiated) computation trees. Here, we
will not need to keep track of default value attributes {N,�,H} explicitly; they
will be encoded into the computations.

Definition 2.3.1. Let Ω be a signature of connectives and W a set of variables
with W ∩V = ∅ .8

A computation node is a pair 〈A, e〉, where A ∈ TBΠ,Σ,V and e is a term over
[0, 1] and the set of variables W with function symbols from Ω. We say that a
computation node is ground if e does not contain variables. A computation node
is called final if e ∈ [0, 1]. A final computation node will be indicated as 〈A, e〉.

We distinguish two different types of computation nodes: C-nodes, that
correspond to applications of program clauses, and D-nodes, that correspond to
applications of default value declarations.

A computation tree is a directed acyclic graph whose nodes are computation
nodes and where any pair of nodes has a unique (undirected) path connecting
them. We call a computation tree ground (final) if all its nodes are ground (final).

For a given computation tree t we define the tree attribute

zt =


H if t contains no D-node
� if t contains both C- and D-nodes
N if t contains only D-nodes

Computation nodes are essentially generalisations of queries that keep track
of connective usage. Computation trees as defined here should not be confused
with the usual notion of SLD-trees. While SLD-trees describe the whole search
space for a given query and thus give rise to different derivations and different
answers, computation trees describe just a state in a single computation. The
computation steps that we perform on computation trees will be modelled by a
relation between computation trees.

Definition 2.3.2 (Transition relation). For a given fuzzy logic program
P = (R, D, T), the transition relation _ is characterised by the transition rules
below. In these rules the notation t[A] means “the tree t that contains the node A
somewhere”. Likewise, t[A/B] is to be read as “the tree t where the node A has
been replaced by the node B”.

8Note that V is the set of variables used when building the term base TBΠ,Σ,V of our
program.

page 41

2.3. OPERATIONAL SEMANTICS

• Clause:

t
[
〈A′, v〉

]
_ t

 〈A′, v〉 /

C〈A, Fc(c, F(v1,. . . , vn))〉

〈B1, v1〉· · · 〈Bn, vn〉

 µ

If there is a (variable disjoint instance of a) program clause

A c,Fc←− F(B1, . . . , Bn) ∈ R and µ = mgu(A′, A).

(Take a non-final leaf node and add child nodes according to a program
clause; apply the most general unifier of the node atom and the clause head
to all the atoms in the tree.)

Note that we immediately finalise a node when applying this rule for a fuzzy
fact.

• Default:

t
[
〈A, x〉

]
_ t

[
〈A, x〉/D〈A, δj〉

]
µ

If A does not match with any program clause head, there is a default value
declaration default(p(X1, . . . , Xn)) = [δ1 if ϕ1, . . . , δm if ϕm] ∈ D, µ is
a substitution such that µ = mgu(p(X1, . . . , Xn), A), p(X1, . . . , Xn)µ
(or Aµ) is a well-typed ground atom, and there exists a 1 ≤ j ≤ m such
that ϕjµ holds. (Apply a default value declaration to a non-final leaf node
thus finalising it.)

• Finalise:

t


C〈A, Fc(c, F(v1, . . . , vn))〉

〈B1, v1〉· · · 〈Bn, vn〉

 _

t


C〈A, Fc(c, F(v1, . . . , vn))〉

〈B1, v1〉· · · 〈Bn, vn〉

/

C〈A, F̂c(c, F̂(v1, . . . , vn))〉

〈B1, v1〉· · · 〈Bn, vn〉



page 42

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

(Take a non-final node whose children are all final and replace its truth
expression by the corresponding truth value.)

Asking the query 〈A, v〉 corresponds to applying the transition rules to the
initial computation tree 〈A, v〉. The computation ends successfully if a final
computation tree is created; the truth value of the instantiated query can then
be read off the root node9. We illustrate this with an example computation.

Example (continued). We start with the tree

〈good-destination(Y), v〉 .

Applying the Clause-transition to the initial tree with the program clause

good-destination(X)
1.0,·←− ·(nice-weather(X), many-sights(X))

yields

C〈good-destination(Y), 1.0 · v1 · v2〉

〈nice-weather(Y), v1〉 〈many-sights(Y), v2〉

Now we apply Clause to the left child with nice-weather(moscow)←− 0.2 :

C〈good-destination(moscow), 1.0 · 0.2 · v2〉

C〈nice-weather(moscow), 0.2〉 〈many-sights(moscow), v2〉

Since there exists no clause whose head matches many-sights(moscow), we
apply the Default-rule for many-sights to the right child.

C〈good-destination(moscow), 1.0 · 0.2 · 0.2〉

C〈nice-weather(moscow), 0.2〉 D〈many-sights(moscow), 0.2〉

In the last step, we finalise the root node.

9Note that infinite computations lead to no answer as in the operational semantics of SLD
resolution.

page 43

2.4. ABOUT MULTI-ADJOINT LOGIC PROGRAMMING

C〈good-destination(moscow), 0.04〉

C〈nice-weather(moscow), 0.2〉 D〈many-sights(moscow), 0.2〉

The calculated truth value for good-destination(moscow) is thus 0.04. �

The actual operational semantics is now given by the truth values that can
be derived in the defined transition system. This “canonical model” can be seen
as a generalisation of the success set of a program.

Definition 2.3.3. Let P be a well-defined fuzzy logic program. The canonical
model of P for A ∈HB is defined as follows:

cm(P) :=

A 7→ ztv

∣∣∣∣∣∣
there exists a computation starting with 〈A, w〉
and ending with a final computation tree t with
root node 〈A, v〉


It can be verified that the canonical model cm(P) is indeed a model of P.

2.4 About multi-adjoint logic programming

Generalised logic programs’ semantics require a different notion of consequence
(implication) which satisfies a generalised modus ponens rule. It is described
as natural in [Voj01] to look for a semantic basis as a common denominator
of the residuated lattices and fairly general conjunctors and their adjoints.
Different implications and several modus ponens-like inference rules are used.
So, the principal point of this extension naturally leads to considering several
adjoint pairs in the residuated lattice, leading what [Voj01] calls multi-adjoint
algebra and [MOAV04] calls multi-adjoint (semi-)lattice. During the last years
there have been many theoretical publications about multi-adjoint framework
semantics [MOAV01c; MOAV02; MOAV04; Voj01].

RFuzzy is able to model multi-adjoint logic; but, as its algebraic structure
seems to be difficult to understand for a not-so-theoretical reader (potential
RFuzzy programmer), we have not used multi-adjoint definitions in Sections 2.2
and 2.3 when describing RFuzzy semantics for the sake of simplicity. In this
section we explain in an intuitive way the relation of RFuzzy with the multi-
adjoint framework.

Multi-adjoint logic is a theoretical framework developed to give support to
the use of a number of different implications in program rules. The underlying

page 44

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

structure used to capture such information is a multi-adjoint algebra, which is
straightforward from the definitions of adjoint pair and multi-adjoint lattice.
The definitions of these three concepts are taken from [MOAV01c].

Definition 2.4.1 (Adjoint Pair, from [MOAV01c]. Firstly introduced in a logical
context by Pavelka [Pav79]). Let <P, �> be a partially ordered set and (←, &)
a pair of binary operations in P such that:

(i) Operation & is increasing in both arguments, i.e. if x1,x2,y ∈ P such that
x1 � x2 then (x1&y) � (x2&y) and (y&x1) � (y&x2);

(ii) Operation ← is increasing in the first argument (the consequent) and
decreasing in the second argument (the antecedent), i.e. if x1, x2, y ∈ P such
that x1 � x2 then (x1 ← y) � (x2 ← y) and (y← x2) � (y← x1);

(iii) For any x, y, z ∈ P, we have that x � (y← z) holds if and only if (x&z) � y
holds.

Then (←, &) is called an adjoint pair in <P, �>.

Definition 2.4.2 (Multi-Adjoint Lattice, from [MOAV01c]). Let
< L, �> be a lattice. A multi-adjoint lattice L is a tuple

(L, �, ←1, &1, . . . , ←n, &n) (2.4.1)

satisfying the following items:

(i) < L,�> is bounded, i.e. it has bottom (⊥) and top (>) elements;

(ii) (←i, &i) is an adjoint pair in < L,�> for i = 1, . . . , n;

(iii) >&iv = v&i> = v for all v ∈ L for i = 1, . . . , n.

Definition 2.4.3 (Multi-Adjoint Ω-Algebra, from [MOAV01c]). Let Ω be a
graded set containing operators ←i and &i for i = 1, . . . , n and possibly some
extra operators, and let L = (L, I) be an Ω-algebra whose carrier set L is a lattice
under �.

We say that L is a multi-adjoint Ω-algebra with respect to the pairs (←i, &i)
for i = 1, . . . , n if

L = (L,�, I(←1), I(&1), . . . , I(←n), I(&n)) (2.4.2)

is a multi-adjoint lattice.

page 45

2.4. ABOUT MULTI-ADJOINT LOGIC PROGRAMMING

There are similar definitions in [MOAV01b; MOAV01c; MOAV02]. They are
used to build the framework of multi-adjoint logic programming in [JMP05;
MM08a], but the relevant fact is the relation between adjoint pairs (←i, &i),
which makes it possible to evaluate in the many-valued modus ponens the truth
value of the head of a rule from the truth value of the body and the weight of
the rule:

(B, z), (B→ A, x)
(A, y)

,

x � (y← z) iff (x&z) � y

So, this can be used to define from satisfaction the immediate consequences
operator, as illustrated below. Note that Î(B) = z, Î(B→ A) = x, Î(A) = y,
so

v � Î(A←i B) iff v &i Î(B) � Î(A) (2.4.3)

Definition 2.4.4 (Satisfaction, from [MOAV01c]). Given an interpretation I ∈
IL, where IL is the set of all interpretations of the formulas defined by the Ω-
algebra F in the Ω-algebra L, a weighted rule < A←i B, v > is satisfied by I iff
v � Î(A←i B).

Definition 2.4.5 (Immediate consequences operator TL
P , from [MOAV01c]).

Let P be a multi-adjoint logic program. The immediate consequences operator TL
P :

IL → IL, mapping interpretations to interpretations, is defined by considering

TL
P (I)(A) = sup { v &̂i Î(B) | A ←v

i B ∈ P } (2.4.4)

We provide an example from FLOPER [MM08b] (Fuzzy LOgic Programming
Environment for Research) to illustrate an execution in which this relation
between the adjoint pairs is used to calculate the truth value of the head of the
rules.

R1 : p(X) ←P q(X,Y) &G r(Y) with 0.8

R2 : q(a,Y) ←P s(Y) with 0.7

R3 : q(b,Y) ←L r(Y) with 0.8

R4 : r(Y) ← with 0.7

R5 : s(b) ← with 0.9

Listing 2.4.1: Example taken from [MM08b]

page 46

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

The labels P, G and L in the program mean Product logic, Gödel intuitionistic
Logic and Łukasiewicz logic, respectively. The goal for the previous program is
← p(X)&Gr(a). Each underlined expression in the execution below is the one
selected in each admissible step (Definition 2.1 in [MM08b])

<p(X)&Gr(a); id>

→AS1R1 <(0.8 &P (q(X1, Y1) &G r(Y1))) &G r(a); σ1>

→AS1R2 <(0.8 &P ((0.7 &P s(Y2)) &G r(Y1))) &G r(a); σ2>

→AS1R2 <(0.8 &P ((0.7 &P 0.9) &G r(b))) &G r(a); σ3>

→AS1R2 <(0.8 &P ((0.7 &P 0.9) &G 0.7)) &G r(a); σ4>

→AS1R2 <(0.8 &P ((0.7 &P 0.9) &G 0.7)) &G 0.7; σ5>

Listing 2.4.2: Execution process, taken from [MM08b]

where

σ1 = {X/X1}, (2.4.5)
σ2 = {X/a, X1/a, Y1/Y2}, (2.4.6)
σ3 = {X/a, X1/a, Y1/b, Y2/b}, (2.4.7)
σ4 = {X/a, X1/a, Y1/b, Y2/b, Y3/b}, (2.4.8)
σ5 = {X/a, X1/a, Y1/b, Y2/b, Y3/b, Y4/a} (2.4.9)

and, as the only variable appearing in the query is X, the only substitution
associated with the result is {X/a}. So, the admissible computed answer
(Definition 2.2 in [MM08b]) is

< (0.8 &P ((0.7 &P 0.9) &G 0.7)) &G 0.7 ; {X/a} >, (2.4.10)

that can be simplified, after evaluating the arithmetic expression, to

< 0.504 ; {X/a} > . (2.4.11)

Being a rule of the form “A ←i B with v”, where A is the head, B the
body, v the weight of the rule and “ i ” is the used logic (e.g. P, G, L), the
interesting point is that to calculate the truth value of the head of a rule we use
the relation between the adjoint pairs previously exposed,

v � Î(A←i B) iff v&i Î(B) � Î(A)

Notice that the elements of the adjoint pair (←i, &i) have different uses in
an evaluation process. While←i is used to obtain the weight of a rule from the

page 47

2.4. ABOUT MULTI-ADJOINT LOGIC PROGRAMMING

truth values of the body and the head of the rule (e.g. for inducing fuzzy rules
weights from data in a data mining process), &i is used to obtain the truth
value of the head of a rule from the truth values of the elements of the body
and the weight of the rule.

This second deductive process is the one that is modelled by RFuzzy. To this
end, we let RFuzzy programmers code different &i while←i is not explicit in
our syntax. In our rule syntax, that is used in definitions 2.2.1 and 2.2.3,

A c,Fc←− F(B1, . . . , Bn) ∈ ground(R)

it is always deduced that v, the resultant truth value for the clause head, is

v = F̂c(c, F̂(v1, . . . , vn))

where instead of “←i ... with c ” we use “
c,FC←− ” and FC is &i if (←i, &i) is

an adjoint pair.
The previous example from FLOPER [MM08b] translated to the RFuzzy

syntax used in the semantics sections is below.

R1 : p(X)
0.8,P←− q(X,Y) &G r(Y)

R2 : q(a,Y)
0.7,P←− s(Y)

R3 : q(b,Y)
0.8,L←− r(Y)

R4 : r(Y) ←− 0.7

R5 : s(b) ←− 0.9

Let us, finally, explain the adequateness of RFuzzy default rules to the multi-
adjoint framework. We are going to provide a clarifying example where we
define a type city and a predicate nice-weather/1 with one argument of type city.

Example 2.
madrid : City

sydney : City

moscow : City

nice-weather : (City)

A program with a default truth value 0.5 for cities whose information about
nice weather is not explicit

page 48

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

default(nice-weather(X)) = 0.5

nice-weather(madrid) ← 0.8

nice-weather(moscow) ← 0.2

is semantically equivalent to the following plain program

nice-weather(madrid) ← 0.8

nice-weather(moscow) ← 0.2

nice-weather(sydney) ← 0.5

�
This works in the general case: default value declarations in RFuzzy

programs are indeed just syntactic sugar and can be compiled away. Hence, also
general RFuzzy programs can be considered to model multi-adjoint semantics.

2.5 Using the Framework. Implementation De-
tails

Obviously, when coding in Prolog it is not possible to write the symbols we
have used in Section 2.1. Here we expose the syntax used to write programs
and some details of the implementation of the framework.

2.5.1 The programs syntax

Types are coded according to the following syntax:

:- set_prop pred/ar => type_pred_1/1 [, type_pred_n/1]∗ . (2.5.1)

where set_prop is a reserved word, pred is the name of the typed predicate,
ar is its arity and type_pred_1, type_pred_n (n ∈ 2, 3, . . . , ar) are predicates
used to define types for each argument of pred. They must have arity 1. This
definition of types constrains the values of the n-th argument of pred to the
values accepted by the predicate type_pred_n. This definition of types ensures
that the values assigned to the arguments of pred are correctly typed.

The example below requires that the arguments of predicates has_lower_price/2
and expensive_car/1 have to be of type car/1. The domain of type car is
enumerated.

page 49

2.5. USING THE FRAMEWORK. IMPLEMENTATION DETAILS

19 20 age
0

9 10

teenager

1

Figure 2.5.1: Teenager truth value continuous representation

← set_prop has_lower_price/2 ⇒ car/1, car/1.

← set_prop expensive_car/1 ⇒ car/1.

car(vw_caddy).

car(alfa_romeo_gt).

car(aston_martin_bulldog).

car(lamborghini_urraco).

The syntax for fuzzy facts is

pred(args) value truth_val. (2.5.2)

where arguments, args, should be ground and the truth value, truth_val, must
be a real number between 0 and 1. The example below defines that the car
alfa_romeo_gt is an expensive_car with a truth value 0.6.

expensive_car(alfa_romeo_gt) value 0.6.

Fuzzy facts are worth for a finite (and relatively small) number of individu-
als. Nevertheless, it is very common to represent fuzzy truth using continuous
functions. Figure 2.5.1 shows an example in which the continuous function
assigns the truth value of being teenager to each age.

Functions used to define the truth value of some group of individuals are
usually continuous and linear over intervals. To define those functions there is
no necessity to write down the value assigned to each element in their domains.
We have to take into account that the domain can be infinite.

RFuzzy provides the syntax for defining functions by stretches. This syntax
is shown in (2.5.3). External brackets represent the Prolog list symbols and
internal brackets represent cardinality in the formula notation. Predicate pred
has arity 1, val1, ..., valN should be ground terms representing numbers of the
domain (they are possible values of the argument of pred) and truth_val1, ...,

page 50

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

truth_valN should be the truth values associated to these numbers. The truth
value of the rest of the elements is obtained by interpolation.

pred :# ([(val1, truth_val1), (val2, truth_val2) [, (valn, truth_valn)]∗]) .
(2.5.3)

The RFuzzy syntax for the predicate teenager/1 (represented in Figure2.5.1) is:

teenager :# ([(9, 0), (10, 1), (19, 1), (20, 0)]) .

Fuzzy clauses or rules have a simple syntax, defined in (2.5.5). There are
two connectives, op2 for combining the truth values of the subgoals of the rule
body and op1 for combining the previous result with the rule’s credibility. The
user can choose for any of them a connective from the list of the available
ones10 or define his/her own connective.

pred(arg1 [, argn]∗) [cred (op1, value1)] : ∼ op2 (2.5.4)
pred1(args_pred_1) [, predm(args_pred_m)] .

The following example uses the operator prod for combining truth values
of the subgoals of the body and min (Gödel logic is used here) to combine the
result with the credibility of the rule (which is 0.8). “cred (op1, value1)” can
only appear 0 or 1 times.

good_player(J) cred (min,0.8) :∼ prod

swift(J), tall(J),

has_experience(J).

Default truth values syntax is defined in (2.5.5) and (2.5.6),

:- default(pred/ar, truth_value) . (2.5.5)
:- default(pred/ar, truth_value) => membership_predicate/ar. (2.5.6)

where pred/ar is in both cases the predicate to which we are defining default
values. As expected, when defining the three cases (explicit, conditional and
default truth value) only one will be given back when doing a query. The
precedence when looking for the truth value goes from most to least concrete.

10Connectives available are: min for minimum, max for maximum, prod for the product, luka
for the Łukasiewicz operator, dprod for the inverse product, dluka for the inverse Łukasiewicz
operator and complement.

page 51

2.5. USING THE FRAMEWORK. IMPLEMENTATION DETAILS

The code from the example below added to the code from the previous
examples assigns to the predicate expensive_car a truth value of 0.5 when the
car is vw_caddy (default truth value), 0.9 when it is lamborghini_urraco or
aston_martin_bulldog (conditional default truth value) and 0.6 when it is
alfa_romeo_gt (explicit truth value).

← default(expensive_car/1, 0.9) ⇒ expensive_make/1.

← default(expensive_car/1, 0.5).

expensive_make(lamborghini_urraco).

expensive_make(aston_martin_bulldog).

2.5.2 Constructive Answers

A very interesting characteristic for a fuzzy tool is being able to provide
constructive answers for queries. The regular (easy) questions ask for the truth
value of an element. For example, how expensive is an Volkswagen Caddy?

?- expensive_car(vw_caddy,V).

V = 0.5 ? ;

no

But the really interesting queries are the ones that ask for values that satisfy
constraints over the truth value. For example, which cars are very expensive?
RFuzzy provides this constructive functionality:

?- expensive_car(X,V), V > 0.8.

V = 0.9, X = aston_martin_bulldog ? ;

V = 0.9, X = lamborghini_urraco ? ;

no

2.5.3 Implementation details

RFuzzy has to deal with two kinds of queries, (1) queries in which the user
asks for the truth value of an individual, and (2) queries in which the user asks

page 52

CHAPTER 2. THE INITIAL VERSION OF THE FUZZY LOGIC FRAMEWORK:
RFUZZY V.1

for an individual with a concrete or a restricted truth value.
For this reason RFuzzy is implemented as a Ciao Prolog [The15b] package:

Ciao Prolog offers the possibility of dealing with a higher order compilation
through the implementation of Ciao packages.

The compilation process of a RFuzzy program has two pre-compilation steps:

(1) the RFuzzy program is translated into CLP(R) constraints by means of the
RFuzzy package and

(2) the program with constraints is translated into ISO Prolog by using the
CLP(R) package.

Figure 2.5.2 shows the sequential process of program transformation.

RFuzzy

package

preprocessing

package

preprocessing

RFuzzy
program program

CLP(R)
program
ISO Prolog

CLP(R)

Figure 2.5.2: RFuzzy architecture.

page 53

Chapter 3

Management of priorities in the
framework: RFuzzy v.2

The number of problems we can represent by using fuzzy logic is huge but
there still some that can not be simulated by just using it, as the one we present
and try to overcome here: the existence of rule priorities that overwrite the
normal ordering of results obtained from fuzzy logic inferences. Just suppose
we want to have default values for some rules. This can not be coded in the
current multi-adjoint framework because all rules have the same priority there.
We try here to overcome this limitation.

In the previous chapter we have presented three symbols, an order between
them (N <a � <a H) and an operator (◦) to combine them for this
purpose. For working with small programs this is perfectly adequate, but when
dealing with larger programs the intentions get lost due to the assignation of
identical priority weights to clauses that depend on a small amount of default
information and clauses that depend on a large amount of default information.

Our goal in this chapter is to differentiate between them by using priorities
so the inference process gets even closer to the human way of reasoning and
solving problems.

There are many proposals on how to introduce priorities in logic program-
ming (LP) [AP95; DST03; JGM07; LV90; MNR97; WZL00] but, as far as we
know, there is no existing work on fuzzy logic programming, although it seems
to be rather necessary its inclusion.

We start by the syntax used in this chapter (3.1) and go next for the
semantics of our proposal (3.2).

page 55

3.1. SYNTAX

3.1 Syntax

We will use a signature Σ of function symbols and a set of variables V to “build”
the term universe TUΣ,V (whose elements are the terms). It is the minimal
set such that each variable is a term and terms are closed under Σ-operations.
In particular, constant symbols are terms. Similarly, we use a signature Π of
predicate symbols to define the term base TBΠ,Σ,V (whose elements are called
atoms). Atoms are predicates whose arguments are elements of TUΣ,V. Atoms
and terms are called ground if they do not contain variables. As usual, the
Herbrand universe HU is the set of all ground terms, and the Herbrand base
HB is the set of all atoms with arguments from the Herbrand universe. A
substitution σ or ξ is (as usual) a mapping from variables from V to terms
from TUΣ,V

1.
To capture different interdependencies between predicates, we will make

use of a signature Ω of many-valued connectives2 formed by conjunctions
&1, &2, ..., &k, disjunctions ∨1,∨2, ...,∨l, implications ←1,←2, ...,←m, aggrega-
tions @1, @2, ..., @n and tuples of real numbers in the interval [0, 1] represented
by (p, v).

While Ω denotes the set of connective symbols, Ω̂ denotes the set of their
respective associated truth functions. Instances of connective symbols and truth
functions are denoted by &i and &̂i for conjunctors, ∨i and ∨̂i for disjunctors,
←i and ←̂i for implicators, @i and @̂i for aggregators and (p, v) and ˆ(p, v) for
the tuples.

Truth functions for the connectives are then defined as &̂ : [0, 1]2 →
[0, 1] monotone3and non-decreasing in both coordinates, ∨̂ : [0, 1]2 → [0, 1]
monotone in both coordinates, ←̂ : [0, 1]2 → [0, 1] non-increasing in the first
and non-decreasing in the second coordinate, @̂ : [0, 1]n → [0, 1] as a function
that verifies @̂(0, . . . , 0) = 0 and @̂(1, . . . , 1) = 1 and (p, v) ∈ Ω(0) are
functions of arity 0 (constants) that coincide with the connectives.

Immediate examples for connectives that come to mind for conjunctors are:

• in Łukasiewicz logic (F̂(x, y) = max(0, x + y− 1)),

• in Gödel logic (F̂(x, y) = min(x, y)),

1Although we prefer using suffix notation ((Term)σ), note that it is equivalent to prefix
notation (σ(Term)).

2In some works the term “aggregation operator” subsumes conjunctions, disjunctions and
aggregations. In this work we distinguish between them and include a new one (implications).

3As usually, a n-ary function F̂ is called monotonic in the i-th argument (i ≤ n), if
x ≤ x′ implies F̂(x1, . . . , xi−1, x, xi+1, . . . , xn) ≤ F̂(x1, . . . , xi−1, x′, xi+1, . . . , xn) and a
function is called monotonic if it is monotonic in all arguments.

page 56

CHAPTER 3. MANAGEMENT OF PRIORITIES IN THE FRAMEWORK: RFUZZY
V.2

• in product logic (F̂(x, y) = x · y),

for disjunctors:

• in Łukasiewicz logic (F̂(x, y) = min(1, x + y)),

• in Gödel logic (F̂(x, y) = max(x, y)),

• in product logic (F̂(x, y) = x · y),

for implicators:

• in Łukasiewicz logic (F̂(x, y) = min(1, 1− x + y)),

• in Gödel logic (F̂(x, y) = y if x > y else 1),

• in product logic (F̂(x, y) = x · y)

and for aggregation operators4: arithmetic mean, weighted sum or a monotone
function learned from data.

3.2 Semantics

The main idea behind our semantics is that if a rule has more priority than the
other ones then the intended truth value for an inference where this rule is
involved is the one it obtains.

For this purpose we attach to the usual truth value v ∈ [0, 1] a real number
p ∈ [0, 1] denoting the (accumulated) priority, resulting in the tuple of real
numbers between 0 and 1 symbolized by (p, v) ∈ Ω(0). As it can be noted from
the symbols used, the first element indicates the priority and second one the
“old” truth value. We represent the tuple by (p, v), although in some cases we
use (pv) to highlight that the variable is only one and it can take the value ⊥.
The union between the set containing all possible combinations of two real
numbers between 0 and 1 and {⊥} is symbolized by KT and we define the
ordering between elements from KT as follows:

Definition 3.2.1 (4 KT).

⊥ 4 KT ⊥
⊥ 4 KT (p, v)

4Note that the above definition of aggregation operators subsumes all kinds of minimum,
maximum or mean operators.

page 57

3.2. SEMANTICS

(p1, v1) 4 KT (p2, v2) ↔ (p1 < p2) or (p1 = p2 and v1 ≤ v2)
(3.2.1)

where < is defined as usually (note that vi and pj are just real numbers between 0
and 1). It is obvious that the pair (KT,4 KT) forms a complete lattice.

The structure used to give semantics to our programs is the multi-adjoint
algebra, presented in [MOAV01a; MOAV01b; MOAV01c; MOAV02; MOAV04;
MO02] and somewhere else. The basic idea is that a multi-adjoint Ω−algebra
can be seen as an extension of a multi-adjoint lattice containing a number of
extra operators provided by the signature Ω, and a multi-adjoint lattice is just
a lattice with more than one pair of operations obeying the adjoint property.
We start from the definition of adjoint property.

Definition 3.2.2 (Adjoint property). Departing from a Poset (a partially ordered
set) < P, ≤ > and introducing a pair of operations (&, ←), we say that the
operations form an adjoint pair if

(i) & is increasing in both arguments,

(ii) ← is increasing in its first argument and decreasing in the second one and

(iii) (the adjoint property)5

for any x, y, z ∈ P we have that z ≤ (x ← y) holds if and only if z & y ≤ x.

A lattice with only one adjoint pair is called somewhere a residuated lattice
(see [DP00; DP01]), and when more that one pair is introduced we get to a
multi-adjoint lattice.

Definition 3.2.3 (Multi-Adjoint Lattice). A multi-adjoint lattice L is a tuple
(L,≤, ←1, &1, ..., ←n, &n) satisfying

(i) < L, ≤ > is a bounded lattice,

(ii) (←i, &i) is an adjoint pair in < L, ≤ >, for i = 1, . . . , n and

(iii) > &i v = v &i > = v for all v ∈ L and i = 1, . . . , n.

Definition 3.2.4 (Multi-Adjoint Algebra). Let (L,≤, ←1, &1, ..., ←n, &n) be a
multi-adjoint lattice. The implication algebra Ω defining the operators (←i, &i)
for i = 1, . . . , n with respect to L is a multi-adjoint algebra.

5Note that the adjoint property offers us a way to evaluate inference rules because
z ≤ (x ← y) iff z & y ≤ x defines the inference rule (B,y) (A←B,z)

(A,x)

page 58

CHAPTER 3. MANAGEMENT OF PRIORITIES IN THE FRAMEWORK: RFUZZY
V.2

It is usual to define a multi-adjoint logic program as a set of weighted rules

A Fc, c←−− F(B1, . . . , Bn) where c ∈ [0, 1] and Fc is a conjunctor &, but the
semantics associated with this syntax is not capable to manage the priority
issues we want to encode. To overcome this restriction we enrich this syntax
by changing c by (p, v) ∈ KT and adding a condition COND(A) that can be
used to encode a truth value to a subset of individuals fulfilling the condition.

Definition 3.2.5 (Multi-Adjoint Logic Program). A multi-adjoint logic program
is a set of clauses of the form

A
(p, v),&i←− @i(B1, . . . , Bn) if COND(A) (3.2.2)

where (p, v) ∈ KT, &i is a conjunctor, @i an aggregator, A and Bi, i ∈ [1..n],
are atoms and COND(A) is a first-order formula (a condition that needs to be
satisfied for p to get the truth value v) formed by the predicates in TBΠ,Σ,V, the
predicates =, ≥, ≤, > and < restricted to terms from TUΣ,V, the symbol t and
the conjunction ∧ and disjunction ∨ in their usual meaning.

Definitions needed to understand the semantics are given in advance, as
usually.

Definition 3.2.6 (Valuation, Interpretation). A valuation or instantiation
σ : V → HU is an assignment of ground terms to variables and uniquely
constitutes a mapping σ̂ : TBΠ,Σ,V → HB that is defined in the obvious way.

A fuzzy Herbrand interpretation (or short, interpretation) of a fuzzy logic
program is a mapping I : HB → KT that assigns an element in our lattice
to ground atoms. The domain of an interpretation is the set of all atoms in the
Herbrand Base, although for readability reasons we omit those atoms to which the
truth value⊥ is assigned (interpretations are total functions). This mapping can be
seen as a set of pairs (A, (p, v)) such that A ∈ HB and (p, v) ∈ KT \ {⊥}.

It is possible to extend uniquely the mapping I defined on HB to the set of
all ground formulas of the language by using the unique homomorphic extension.
This extension is denoted Î and the set of all interpretations of the formulas in a
program P is denoted IP.

Definition 3.2.7 (Interpretation Ordering, Minimum, Maximum, Infimum
and Supremum). For two interpretations I and J , we say I is less
than or equal to J, written I v J, iff I(A) 4 KT J(A) for all
A ∈ HB. Two interpretations I and J are equal, written I = J,
iff I v J and J v I. For all A ∈ HB minimum is defined as
min(I, J)(A) = I(A) if I(A) 4 KT J(A) and min (I, J) (A) = J(A) if
J(A) 4 KT I(A), maximum as max (I, J) (A) = I(A) if I(A) < KT J(A)

page 59

3.2. SEMANTICS

and max (I, J) (A) = J(A) if J(A) < KT I(A), infimum (or
intersection) as (I u J)(A) := min(I(A), J(A)) and supremum (or union) as
(I t J)(A) := max(I(A), J(A)).

Lemma 3.2.1. The pair (IP,v) of the set of all interpretations of a given program
with the interpretation ordering forms a complete lattice.

Proof. This follows readily from the fact that the underlying lattice set KT

forms a complete lattice with the lattice values ordering 4 KT.

Up to now we have defined the underlying lattice we use for choosing the
best interpretation between the available ones, but we still have not defined
which is the expected one. For that purpose we define the model of a program,
but before it we need to define a operator to combine the knowledge grades, ◦.

Definition 3.2.8 (The operator ◦). The aim of taking into account the knowl-
edge quality of every single root involved in the inference process removes the
possibility to use mathematical operators in which the result remains unchanged
when some input does not (i.e. min, max, etc).

Besides, the operator must be formed by a pair of functions (◦& , ◦←) where
the former is used when combining the knowledge under the application of a
conjunction function and the latter when combining it under the implication
function.

This is why we decided to use as operator ◦& the mean, defining

x ◦& y =
x + y

2
and z ◦← y = 2 ∗ z − y .

Remark. From here afterwards, the application of some conjunctor &̄ (resp.
implicator ←̄ , aggregator @̄) to elements (p, v) ∈ KT \ {⊥} refers to the
application of the truth function &̂ (resp. ←̂ , @̂) to the second elements
of the tuples while ◦& (resp. ◦← , ◦&) is the one applied to the first ones.6.
When applied to the element ⊥ all of them (&̄ , ←̄ and @̄) return ⊥.

Definition 3.2.9 (Multi-Adjoint Satisfaction). (Modified from the definition
in [MO02]) Let P be a multi-adjoint logic program, I ∈ IP an interpre-
tation and A ∈ HB a ground atom. A clause Cli ∈ P of the form

{ A
(p, v),&i←− @i(B1, . . . , Bn) if COND(A) } is satisfied by I iff

(p, v) 4 KT in f { Î ((A ←̄&i @i(B1, . . . , Bn)) ξ) |
6Note that this new operators &̄, ←̄ and @̄ still keep the properties exposed in Sec. 3.1, i.e.

the first one is non-decreasing in both coordinates, the second one is non-increasing in the first
and non-decreasing in the second coordinate and the last one verifies F̄(0, . . . , 0) = 0 and
F̄(1, . . . , 1) = 1.

page 60

CHAPTER 3. MANAGEMENT OF PRIORITIES IN THE FRAMEWORK: RFUZZY
V.2

ξ any ground instantiation and COND(A) is satisfied } (3.2.3)

which, by means of the adjoint property, is equivalent to

Î (A) < KT sup {(p, v) &̄&i Î((@i(B1, . . . , Bn)) ξ) |
ξ any ground instantiation and COND(A) is satisfied } (3.2.4)

Definition 3.2.10 (Satisfaction, Model). Let P be a multi-adjoint logic program,
I ∈ IP an interpretation and A ∈ HB a ground atom. We say that a clause
Cli ∈ P is satisfied by I or I is a model of the clause Cli (I
 Cli) iff for all
ground atoms A ∈HB and for all instantiations σ for which Bσ ∈HB (note
that σ can be the empty substitution) it is true that

Î(A) < KT (p, v) &̄i @̄i(Î(B1σ), . . . , Î(Bnσ)) if COND(A) (3.2.5)

Note that eq. 3.2.5 is equivalent to eq. 3.2.4. Finally, we say that I is a model of
the program P and write I
 P iff I
 Cli for all clauses in our multi-adjoint
logic program P.

Every program has a least model, which is usually regarded as the intended
interpretation of the program, since it is the most conservative model. The
following proposition will be an important prerequisite to define the least model
semantics. It states that the infimum (or intersection) of a non-empty set of
models of a program will again be a model. The existence of a least model is
then obvious and easily defined as the intersection of all models.

Proposition 3.2.1 (Model intersection property). Let P be a multi-adjoint logic
program and IP be a non-empty set of interpretations. Then

I
 P for all I ∈ IP implies
l

I∈IP

I
 P

Proof. Suppose that for all I ∈ IP it is true that I
 P. We define J =
d

I∈IP
I.

(step. 1) from the definition of model of a program (Def. 3.2.10) we have
that I
 P iff I
 Cli for all clauses in our program P, and this results in

Î(A) < KT (p, v) &̄i @̄i(Î(B1σ), . . . , Î(Bnσ)) if COND(A)

for all atoms A ∈HB and for all instantiations σ for which Bσ is ground.
(step. 2) from J =

d
I∈IP

I and the definition of
d

as the minimum
between interpretations (Def. 3.2.7) we have that for all I ∈ IP it is true that
for all L ∈ HB (I u J)(L) := min(I(L), J(L)) = J(L).

page 61

3.2. SEMANTICS

(step. 3) define for some ground atom A ∈HB and some ground instantia-
tion σ such that Bσ ∈ HB the variables (kv)I,σ and (kv)J,σ as follows:

Î(A) < KT (kv)I,σ = (p, v) &̄i @̄i(Î(B1σ), . . . , Î(Bnσ)) if COND(A)

(kv)J,σ = (p, v) &̄i @̄i(Ĵ(B1σ), . . . , Ĵ(Bnσ)) if COND(A)

from the definition of &̄i and @̄i as non decreasing functions and
Î(Biσ) < KT Ĵ(Biσ) (step. 2) it is clear that (kv)I,σ < KT (kv)J,σ.

(step. 4) from J =
d

I∈IP
I and the definition of

d
as the minimum

between interpretations (Def. 3.2.7) we have that for some I ∈ IP and some
L ∈ HB it is true that (I u J)(L) := min(I(L), J(L)) = J(L) = I(L).

(step. 5) from (kv)I,σ < KT (kv)J,σ (step. 3) and the fact that Ĵ(A) gets its
value from some Î(A) (step. 4) we can fix for some atom A and any substitution
σ the order (1, 1) < KT Î(A) < KT Ĵ(A) < KT (kv)I,σ < KT (kv)J,σ < KT ⊥,

(step. 6) The order in step. 5 defines Ĵ(A) < KT (kv)J,σ, so

Ĵ(A) < KT (kv)J,σ = (p, v) &̄i @̄i(Ĵ(B1σ), . . . , Ĵ(Bnσ)) if COND(A)

which proves Prop. 3.2.1.

Definition 3.2.11. Let P be a well-defined fuzzy logic program. The least model
of P is defined as lm(P) :=

l

I
 P

I.

Definition 3.2.12 (TP Operator). Let P be a multi-adjoint logic program, L ∈
HB an atom and I ∈ IP an interpretation. The immediate consequences operator
TP : IP → IP is defined as follows:

TP(I)(A)
.
= sup { (p, v) &̄i @̄i(Î(B1σ), . . . , Î(Bnσ)) if COND(A) |

{ A
(p, v),&i←− @i(B1, . . . , Bn) if COND(A) } ∈ P }(3.2.6)

As it is usual in the logic programming framework, the semantics of a program
P is characterized by the post-fixpoints of TP.

Proposition 3.2.2. Let P be a multi-adjoint logic program and I ∈ IP an
interpretation.

I
 P ⇔ TP(I) v I. (3.2.7)

Proof. “if”: Let TP(I) v I and L be some arbitrary ground atom. Define for any
ground instantiation σ the variable (kv)I,σ as follows:

(kv)I,σ =̇ (p, v) &̄i @̄i(Î(B1σ), . . . , Î(Bnσ)) if COND(A) |

page 62

CHAPTER 3. MANAGEMENT OF PRIORITIES IN THE FRAMEWORK: RFUZZY
V.2

{ A
(p, v),&i←− @i(B1, . . . , Bn) if COND(A) } ∈ P (3.2.8)

so we can say that for any ground instantiation σ

Î(A) < KT (kv)I,σ (3.2.9)
TP(I)(A)

.
== sup { (kv)I,σ } (3.2.10)

and from this and the definition of the symbols sup and < KT we can fix the
order Î(A) < KT TP(I)(A), proving that I
 P.

“only if”: Let I
 P and L be some arbitrary ground atom. We define for
any ground instantiation σ the variable (kv)I,σ as in Eq. 3.2.8. Since I
 P, for
any ground instantiation σ Eq. 3.2.9 has to be true. If we define our TP operator
from the variable (kv)I,σ, as in Eq. 3.2.10, we know from the definition of the
symbols sup and < KT that Î(A) < KT TP(I)(A), so TP(I) v I.

Proposition 3.2.3 (TP is monotonic). Let P be a multi-adjoint logic program and
Ii ∈ IP and Ii+1 ∈ IP two interpretations. i f Ii v Ii+1 ⇒ TP(Ii) v TP(Ii+1).

Proof. Suppose that Ii v Ii+1. By definition ofv this implies that for all atoms L
Îi(L) 4 KT Îi+1(L). In the definition of TP operator (Def. 3.2.12) TP(I)(L) is
related to I(L) by means of the operations sup, &i and @i. Since all of them are
non-decreasing and monotone, we can assure that TP(Ii)(L) 4 KT TP(Ii+1)(L)
and conclude TP(Ii) v TP(Ii+1)

Proposition 3.2.4 (TP is continuous). Let P be a multi-adjoint logic program
and I0 v I1 v . . . a countable infinite increasing sequence of interpretations.
Then TP (

⊔∞
n=0 In) =

⊔∞
n=0 TP(In).

Proof. We use the following facts:
(fact. 1) Since I0 v I1 v . . . and from definition of v we have that

Ii(A) 4 KT Ii+1(A) for every ground term A ∈ HB. As
⊔

takes by
definition the maximum interpretation,

⊔n
i=0 Ii = In.

(fact. 2) We have that TP(I0) v TP(I1) v . . . since I0 v I1 v . . . and TP
is monotonic (Prop. 3.2.3). Again by using definitions of v and

⊔
we

obtain
⊔n

i=0 TP(Ii) = TP(In).

TP

(
∞⊔

n=0
In

)
f act. 1
= TP (I∞)

f act. 2
=

∞⊔
n=0

TP(In)

Theorem 3.2.2. Let P be a multi-adjoint logic program. Then the least fixpoint
of TP exists and is equal to TP↑ω.

page 63

3.2. SEMANTICS

Proof. The existence of the least fixpoint of TP follows from the facts that
(IP, v) forms a complete lattice, TP is monotone (Proposition 3.2.3), and
the Knaster-Tarski fixpoint theorem [Kna28; Tar55]. Its equality to TP↑ω
follows from the facts that (IP,v) forms a complete lattice, TP is continuous
(Proposition 3.2.4), and the Kleene fixpoint theorem [Kle52].

Since the least fixpoint always exists, we can define a semantics based on it.

Definition 3.2.13. Let P be a multi-adjoint logic program. Then the least
fixpoint semantics of P is defined as lfp(P) = TP↑ω(⊥). Here, ⊥ denotes the
interpretation mapping everything to ⊥ (thus being the least element of the lattice
(IP,v)).

Theorem 3.2.3. For a multi-adjoint logic program P, we have

lm(P) = lfp(P). (3.2.11)

Proof.

lm(P)
1
=

l

I
 P

I 2
=

l

TP(I)vI

I 3
= TP↑ω(⊥) 4

= lfp(P)

where (1) is by definition of least model of a program, (2) is by Prop. 3.2.2,
(3) is by the Kleene fixpoint theorem [Kle52] and (4) is by definition of least
fixpoint semantics.

page 64

Chapter 4

Extending the framework with
similarity and negation: RFuzzy v.3

In RFuzzy [MHPCS11; PCMH11] the authors define a particular case of the
multi-adjoint semantics [MOAV01a; MOAV01b; MOAV01c; MOAV02; MOAV04;
MO02] in which the variable v is substituted by a tuple (p, v) for taking into
account the rule’s priority value p in the computations. In addition to this
they slightly modify the rules’ syntax and semantics to include the possibility
to decide if a rule is evaluated or not (at evaluation time) from the values
introduced in its arguments. In this work we depart from the improvements
achieved in their work, fix a small error they have in keeping the multi-adjoint
semantics1 and introduce some interesting novelties. We have introduced the
use of modifiers, even the negation modifier, similarity between attributes,
similarity between fuzzy predicates, syntax for the inclusion of new modifiers
and connectives, connection to non-fuzzy databases and links between the non-
fuzzy characteristics in the databases and fuzzy predicates.

4.1 Syntax

We will use a signature Σ of function symbols and a set of variables V to “build”
the term universe TUΣ,V (whose elements are the terms). It is the minimal
set such that each variable is a term and terms are closed under Σ-operations.
In particular, constant symbols are terms. Similarly, we use a signature Π of
predicate symbols to define the term base TBΠ,Σ,V (whose elements are called
atoms). Atoms are predicates whose arguments are elements of TUΣ,V. Atoms
and terms are called ground if they do not contain variables. As usual, the

1The operator ◦← defined in Def. 3.2.8 can obtain results not in the set [0, 1], which is
not allowed in the multi-adjoint semantics.

page 65

4.1. SYNTAX

Herbrand universe HU is the set of all ground terms, and the Herbrand base
HB is the set of all atoms with arguments from the Herbrand universe. A
substitution σ or ξ is (as usual) a mapping from variables from V to terms
from TUΣ,V and can be represented in suffix ((Term)σ) or in prefix notation
(σ(Term)).

To capture different interdependencies between predicates, we will make
use of a signature Ω of many-valued connectives formed by conjunctions
&1, &2, ..., &k, disjunctions ∨1,∨2, ...,∨l, implications ←1,←2, ...,←m, aggrega-
tions @1, @2, ..., @n, modifiers 31,32, ...,3o, negation operators ¬1,¬2, ...,¬p,
real numbers in the interval [0, 1] represented by v when we talk about the
truth value or credibility of a rule and tuples of real numbers in the interval
[0, 1] represented by (p, v) when we talk about the truth value or credibility of
a rule with priority.

While Ω denotes the set of connective symbols, Ω̂ denotes the set of their
respective associated truth functions. Instances of connective symbols and truth
functions are denoted by &i and &̂i for conjunctors, ∨i and ∨̂i for disjunctors,
←i and ←̂i for implicators, @i and @̂i for aggregators, 3i and 3̂i for modifiers,
¬i and ¬̂i for negation operators, v and v̂ for the truth value or the credibility
and (p, v) and ˆ(p, v) for the tuples of truth values or credibility values and
priority values.

Truth functions for the connectives are then defined as &̂ : [0, 1]2 →
[0, 1] monotone2 and non-decreasing in both coordinates, ∨̂ : [0, 1]2 → [0, 1]
monotone in both coordinates, ←̂ : [0, 1]2 → [0, 1] non-increasing in the first
and non-decreasing in the second coordinate, @̂ : [0, 1]n → [0, 1] as a function
that verifies @̂(0, . . . , 0) = 0 and @̂(1, . . . , 1) = 1, 3̂ : [0, 1] → [0, 1]
as a function without special restrictions, ¬̂ : [0, 1] → [0, 1] non-increasing
and satisfying ¬̂(0) = 1 and ¬̂(1) = 0 and v ∈ Ω(0) and (p, v) ∈ Ω(0)

are functions of arity 0 (constants) that coincide with the symbols used to
represent them. More properties and a more specific and detailed classification
of connectives (based on their properties) can be found in the work of De Cock
and Kerre [CK04].

Immediate examples for connectives that come to mind for conjunctors,
disjunctors and implicators are shown in Table. 4.1.1, where Ł stands for
Łukasiewicz logic, Gö for Gödel logic and prod for product logic. For ag-
gregation operators3 the usual ones are arithmetic mean, weighted sum or
a monotone function learned from data, for modifiers the “very” function,

2As usually, a n-ary function F̂ is called monotonic in the i-th argument (i ≤ n), if
x ≤ x′ implies F̂(x1, . . . , xi−1, x, xi+1, . . . , xn) ≤ F̂(x1, . . . , xi−1, x′, xi+1, . . . , xn) and a
function is called monotonic if it is monotonic in all arguments.

3Note that the above definition of aggregation operators subsumes all kinds of minimum,
maximum or mean operators.

page 66

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

ˆvery(x) = x2, and for negation the function ¬̂(x) = 1− x.

Table 4.1.1: Examples of conjunctors, disjunctors and implicators

conjunctor disjunctor implicator

synt. A &i B A ∨i B A→ B

Â = x ; B̂ = y

Ł max(0, x + y− 1) min(1, x + y) min(1, 1− x + y)

Gö min(x, y) max(x, y) y if x > y else 1

prod x · y x · y x · y

4.2 Syntactic constructions for writing programs

In this section we explain all the syntactic structures available for writing
programs. Since an exposition of syntactic structures turns out to be a little bit
difficult to read we do it from a practical point of view. FleSe is a web interface
for RFuzzy. It offers the final user a human-oriented environment for querying
RFuzzy and shows its answers using a more human-oriented representation
too. We take examples from it to facilitate the understanding of the syntactic
constructions presented here.

Once the user has chosen a program (or configuration file) FleSe asks him
what he is looking for (Fig. 4.2.1). The things we can look for depend on the
virtual databases’ tables defined in the program file loaded. Before showing
how to define them we show how to relate them to one or more database tables.

Figure 4.2.1: Dialog to select what you are looking for.

The database tables storing the information of what we call a virtual
database table can be more than one, which is why we decided to allow the
programmer to use the Prolog facilities for mixing all the information into a

page 67

4.2. SYNTACTIC CONSTRUCTIONS FOR WRITING PROGRAMS

Prolog predicate. This Prolog predicate is what we use to define the virtual
database table. The syntax used to define where is the database table (host
name or ip and port), the user name and password and the protocol for
connecting to it (SQL) is shown in Eq. 4.2.1, while the one for defining the
table structure (the columns’ names) and how we link them to the predicate
arguments is in Eq. 4.2.2. Suppose that we have two tables for storing the
information of a restaurant, one for the “food type” (restaurant_ f ood_type)
and another for the “distance to the city center” (restaurant_dist_to_tcc). We
can do the operations in Eqs. 4.2.3, 4.2.4, 4.2.5 and 4.2.6 to obtain all the
information about a restaurant. If instead of that we have all the information
of a restaurant in just one table we can make use of the code in Eq. 4.2.7. The
removal of columns (in case we do not need the information stored there)
can be done in a similar way to the union of columns from different tables
(Eq. 4.2.6), as it is shown in Eq. 4.2.8.

sql_persistent_location(database_id,

db(′SQL′, user, pass, ′host′ : port)). (4.2.1)

: −sql_persistent(
predicate_name(Prolog type f or each column),
database_table_name(columns′ names),
database_id). (4.2.2)

sql_persistent_location(myDatabase,

db(′SQL′, ′me′, ′myPass′, ′localhost′ : 1521)). (4.2.3)

: −sql_persistent(
rest_ f ood_type(integer, string),
restaurant_ f ood_type(id, f ood_type),
myDatabase). (4.2.4)

: −sql_persistent(
rest_dist_to_tcc(integer, integer),
restaurant_dist_to_tcc(id, dist_to_tcc),
myDatabase). (4.2.5)

page 68

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

restaurant(Id, Food_type, Dist_to_tcc) : −
rest_ f ood_type(Id, Food_type),
rest_dist_to_tcc(Id, Dist_to_tcc). (4.2.6)

: −sql_persistent(
restaurant(integer, string, integer),
restaurant(id, f ood_type, dist_to_tcc),
myDatabase). (4.2.7)

restaurant(Id, Food_type, Dist_to_tcc) : −
rest_ f ood_type(Id, Food_type,

Dist_to_tcc, Avr_price). (4.2.8)

Once we have defined a predicate for accessing all the information we
use the syntax in Eq. 4.2.9 to define the virtual database table (vdbt). In
eq. 4.2.9 pT is the name of the vdbt (the individual or subject of our searches,
which corresponds to the name of the predicate defined for accessing the
database), pA is the arity of the predicate used to define the vdbt (and the
number of columns the vdbt has), pN is the name assigned to a column
of the vdbt pT and pT′ is a basic type, one of {boolean_type, enum_type,
integer_type, f loat_type, string_type}. We provide an example in Eq. 4.2.10
to clarify, in which the restaurant vdbt has seven columns (or the predicate has
seven arguments), the first for the name of the restaurant, the second for the
restaurant type, the third for the food type served in the restaurant, the fourth
for the number of years since its opening, the fifth for the distance to the city
center from that restaurant, the sixth for the restaurant’s price average and
the last one for the price of the restaurant’s menu. Please note that none of
the previous definitions of predicates for accessing the database can be used in
conjunction with the definition of vdbt in Eq. 4.2.10. We provide a valid one in
Eqs. 4.2.11 and 4.2.12.

page 69

4.2. SYNTACTIC CONSTRUCTIONS FOR WRITING PROGRAMS

de f ine_database(pT/pA, [(pN, pT′)]). (4.2.9)

de f ine_database(restaurant/7, [
(name, string_type),
(restaurant_type, enum_type),
(f ood_type, enum_type),
(years_since_opening, integer_type),
(distance_to_the_city_center, integer_type),
(price_average, integer_type),
(menu_price, integer_type)]). (4.2.10)

: −sql_persistent(
restaurantAux(integer, string, string, string,

integer, integer integer, integer),
restaurant(restaurant_id, name,

restaurant_type, f ood_type,
years_since_opening,
distance_to_the_city_center,
price_average, menu_price),

myDatabase). (4.2.11)

restaurant(Name, Restaurant_type,
Food_type, Years_since_opening,
Distance_to_the_city_center,
Price_average, Menu_price) :−

restaurant(Restaurant_id,
Name, Restaurant_type,
Food_type, Years_since_opening,
Distance_to_the_city_center,
Price_average, Menu_price). (4.2.12)

As told before, this syntactical construction provides a value for the combo
of things that we can look for (the values given to pT, “restaurant” this time,
are the values shown in this combo), but this is not its only function. When

page 70

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

we choose what we are looking for FleSe shows us a combo of characteristics
of the object that we can use to filter our search, and a plus sign to its right
(Fig. 4.2.2). The plus sign serves to add more conditions. We focus on it later.
The combo (Fig. 4.2.3) allows us to chose a characteristic of the thing we are
looking for and, depending if we chose one defined as fuzzy or not, FleSe shows
us the possibility to use negation and/or a modifier for it (Fig. 4.2.4) or an
operator to compare the non-fuzzy value stored in the database for the thing
and the non-fuzzy value we want to compare to (Figs. 4.2.4 and 4.2.5).

Figure 4.2.2: Dialog to filter our search

Figure 4.2.3: Available characteristics for the thing we are looking for.

Figure 4.2.4: Available negation and modifier operators for the fuzzy
characteristic chosen.

The characteristics shown in Fig. 4.2.3 are fuzzy and non-fuzzy characteris-
tics of the thing we are looking for (a restaurant this time). The non-fuzzy ones

page 71

4.2. SYNTACTIC CONSTRUCTIONS FOR WRITING PROGRAMS

Figure 4.2.5: Available comparison operators and input field for the value we
want to use in the comparison, for the non-fuzzy characteristic chosen.

Figure 4.2.6: Available comparison operators and values for the non-fuzzy
characteristic chosen, of type “enum_type”.

are just the virtual database table columns (See Eq. 4.2.10) because in our work
we have not focused into allowing the definition of non-fuzzy characteristics
from other characteristics. When the user chooses one we use the “types”
assigned to each column (boolean_type, enum_type, integer_type, f loat_type
or string_type) to determine the type of the comparison operator and if we can
offer a list of values for the comparison (Fig. 4.2.6). We present in Table. 4.2.1
the comparison operators defined for each type. The list of values shown in
Fig. 4.2.6 is only available when the type of the column is enum_type and
depends on the existing values in the database.

The fuzzy characteristics in Fig. 4.2.3, in contrast with the non-fuzzy ones,
can be defined in the configuration file and we can do it using fuzzy and non-
fuzzy characteristics. Before entering in how this is done we explain how the
non-fuzzy characteristics are available for defining fuzzy characteristics. From
a sentence of the form in Eq. 4.2.9 RFuzzy creates a predicate for each column.
Each one of this predicates has as first argument the thing and as second

page 72

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

Table 4.2.1: Comparison operators available by the things characteristics’ type

type operator meaning of operator

boolean_type = “is equal to”

= / = “is different from”

enum_type = “is equal to”

= / = “is different from”

=∼= “is similar to”

interger_type = “is equal to”

f loat_type = / = “is different from”

> “is bigger than”

< “is lower than”

>= “is bigger than or equal to”

=< “is lower than or equal to”

string_type = “is equal to”

= / = “is different from”

argument the value for the characteristic, so it serves to obtain the value for a
specific thing, to obtain all the things having some value for the characteristic or
to obtain all the things and their respective value for the characteristic4. Taking
the virtual database table definition example in Eq. 4.2.10, RFuzzy provides us
with the predicates in Eq. 4.2.13.

We can use five syntactic constructions to define fuzzy characteristics. Fuzzy
characteristics are, in principle, characteristics whose satisfiability depends on
one or more non-fuzzy characteristics for which we know their non-fuzzy value
(because it is in some column in the database), but not always. We can define
their satisfiability from the satisfiability of other fuzzy characteristic and we
can even define a fixed value for them in the configuration file. We start by the
constructions or rules, in our humble opinion, simpler and explain one by one
what they serve for.

4This predicates’ behaviour is the usual in Prolog and we have kept it in RFuzzy. The facility
that provides it is called backtracking.

page 73

4.2. SYNTACTIC CONSTRUCTIONS FOR WRITING PROGRAMS

name(R, Value) :− ...
restaurant_type(R, Value) :− ...
f ood_type(R, Value) :− ...
years_since_opening(R, Value) :− ...
distance_to_the_city_center(R, Value) :− ...
price_average(R, Value) :− ...
menu_price(R, Value) :− ... (4.2.13)

The first construction we can use to define fuzzy characteristics (Eq. 4.2.14)
serves to define the rare situation in which for all the individuals in the virtual
database table we have the same result for the fuzzy characteristic. The interest
in having such a construction comes from the possibility to limit the individuals
for which it returns the fixed value, by using the tail construction in Eq. 4.2.15
as tail of Eq. 4.2.14. Besides, RFuzzy allows us to use too the tail constructions
in Eqs. 4.2.16 and 4.2.17, aimed respectively at assigning some credibility to the
rule and limiting its use to some user name (this is useful for personalizing the
rule). We explain the three tail constructions (Eqs. 4.2.15, 4.2.16 and 4.2.17)
with more detail below. In the syntactic construction in Eq. 4.2.14 pT is the
name of the vdbt (as in Eq. 4.2.9), TV is the truth value (a float number
between 0 and 1) and f PredName is the name of the fuzzy characteristic we
are defining. In Eq. 4.2.18 we present an example in which we say that all the
restaurants are cheap with a truth value of 0.5.

f PredName(pT) :∼ value(TV) (4.2.14)
i f (pN(pT) comp value) (4.2.15)
with_credibility(credOp, credVal) (4.2.16)

only_ f or_user ′UserName′ (4.2.17)

cheap(restaurant) :∼ value(0.5) (4.2.18)

The tail constructions in Eqs. 4.2.15, 4.2.16 and 4.2.17 serve as tails for
the constructions in Eqs. 4.2.14, 4.2.22, 4.2.24, 4.2.27, 4.2.28, 4.2.30, 4.2.32
and 4.2.34. As told before, they serve, respectively, to slightly modify the
behaviour of the “main” rule (or construction). Eq. 4.2.15 serves to limit the
individuals in the virtual database table for which it is used, Eq. 4.2.16 to assign
some credibility to it and 4.2.17 to limit its use to some user name. We explain
them in detail in the following paragraphs.

page 74

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

The tail construction in Eq. 4.2.15 (not usable when the “main” con-
struction is Eq. 4.2.34) serves to limit the individuals for which we
wanna use the fuzzy clause or rule (limits its application to subsets
of the set of individuals in the vdbt). In Eq. 4.2.15 pN and pT are
the name of a column of a virtual database table and the vdbt name
(as in Eq. 4.2.9), comp is a comparison operator and can take the val-
ues “is_equal_to”, “is_di f f erent_ f rom”, “is_bigger_than”, “is_lower_than”,
“is_bigger_than_or_equal_to” and "is_lower_than_or_equal_to” and value can
be of type integer_type, enum_type or string_type. The only restrictions are
that value must be of the type assigned to the column pN of the vdbt pT
and that if they are of type enum_type or string_type the only comparison
operators available (the only values RFuzzy allows for comp) are “is_equal_to”
and “is_di f f erent_ f rom”. We show an example in Eq. 4.2.19 in which we say
that the restaurant Zalacain is cheap with a truth value of 0.1.

cheap(restaurant) :∼ value(0.1)
i f (name(restaurant) is_equal_to zalacain). (4.2.19)

The tail construction in Eq. 4.2.16 serves to define the credibility of a rule,
together with the operator needed to combine it with the truth value resulting
from evaluating the rule’s body. In its syntactic definition in Eq. 4.2.16 credVal
is the credibility, a number of float type, and credOp is the credibility operator.
The credibility operator is a conjunctor, a mathematical function that must be
monotone and non-decreasing in their coordinates. We are allowed to use any
of the examples of conjunctors in Subsec. 4.1 (“prod” for the product conjunctor,
“luka” for the Łukasiewicz conjunctor and “min” for the Gödel conjunctor)
or we can define our own conjunctors, by using the syntactic construction
in Eq. 4.2.37. We show an example in Eq. 4.2.20 in which we say that the
restaurant Don Jamon is cheap with a truth value of 0.3 but this rule has a
credibility of 0.8 and the operator that must be used to combine the credibility
with the truth value is the minimum (called too Gödel conjunctor).

cheap(restaurant) :∼ value(0.3)
i f (name(restaurant) is_equal_to don_jamon)
with_credibility(min, 0.8). (4.2.20)

The tail construction in Eq. 4.2.17 is aimed at defining personalized rules,
rules that only apply when the user logged in and the user in the rule are the
same one. In the construction Username is the name of the user, a string. We
show an example in Eq. 4.2.21 in which we say that Lara considers that the

page 75

4.2. SYNTACTIC CONSTRUCTIONS FOR WRITING PROGRAMS

restaurant Zalacain is not close to the center. So, if it is she who poses a query
to the system asking for restaurants close to the city center, she will obtain that
the Zalacain restaurant is not close (or close with a value zero).

close_to_the_city_center(restaurant) :∼ value(0)
i f (name(restaurant) is_equal_to zalacain)
only_ f or_user ′Lara′ (4.2.21)

The second construction we can use to define fuzzy characteristics
(Eq. 4.2.22) is usually called fuzzification function and serves to define the
link between a non-fuzzy characteristic for which we have numerical values
in the database and the fuzzy characteristic we are defining. This relation is
what RFuzzy uses to determine how much satisfied is a fuzzy characteristic
for some individual stored in our database, from the non-fuzzy and numerical
value that we have in the database for the non-fuzzy characteristic of the
individual. In Eq. 4.2.22 f PredName is the name of the fuzzy characteristic
we are defining (and the name of the fuzzification), pT is the name of the vdbt,
pN is the name of the non-fuzzy characteristic (or the name of the column
in the vdbt) and [(valIn, valOut)] is a list of pairs of values such that valIn
belongs to the set of values that the non-fuzzy characteristic can take (the
domain of the fuzzification function) and valOut to the set of values that
the fuzzy characteristic can take (the fuzzification function image, always a
subset of [0, 1])5. An example in which we compute how cheap is a restaurant
from its average price is presented in Eq. 4.2.23. The graphical representation
corresponding to this example is in Fig. 4.2.7.

f PredName(pT) :∼ f unction(pN(pT),
[(valIn, valOut)]). (4.2.22)

cheap(restaurant) :∼ f unction(
price_average(restaurant),
[(0, 1), (10, 1), (20, 0.9), (50, 0), (200, 0)]). (4.2.23)

When defining the satisfiability of a fuzzy characteristic using a fuzzification
function we can get an unexpected behaviour if the database contains a null

5[(valIn, valOut)] is basically a piecewise function definition, where each two contiguous
points represent a piece.

page 76

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

0

1

cheap

10 100 euros

Figure 4.2.7: Cheap function (for restaurant).

value in the field that it uses. This malfunctioning of the system consists in
the exclusion of the individual from the list of results, because RFuzzy cannot
compute results for it. To avoid this behaviour RFuzzy allows us to define
the satisfaction of the fuzzy concepts in this cases, by using the construction
for entering default truth values, truth values that are used only when no
better result can be computed. The idea of allowing the programmer to encode
default truth values has been taken from the works of Muñoz-Hernández and
Vaucheret [MHV06; MHV07]. The syntax to define default truth values is shown
in Eq. 4.2.24, where f PredName is the name of the fuzzy characteristic for
which we are defining the default truth value, pT the name of the vdbt and
TV the truth value we want to use in this cases. We provide two examples
in Eqs. 4.2.25 and 4.2.26 in which we say that, in absence of information,
we consider that a restaurant will not be close to the city center (this is what
the zero value means) and that, in absence of information, a restaurant is
considered to be medium cheap6.

f PredName(pT) :∼ de f aults_to(TV) (4.2.24)

close_to_the_city_center(restaurant)
:∼ de f aults_to(0). (4.2.25)

cheap(restaurant) :∼ de f aults_to(0.5). (4.2.26)

There is another cause of malfunctioning of a Prolog system (remember that
RFuzzy is developed in Prolog), which is the existence of two rules such that the
satisfiability of each one of them depends on the satisfiability of the other one
(this is informally called a loop). Although some authors, as Loyer and Stracia
in [LS03], study this problem and propose solutions that we could have used,
we decided to consider this kind of programs erroneous. Our humble opinion

6We include two examples here so if one builds a program by taking all the examples in
the contribution the rule in Eq. 4.2.29 works for all the restaurants in our database.

page 77

4.2. SYNTACTIC CONSTRUCTIONS FOR WRITING PROGRAMS

is that they are more part of philosophical studies than of practical applications.
We simply highlight that if the configuration file contains a program with
loops RFuzzy will loop until its consumption of memory reaches the amount
of memory available in the system. At that moment the program will just exit
showing an error to the user.

The third construction we can use to define fuzzy characteristics is called
fuzzy rule. A fuzzy rule allows us to define the satisfaction of a fuzzy character-
istic from the satisfaction of other fuzzy characteristic. We have two syntactical
forms for defining fuzzy rules, the first one used when the satisfiability of the
fuzzy characteristic we are defining depends on only one fuzzy characteristic,
shown in Eq. 4.2.27, and the second one when it depends on more than
one, shown in Eq. 4.2.28. In Eq. 4.2.27 f PredName2 is a fuzzy characteristic
previously defined, f PredName is the name of the fuzzy characteristic we
are defining and pT is the name of the vdbt, while in Eq. 4.2.28 aggr is the
aggregator used to combine the truth values of the fuzzy characteristics between
parenthesis, f PredName2 and f PredName3 are fuzzy characteristics previously
defined, f PredName is the name of the fuzzy characteristic we are defining
and pT is again the name of the vdbt. We show an example in Eq. 4.2.29 in
which we say that a restaurant is a tempting restaurant depending on the worst
value it has between being close to the center and being cheap, which means
that a restaurant must be close to the center and cheap at the same time to
consider it a tempting restaurant.

f PredName(pT) :∼ rule(f PredName2(pT)) (4.2.27)

f PredName(pT) :∼ rule(aggr, (f PredName2(pT),
f PredName3(pT),
...)) (4.2.28)

tempting_restaurant(restaurant) :∼ rule(min,
(close_to_the_city_center(restaurant),

cheap(restaurant))) (4.2.29)

The fourth construction we can use to define fuzzy characteristics is for
defining a fuzzy characteristic as a synonym of another one already defined.
We present its form in Eq. 4.2.30, where f PredName is the name of the fuzzy
characteristic we are defining, f PredName2 the fuzzy characteristic from which
we are defining it and pT the name of the vdbt. The value of f PredName2 must
be different from the value of f PredName. We show an example in Eq. 4.2.31

page 78

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

in which we define an unexpensive restaurant as (almost) the synonym of a
cheap one (something being unexpensive might not always be cheap).

f PredName(pT) :∼
synonym_o f (f PredName2(pT)) (4.2.30)

unexpensive(restaurant) :∼
synonym_o f (cheap(restaurant))
with_credibility(prod, 0.9). (4.2.31)

The fifth construction we can use to define fuzzy characteristics is for
defining a fuzzy characteristic as an antonym of another already defined. We
present its form in Eq. 4.2.32, where f PredName is the name of the fuzzy
characteristic we are defining, f PredName2 the fuzzy characteristic from which
we are defining it, and pT the name of the vdbt. The value of f PredName2 must
be different from the value of f PredName. We show an example in Eq. 4.2.33
in which we define an expensive restaurant as the antonym of a cheap one.

f PredName(pT) :∼
antonym_o f (f PredName2(pT)). (4.2.32)

expensive(restaurant) :
antonym_o f (cheap(restaurant)). (4.2.33)

In addition to the five constructions presented for defining fuzzy charac-
teristics the framework offers us to enrich the knowledge by defining new
aggregation operators, new modifiers, new negation operators and relating the
values in the database that we see as synonyms by defining similarity between
attributes. We introduce now each one of the constructions that RFuzzy offers
us for each one of this facilities.

The similarity between attributes allows us to create a link between values in
the database, and gives sense to the allowance of the operator “=∼=” (similar
to) in a query (see Fig.4.2.6). We start by an example to justify its necessity.
Suppose we are looking for a “Mediterranean” food restaurant and we have
in the database the values “Mediterranean”, “Spanish”, “Italian”, “Portuguese”,
etc. It is clear that the previous values are all “Mediterranean”, but the search
engine does not know about the existing relation, and it will not return the
restaurants with values different than “Mediterranean” as answers for the

page 79

4.2. SYNTACTIC CONSTRUCTIONS FOR WRITING PROGRAMS

query. The construction we present serves just to tell the framework about this
relation, allowing the user to ask for restaurants serving food similar to the
“Mediterranean” one and getting as answers the restaurants whose value for
food served we define similar to the “Mediterranean” one. The syntax is shown
in Eq.4.2.34, where pT is the name of a virtual database table, pN the name
of a column of the vdbt, TV a truth value (a float number in [0, 1]), and value1
and value2 two valid (and different) values for the vdbt column pN of the vdbt
pT. In the example in Eq. 4.2.35 we say that the food type mediterranean is
0.8 similar to the spanish one.

similarity_between(pT, pN(value1), pN(value2),
TV). (4.2.34)

similarity_between(restaurant,
f ood_type(mediterranean),
f ood_type(spanish), 0.8). (4.2.35)

It is important to highlight that in Eq. 4.2.35 we say that the food type
mediterranean is 0.8 similar to the spanish one, but not in the other way. If we
want to say that the spanish food is at some point similar to the mediterranean
one we need to add another line of code saying that. RFuzzy does not add
the inverse relation because, as told in the introduction (Sec. sec:intro), we do
not force the similarity relation to be reflexive, symmetric and transitive, i.e.,
an equivalence relation. As some of the authors referenced in Sec. sec:intro
mention, forcing it to be an equivalence relation is too restrictive for real-
world applications and this is just what we present here. Suppose, for example,
that we want to say that the spanish food is similar to the mediterranean one.
Since looking for a spanish food restaurant and eating in a Mediterranean food
restaurant is not the same as looking for a Mediterranean one and eating in a
spanish one, we assign 0.6 to the similarity between spanish and Mediterranean,
instead of the 0.8 assigned to the opposite relation. We provide another example
in which (we think) the idea of how to use similarity is clarified. Suppose
we want to encode that if we are looking for a spanish food restaurant the
restaurants serving tapas are valid ones (tapas is clearly spanish food). One
could think that a restaurant serving spanish food could be valid for someone
looking for one serving tapas, but most of the spanish restaurants serving
spanish food do not serve tapas at all. So, we cannot model such an idea. The
lines of code representing this last example are shown in 4.2.36. The last line
of the example is optional and corresponds to the tail in Eq. 4.2.16. It is there

page 80

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

just to show that we can assign credibility to the similarity between attributes
(but in this case it is superfluous). We can use too the tail in Eq. 4.2.17 to
personalize the rule (in case we want or need it).

similarity_between(restaurant,
f ood_type(spanish),
f ood_type(tapas), 0.7)
with_credibility(prod, 1). (4.2.36)

The framework provides us with the connectives product (prod), arithmetic
mean (mean), minimum (min) and Łukasiewicz product (luka), but we might
need to define our own ones. The syntax for defining new connectives is shown
in Eq. 4.2.37, where Name is the name of the connective we are defining and
prolog_code is the prolog code that defines how the three variables that the
predicate has as arguments are related. This three variables are the three
last arguments of de f ine_connective: Var_In_1, Var_In_2 and Var_Out. The
definition is done by using Prolog code, so any formula can be encoded.
We present an example in Eq. 4.2.38 in which we define the connective
max_but_at_most_a_hal f , which computes the maximum of the inputs and
returns the value if it is under 0.5, or 0.5 if over. When defining new connectives
programmers must ensure that they satisfy the properties of conjunctors,
disjunctors, etc if they want to use them as conjunctors, disjunctors, etc. The
framework does not check if they are satisfied to be as flexible as possible.

de f ine_connective(Name/3, Var_In_1,
Var_In_2, Var_Out) :−

prolog_code. (4.2.37)

de f ine_connective(max_but_at_most_a_hal f /3,
TV_In_1, TV_In_2, TV_Out) :−

max(TV_In_1, TV_In_2, TV_Aux),
min(TV_Aux, 0.5, TV_Out). (4.2.38)

Modifiers serve, in principle, to slightly modify the meaning of a fuzzy
characteristic. Zadeh called them hedges in [Zad72] and classified them into
type I and type II. The difference between them is that type I are operators
acting on a fuzzy set of individuals while type II require a description of how
they act on the components. Typical examples7 of type I hedges are “very”,

7We owe most of the examples to Zadeh’s paper [Zad72].

page 81

4.2. SYNTACTIC CONSTRUCTIONS FOR WRITING PROGRAMS

“more or less”, “much”, “too much”, “slightly”, “highly”. Some of type II
are “essentially”, “technically”, “actually”, “strictly”, “in a sense”, “practically”,
“virtually”, “regular”. The modifiers or hedges we can use in RFuzzy belong
(this might change in the near future) to type I. From the big set of available
type I hedges we have included only two in the framework: “very” (X2) and
“too much” (X3). The reason for not including more is that the selection of the
function to apply when they are chosen (X2, X3, ...) depends on the author’s
preferences and is most of the times directed by the set of data chosen. Since
the framework allows to define new operators this is not a drawback, but an
advantage: it is not needed to use names for them like “my_very”. The syntax
for defining new modifiers is shown in Eq. 4.2.39, where Name is the name of
the modifier we are defining and Var_In and Var_Out are the names of the
variables that can be used in the Prolog code written in prolog_code to define
the modifier behaviour. We show an example in Eq. 4.2.40 in which we define
the output value of a_little as the square root of the input value.

de f ine_modi f ier(Name/2, Var_In, Var_Out) :−
prolog_code. (4.2.39)

de f ine_modi f ier(a_little/2, TV_In, TV_Out) :−
TV_Out ∗ TV_Out . = . TV_In. (4.2.40)

Negation is an operation that takes a value and obtains another one. Most
people associates it with obtaining “no” from “yes” and “yes” from “no”, but
here it can be a little bit more complicated. In principle, from the fact that
we are modeling fuzzy logic truth values with numbers between 0 and 1, the
semantics for the negation operator could be Output = 1 − Input, but there
are more proposals for the definition of this operator. For example, Esteva,
Godo, Hájek and Navara study in [Est+00] the residuated fuzzy logics arising
from continuous t-norms without non-trivial zero divisors and an involutive
negation and Flaminio and Marchioni study in [FM06] the addition of arbitrary
involutive negations to t-norm-based logics. Since the definition of the negation
operator might depend on the environment and we want the framework to
be as customizable as possible, we offer the possibility to define new negation
operators, by means of the syntax shown in Eq. 4.2.41. We present in Eq. 4.2.42
the Gödel negation studied by Borgwardt and Peñaloza in [BP12]. The function
implemented by this Gödel negation simply maps 0 to 1 and everything else to 0.

page 82

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

de f ine_negation_op(Name/2, Var_In, Var_Out) :−
prolog_code. (4.2.41)

de f ine_negation_op(godel_neg/2, TV_In, TV_Out) :−
((TV_In. = .0, TV_Out. = .1) ;
(\+ (TV_In. = .0), TV_Out. = .0)). (4.2.42)

4.3 The semantics of the framework’s configura-
tion file

The semantics of a programming language (in this case the one defined for
the syntax allowed in the framework’s configuration file) can be developed in
multiple ways. In our case we provide declarative and operational semantics,
and prove that they are equivalent. The reason for doing it in this way is that
the first ones allow us to easily reason and prove properties8 while the other
ones are more interested in providing a procedure to automatically (without
human intervention) get the results9. By proving their equivalence we prove
that the operational semantics are sound (that every result in the set of results
of the operational semantics is in the set of the declarative ones) and complete
(that every result in the declarative semantics is in the set of results of the
operational ones).

The declarative and operational semantics of RFuzzy are really a particular
case of the declarative and operational semantics of the Multi-Adjoint frame-
work. This allows us to reuse most of the improvements that some authors
have proposed for the Multi-Adjoint framework, as the ones presented in the
works of Julian, Medina, Morcillo, Moreno and Ojeda-Aciego [Jul+09; Jul+11].
The particularization comes basically from the introduction of priorities in the
evaluation process, needed to help the computation process to choose the
result with the highest priority value or, when multiple results have the highest
priority value, the one (between them) with the highest truth value. The works
of Pablos-Ceruelo and Muñoz-Hernández [MHPCS11; PCMH11] served as basis
for this purpose. In the first one the authors propose a framework with an
incipient priorities system, only able to distinguish when a truth value has

8They have a strong mathematical base, which allows, for example, to prove that the
interpretation chosen as the intended semantics of the program is a model.

9They show the mechanism used by the computer to obtain the results, allowing to reason
about efficiency, resources consumption, etc.

page 83

4.3. THE SEMANTICS OF THE FRAMEWORK’S CONFIGURATION FILE

been provided by a rule, by the combination of a rule and one or more default
value assignments or just by one or more default value assignments. In the last
one the authors introduce a priorities system closer to the one we have here,
by taking ideas from some works in which the authors introduce priorities in
logic programming (LP), as Wang, Zhou and Fangzhen in [WZL00], Analyti
and Pramanik in [AP95], Laenens and Vermeir in [LV90], Marek, Nerode and
Remmel in [MNR97], Jayaraman, Govindarajan and Mantha in [JGM07] and
Delgrande, Schaub and Tompits in [DST03]. The differences between this
work and the proposal of Pablos-Ceruelo and Muñoz-Hernández [PCMH11]
are mainly due to the inclusion of modifiers and negation operators.

The semantics we present are divided in two. In the first part (Subsec. 4.3.1)
we present a structure and its semantics and in the second one (Subsec. 4.3.2)
we present the translation of the syntactical constructions we have introduced
in Subsec. 4.2 to this one. We do it in this way because we consider that the
presentation is much more simpler than if we present the semantics of each
construction.

4.3.1 Low level semantics

Multi-adjoint logic programs (see Def. 1.4.6) are usually defined as a set of
weighted rules

< A ←i F(B1, . . . , Bn), c > (4.3.1)

where c ∈ [0, 1] is the credibility assigned to the rule, i a conjunctor &, F an
aggregator @i and A and Bi, i ∈ [1..n], atoms. Sometimes the syntax used is

A Fc, c←−− F(B1, . . . , Bn) (4.3.2)

where Fc corresponds to the i in the equation before (it is a conjunctor &).
In [PCMH11] Pablos-Ceruelo and Muñoz-Hernández enrich the framework with
the capability to deal with priorities, changing c ∈ [0, 1] by (p, v) ∈ KT, and
add the possibility to have conditional rules, rules that are only used when the
individual A for which we are computing the truth value fulfills the condition
COND(A) . The programs they can write are sets of weighted rules

A
(p, v), &i←−−−−− @j(B1, . . . , Bi, . . . , Bn) if COND(A) (4.3.3)

where (p, v) ∈ KT, &i is a conjunctor, @i an aggregator, A and Bi, i ∈ [1..n],
are atoms and COND(A) is a first-order formula (a condition that needs to be
satisfied for p to get the truth value v) formed by the predicates in TBΠ,Σ,V , the

page 84

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

predicates =, 6=, ≥, ≤, > and < restricted to terms from TUΣ,V, the symbol t
and the conjunction ∧ and disjunction ∨ in their usual meaning.

Our definition for multi-adjoint programs is in Def. 4.3.4, but we introduce
first some concepts needed to understand it. First goes KT, the set of valid val-
ues for the tuples (p, v) and, just after, the ordering of values. Def. 4.3.3 is novel
with respect to the work of Pablos-Ceruelo and Muñoz-Hernández [PCMH11]
and is needed for the inclusion of modifiers and negation operators in the
semantics.

Definition 4.3.1 (KT). KT is the set of valid values for the variable (pv), which
represents at the same time a (accumulated) priority (p) and a truth value (v).
Although it is just one variable, we usually split its value in two for readability
reasons, resulting in (p, v). We do that because p and v are just real numbers
between 0 and 1: v ∈ [0, 1] and p ∈ [0, 1]. Writing them together complicates
unnecessarily the reading of their values. The reason for considering them a unique
variable comes from sources: there is a value that represents that we could not
find a valid value for it, {⊥}, and the ordering between values forms a complete
lattice. So, the set of valid values for the variable (pv) is:

KT = {⊥} ∪ { (p, v) | v ∈ [0, 1] ∧ p ∈ [0, 1] } (4.3.4)

Definition 4.3.2 (4 KT). The ordering between the values in KT is fixed by the
definition of 4 KT:

⊥ 4 KT ⊥
⊥ 4 KT (p, v)

(p1, v1) 4 KT (p2, v2) ↔ (p1 < p2) or
(p1 = p2 and v1 ≤ v2) (4.3.5)

where < is defined as usually (remember that vi and pj are just real numbers
between 0 and 1). It is obvious that the pair (KT, 4 KT) forms a complete lattice.

Remark. From the definitions of KT and 4 KT, we get that (KT, 4 KT)
forms a complete lattice and, assuming that we have a non-empty set of
adjoint pairs (see Def. 1.4.3), we can get that our lattice is a Multi-Adjoint
lattice (see Def. 1.4.4) and the algebra we define a Multi-Adjoint algebra
(see Def. 1.4.5).

Definition 4.3.3 (Basic formula). A basic formula can be an atom (Eq. 4.3.6),
the application of a modifier or a negation operator to an atom (Eqs. 4.3.7
and 4.3.8 resp.) or the application of a negation operator to the application of a
modifier to an atom (Eq. 4.3.9).

A (4.3.6)

page 85

4.3. THE SEMANTICS OF THE FRAMEWORK’S CONFIGURATION FILE

3(A) (4.3.7)
¬(A) (4.3.8)
¬(3(A)) (4.3.9)

Definition 4.3.4 (Multi-Adjoint Logic Program). A multi-adjoint logic program
is a set of clauses of the form

{ A
(p, v), &i←−−−−− @j(D1, . . . , Di, . . . , Dn)

if COND(A) } (4.3.10)

where (p, v) ∈ KT, &i is a conjunctor, @i an aggregator, A an atom, each Di,
i ∈ [1..n], a basic formula (see Def. 4.3.3) and COND(A) a first-order formula
(a boolean condition that needs to be satisfied for A to get the value computed
by the rule) formed by the predicates in TBΠ,Σ,V, the predicates =, 6=, ≥, ≤, >
and < restricted to terms from TUΣ,V, the symbol t and the conjunction ∧ and
disjunction ∨ in their usual meaning.

If n = 1 then @j is omitted (there is no need for an aggregator to combine
the tuples of two or more basic formulas Di because there is only one) and we
represent it with the form

A
(p, v), &i←−−−−− D (4.3.11)

If n = 0 the clause is intended to be used for assigning a truth value to an
atom, with more or less credibility. In this case there is no aggregator nor basic
formulas in the clause’s body and we represent it as follows

A
(p, v), &i←−−−−− (p′, v′) (4.3.12)

where (p′, v′) is the truth value and priority assigned to the fact (Please note that
(p, v) is still the credibility assigned to the rule).

Definition 4.3.5 (Valuation). A valuation or instantiation σ : V → HU is
an assignment of ground terms to variables and uniquely constitutes a mapping
σ̂ : TBΠ,Σ,V → HB that is defined in the obvious way.

Definition 4.3.6 (Interpretation). A fuzzy Herbrand interpretation (or short,
interpretation) of a fuzzy logic program is a mapping I : HB→ KT that assigns
an element in our lattice to ground atoms. The domain of an interpretation is
the set of all atoms in the Herbrand Base, although for readability reasons we
omit those atoms to which the element assigned is ⊥ (interpretations are total
functions). This mapping can be seen as a set of pairs (A, ˆ(p, v)) such that
A ∈ HB and (p, v) ∈ KT \ {⊥}.

page 86

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

It is possible to extend uniquely the mapping I defined on HB to the set of
all ground formulas of the language by using the unique homomorphic extension.
This extension is denoted Î and the set of all interpretations of the formulas in a
program P is denoted IP.

Definition 4.3.7 (Interpretation Ordering, Minimum, Maximum, Infimum and
Supremum). For two interpretations I and J , we say I is less than or equal to
J, written I v J, iff I(A) 4 KT J(A) for all A ∈ HB. Two interpretations
I and J are equal, written I = J, iff I v J and J v I. Minimum
(Eq. 4.3.13), maximum (Eq. 4.3.14), infimum (or intersection, Eq. 4.3.15) and
supremum (or union, Eq. 4.3.16) for all A ∈HB are defined as follows:

min(I, J)(A) =

 I(A) if I(A) 4 KT J(A)

J(A) if I(A) � KT J(A)
(4.3.13)

max(I, J)(A) =

 I(A) if I(A) < KT J(A)

J(A) if I(A) ≺ KT J(A)
(4.3.14)

(I u J)(A) = min(I(A), J(A)) (4.3.15)
(I t J)(A) = max(I(A), J(A)) (4.3.16)

Lemma 4.3.1. The pair (IP,v) of the set of all interpretations of a given program
with the interpretation ordering forms a complete lattice.

Proof. This follows readily from the fact that the underlying lattice set KT

forms a complete lattice with the lattice values ordering 4 KT.

Up to now we have defined the underlying lattice we use for choosing the
best interpretation between the available ones, but we still need to define which
ones are considered valid for our program and which one is the expected one.
We define first which interpretations are considered to be model of a program
and, before this one, the concepts needed to understand it.

One of the concepts we define is the operator used to combine (or modify)
the priority of the tuples ˆ(p, v) when the programmer chooses a connective
to combine (or modify) the truth values of one or more subgoals. This one is
needed due to the fact that the truth functions associated to the connectives of
arity bigger than zero in Ω (see Subsec. 4.1) are intended to be used with just
truth values, and not with tuples ˆ(p, v). In order to overcome this limitation
we provide the priority operator ◦.

page 87

4.3. THE SEMANTICS OF THE FRAMEWORK’S CONFIGURATION FILE

Definition 4.3.8 (The operator ◦). The operator ◦ is intended to be used for
taking care of the combination of the priorities while the truth function associated
to the connective chosen takes care of the truth values.

The aim of taking into account the priority of every single root (each Di,
i ∈ 1 . . . n) involved in the inference process removes the possibility to use
mathematical operators in which the result remains unchanged when some input
does not (i.e. min, max, etc). Besides, the operator must be defined for each
possible connective. The function we assign to the operator (dependent of the type
of connective) is shown in Eqs. 4.3.17 - 4.3.22.

x ◦& y =
x + y

2
(4.3.17)

z ◦← y = max(0, min(1, 2 ∗ z − y)) (4.3.18)

x ◦∨ y =
x + y

2
(4.3.19)

x ◦@ y =
x + y

2
(4.3.20)

◦¬(x) = x (4.3.21)
◦3(x) = x (4.3.22)

The functions in Eqs. 4.3.17, 4.3.18, 4.3.19 and 4.3.20 are extended as usual
when applied to more than two input values.

Remark. From here afterwards, the application of the function associated to
any connective of arity bigger than zero refers to the application of the truth
function defined for the connective to the truth value in the tuples ˆ(p, v) and
the application of the corresponding priority operator ◦ to the priorities in
the tuples. When one of the input tuples takes the value ⊥ the result will be
always ⊥.

Remark. Although the operators &̄, ←̄, ∨̄ and @̄ still keep the properties
exposed in Sec. 4.1,10 the priority value and the priority operators are intended
to be used for having distinct rules for the general situation and the exception(s).
What we mean is that, while in the original multi-adjoint framework the rules
get their credibility directly from real-world scenarios11 the inclusion of the
priority offers the possibility to get a high credibility for a rule representing

10The first one is non-decreasing in both coordinates, the second one non-increasing in the
first and non-decreasing in the second coordinate, the third one monotone in both coordinates
and the last one is a function that verifies F̄(0, . . . , 0) = 0 and F̄(1, . . . , 1) = 1.

11If whenever A occurs B occurs then the rule B :− A gets a high credibility. See
examples 1.4.1 and 1.4.2.

page 88

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

Table 4.3.1: Table with the credibility of the rule “if it is cloudy, it rains” for
some cities

city if it is cloudy, it rains

Barcelona 0.7

Valencia 0.7

A Coruña 0.9

Madrid 0.2

Sevilla 0.1

most of the individuals of a set and a low credibility for those elements of
the set for which the rule is not satisfied up to the same degree. Suppose, for
example, that we have two rules: “if it is cloudy, it rains” and “if it rains, it is
cloudy”. The second one is true with a credibility of 0.9 and we can model it
without priorities, but for the first one and the set of data in Table. 4.3.1 the
credibility of the first rule would be 0.1 (the minimum). What we offer is the
possibility to say that the rule has a credibility of 0.1 for Sevilla, a credibility of
0.2 for Madrid and a credibility of 0.7 for the other spanish cities, by giving a
higher priority to the first two rules.

Definition 4.3.9 (Multi-Adjoint Satisfaction). Let P be a multi-adjoint logic
program, I ∈ IP an interpretation and A ∈ HB a ground atom. A clause
Cli ∈ P of the form

{ A
(p, v), &i←−−−−− @j(D1, . . . , Di, . . . , Dn) if COND(A) } (4.3.23)

is satisfied by I iff

ˆ(p, v) 4 KT in f { Î (A) ←̂i Î ((@i(D1, . . . , Dn)) ξ) |
ξ any ground instantiation and
COND(A) is satisfied } (4.3.24)

which, by means of the adjoint property (the tuple (&i, ←i) is an adjoint pair),
is equivalent to

Î (A) < KT sup { ˆ(p, v) &̂i Î((@i(D1, . . . , Dn)) ξ) |
ξ any ground instantiation and
COND(A) is satisfied } (4.3.25)

page 89

4.3. THE SEMANTICS OF THE FRAMEWORK’S CONFIGURATION FILE

Remark. Although it is obvious, if the rule is of the form

A
(p, v), &i←−−−−− D (4.3.26)

then Î((@i(D1, . . . , Dn)) ξ) is replaced by Î(D ξ) and if it is of the form

A
(p, v), &i←−−−−− (p′, v′) (4.3.27)

then by Î((p′, v′)).

Definition 4.3.10 (Satisfaction, Model). Let P be a multi-adjoint logic program,
I ∈ IP an interpretation and A ∈ HB a ground atom. We say that a clause
Cli ∈ P of the form

{ A
(p, v), &i←−−−−− @j(D1, . . . , Dj, . . . , Dn) if COND(A) } (4.3.28)

is satisfied by I or I is a model of the clause Cli (I
 Cli) iff for all ground
atoms A ∈ HB and for all instantiations σ for which Djσ is a ground basic
formula (note that σ can be the empty substitution) it is true that

Î(A) < KT
ˆ(p, v) &̂i @̂i(Î(D1σ), . . . , Î(Dnσ))

if COND(A) (4.3.29)

Note that eq. 4.3.29 is equivalent to eq. 4.3.25. Finally, we say that I is a model
of the program P and write I
 P iff I
 Cli for all clauses in our multi-
adjoint logic program P.

Every program has a model12 and it is usual to have more than one. Between
all of them one must be chosen as the program declarative semantics. This
is what we present now but, before doing it, we need to define stratification.
Stratification is needed because the existence of negation (fuzzy, but negation)
in a program forces us to determine the interpretation that we want to be the
declarative semantics of our program strata by strata. More information about
stratification can be found in the work of Przymusinski [Prz89b].

Definition 4.3.11 (Stratification, adapted and extended from the definition
proposed by Przymusinski in [Prz89b]). A general program P is stratified if and

12This affirmation should be proved, but it is trivial to do it from the existence of an
stratification of the program (for more details we refer to the work of Przymusinski [Prz89b]).
The existence of an stratification can be proved easily from the fact that we do not allow loops
in programs.

page 90

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

only if it is possible to decompose the set S of all predicates of P into disjoint sets
S1, . . . , Sr, called strata, so that for every clause Cli ∈ P of the form

{ A
(p, v), &i←−−−−− @j(D1, . . . , Dj, . . . , Dn)

if COND(A) }, (4.3.30)

where every symbol means the same as in Eq. 4.3.10, we have that:

∀ i stratum(A) ≥ stratum(Di) if Di

has the form B or 3B (4.3.31)
∀ i stratum(A) > stratum(Di) if Di

has the form ¬B or ¬3B (4.3.32)

We define stratum of a program P as the maximum stratum of the atoms A
appearing in it:

∀ A ∈ HB, stratum(P) = maximum(stratum(A)) (4.3.33)

We define the program P at stratum k, Pstr.k as the set of clauses Cli ∈ P such
that the stratum assigned to their heads A is lower or equal to k.

Remark. The stratification we will use from here on is defined as follows. If
A appears as head of a clause Cli of the form

{ A
(p, v), &i←−−−−− (p′, v′) } (4.3.34)

we assign 0 to stratum(A, Cli). If this is not the case, then A appears as head
of a clause Clj of the form

{ A
(p, v), &i←−−−−− @j(D1, . . . , Dk, . . . , Dn) if COND(A) } (4.3.35)

and then the value for stratum(A, Clj) will be the maximum of stratum(Di)
plus one. For a set of clauses { Cl1, . . . , Cln } in which the atom A appears as
head, the stratum of A will be defined as

stratum(A) = maximum
i = n

i = 1
(stratum(A, Cli)) (4.3.36)

Definition 4.3.12 (Declarative semantics). Let P be a well-defined fuzzy logic
program. The interpretation chosen as the declarative semantics of P is defined

page 91

4.3. THE SEMANTICS OF THE FRAMEWORK’S CONFIGURATION FILE

recursively, starting from the stratum zero and ending at stratum stratum(P).
For each atom A ∈HB

Istr.0(A)
.
=

l

I
 P

(A, ˆ(p, v))

∣∣∣∣∣∣∣∣∣
(A, ˆ(p, v)) ∈ I

∧

stratum(A) = 0

(4.3.37)

Istr.k(A)
.
= ⊥ if stratum(A) > k (4.3.38)

Istr.k(A)
.
=

l

∗
(A, ˆ(p, v))

∣∣∣∣∣∣∣∣∣
(A, ˆ(p, v)) ∈ I

∧

stratum(A) = k⊔
Istr.(k−1)(A) (4.3.39)

where ∗ is

I
 P

∣∣∣∣∣∣ ∀A′ ∈HB. (stratum(A′) < k) =⇒

Istr.(k−1)(A′) = I(A′)

Basically, the interpretation chosen must have at each strata the minimum
interpretation value for each atom A in that strata, starting from stratum zero.
The interpretations not having this minimum value for the atoms at any stratum
lower than the current one are not considered for computing the minimum of the
current strata.

Remark. The necessity to compute the declarative semantics in the way
described in Def. 4.3.12 comes from the possibility to have a program P in
which the interpretation of one atom depends negatively on the interpretation
of the other one. Suppose a program P formed by the set of rules

A← ¬(B) (4.3.40)
B← (1, 0.1) (4.3.41)

and assume that the definition of the negation operator is

Output = 1 − Input (4.3.42)

page 92

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

then we can take the following interpretations as examples of interpretations
which are models of our program P:

I1 = { (B, ˆ(1, 0.1)), (A, ˆ(1, 0.9)) } (4.3.43)

I2 = { (B, ˆ(1, 0.4)), (A, ˆ(1, 0.6)) } (4.3.44)

What we want to highlight with this example is that the declarative semantics
of the program cannot be its least model (usually defined as the infimum of all
its interpretations which are models) since the intersection of all of them is no
more a model of P:

I3 = { (B, ˆ(1, 0.1)), (A, ˆ(1, 0.6)) } (4.3.45)

This is the main reason for not using the least model as the declarative semantics
of our programs.

Lemma 4.3.2 (The interpretation chosen as the program declarative semantics
is a model).

Istr.(stratum(P))
 P (4.3.46)

Proof. We start calling J to Istr.(stratum(P)). For stratum 0 there is no dependency
on other(s) stratum(s), since it is defined as

Jstr.0(A)
.
=

l

I
 P

Istr.0(A) (4.3.47)

which makes

Jstr.0
.
=

l

I
 P

Istr.0 (4.3.48)

Then, from the definition of infimum (Def. 4.3.7) we know that there must
be (at least) an interpretation I, I
 P, such that Istr.0 = Jstr.0 and we know
about this interpretation that it is part of I

Istr.0 ⊂ I (4.3.49)

and that I is a model of P:

I
 P (4.3.50)

so we can conclude that the stratum stratum0 of Istr.(stratum(P)) is part of a
model of P.

page 93

4.3. THE SEMANTICS OF THE FRAMEWORK’S CONFIGURATION FILE

Table 4.3.2: Table representing the situation in which the intersection of two
models is not a model

stratum I1(A) vs I2(A) I1(B) vs I2(B) Ids

str.0 I1 u I2

str.(stratum(A)) I1(A) < I2(A) I1 u I2

str.(stratum(B)) I1(A) < I2(A) I1(B) > I2(B) ???

For stratum k, k > 0, we can have two models I1
 P and I2
 P such
that min(I1, I2), is not a model. This happens when for two atoms A and B the
interpretation of B depends on the negation of the interpretation of A, so that
stratum(A) < stratum(B), I1(A) < I2(A) and I1(B) > I2(B). The table
Table. 4.3.2 represents this situation. There, Ids is the interpretation chosen as
the declarative semantics (restricted to the corresponding strata).

Since the definition of the declarative semantics removes the interpretations
causing this situations (See the condition ∗ in Eq. 4.3.39), I2 is never taken
into account for computing Istr.(stratum(B)) and we can use a proof analogous to
the proof for stratum 0.

Now we go for the operational semantics. Although the usual in the
logic programming framework is characterizing the operational semantics of a
program P by using the post-fixpoints of TP, the TP that we could define would
be non-monotonic13. This means, basically, that it does not enjoy any of the
interesting properties of the monotonic immediate consequences operators, so
we define the operational semantics in a different way.

Definition 4.3.13. Let P be a multi-adjoint logic program. Then the operational
semantics of P is defined from the interpretation of an atom A at stratum k.

Istr.k(A)
.
= ⊥ if stratum(A) > k

Istr.k(A)
.
=

sup



ˆ(p, v) &̂i @̂i(ˆIstr.(k)(D1σ), . . . , ˆIstr.(k)(Dnσ))

if

∣∣∣∣∣∣∣∣∣
COND(A)) ∧ A = A′σ ∧

{ A′
(p, v), &i←−−−−− @j(D1, . . . , Di, . . . , Dn)

if COND(A′) } ∈ P

13For a good revision of non-monotonic formalisms and logic programming we recommend
the work of Dix, Moniz Pereira and Przymusinski [DPP96] or the condensed version of
Przymusinski [Prz89a].

page 94

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

} if stratum(A) ≤ k (4.3.51)

The interpretation of a program P that we call its operational semantics is the one
resulting from putting together the interpretations of all the atoms in its Herbrand
base HB, at stratum stratum(P),

Istr.k
.
= ∪A∈HB{ Istr.k(A) } (4.3.52)

In order to get it we must compute the interpretation of all the atoms in the
Herbrand base from stratum 0 to stratum stratum(P).

Istr.0

. . .
Istr.(stratum(P)) (4.3.53)

Now that we have the declarative and the operational semantics we must
prove that they are equivalent.

Theorem 4.3.3. For a multi-adjoint logic program P, the declarative semantics
and the operational ones coincide.

Proof. We use induction to prove that both semantics are equivalent. We
start from stratum 0 and prove that at stratum k + 1 both have the same
interpretation for the same atom. Suppose some ground atom A.

case k = 0) we start by proving that they take the same value when
stratum(A) = 0. If k = 0 and stratum(A) = 0 then the only clauses Cli
in which A appears as head have the form { A′

(p, v), &i←−−−−− (p′, v′) }. We
compute the interpretations that correspond to its declarative (Istr.0(A)ds) and
operational semantics (Istr.0(A)os) in the following way.

Istr.0(A)ds
.
=

l

I
 P

(A, ˆ(p, v))
∣∣∣ (A, ˆ(p, v)) ∈ I (4.3.54)

Istr.0(A)os
.
=∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sup { ˆ(p, v) &̂i (p′, v′)

if

∣∣∣∣∣∣∣∣∣
COND(A)) ∧ A = A′σ ∧

{ A′
(p, v), &i←−−−−− (p′, v′)

if COND(A′) } ∈ P

}

(4.3.55)

page 95

4.3. THE SEMANTICS OF THE FRAMEWORK’S CONFIGURATION FILE

Since Istr.0(A)ds
 Pstr.0 we know that

Istr.0(A)ds < KT
ˆ(p, v) &̂i (p′, v′)

if

∣∣∣∣∣∣ COND(A) ∧ A = A′σ ∧

{ A′
(p, v), &i←−−−−− (p′, v′) if COND(A′) } ∈ P }

(4.3.56)

which means that

Istr.0(A)ds < KT Istr.0(A)os (4.3.57)

By computing the intersection of all the interpretations which are models of
P we are getting the minimal interpretation of Istr.0(A)ds and there must be
at least one interpretation whose value for Istr.0(A) coincides with the value

ˆ(p, v) &̂i (p′, v′) obtained by the operational semantics to determine Istr.0(A)os.
Since this value is the minimal interpretation considered to be a model, it will
be the assigned to Istr.0(A)ds. This proves that Istr.0(A)ds = Istr.0(A)os.

It is easy to see that, when stratum(A) > 0, Istr.0(A)ds = Istr.0(A)os, due
to the fact that both formulas assign ⊥ when stratum(A) > k and k = 0.

case k+1) here we start by the case stratum(A) > k + 1. As before, it is
easy to see that Istr.k+1(A)ds = Istr.k+1(A)os, due to the fact that (again) both
formulas assign ⊥ to the interpretation of A when stratum(A) > k and k here
takes the value k + 1.

When stratum(A) = k + 1 we have the following formulas:

Istr.k+1(A)ds
.
=

l

∗
(A, ˆ(p, v))

∣∣∣∣∣∣∣∣∣
(A, ˆ(p, v)) ∈ I

∧

stratum(A) = k + 1

where ∗ is

I
 P

∣∣∣∣∣∣ ∀A′ ∈HB. (stratum(A′) < k + 1) =⇒

Istr.(k)(A′) = I(A′)
(4.3.58)

page 96

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

Istr.k+1(A)os
.
=

sup



ˆ(p, v) &̂i

@̂i(ˆIstr.(k+1)(D1σ), . . . , ˆIstr.(k+1)(Dnσ)))

if

∣∣∣∣∣∣∣∣∣
COND(A)) ∧ A = A′σ ∧

{ A′
(p, v), &i←−−−−− @j(D1, . . . , Di, . . . , Dn)

if COND(A′) } ∈ P

} if stratum(A) ≤ k + 1 (4.3.59)

Suppose now that for level k it has been proved that for every atom E we have
Istr.k(E)ds = Istr.k(E)os

14. This condition will help us in two ways. In the first
one we use Istr.k(E) to filter out all interpretations which, being models, have
values for Istr.k(E) different from it (condition ∗ in Eq. 4.3.58). In this way we
get rid of the problematic interpretations mentioned before. In the second one
it helps us to fix the values for the basic formulas in the bodies of the following
formulas. The first formula comes from the definition of model. Since all the
interpretations used to determine Istr.k+1(A)ds are models we know that for
every substitution σ and every clause Cli ∈ P of the form

{ A
(p, v), &i←−−−−− @j(D1, . . . , Dj, . . . , Dn)

if COND(A) }, (4.3.60)

it is true that

Istr.k+1(A)ds < KT
ˆ(p, v) &̂i @̂i(Î(D1σ), . . . , Î(Dnσ))

if COND(A) (4.3.61)

The second formula comes from Eq. 4.3.59, in which the premise
stratum(A) = k + 1 allows us to remove the last “if” condition, resulting in

Istr.k+1(A)os
.
=

sup



ˆ(p, v) &̂i

@̂i(ˆIstr.(k+1)(D1σ), . . . , ˆIstr.(k+1)(Dnσ)))

if

∣∣∣∣∣∣∣∣∣
COND(A)) ∧ A = A′σ ∧

{ A′
(p, v), &i←−−−−− @j(D1, . . . , Di, . . . , Dn)

if COND(A′) } ∈ P

(4.3.62)

14Please note that we use E instead of A. They are different atoms.

page 97

4.3. THE SEMANTICS OF THE FRAMEWORK’S CONFIGURATION FILE

In the previous formulas the interpretations of the basic formulas in the clauses’
bodies, Î(Dσ), depend on the interpretation of some atom B ∈ HB such that
stratum(B) ≤ k + 1. Since Istr.k(A)ds = Istr.k(A)os we can substitute in both
of them and get, respectively,

Istr.k+1(A)ds < KT
ˆ(p, v) &̂i

@̂i(ˆIstr.k(D1σ), . . . , ˆIstr.k(Dnσ))

if COND(A) (4.3.63)

Istr.k+1(A)os
.
=

sup



ˆ(p, v) &̂i

@̂i(ˆIstr.k(D1σ), . . . , ˆIstr.k(Dnσ)))

if

∣∣∣∣∣∣∣∣∣
COND(A)) ∧ A = A′σ ∧

{ A′
(p, v), &i←−−−−− @j(D1, . . . , Di, . . . , Dn)

if COND(A′) } ∈ P

(4.3.64)

At this point is where the intersection in the formula in Eq. 4.3.58 and the
supreme in Eq. 4.3.62 allow us to say that the declarative and the operational
semantics are equivalent. On one hand computing the intersection is equivalent
to determining the minimum Istr.k+1(A)ds satisfying the formula in Eq. 4.3.63.
On the other one computing the supreme is equivalent to determining the
maximum value

ˆ(p, v) &̂i @̂i(ˆIstr.k(D1σ), . . . , ˆIstr.k(Dnσ))

if COND(A) (4.3.65)

We just need to need to highlight that we are computing the intersection of all
the models, and there must be at least one such that

Istr.k+1(A)ds
.
= ˆ(p, v) &̂i

@̂i(ˆIstr.k(D1σ), . . . , ˆIstr.k(Dnσ))

if COND(A) (4.3.66)

for some rule and some substitution (and it must satisfy Eq. 4.3.63 for the other
ones). This one takes just the value of Istr.k+1(A)os, obtained by Eq. 4.3.64.

page 98

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

4.3.2 High level semantics

The semantics presented are sound and complete, but the syntactic construc-
tions introduced in Subsec. 4.2 are very different from the ones used to present
the declarative and operational semantics (Eqs. 4.3.10, 4.3.11 and 4.3.12). We
copy them here once again and present now how each one of the syntactic
constructions in Subsec. 4.2 is translated to the form of one of them.

A
(p, v), &i←−−−−− @j(D1, . . . , Di, . . . , Dn)

if COND(A) (4.3.67)

A
(p, v), &i←−−−−− D if COND(A) (4.3.68)

A
(p, v), &i←−−−−− (p′, v′) if COND(A) (4.3.69)

We start by the construction used to define the virtual database table,

de f ine_database(pT/pA, [(pN, pT′)]). (4.3.70)

This structure has no translation into the syntactic one used to give semantics
to our configuration file. The reason is that it does not define any fuzzy
predicate, but the structure of the database table that we can use to store
information about the individuals or subjects of our searches. Nevertheless,
RFuzzy generates from it multiple predicates that simplify the programmer life
when accessing the information stored in the database table, as explained in
Subsec. 4.2.

The construction used to define the situation in which we define a truth
value for some individuals in the database,

f PredName(pT) :∼ value(TV) (4.3.71)
i f (pN(pT) comp value) (4.3.72)
with_credibility(credOp, credVal) (4.3.73)

only_ f or_user ′UserName′ (4.3.74)

is translated into

f PredName(Individual)
(p, v), &i←−−−−−(1, TV)

if COND (4.3.75)

where the by default15 values for p, v, &i and COND are 0.8, 1, prod (product)
and true. The way we increase the priority of the rule when Eq. 4.3.72 appears

15We have different values for the variables p, v, &i and COND when the tails constructions
in Eqs. 4.3.72, 4.3.73 and 4.3.74 do not appear as tails of the main clause, and when they
appear. In the first case we call the values the by default ones.

page 99

4.3. THE SEMANTICS OF THE FRAMEWORK’S CONFIGURATION FILE

as tail of the main clause is by adding 0.05 to p and, when Eq. 4.3.74 appears,
by adding 0.1 to p. So, if both appear p gets the value 0.95. If the main clause
has as tail the one in Eq. 4.3.72 the value for COND is replaced by

COND ∧ pN(Individual, Value) ∧ comp(Value, value) (4.3.76)

where COND in Eq. 4.3.76 is the existing condition before the replacement. If
Eq. 4.3.74 appears as tail COND is replaced by

COND ∧ currentUser(Me) ∧ Me = ′UserName′ (4.3.77)

The occurrence of the tail in Eq. 4.3.73 does not change the value of the
variables COND or p, but the by default values for v and &i. The values they
take in case it is used are the ones given to the variables credVal and credOp in
Eq. 4.3.73.

The construction used to define fuzzifications,

f PredName(pT) :∼ f unction(pN(pT),
[(valIn, valOut)]). (4.3.78)

is translated into a set of clauses, one for each piece the programmer has defined
for the piecewise function. Each one of the resulting clauses has the form

f PredName(Individual)
(p, v), &i←−−−−−

(1, pN(Individual) ∗ (valOut_2− valOut_1)
(valIn_2− valIn_1)

)

if COND (4.3.79)

in which p, v, &i and COND take by default the values 0.6, 1, prod (product)
and

(valIn_1 < pN(Individual) ≤ valIn_2) (4.3.80)

As before, this values change when the tails in Eqs. 4.3.72, 4.3.73 and 4.3.74
appear as tails of the main clause. The way in which they change is the same
one as before.

The construction used to tell the computer which one is the truth value that
must be assigned to a predicate when no better value can be computed,

f PredName(pT) :∼ de f aults_to(TV) (4.3.81)

is translated into

f PredName(Individual)
(p, v), &i←−−−−− (1, TV) if COND (4.3.82)

page 100

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

where the by default value for the variables p, v, &i and COND are 0, 1, prod
(product) and true. This values change when the tails in Eqs. 4.3.72, 4.3.73
and 4.3.74 appear as tails of the main clause, exactly the same way as for the
previous constructions.

The constructions to define fuzzy rules,

f PredName(pT) :∼ rule(f PredName2(pT)) (4.3.83)

f PredName(pT) :∼ rule(aggr, (f PredName2(pT),
f PredName3(pT),
...)) (4.3.84)

are (respectively) translated into

f PredName(Individual)
(p, v), &i←−−−−−

f PredName2(Individual)
if COND (4.3.85)

f PredName(Individual)
(p, v), &i←−−−−−

@(f PredName2(Individual),
f PredName3(Individual), ...)
if COND (4.3.86)

where the by default value for the variables p, v, &i and COND are 0.4, 1, prod
(product) and true. This values change when the tails in Eqs. 4.3.72, 4.3.73
and 4.3.74 appear as tails of the main clause, exactly the same way as in the
previous constructions.

The construction used to define a fuzzy characteristic as a synonym of
another one defined before,

f PredName(pT) :∼
synonym_o f (f PredName2(pT)) (4.3.87)

is translated into

f PredName(Individual)
(p, v), &i←−−−−−

f PredName2(Individual)
if COND (4.3.88)

page 101

4.3. THE SEMANTICS OF THE FRAMEWORK’S CONFIGURATION FILE

where the by default value for the variables p, v, &i and COND are 0.8, 1, prod
and true. As before, this values change when the tails in Eqs. 4.3.72, 4.3.73
and 4.3.74 appear as tails of the main clause. The way in which they change is
the same one as before.

The construction used to define a fuzzy characteristic as an antonym of
another one defined before,

f PredName(pT) :∼
antonym_o f (f PredName2(pT)) (4.3.89)

is translated into

f PredName(Individual)
(p, v), &i←−−−−−

not(f PredName2(Individual))
if COND (4.3.90)

where the by default value for the variables p, v, &i and COND are 0.8, 1, prod
and true. As before, this values change when the tails in Eqs. 4.3.72, 4.3.73
and 4.3.74 appear as tails of the main clause. The way in which they change is
the same one as before.

The existence of the construction for defining the similarity between at-
tributes comes from the necessity to look for individuals with a characteristic
similar to the one we are looking for. The syntax exposed before,

similarity_between(pT, pN(value1), pN(value2), TV). (4.3.91)

is translated into

f uzzy_comparator(′=∼=′, pN, value1, Individual)
(p, v), &i←−−−−− TV
if pN(Individual, value2) (4.3.92)

so that we can ask for the similarity between the characteristic entered in
argument value1 and the value that the individual Individual has for the same
characteristic. The by default value for the variables p, v, &i and COND are
0.8, 1, prod and true and the way in which they change when the tails in
Eqs. 4.3.72, 4.3.73 and 4.3.74 appear as tails of the main clause is the same one
as before. The necessity to have the name of the column (or the characteristic
name) used for the comparison in the arguments’ list comes from the possibility
to have the same value, value1, in different columns in the database. It allows

page 102

CHAPTER 4. EXTENDING THE FRAMEWORK WITH SIMILARITY AND
NEGATION: RFUZZY V.3

us to determine easily which one is the characteristic we are comparing the
input value to.

As seen before, the syntax of the constructions used to define fuzzy char-
acteristics have a translation into the syntax we use to give semantics to our
programs. We summarize now the translations in two tables, Table. 4.3.3 and
Table. 4.3.4. The first one shows the values for the variables when none of the
tails in Eqs. 4.3.72, 4.3.73 and 4.3.74 appear as tails of a main clause, while
the second one shows just the changes that their usage originates.

construction p v &i @j (B1, . . . , Bn) COND

fuzzy value 0.8 1 product TV true

synonym 0.8 1 product TV true

antonym 0.8 1 product TV true

fuzzification

function
0.6 1 product

pN(Individual) ∗
(valOut_2−valOut_1)
(valIn_2−valIn_1)

valIn_1 <

pN(Individual)

≤ valIn_2

fuzzy rule 0.4 1 product @j (B1, . . . , Bn) true

default 0 1 product TV true

fuzzy value

Table 4.3.3: Summary of the values given “by default” to the variables p, v,
&i, @j (B1, . . . , Bn) and COND.

page 103

4.3. THE SEMANTICS OF THE FRAMEWORK’S CONFIGURATION FILE

tail p v &i COND

construction

eq. 4.2.15 p+ 0.05 v &i
COND ∧

(pN(Individual) comp value)

eq. 4.2.17 p+ 0.1 v &i

COND ∧

currentUser(Me) ∧

Me = ′UserName′

eq. 4.2.16 p credVal credOp COND

Table 4.3.4: Changes in the values given to the variables p, v, &i and COND
when the tails’ constructions in eqs. 4.2.15, 4.2.17, 4.2.16 are used.

page 104

Chapter 5

Real Application Cases

Although there are plenty of theoretical approaches related to fuzzy reasoning,
just few of them are used by people different from the developers. It is a
challenge to produce a tool that can be used by any person that is interested in
modelling a real (fuzzy) problem. From the beginning, the goal of RFuzzy has
been to combine expressivity and a simple syntax, thus facilitating its usage
in different fields of application. In this section we show four examples of
applications that are currently using RFuzzy for modelling real-world problems.
The last one, FleSe (Sec. 5.4), is part of the contributions of this thesis.

5.1 Emotion Recognition

Emotion recognition is a very interesting field in modern science and technology
but it is not an easy task to automate. Many researchers and engineers are
working to recognise this prospective field, but the difficulty is that emotions are
not clear, not crisp. In [FM09], fuzzy reasoning is used for emotion recognition.

After studying the specific characteristics of voice speech for each human
emotion (speech rate, pitch average, intensity and voice quality), that paper
presents a prototype that implements emotion recognition using a fuzzy model
expressed in RFuzzy. The resulting prototype is simple, quite efficient, and is
able to identify the emotion of a person from his/her voice speech characteris-
tics. The studied emotions are sadness, happiness, anger, excitement and plain
emotion. According to their experiments, the prototype has a 90% of success
in its deductions. The tool inherited the constructivity of RFuzzy, so it can
be used not only to identify emotions automatically but also to recognise the
people that have an emotion through their different speeches. It analyses an
emotional speech and obtains the percentage of each emotion that is detected.
So, it can provide many constructive answers according to a query demand.

page 105

5.1. EMOTION RECOGNITION

The prototype is an easy tool for emotion recognition that can be modified and
improved by adding new rules from speech and face analysis. So, obtaining
similar implementations using RFuzzy for any kind of recognition is very
straightforward.

The methodology used for this application can be generalised for any
deduction of information from data records. For example, emotion recognition
could take data from face analysis plus speech record; deduction of age from
physical data, deduction of interest in buying from shopping records, etc. The
general methodology is represented in Figure 5.1.1.

Data Record

Data Synthesis

Var1
...

Var2 VarN

Convert crisp

Recognition

process through

RFuzzy

Recognition result

to fuzzy data

Figure 5.1.1: Methodology of data recognition.

The work of Farooque and Muñoz-Hernández has been object of interest
of two Marketing companies and is nowadays a trending topic because of the
recent appearance of emotion recognition applications for the Google Glasses,
as the SHORE Google Glass app [Fra15] or the Emotient announce of a private
beta for Sentiment Analysis Glassware for Google Glass [Emo14]. The first
one [Emo12] was interested in including the voice emotion recognition into
their proposal of facial emotion recognition. And the last one [Mar15] was
interested in using it for doing an emotion recognition of the people calling

page 106

CHAPTER 5. REAL APPLICATION CASES

Figure 5.2.1: System Architecture for RoboCup Soccer Server.

their calling center, so they can redirect the incoming call to a more or less
expert in human treatment depending on the emotion recognized.

Besides, Diego Reyes Prieto interviewed Muñoz-Hernández [Rey15] in the
Nocturna program of RCN radio [RCN15] about the emotion recognition system
developed. The interview is available at [PC15c].

5.2 Robocup Control Implementation

The RoboCupSoccer domain has several leagues which vary in the rules of
play such as specification of players, number of players, field size and match
duration. Nevertheless, each RoboCup league is a variant of a soccer league
and therefore they are based on some basic rules of soccer.

In [MHW07a; MHW07b] a generalised architecture was proposed by of-
fering flexibility to switch between leagues and programming language while
maintaining Prolog as cognitive layer. The system architecture of this proposal
is represented in Figure 5.2.1. Prolog is a perfect tool to design strategies for
soccer players using simple rules close to human reasoning. Sometimes this
reasoning needs to deal with uncertainty, fuzziness or incompleteness of the
information. These issues were solved in [MHW07a; MHW07b] by using Fuzzy
Prolog [GMHV04; MGP05; MV05; MV06]. Fuzzy Prolog is so expressive that
the syntax of its answers is represented using constraints, so a great amount of
information can be provided in a compact formula. Nevertheless, for the same
reason it is a notation difficult to understand for the potential users.

The removal of the the difficulties to understand the notation came from

page 107

5.3. FUZZY GRANULARITY CONTROL IN PARALLEL/DISTRIBUTED
COMPUTING

the combination of Prolog and RFuzzy to implement the cognitive layer in
RoboCupSoccer in [MH10]. The advantage with respect to former approaches
comes from the expressivity and simplicity of RFuzzy, that allows to represent
all information of the problem and, at the same time, provides understandable
results for the queries.

5.3 Fuzzy Granularity Control in Parallel/Dis-
tributed Computing

Any realistic approach to automatic program parallelization must take into
account practical issues related to the resource usage of parallel executions,
such as the overhead associated with parallel tasks creation, migration of tasks
to remote processors, and communication. The aim of granularity control
techniques is avoiding such overheads undermining the benefits of parallel
executions. For example, sufficient conditions have been proposed to ensure
that the parallel execution of some given tasks will not take longer that their
corresponding sequential execution. However, when the goal is to optimize the
average execution time of several runs, such conditions can be very conservative,
causing a loss in parallelization oportunities. Aimed at solving this problem,
T. Trigo de la Vega et al proposed in [TLM10; TLGMH10] novel conditions
based on fuzzy logic. The presentation of this conditions is accompanied by
an experimental assessment with real programs in which they show that such
conditions select the optimal type of execution in most cases and behave much
better than the conservative conditions.

5.4 FleSe (Flexible Searches in Databases)

Our starting point is assuming that it is nonsense to teach every search engine
user how to translate the (almost always) fuzzy query he/she has in his/her
mind into a query that a machine can understand and answer. FleSe is an user
friendly interface for the search engine provided by RFuzzy, with the capability
to evaluate the (possibly) fuzzy query against a database containing no fuzzy
information. By using it we can answer queries like “I want a restaurant close to
the center serving Mediterranean food or similar” from a database that contains
a list of restaurants with the distance of each one to the center (100 meters,
1000 meters, etc) and the food they serve (Mediterranean, Spanish, Italian,
etc) and some meta-information linking fuzzy and non-fuzzy information.

This work takes advantage of the improvements achieved in the theoretical

page 108

CHAPTER 5. REAL APPLICATION CASES

proposal of RFuzzy v.3 (Chapter. 4), as the inclusion of modifiers (even the
negation modifier), similarity between predicates, similarity between attributes,
etc.

5.4.1 Preliminaries

From the beginning the human being has tried to create machines with the
capability to understand the real world as he does and help him to carry out
tasks that he does not like to do. One of this tasks is searching in a set of
individuals which ones satisfy some condition, and the automatism created for
dealing with such task is called a search engine.

Most existing search engines are tools capable of performing only crisp
searches. Some examples are looking for the web pages containing some words
or looking for the flats whose price is not over a number we indicate. This
means that we (human beings) need to convert our (usually) fuzzy queries
into crisp ones, so the computer can look for the individuals satisfying it. Take,
for example, the query “I want cheap flats”. Since the computer does not
understand the meaning of “cheap” we need to change it by “I want flats with a
price lower than 200.000 e”. In our humble opinion, this necessity to defuzzify
the queries should be removed: existing search engines should allow the user
to pose fuzzy queries. This is the task we try to fulfill here: providing a fuzzy
(and non-fuzzy) search engine with an user-friendly interface. We enumerate
the most important difficulties found when carrying it out in the following
paragraphs.

The first one is that most of the times the information about the individuals
is stored in a non-structured way (for example web pages) instead of in a
structured one (databases, ontologies, or others). It is, instead of having the
possibility to retrieve 200.300 e as the price of the flat number 3 (the individual
id) we usually retrieve a string with the flat description (the flat is located in
Madrid, near Sol’s metro station, has three rooms and its price is 200.300 e).
As we see it, this one is easily solved by structuring the information and we do
not focus here on it.

The second one is that, when the individuals’ information is stored in an
structured way, it is most of the times crisp instead of fuzzy (for example
the flat’s price instead of the attributes “cheap”, “expensive” or others). We
could study the technical reasons for deciding to use a non-fuzzy database, but
there is at least a non-technical one which justifies it: the inherent subjective
character of fuzzy attributes. Take, for example, Victor’s height: 1’81 cm. There
is no problem in storing this crisp value (it is just a float number), but it is no
so easy if we try to store if Victor is “tall”, “very tall”, “no tall at all” or any

page 109

5.4. FLESE (FLEXIBLE SEARCHES IN DATABASES)

other fuzzy value, because it might not be true for all the people retrieving the
value from the database. Elsa, whose height is 1’41 cm, might consider him
very tall, while Andrew, whose height is 1’75, might consider him just tall.

The third one is a drawback of assuming that the database should store crisp
information: the retrieval is most of the times done in a crisp way. Suppose
a database with flats and their prices. If we enter a query for retrieving the
flats with a price lower than 200.000 e and there is a flat whose price is
200.300 e then it will not be retrieved, while it might be the one we are looking
for (Is 300 e enough money for considering the flat too expensive?). Since we
think that this should not be the case, we provide the possibility to navigate
through all the results, whether they satisfy the query or not.

The fourth one is caused by the fact that one has to decide between limiting
the user queries’ syntax or add to the system the capability to understand
queries in natural language. Regulating the queries’ syntax has pros and cons.
On the plus side we have the easy recognition of the query by the system. On
the down side, the result of writing the query using the syntactical structures
available is sometimes so complex that only a few human beings understand
it. By trying to provide a user-friendly interface we fall into the necessity of
recognizing the user query.

The recognition of the query has basically two parts: syntactic and semantic
recognition. The first one has to deal with the lexicographic form of the set of
words that compose the query and tries to find a query similar to the user’s one
but more commonly used. The objective with this operation is to pre-cache the
answers for the most common queries and return them in less time, although
sometimes it serves to remove typos in the user queries. An example of this is
replacing “cars”, “racs”, “arcs” or “casr” by “car”. The detection of words similar
to one in the query is called fuzzy matching and the decision to propose one
of them as the “good one” is based on statistics of usage of words and groups
of words. The search engines usually ask the user if he/she wants to change
the typed word(s) by this one(s). There are really interesting proposals for this
procedure, as the one proposed by Carvalho in [PC13].

The semantic recognition is work still in progress and it is sometimes called
“natural language processing”. In the past search engines were tools used to
retrieve the web pages containing the words typed in the query, but today
they tend to include capabilities to understand the user query. An example is
computing 4 plus 5 when the query is “4+5” or presenting a currency converter
when we write “euro dollar”. This is still far away from our proposal: retrieving
web pages containing “fast red cars” instead of the ones containing the words
“fast”, “red” and “car”. Our proposal can be seen as an hybrid between a search
engine doing semantic recognition and one not doing it. The tool we present

page 110

CHAPTER 5. REAL APPLICATION CASES

has an interface intelligent enough to know what queries the search engine
can answer, and it allows the user to build any of this queries with its human
oriented easy to use interface.

The fifth one has to be with how do we retrieve the individuals in the
database that satisfy the (fuzzy) conditions. Suppose a query like “I want a
restaurant close to the center”. If we assume that the computer is able to
“understand” the query then it will look for a set of restaurants in the database
satisfying it and return them as answer, but the database does not contain any
information about “close to the center”, just the “distance of a restaurant to
the center”. It needs to know the link between the concepts “distance to the
center” and “close to the center” and how to obtain the second from the first
one. As we will see, we allow to write this relations in the configuration file, so
the framework can use them for translating our fuzzy queries and executing
them against a non-fuzzy database.

The sixth (and last one) has to be with retrieving answers for a query in
which some characteristic we ask for must be taken into account, but not as a
restriction. Suppose we are looking for a bag to wear with a pair of shoes and a
dress, both of brown color. If we ask for a brown color bag and the individuals
in the database only have the color name (brown, red, orange, ...) the search
engine will only retrieve the brown bags, not the ones maroon, sienna, saddle
brown, chocolate, Peru, dark goldenrod, goldenrod, sandy brown, rosy brown,
tan, burly wood, wheat, navajo white, bisque, blanched almond or cornsilk.
By contrast, some of them might fit the request. An easy solution for solving
this problem, that works for examples like the previous one, is replacing the
attribute or characteristics by others that can be measured. For the previous
example we could replace the color names assigned to each individual by the
RGB (Red-Green-Blue) components of the color and translate the word “brown”
in the query by its RGB components. With this change any fuzzy search engine
could retrieve bags with a color similar to the one we are looking for as answers
for the query, but it does not work for all the attributes or characteristics we
know about. Suppose we want a Mediterranean food restaurant. This can not
be split into pieces, or we do not know how to do it in such a way that it keeps
its meaning. In this case we need to use a different tool: similarity.

Similarity, as we see it, is a relation between concepts that allows the search
engine to get as answers individuals that are removed from the results set if
we do not use it. There are some works in which the authors try to introduce
similarity in fuzzy logic, as the ones of Jia-Bing Wang, Zheng-Quan Xu and Neng-
Chao Wang [WXW02], Lluis Godo and Ricardo Oscar Rodriguez [GR99], Didier
Dubois and Henri Prade [DP95] and F. Esteva, P. Garcia, L. Godo, E. Ruspini
and L. Valverde [Est+94]. The main differences between our work and this ones

page 111

5.4. FLESE (FLEXIBLE SEARCHES IN DATABASES)

are (1) that we do not force the similarity relation to be reflexive, symmetric
and transitive, i.e., an equivalence relation. As some of they mention, forcing it
to be an equivalence relation is too restrictive for real-world applications. And
(2) that we do not try to measure the closeness (or similarity) between two
fuzzy propositions. Our work goes in the other direction: we take the similarity
value computed and return the elements considered to be similar to the one
we are looking for.

5.4.2 Comparison with other approaches

We include here a comparison of our work and some works we know about.
We divide them in three groups, one dedicated to tools for accessing regular
databases (databases with non-fuzzy information) in a fuzzy way, another
dedicated to information retrieval and a final one dedicated to providing easy-
to-use interfaces for providing fuzzy searches.

In the first group, tools for accessing regular databases (databases with
non-fuzzy information) in a fuzzy way, we mention SQLF, presented by P.
Bosc and O. Pivert [BP95], FQL, presented by Takahashi [Tak91], FIIS, pre-
sented by M. Zemankova [Zem89], FIRST, presented by D. Lucarella and
R. Morara [LM91] and the tool proposed by Chen and Jong [CJ97]. A very
good revision of this ones and some other proposals is the work of Herrera-
Viedma and López-Herrera [HVLH10]. Although maybe a little bit outdated, we
recommend the work of Leonid Tineo [Tin05] too. Most of this works focus in
improving the efficiency of the existing procedures, in including new syntactic
constructions, in allowing to introduce in the query that the system accepts the
conversion between the fuzzy values in the original query and the non-fuzzy
values needed to execute it or in improving the translation of the fuzzy query
into the SQL syntax (so any regular database can answer it).

In the second group, works focusing in information retrieval, we mention
the work of Ropero, Gómez, Carrasco and León [Rop+12], in which they
use a logic-based term weighting procedure to create an index for answering
queries, and the revision of works dedicated to information retrieval done by
Zadrożny [ZN09]. Most of the works mentioned in the revision and the one by
Ropero, Gómez, Carrasco and León focus in creating an index for answering
queries with enough information to answer any query, by using different term
weighting procedures (even logic-based ones). Once they have it the entered
query can be analyzed by using natural language processing or its syntax might
be reduced to a sometimes slightly complicated query syntax (it differs from
some works to others).

In the last group we have the works interested in providing an easy-to-use

page 112

CHAPTER 5. REAL APPLICATION CASES

interface. The work of Ribeiro and Moreira [RM03] goes in this line but we
think that it should not be considered a search engine project, since the natural
language interface they provide only answers queries of the types (1) does X
(some individual) have some fuzzy property, for example “Is it true that IBM is
productive?”, and (2) do an amount of elements have some fuzzy property, for
example “Do most companies in central Portugal have sales_profitability?”.

Our work is clearly a search engine, but we have given more weight to
provide an easy to use interface allowing the user to represent any query that
can be answered from the information available in the configuration file and
the database than to the generation of an index or to providing an efficient
mechanism for searching the database. It is clear that if we want to make it
usable with large amounts of data we will need to go in one of the directions (or
maybe both), but up to know we are more interested in providing the final user
with all the tools that he/she might need to ask a database the fuzzy queries
he/she has in mind. This is the reason why we do not even try to compare
response time nor resources consumption.

5.4.3 The Architecture of the FleSe Application

FleSe, Flexible Searches in Databases, is a web interface for querying the search
engine provided by RFuzzy. On one side the web interface is intelligent enough
to know the queries that the search engine can answer and presents the user
a form to introduce any of this queries. On the other one the search engine
allows to query a database about the concepts it stores in each column or about
the concepts defined in its configuration file, which can be fuzzy and non-fuzzy
concepts.

A picture paints a thousand words, so we start by a painting showing the
architecture of the application we have developed (Fig. 5.4.1). In Fig. 5.4.1 the
computer on the top symbolizes the application user. He connects via a web
browser, through the internet, to FleSe’s web interface. FleSe’s web interface is
an application written Java that runs on a Tomcat server, on a machine with
a Linux operating system. The Tomcat server listens to http(s) requests and,
when it receives one for the FleSe application, it redirects it to the Servlet in
the FleSe’s application in charge of processing and answering it. In order to
process and answer the request the Servlet evaluates what it is asking for and
decides whether it needs to call the core for answering it or not. When we
press the search button most of the times it calls the core, but if the query has
been posed recently it will use cached results to decrease the response time.

The core is RFuzzy, a Prolog program that reads a configuration file to (1)
determine to which database connect to (and how), (2) link multiple tables into

page 113

5.4. FLESE (FLEXIBLE SEARCHES IN DATABASES)

Internet

Configuration File

Database

WEB Interface

Core

Figure 5.4.1: Application’s architecture.

a virtual database table or get rid of columns with not needed information, (3)
give meaning to each column in the virtual database table and (4) add concepts
(fuzzy or not) to the list of concepts with which the user can build queries.

The four tasks performed by the core can be configured by modifying the
configuration file, and the syntax allowed by the core for each one of them
has been presented in Subsec. 4.2. Once the configuration file is chosen by
the user the web interface asks the core to load it. From this moment on
the web interface is fed by all the knowledge that the core extracts from the
configuration file and from the database it is told to connect to. In this way the
web interface is able to determine the queries that the core can answer and
provides the user with a form general enough to allow him to introduce any of
this queries. This produces on the final user the illusion of being working with
an intelligent interface, at the times that allowing him to introduce in an easy
and flexible way the query he has in mind.

page 114

CHAPTER 5. REAL APPLICATION CASES

5.4.4 Example of Usage of The Framework User Interface

The framework user interface gets a lot of information from the framework
core, providing the final user an interface “intelligent” enough to allow him to
perform any query that the framework can answer.

Suppose, for example, that we are looking for a restaurant near the city
center and with a menu price under 25 e. To get the answers to our query we
start choosing the configuration file (or program) that contains the information
needed to connect to the database with information about restaurants and how
to fuzzify it, “db_leisure” (Fig. 5.4.2).

It is worth to highlight that FleSe offers the possibility to have multiple
configuration files, so developers can have multiple environments for the user
queries. This is very interesting from at least two different points of view. The
first, to have a configuration file under testing at the same time that we have a
configuration file in production. The second, to have different environments
for the queries. Maybe we have different databases and we want to perform
our queries to each one of them. We could use different names to distinguish
them (car_db_1, car_db_2) but we think that it has more sense to have different
configuration files ans keep the original object name (car). Each time we
upload a configuration file in FleSe it is added to the list of the available ones,
becoming available for the final users. We show in Fig. 5.4.2 the available ones.

Figure 5.4.2: Select configuration file dialog.

After that we select what are we looking for (a restaurant this time,
Fig. 5.4.3).

Now we can enter the restrictions with which we want the search engine
to filter the results. To do it the interface presents us a combo with the fuzzy
and non-fuzzy attributes available and a plus sign to the right of the combo
(Fig. 5.4.4). The attributes are the names we give to the columns by using
the construction in Eq. 4.2.9 and the fuzzy predicates defined by using the

page 115

5.4. FLESE (FLEXIBLE SEARCHES IN DATABASES)

Figure 5.4.3: Choosing what we are looking for.

constructions in Eqs. 4.2.14, 4.2.22, 4.2.24, 4.2.27, 4.2.28, 4.2.30 and 4.2.32.1

The plus sign serves to add more conditions to the query (it only has one
line at the beginning) and the “show options” label can be used to change
the connective used to combine the truth values from minimum to product,
Łukasiewicz or any other one (Figs. 5.4.5 and 5.4.6). If the connective required
is not one of the previously mentioned then it needs to be previously defined in
the framework using the syntax in Eq. 4.2.37.

Figure 5.4.4: The available attribute(s) for writing the query.

After choosing an attribute the user interface interacts with the framework
core and determines if the attribute selected is fuzzy or not. In case the predicate
is fuzzy it shows to its left two combos, one for choosing (or not) a negation
modifier and the other one for choosing (or not) a modifier (Fig. 5.4.7), while
if it is a non-fuzzy one it shows a combo for selecting a comparison operator
and, depending on the operator selected, a combo with the available values or
a free text field for entering a value (Fig. 5.4.8).

1It is worth to remark that we can use multiple sentences to define a fuzzy predicate and it

page 116

CHAPTER 5. REAL APPLICATION CASES

Figure 5.4.5: Available options when pressing “show options”.

Figure 5.4.6: Available connectives to combine the subqueries results.

Figure 5.4.7: Available modifiers for the fuzzy attribute.

By using the combos and the text fields shown we can enter the query we
had in mind, as can be seen in Fig. 5.4.9. After posing the query and pressing
the button labelled “search” the search engine shows the query results grouped
in five tabs: “10 best results”, “results over 70%”, “results over 50%”, “results

will appear only one time in the list of attributes.

page 117

5.4. FLESE (FLEXIBLE SEARCHES IN DATABASES)

Figure 5.4.8: Available comparison operators for the non-fuzzy attribute.

over 0%” and “all results”. This allows the user to navigate through all the
results, even if they do not satisfy the query at all. We show in Fig. 5.4.10
the results for the query entered in Fig. 5.4.9. The data in the first column
corresponds to the information in the virtual database table. The user can
choose between seeing it or not.

Figure 5.4.9: Query example.

Figure 5.4.10: Answers returned for the query example in Fig. 5.4.9

In case the fuzzification functions defined in the configuration file do not
suit our expectations, we can personalize them using the button “Personalize

page 118

CHAPTER 5. REAL APPLICATION CASES

Program File”. This mechanism allows to personalize how the framework
translates the non-fuzzy attributes stored in the database into the fuzzy ones
used for querying the database. When pressing the button the interface shows
a pop-up window (Fig.5.4.11) in which it asks the user which fuzzy predicate
he wants to personalize and his preferences for the fuzzification of the values
stored in the database.

Figure 5.4.11: Selection of the fuzzy attribute the user wants to personalize
and introduction of the user definition

5.5 Chapter final notes

As has been show in this chapter, RFuzzy is not just a theoretical framework. It
is a framework with theoretical background (it has declarative and operational
semantics) which can be used in practice to manage fuzziness.

Almost each day somebody ask us if RFuzzy could be used for implementing
this or that idea they have in mind. We have been encouraged to use it in fields
like the semantic web, robot control or non-crisp compilation decisions. In
Sec. 6.2 we mention some of them in which we are working now.

Before this section ends we want to highlight again that the source code of
RFuzzy is available for downloading at [PC15d]. The one of FleSe at [PC15b]
and there is a running version of FleSe available at [PC15a]. Extra material can
be found in [PC15c], as interviews, presentation slides, or usage manuals.

page 119

Chapter 6

Conclusions

It is a reality that we, as human beings, understand the world as a fuzzy entity.
The cinema is far, and it is even strange to hear that you have to drive ten
kilometers to go there. It is far. This is all we say. Representing it in the way
we understand it (and not as a machine needs to proceed to behave and return
the answers we want) was an existing necessity. We present here a framework
that allows to represent relations between fuzzy and non-fuzzy concepts in a
syntax very close to the human way of thinking. As far as we know, it is the first
time that a work on extending the expressiveness of fuzzy languages includes
together the large amount of extensions that we have included here.

The work we have presented is the result of a very fertile research. We have
published our results in a workshop, ([PCMHS08]), eight conferences ([MH-
PCS09; PCMH11; PCMH14b; PCMH14c; PCMH14d; PCMH14e; PCSMH09;
SMHPC09]. and a journal paper ([MHPCS11]) and we have sent a second
journal paper that we expect to be published soon ([PCMH15]).

Besides, both the RFuzzy framework and some of the applications developed
using it have had a lot of impact. An American university ([Duk15]) was trying
to determine if the emotion of a CEO CFO, manager, analyst, ... could affect
the stock market and they took ideas from RFuzzy for their proposal. An
Spanish company ([Inn12]) was interested in using RFuzzy as we do it in FleSe
(see Sec. 5.4), to represent fuzzy concepts and translate fuzzy queries into
queries that can be run against a non-fuzzy database. Between the applications
developed using the RFuzzy framework (we have presented some of them
in Chapter. 5), some companies ([Emo12; Mar15]) showed interest for the
emotion recognition application presented by Farooque and Muñoz-Hernández.
More details are provided in Sec. 5.1.

The work presented here can be seen as the sum of three parts. The first
one is in chapter 2 and is a serious attempt to provide an useful tool for
modelling real world problems and applying fuzzy reasoning to them. It is a

page 121

very expressive tool with a simple syntax that makes it adequate for modelling
real application cases. Some of its characteristics are representation of default
(and conditional default) values, types and syntax for functions and (continuous
and discrete) rules. This initial version of RFuzzy comes with formal declarative
semantics (Section 2.2) along with a soundness and completeness result that
links operational and declarative semantics.

The second part of the work (chapter 3) is in which we increased the
expressiveness of the language by introducing the usage of a real number
between zero and one (included) for encoding the priority. In the first part
(chapter 2) RFuzzy uses three symbols for encoding it (N, � and H) and this
is sometimes not enough (mainly when we have more than three rules giving
answers to our query and we want to assign them more than three different
priority values). Priorities are used to define which rule is the one that we will
use to get results to our query, a facility whose most important use is allowing
to define personalized rules. Personalized rules allow the final user to reuse
existing programs while modifying the parts whose behaviour they do not
want. This gets the development of fuzzy logic programs a little bit closer to
the human way of thinking, where the use of priorities is a reality. Take, for
example, the rule saying “if it is late, go to the bed”. This rule applies when you
live with your parents but, if you live on your own, you can forget it or change
its priority. You assign a different priority to the rule. In this part we also provide
syntax, semantics and proofs between declarative and operational semantics.

In the third part (chapter 4) we have presented the most recent version
of RFuzzy, in which the expressiveness has been increased even more. One
of the improvements has been including the possibility to link non-fuzzy
information stored in a database with fuzzy information, offering the final user
the possibility to pose fuzzy and non-fuzzy queries in almost natural language
against non-fuzzy databases. The other ones can be clustered in two groups. In
the first one we include the capability to increase the number of connectives
and modifiers available for developing. In the second one we have the new
constructions included for modelling fuzzy concepts (Sec. 4.2), which allow to:

• define fuzzy concepts from synonyms (unexpensive from cheap) or
antonyms (expensive from unexpensive),

• define the similarity between two non-fuzzy characteristics (Mediter-
ranean restaurant similar to Spanish restaurant), allowing to ask for the
individuals having a characteristic similar to the one we are looking for
(I want a Mediterranean restaurant or similar),

• use modifiers (i.e. quite, rather, very, very much, little, much, hardly, ...),
even the negation modifier.

page 122

CHAPTER 6. CONCLUSIONS

The syntax goes, as usually, with their informal, declarative and operational
semantics and proofs of soundness and completeness between the last two. In
this part the semantics are much more interesting than in the previous ones
due to the inclusion of negation modifiers.

In Chapter 5 we present some of the applications developed using RFuzzy.
Although the more attractive one is the Emotion Recognition application (see
Sec. 5.1) the one that benefits more from the improvements done to improving
the expressiveness of fuzzy languages is FleSe (see Sec. 5.4). FleSe (Flexible
Searches in databases) is a web interface for querying a fuzzy search engine
over conventional (non-fuzzy) databases. The main difference with respect to
other approaches is that FleSe does not provide a complex syntax for querying
the database nor a free text area field to enter the query. It evaluates the
information in the configuration file and in the database to determine all the
possible queries that a user can perform and provides a form to enter any of this
queries. The queries can be fuzzy and we can even ask for the individuals in the
database having some attribute with a value similar to the one we are looking
for, which makes the combination of FleSe and RFuzzy a really useful tool
for modelling any scenario and providing the final user with a search engine
intelligent enough to help him pose any of the queries that the framework can
solve.

In a nutshell, the combination of FleSe and RFuzzy

i) provides a user-friendly interface to query the search engine in almost
natural language,

ii) takes advantage of the information structured in databases, but allowing
the user to pose fuzzy and flexible queries,

iii) allows to define fuzzy concepts by using

• non-fuzzy information stored in databases

• other fuzzy concepts (using rules, synonyms and/or antonyms)

• fixed values written in configuration files

• default values (to solve the problem of missing information)

iv) allows to define similarity between the attributes stored in a database,
allowing to ask for individuals with an attribute similar to the one we are
looking for.

v) allows to define connectives (as product or minimum) and modifiers (as
little, very, very much, etc), including negation modifiers (as not), and use
them in the rules and in the queries,

page 123

6.1. ABOUT THE AUTHORSHIP OF THE CONTENTS

vi) allows to personalize the definition of the relations between the crisp
information in databases and the fuzzy concepts we need to perform fuzzy
queries, even from the web interface.

At last, the but not least important than the previous, it is worth to highlight
that the applications developed are free software. The source code of RFuzzy is
available for downloading at [PC15d]. The one of FleSe at [PC15b] and there
is a (beta) running version of FleSe available at [PC15a] This version of Flese
allows to upload any configuration file and test the facilities it provides1 and
uses any open authentication provider (google, facebook, ...) for authentication
purposes, so it does not require users to create accounts for using it. It can
connect to any database and use it, being its only requisite for testing to upload
and/or choose an existing configuration file written in the syntax explained in
Sec. 4.2.

6.1 About the authorship of the contents

The work here presented is composed by the work of multiple people. Some-
times they collaborated with PhD. Candidate Victor Pablos Ceruelo, sometimes
with Dr. Susana Muñoz Hernández and sometimes with both. In this section
we make clear each one of the situations.

The works [MHPCS09; MHPCS11; PCMHS08; PCSMH09; SMHPC09] were
the result of a very fertile collaboration with now Dr. Hannes Straß. In this
collaboration Dr. Hannes Straß worked in the development of the semantics
of RFuzzy while PhD. Candidate Victor Pablos Ceruelo worked in the syntax
and its practical implementation. Nevertheless, Sec. 2.4 (a section about the
link between RFuzzy semantics and the multi-adjoint semantics) corresponds
to PhD. Candidate Victor Pablos Ceruelo.

In Sec.5.1 Sec.5.2 and Sec.5.3 we describe results obtained by Dr. Susana
Muñoz Hernández, some times working alone and some others with some
other researcher(s). Their work appears here to highlight that the work of
PhD. Candidate Victor Pablos Ceruelo is much more than just a theoretical
framework.

Chapter. 3, Chapter. 4 and Sec. 5.4 have been developed by the author of
this thesis, under the supervision of Dr. Susana Muñoz Hernández.

1Please remember that the databases need to be publicly available. If not, FleSe will not
be able to retrieve answers for the queries. For testing purposes you can export the database
contents, copy them into a configuration file (in the proper syntax) and replace the database
declaration lines by the corresponding lines.

page 124

CHAPTER 6. CONCLUSIONS

6.2 Current Work

We are today working in different directions.

• In the inclusion of new connectives and modifiers, as the “all the more as”
connective presented by Bosc and Pivert [BP11] or the “and possibly” of
Bordogna and Pasi [BP94]. We are interested too in type II modifiers (see
Subsec. 4.2 or Zadeh’s paper [Zad72]).

• In the inclusion of an editor in FleSe for the configuration files, allowing
to do it directly from the web interface. In this way we want to remove
the necessity to use a Ciao Prolog [Bue+97] source code editor for that
purpose.

• In the connection of FleSe to information stored in ontologies, to get not
only data (as we do with databases) but relations between concepts.

• In automatic learning the fuzzy function definition from the personaliza-
tions introduced by the users in FleSe, so the ones provided by us are
more close to the subset of users that use our application.

• In the improvement of the efficiency of our search engine by using some
of the mechanisms revised in Subsec. 5.4.2.

page 125

Bibliography

[AMM07] J. M. Abietar, P. J. Morcillo, and G. Moreno. “Designing a Soft-
ware Tool for Fuzzy Logic Programming”. In: Computational
Methods in Science and Engineering. Ed. by G. Maroulis & T. E.
Simos. Vol. 963. American Institute of Physics Conference Series.
Dec. 2007, pp. 1117–1120. DOI: 10.1063/1.2835940 (cit. on
p. 15).

[AC73] Philippe Roussel et Robert Pasero Alain Colmerauer Henry
Kanoui. Un système de communication homme-machine en
Français (rapport de recherche). Tech. rep. Marseille, France:
Universite Aix-Marseille II, 1973. URL: http://alain.colmerauer.
free.fr/ (cit. on p. 8).

[AP95] Anastasia Analyti and Sakti Pramanik. “Reliable Semantics for
Extended Logic Programs with Rule Prioritization.” In: J. Log.
Comput. (1995), pp. 303–324 (cit. on pp. 55, 84).

[BMP95] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril- Fuzzy and
Evidential Reasoning in Artificial Intelligence. New York, NY, USA:
John Wiley & Sons, Inc., 1995. ISBN: 047195523X (cit. on p. 14).

[BR01] Stefano Bistarelli and Francesca Rossi. “Semiring-based con-
straint logic programming: syntax and semantics”. In: ACM Trans.
Program. Lang. Syst. 23.1 (2001), pp. 1–29. ISSN: 0164-0925.
DOI: http://doi.acm.org/10.1145/383721.383725 (cit. on
p. 14).

[BS08] Fernando Bobillo and Umberto Straccia. “fuzzyDL: An Expres-
sive Fuzzy Description Logic Reasoner”. In: 2008 International
Conference on Fuzzy Systems (FUZZ-08). IEEE Computer Society,
2008, pp. 923–930 (cit. on p. 14).

[BP94] Gloria Bordogna and Gabriella Pasi. “A fuzzy query language
with a linguistic hierarchical aggregator”. In: Proceedings of the
1994 ACM symposium on Applied computing. SAC ’94. Phoenix,

page 127

http://dx.doi.org/10.1063/1.2835940
http://alain.colmerauer.free.fr/
http://alain.colmerauer.free.fr/
http://dx.doi.org/http://doi.acm.org/10.1145/383721.383725

BIBLIOGRAPHY

Arizona, USA: ACM, New York (NY), USA, 1994, pp. 184–187.
ISBN: 0-89791-647-6. DOI: 10.1145/326619.326693. URL: http:
//doi.acm.org/10.1145/326619.326693 (cit. on p. 125).

[BP12] Stefan Borgwardt and Rafael Peñaloza. “Non-Gödel negation
makes unwitnessed consistency undecidable”. In: Proceedings of
the 25th International Workshop on Description Logics (DL’2012).
2012 (cit. on p. 82).

[BP95] P. Bosc and O. Pivert. “SQLf: a relational database language
for fuzzy querying”. In: Fuzzy Systems, IEEE Transactions on 3.1
(1995), pp. 1 –17. ISSN: 1063-6706. DOI: 10.1109/91.366566
(cit. on p. 112).

[BP11] P. Bosc and O. Pivert. “On a strengthening connective for flexible
database querying”. In: Fuzzy Systems (FUZZ), 2011 IEEE Inter-
national Conference on. 2011, pp. 1233–1238. DOI: 10.1109/
FUZZY.2011.6007308 (cit. on p. 125).

[Bue+97] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-
García, and G. Puebla. The Ciao Prolog System. Reference
Manual. Tech. rep. CLIP3/97.1. System and manual at
http://www.cliplab.org/Software/Ciao/. School of
Computer Science, Technical University of Madrid (UPM), 1997
(cit. on p. 125).

[CJ97] Shyi-Ming Chen and Woei-Tzy Jong. “Fuzzy query translation for
relational database systems”. In: Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on 27.4 (1997), pp. 714–
721. ISSN: 1083-4419. DOI: 10 .1109/3477.604117 (cit. on
p. 112).

[CK04] Martine De Cock and Etienne E. Kerre. “Fuzzy modifiers based
on fuzzy relations”. In: Information Sciences 160.1–4 (2004),
pp. 173 –199. ISSN: 0020-0255. DOI: http://dx.doi.org/10.
1016/j.ins.2003.09.002. URL: http://www.sciencedirect.com/
science/article/pii/S0020025503002974 (cit. on p. 66).

[Col70] Alain Colmerauer. Les systèmes Q ou un formalisme pour analyser
et synthétiser des phrases sur ordinateur. Mimeo, Montréal, 1970.
URL: http://alain.colmerauer.free.fr/ (cit. on p. 7).

[CR93] Alain Colmerauer and Philippe Roussel. “The birth of Prolog”.
In: SIGPLAN Not. 28 (3 1993), pp. 37–52. ISSN: 0362-1340.
DOI: http://doi.acm.org/10.1145/155360.155362. URL: http:
//doi.acm.org/10.1145/155360.155362 (cit. on p. 11).

page 128

http://dx.doi.org/10.1145/326619.326693
http://doi.acm.org/10.1145/326619.326693
http://doi.acm.org/10.1145/326619.326693
http://dx.doi.org/10.1109/91.366566
http://dx.doi.org/10.1109/FUZZY.2011.6007308
http://dx.doi.org/10.1109/FUZZY.2011.6007308
http://dx.doi.org/10.1109/3477.604117
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2003.09.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2003.09.002
http://www.sciencedirect.com/science/article/pii/S0020025503002974
http://www.sciencedirect.com/science/article/pii/S0020025503002974
http://alain.colmerauer.free.fr/
http://dx.doi.org/http://doi.acm.org/10.1145/155360.155362
http://doi.acm.org/10.1145/155360.155362
http://doi.acm.org/10.1145/155360.155362

BIBLIOGRAPHY

[DP00] Carlos Viegas Damásio and Luís Moniz Pereira. “Hybrid Prob-
abilistic Logic Programs as Residuated Logic Programs”. In:
Proceedings of the European Workshop on Logics in Artificial Intel-
ligence. JELIA ’00. London, UK: Springer-Verlag, 2000, pp. 57–72.
ISBN: 3-540-41131-3. URL: http://portal.acm.org/citation.cfm?
id=646332.687616 (cit. on pp. 18, 58).

[DP01] Carlos Viegas Damásio and Luís Moniz Pereira. “Monotonic and
Residuated Logic Programs”. In: Proceedings of the 6th European
Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty. ECSQARU ’01. London, UK: Springer-Verlag,
2001, pp. 748–759. ISBN: 3-540-42464-4. URL: http://portal.
acm.org/citation.cfm?id=646564.696073 (cit. on pp. 18, 58).

[DST03] James P. Delgrande, Torsten Schaub, and Hans Tompits. “A
framework for compiling preferences in logic programs”. In:
Theory Pract. Log. Program. 3 (2 2003), pp. 129–187. ISSN: 1471-
0684. DOI: 10.1017/S1471068402001539. URL: http://portal.
acm.org/citation.cfm?id=986825.986826 (cit. on pp. 55, 84).

[DPP96] Jürgen Dix, Luís Moniz Pereira, and Teodor C. Przymusinski.
“Prolegomena to Logic Programming for Non-monotonic Rea-
soning”. In: Non-Monotonic Extensions of Logic Programming,
NMELP ’96, Bad Honnef, Germany, September 5-6, 1996, Selected
Papers. Ed. by Jürgen Dix, Luís Moniz Pereira, and Teodor C.
Przymusinski. Vol. 1216. Lecture Notes in Computer Science.
Springer, 1996, pp. 1–36. ISBN: 3-540-62843-6. DOI: 10.1007/
BFb0023799. URL: http://dx.doi.org/10.1007/BFb0023799 (cit.
on p. 94).

[DP95] Didier Dubois and Henri Prade. “Comparison of two fuzzy set-
based logics: similarity logic and possibilistic logic”. In: Fuzzy
Systems, 1995. International Joint Conference of the Fourth IEEE
International Conference on Fuzzy Systems and The Second Inter-
national Fuzzy Engineering Symposium., Proceedings of 1995 IEEE
Int. Vol. 3. 1995, pp. 1219–1226. DOI: 10.1109/FUZZY.1995.
409838 (cit. on p. 111).

[Duk15] Duke University. Duke University site. [Online; accessed March
23, 2015]. 2015. URL: http://www.duke.edu/ (cit. on p. 121).

[Emo14] Emotient. Emotient Announces Private Beta For “Sentiment Anal-
ysis” Glassware For Google Glass. [Online; accessed March 23,
2015]. 2014. URL: http://54.148.116.96/about/press/emotient-

page 129

http://portal.acm.org/citation.cfm?id=646332.687616
http://portal.acm.org/citation.cfm?id=646332.687616
http://portal.acm.org/citation.cfm?id=646564.696073
http://portal.acm.org/citation.cfm?id=646564.696073
http://dx.doi.org/10.1017/S1471068402001539
http://portal.acm.org/citation.cfm?id=986825.986826
http://portal.acm.org/citation.cfm?id=986825.986826
http://dx.doi.org/10.1007/BFb0023799
http://dx.doi.org/10.1007/BFb0023799
http://dx.doi.org/10.1007/BFb0023799
http://dx.doi.org/10.1109/FUZZY.1995.409838
http://dx.doi.org/10.1109/FUZZY.1995.409838
http://www.duke.edu/
http://54.148.116.96/about/press/emotient-announces-private-beta-for-sentiment-analysis-glassware-for-google-glass/
http://54.148.116.96/about/press/emotient-announces-private-beta-for-sentiment-analysis-glassware-for-google-glass/

BIBLIOGRAPHY

announces-private-beta-for-sentiment-analysis-glassware-for-
google-glass/ (cit. on p. 106).

[Emo12] Emotion Explorer Lab. Emotion Explorer Lab site. [Online;
accessed October 14, 2012]. 2012. URL: http : / / www .
emotionexplorerlab.com/ (cit. on pp. 106, 121).

[Est+94] F. Esteva, P. Garcia, L. Godo, E. Ruspini, and L. Valverde. “On
similarity logic and the generalized modus ponens”. In: Fuzzy
Systems, 1994. IEEE World Congress on Computational Intelli-
gence., Proceedings of the Third IEEE Conference on. 1994, 1423–
1427 vol.2. DOI: 10.1109/FUZZY.1994.343609 (cit. on p. 111).

[Est+00] Francesc Esteva, Lluís Godo, Petr Hájek, and Mirko Navara.
“Residuated fuzzy logics with an Involutive Negation”. In: Archive
for Mathematical Logic 39.2 (2000), pp. 103–124. DOI: 10 .
1007/s001530050006. eprint: http://dx.doi.org/10.1007/
s001530050006. URL: http://link.springer.com/article/10.1007\
%2Fs001530050006 (cit. on p. 82).

[FM09] Mahfuza Farooque and Susana Muñoz-Hernández. “Easy Fuzzy
Tool for Emotion Recognition: Prototype from Voice Speech
Analisys”. In: Proceeding of ICFC 2009 - First International Con-
ference on Fuzzy Computation. Ed. by J. Kacprzyk J. Filipe and
A. Dourado. Madeira, Portugal: INSTICC Press, 2009 (cit. on
p. 105).

[FM06] Tommaso Flaminio and Enrico Marchioni. “T-norm-based logics
with an independent involutive negation”. In: Fuzzy Sets and
Systems 157.24 (2006), pp. 3125 –3144. ISSN: 0165-0114. DOI:
http://dx.doi.org/10.1016/j.fss.2006.06.016. URL: http://www.
sciencedirect.com/science/article/pii/S016501140600265X (cit.
on p. 82).

[Fra15] Fraunhofer IIS. SHORE Google Glass app. [Online; accessed
March 23, 2015]. 2015. URL: http://www.iis.fraunhofer.de/en/
ff/bsy/tech/bildanalyse/shore-gesichtsdetektion.html (cit. on
p. 106).

[GR99] Lluis Godo and Ricardo Oscar Rodriguez. “A Fuzzy Modal Logic
for Similarity Reasoning”. In: Fuzzy Logic and Soft Computing.
Ed. by Kai-Yuan Cai Guoqing Chen Mingsheng Ying. Kluwer Aca-
demic, 1999. URL: http://publicaciones.dc.uba.ar/Publications/
1999/GR99 (cit. on p. 111).

page 130

http://54.148.116.96/about/press/emotient-announces-private-beta-for-sentiment-analysis-glassware-for-google-glass/
http://54.148.116.96/about/press/emotient-announces-private-beta-for-sentiment-analysis-glassware-for-google-glass/
http://54.148.116.96/about/press/emotient-announces-private-beta-for-sentiment-analysis-glassware-for-google-glass/
http://www.emotionexplorerlab.com/
http://www.emotionexplorerlab.com/
http://dx.doi.org/10.1109/FUZZY.1994.343609
http://dx.doi.org/10.1007/s001530050006
http://dx.doi.org/10.1007/s001530050006
http://dx.doi.org/10.1007/s001530050006
http://dx.doi.org/10.1007/s001530050006
http://link.springer.com/article/10.1007\%2Fs001530050006
http://link.springer.com/article/10.1007\%2Fs001530050006
http://dx.doi.org/http://dx.doi.org/10.1016/j.fss.2006.06.016
http://www.sciencedirect.com/science/article/pii/S016501140600265X
http://www.sciencedirect.com/science/article/pii/S016501140600265X
http://www.iis.fraunhofer.de/en/ff/bsy/tech/bildanalyse/shore-gesichtsdetektion.html
http://www.iis.fraunhofer.de/en/ff/bsy/tech/bildanalyse/shore-gesichtsdetektion.html
http://publicaciones.dc.uba.ar/Publications/1999/GR99
http://publicaciones.dc.uba.ar/Publications/1999/GR99

BIBLIOGRAPHY

[Gol96] Benjamin Goldberg. “Functional programming languages”. In:
ACM Comput. Surv. 28.1 (Mar. 1996), pp. 249–251. ISSN: 0360-
0300. DOI: 10.1145/234313.234414. URL: http://doi.acm.org/
10.1145/234313.234414 (cit. on p. 6).

[Got01] Siegfried Gottwald. A Treatise on Many-Valued Logics. Vol. 9.
Studies in Logic and Computation. Research Studies Press, 2001
(cit. on p. 14).

[Got05] Siegfried Gottwald. “Mathematical fuzzy logic as a tool
for the treatment of vague information”. In: Information
Sciences 172.1-2 (2005), pp. 41 –71. ISSN: 0020-0255. DOI:
DOI : 10 . 1016 / j . ins . 2005 . 02 . 004. URL: http : / / www.
sciencedirect . com/science/article /B6V0C - 4FNN9YV- 1/2/
17326222f60ffd6f67401986f00adfc6 (cit. on p. 14).

[Gre69] Cordell Green. “Theorem-proving by resolution as a basis for
question-answering systems, in”. In: Machine Intelligence, B.
Meltzer and D. Michie, eds (1969), pp. 183–205 (cit. on p. 7).

[GMHV04] S. Guadarrama, Susana Muñoz-Hernández, and C. Vaucheret.
“Fuzzy Prolog: a new approach using soft constraints propaga-
tion”. In: Fuzzy Sets and Systems (FSS) 144.1 (2004). Possibilis-
tic Logic and Related Issues, pp. 127 –150. ISSN: 0165-0114.
DOI: DOI :10 .1016/ j . fss . 2003 .10 .017. URL: http : //www.
sciencedirect . com / science / article / B6V05 - 49YH3XJ - C / 2 /
77e1ea993165ce225e7a954dc324a92e (cit. on pp. 14, 15, 107).

[HVLH10] E. Herrera-Viedma and A.G. López-Herrera. “A Review on Infor-
mation Accessing Systems Based on Fuzzy Linguistic Modelling”.
In: International Journal of Computational Intelligence Systems
3.4 (2010), pp. 420–437. DOI: 10 . 1080 / 18756891 . 2010 .
9727711. eprint: http://www.tandfonline.com/doi/pdf/10.
1080/18756891.2010.9727711. URL: http://www.tandfonline.
com / doi / abs / 10 . 1080 / 18756891 . 2010 . 9727711 (cit. on
p. 112).

[Inn12] Innovation4Information. Innovation4Information site. [Online;
accessed October 14, 2012]. 2012. URL: http : / / www .
innovation4information.com/ (cit. on p. 121).

[IK85] Mitsuru Ishizuka and Naoki Kanai. “Prolog-ELF incorporating
fuzzy logic”. In: IJCAI’85: Proceedings of the 9th international
joint conference on Artificial intelligence. Los Angeles, California:
Morgan Kaufmann Publishers Inc., 1985, pp. 701–703. ISBN: 0-
934613-02-8, 978-0-934-61302-6 (cit. on p. 14).

page 131

http://dx.doi.org/10.1145/234313.234414
http://doi.acm.org/10.1145/234313.234414
http://doi.acm.org/10.1145/234313.234414
http://dx.doi.org/DOI: 10.1016/j.ins.2005.02.004
http://www.sciencedirect.com/science/article/B6V0C-4FNN9YV-1/2/17326222f60ffd6f67401986f00adfc6
http://www.sciencedirect.com/science/article/B6V0C-4FNN9YV-1/2/17326222f60ffd6f67401986f00adfc6
http://www.sciencedirect.com/science/article/B6V0C-4FNN9YV-1/2/17326222f60ffd6f67401986f00adfc6
http://dx.doi.org/DOI: 10.1016/j.fss.2003.10.017
http://www.sciencedirect.com/science/article/B6V05-49YH3XJ-C/2/77e1ea993165ce225e7a954dc324a92e
http://www.sciencedirect.com/science/article/B6V05-49YH3XJ-C/2/77e1ea993165ce225e7a954dc324a92e
http://www.sciencedirect.com/science/article/B6V05-49YH3XJ-C/2/77e1ea993165ce225e7a954dc324a92e
http://dx.doi.org/10.1080/18756891.2010.9727711
http://dx.doi.org/10.1080/18756891.2010.9727711
http://www.tandfonline.com/doi/pdf/10.1080/18756891.2010.9727711
http://www.tandfonline.com/doi/pdf/10.1080/18756891.2010.9727711
http://www.tandfonline.com/doi/abs/10.1080/18756891.2010.9727711
http://www.tandfonline.com/doi/abs/10.1080/18756891.2010.9727711
http://www.innovation4information.com/
http://www.innovation4information.com/

BIBLIOGRAPHY

[JGM07] Bharat Jayaraman, Kannan Govindarajan, and Surya Man-
tha. Logic Programming with Preferences and Constraints.
http://www.scientificcommons.org/42844415, 2007. URL: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.
33.462 (cit. on pp. 55, 84).

[Jon87] C. B. Jones. “Program specification and verification in VDM”.
In: Proceedings of the NATO Advanced Study Institute on Logic
of programming and calculi of discrete design. Marktoberdorf,
Germany: Springer-Verlag New York, Inc., 1987, pp. 149–184.
ISBN: 0-387-18003-6. URL: http://dl.acm.org/citation.cfm?id=
42675.42682 (cit. on p. 6).

[Jon90] Cliff B. Jones. Systematic software development using VDM (2nd
ed.) Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1990. ISBN:
0-13-880733-7 (cit. on p. 6).

[JMP05] Pascual Julián, Ginés Moreno, and Jaime Penabad. “On fuzzy
unfolding: A multi-adjoint approach”. In: Fuzzy Sets and
Systems 154.1 (2005), pp. 16 –33. ISSN: 0165-0114. DOI:
DOI : 10 . 1016 / j . fss . 2005 . 03 . 013. URL: http : / / www.
sciencedirect . com / science / article / B6V05 - 4G1G93S - 4 / 2 /
15299df2b9433e8cf410a0c48a97f249 (cit. on pp. 14, 46).

[Jul+09] Pascual Julián, Jesús Medina, Ginés Moreno, and Manuel Ojeda-
Aciego. “Thresholded Tabulation in a Fuzzy Logic Setting”. In:
Electronic Notes in Theoretical Computer Science 248.0 (2009).
Proceedings of the Eighth Spanish Conference on Programming
and Computer Languages (PROLE 2008), pp. 115 –130. ISSN:
1571-0661. DOI: http://dx.doi.org/10.1016/j.entcs.2009.07.
063. URL: http://www.sciencedirect.com/science/article/pii/
S1571066109002862 (cit. on p. 83).

[Jul+11] Pascual Julián, Jesús Medina, Pedro J. Morcillo, Ginés Moreno,
and Manuel Ojeda-Aciego. “A Static Preprocess for Improving
Fuzzy Thresholded Tabulation.” In: IWANN (2). Ed. by Joan
Cabestany, Ignacio Rojas, and Gonzalo Joya. Vol. 6692. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011,
pp. 429–436 (cit. on p. 83).

[KK94] F. Klawonn and R. Kruse. “A Łukasiewicz logic based Prolog”. In:
Mathware & Soft Computing 1.1 (1994), pp. 5–29. URL: citeseer.
nj.nec.com/227289.html (cit. on p. 14).

page 132

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.33.462
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.33.462
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.33.462
http://dl.acm.org/citation.cfm?id=42675.42682
http://dl.acm.org/citation.cfm?id=42675.42682
http://dx.doi.org/DOI: 10.1016/j.fss.2005.03.013
http://www.sciencedirect.com/science/article/B6V05-4G1G93S-4/2/15299df2b9433e8cf410a0c48a97f249
http://www.sciencedirect.com/science/article/B6V05-4G1G93S-4/2/15299df2b9433e8cf410a0c48a97f249
http://www.sciencedirect.com/science/article/B6V05-4G1G93S-4/2/15299df2b9433e8cf410a0c48a97f249
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2009.07.063
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2009.07.063
http://www.sciencedirect.com/science/article/pii/S1571066109002862
http://www.sciencedirect.com/science/article/pii/S1571066109002862
citeseer.nj.nec.com/227289.html
citeseer.nj.nec.com/227289.html

BIBLIOGRAPHY

[Kle52] Stephen Cole Kleene. Introduction to Metamathematics. Bibl.
Matematica. New York / Amsterdam: D. Van Nostrand / North-
Holland, 1952 (cit. on pp. 39, 40, 64).

[KMP00] Erich Peter Klement, Radko Mesiar, and Endre Pap. Triangular
Norms (Volume 8 Trends in Logic). Kluwer Academic Publishers.
2000 (cit. on p. 15).

[Kna28] B. Knaster. “Un théorème sur les fonctions d’ensembles.” French.
In: Annales Soc. Polonaise 6 (1928), pp. 133–134 (cit. on pp. 39,
40, 64).

[Kow74a] R. Kowalski. Logic for Problem Solving. DCL memo. Department
of Computational Logic, Edinburgh University, 1974. URL: http:
//books.google.es/books?id=f0I-PgAACAAJ (cit. on p. 7).

[Kow79] Robert Kowalski. “Algorithm = logic + control”. In: Comunica-
tion of the ACM 22 (7 1979), pp. 424–436. ISSN: 0001-0782.
DOI: http://doi.acm.org/10.1145/359131.359136. URL: http:
//doi.acm.org/10.1145/359131.359136 (cit. on p. 9).

[Kow74b] Robert A. Kowalski. “Predicate Logic as Programming Language”.
In: Proceedings IFIP Congress. North Holland, 1974, pp. 569–574
(cit. on p. 7).

[Kow88] Robert A. Kowalski. “The early years of logic programming”. In:
Commun. ACM 31 (1 1988), pp. 38–43. ISSN: 0001-0782. DOI:
http://doi.acm.org/10.1145/35043.35046. URL: http://doi.acm.
org/10.1145/35043.35046 (cit. on p. 11).

[KK71] Robert A. Kowalski and Donald Kuehner. “Linear Resolution
with Selection Function.” In: Artificial Intelligence 2.3/4 (1971),
pp. 227–260. URL: http://dblp.uni-trier.de/db/journals/ai/ai2.
html#KowalskiK71 (cit. on p. 7).

[Kun87] Kenneth Kunen. “Negation in Logic Programming”. In: Journal
of Logic Programming 4.4 (1987), pp. 289–308 (cit. on p. 9).

[LV90] Els Laenens and Dirk Vermeir. “A Fixpoint Semantics for Ordered
Logic”. In: Journal of Logic and Computation 1 (1990), pp. 159–
185. DOI: 10.1093/logcom/1.2.159 (cit. on pp. 55, 84).

[Lee72] R. C. T. Lee. “Fuzzy Logic and the Resolution Principle”. In:
Journal of the Association for Computing Machinery 19.1 (1972),
pp. 119–129 (cit. on p. 14).

page 133

http://books.google.es/books?id=f0I-PgAACAAJ
http://books.google.es/books?id=f0I-PgAACAAJ
http://dx.doi.org/http://doi.acm.org/10.1145/359131.359136
http://doi.acm.org/10.1145/359131.359136
http://doi.acm.org/10.1145/359131.359136
http://dx.doi.org/http://doi.acm.org/10.1145/35043.35046
http://doi.acm.org/10.1145/35043.35046
http://doi.acm.org/10.1145/35043.35046
http://dblp.uni-trier.de/db/journals/ai/ai2.html#KowalskiK71
http://dblp.uni-trier.de/db/journals/ai/ai2.html#KowalskiK71
http://dx.doi.org/10.1093/logcom/1.2.159

BIBLIOGRAPHY

[LL90] Deyi Li and Dongbo Liu. A fuzzy Prolog database system. New
York, NY, USA: John Wiley & Sons, Inc., 1990. ISBN: 0-471-
92762-7 (cit. on p. 14).

[Llo87] John Wylie Lloyd. Foundations of Logic Programming, 2nd Edition.
Springer, 1987. ISBN: 3-540-18199-7 (cit. on p. 11).

[LS03] Yann Loyer and Umberto Straccia. “Default Knowledge in Logic
Programs with Uncertainty”. In: Logic Programming. Proceedings
of the 19th International Conference, ICLP 2003, Mumbai, India,
December 9-13, 2003. 2916 (LNCS). Springer Berlin Heidelberg,
2003, pp. 466–480. ISBN: 978-3-540-20642-2. DOI: 10.1007/
978-3-540-24599-5_32 (cit. on p. 77).

[LS05] Yann Loyer and Umberto Straccia. “Any-world assumptions in
logic programming”. In: Theoretical Computer Science 342.2-3
(Sept. 2005), pp. 351–381. ISSN: 0304-3975. DOI: 10.1016/j.tcs.
2005.04.005. URL: http://dx.doi.org/10.1016/j.tcs.2005.04.005
(cit. on p. 26).

[LM91] D. Lucarella and R. Morara. “FIRST: Fuzzy Information Retrieval
SysTem”. In: Journal of Information Science 17.2 (1991), pp. 81–
91. DOI: 10.1177/016555159101700202. eprint: http://jis.
sagepub.com/content/17/2/81. full .pdf+html. URL: http :
//jis.sagepub.com/content/17/2/81.abstract (cit. on p. 112).

[MNR97] V. Wiktor Marek, Anil Nerode, and Jeffrey B. Remmel. “Basic
Forward Chaining Construction for Logic Programs”. In: Proceed-
ings of the 4th International Symposium on Logical Foundations of
Computer Science. London, UK: Springer-Verlag, 1997, pp. 214–
225. ISBN: 3-540-63045-7. URL: http://portal.acm.org/citation.
cfm?id=645682.664436 (cit. on pp. 55, 84).

[Mar15] Marketing de Servicios. Marketing de Servicios (MDS) site. [On-
line; accessed March 23, 2015]. 2015. URL: http : / / www.
marketingdeservicios.com/ (cit. on pp. 106, 121).

[Mar+09] Guillem Marpons, Julio Mariño, Manuel Carro, Ángel Herranz,
Lars-Åke Fredlund, Juan José Moreno-Navarro, and Álvaro Polo.
“A Coding Rule Conformance Checker Integrated into GCC”. In:
ENTCS 248 (2009), pp. 149–159. ISSN: 1571-0661. URL: http:
//dx.doi.org/10.1016/j.entcs.2009.07.065 (cit. on p. 6).

[MOAV01a] Jesús Medina, Manuel Ojeda-Aciego, and Peter Vojtáš. “A Com-
pleteness Theorem for Multi-Adjoint Logic Programming”. In:
FUZZ-IEEE. 2001, pp. 1031–1034 (cit. on pp. 15, 16, 58, 65).

page 134

http://dx.doi.org/10.1007/978-3-540-24599-5_32
http://dx.doi.org/10.1007/978-3-540-24599-5_32
http://dx.doi.org/10.1016/j.tcs.2005.04.005
http://dx.doi.org/10.1016/j.tcs.2005.04.005
http://dx.doi.org/10.1016/j.tcs.2005.04.005
http://dx.doi.org/10.1177/016555159101700202
http://jis.sagepub.com/content/17/2/81.full.pdf+html
http://jis.sagepub.com/content/17/2/81.full.pdf+html
http://jis.sagepub.com/content/17/2/81.abstract
http://jis.sagepub.com/content/17/2/81.abstract
http://portal.acm.org/citation.cfm?id=645682.664436
http://portal.acm.org/citation.cfm?id=645682.664436
http://www.marketingdeservicios.com/
http://www.marketingdeservicios.com/
http://dx.doi.org/10.1016/j.entcs.2009.07.065
http://dx.doi.org/10.1016/j.entcs.2009.07.065

BIBLIOGRAPHY

[MOAV01b] Jesús Medina, Manuel Ojeda-Aciego, and Peter Vojtáš. “A Proce-
dural Semantics for Multi-adjoint Logic Programming”. In: EPIA.
Ed. by Pavel Brazdil and Alípio Jorge. Vol. 2258. Lecture Notes
in Computer Science. Springer, 2001, pp. 290–297. ISBN: 3-540-
43030-X (cit. on pp. 15, 16, 46, 58, 65).

[MOAV01c] Jesús Medina, Manuel Ojeda-Aciego, and Peter Vojtáš. “Multi-
adjoint Logic Programming with Continuous Semantics”. In:
LPNMR. Ed. by Thomas Eiter, Wolfgang Faber, and Miroslaw
Truszczynski. Vol. 2173. Lecture Notes in Computer Science.
Springer, 2001, pp. 351–364. ISBN: 3-540-42593-4 (cit. on
pp. 15–19, 44–46, 58, 65).

[MOAV02] Jesús Medina, Manuel Ojeda-Aciego, and Peter Vojtáš. “A
Multi-Adjoint Approach to Similarity-Based Unification”. In:
Electronic Notes in Theoretical Computer Science 66.5 (2002).
UNCL’2002, Unification in Non-Classical Logics (ICALP 2002
Satellite Workshop), pp. 70 –85. ISSN: 1571-0661. DOI: DOI:
10 . 1016 / S1571 - 0661(04) 80515 - 2. URL: http : / / www.
sciencedirect.com/science/article/B75H1-4DDWJ13-37/2/
bdc92744d6ddc8e888ea314efb711107 (cit. on pp. 16, 44, 46,
58, 65).

[MOAV04] Jesús Medina, Manuel Ojeda-Aciego, and Peter Vojtáš. “Similarity-
based unification: a multi-adjoint approach”. In: Fuzzy Sets and
Systems 146.1 (2004), pp. 43–62 (cit. on pp. 16, 17, 44, 58, 65).

[MO02] Jesús Medina Moreno and Manuel Ojeda-Aciego. “On First-Order
Multi-Adjoint Logic Programming”. In: 11th Spanish Congress on
Fuzzy Logic and Technology. 2002. URL: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.20.3800 (cit. on pp. 16, 58,
60, 65).

[Mil78] Robin Milner. “A theory of type polymorphism in programming”.
In: Journal of Computer and System Sciences 17 (1978), pp. 348–
375 (cit. on p. 27).

[MM08a] Pedro J. Morcillo and Gines Moreno. “Programming with Fuzzy
Logic Rules by Using the FLOPER Tool”. In: RuleML ’08: Proceed-
ings of the International Symposium on Rule Representation, In-
terchange and Reasoning on the Web. Orlando, Florida: Springer-
Verlag, 2008, pp. 119–126. ISBN: 978-3-540-88807-9. DOI: http:
//dx.doi.org/10.1007/978-3-540-88808-6_14 (cit. on pp. 14,
15, 46).

page 135

http://dx.doi.org/DOI: 10.1016/S1571-0661(04)80515-2
http://dx.doi.org/DOI: 10.1016/S1571-0661(04)80515-2
http://www.sciencedirect.com/science/article/B75H1-4DDWJ13-37/2/bdc92744d6ddc8e888ea314efb711107
http://www.sciencedirect.com/science/article/B75H1-4DDWJ13-37/2/bdc92744d6ddc8e888ea314efb711107
http://www.sciencedirect.com/science/article/B75H1-4DDWJ13-37/2/bdc92744d6ddc8e888ea314efb711107
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.3800
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.3800
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-88808-6_14
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-88808-6_14

BIBLIOGRAPHY

[MM08b] Pedro José Morcillo and Ginés Moreno. “FLOPER, a Fuzzy Logic
Programming Environment for Research”. In: Proceedings of VIII
Jornadas sobre Programación y Lenguajes (PROLE’08). Ed. by
Fundación Universidad de Oviedo. Gijón, Spain, 2008, pp. 259–
263. ISBN: 978-84-612-5819-2 (cit. on pp. vii, 14, 15, 46–48).

[Mor06] Ginés Moreno. “Building a Fuzzy Transformation System”. In:
SOFSEM. Ed. by Jirí Wiedermann, Gerard Tel, Jaroslav Pokorný,
Mária Bieliková, and Julius Stuller. Vol. 3831. Lecture Notes in
Computer Science. Springer, 2006, pp. 409–418. ISBN: 3-540-
31198-X (cit. on p. 15).

[MGP05] Susana Muñoz-Hernández and Jose Manuél Gómez-Pérez.
“Solving Collaborative Fuzzy Agents Problems with CLP(FD)”.
In: PADL. Ed. by Manuel V. Hermenegildo and Daniel Cabeza.
Vol. 3350. Lecture Notes in Computer Science. Springer, 2005,
pp. 187–202. ISBN: 3-540-24362-3 (cit. on p. 107).

[MV05] Susana Muñoz-Hernández and Claudio Vaucheret. “Extending
Prolog with Incomplete Fuzzy Information”. In: Proceedings of the
15th International Workshop on Logic Programming Environments.
CoRR abs/cs/0508091 (2005) (cit. on p. 107).

[MV06] Susana Muñoz-Hernández and Claudio Vaucheret, eds. Default
values to handel Incomplete Fuzzy Information. Vol. 14. IEEE
Computational Intelligence Society Electronic Letter, ISSN 0-
7803-9489-5. IEEE, 2006, pp. 216–223 (cit. on p. 107).

[MH10] Susana Muñoz-Hernández. “Robot Soccer”. In: InTech, 2010.
Chap. RFuzzy: an Easy and Expressive Tool for Modelling the
Cognitive Layer in RoboCupSoccer, pp. 267–284. ISBN: 978-953-
307-036-0 (cit. on p. 108).

[MHPCS09] Susana Muñoz-Hernández, Víctor Pablos-Ceruelo, and Hannes
Strass. “RFuzzy: An Expressive Simple Fuzzy Compiler”. In:
IWANN (1). Ed. by Joan Cabestany, Francisco Sandoval, Alberto
Prieto, and Juan M. Corchado. Vol. 5517. Lecture Notes in
Computer Science. Springer, 2009, pp. 270–277. ISBN: 978-3-
642-02477-1. DOI: http://dx.doi.org/10.1007/978-3-642-
02478-8_34 (cit. on pp. 20, 121, 124).

[MHPCS11] Susana Muñoz-Hernández, Víctor Pablos-Ceruelo, and Hannes
Strass. “RFuzzy: Syntax, Semantics and Implementation Details
of a Simple and Expressive Fuzzy Tool over Prolog”. In: Infor-
mation Sciences 181.10 (2011). Special Issue on Information

page 136

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-02478-8_34
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-02478-8_34

BIBLIOGRAPHY

Engineering Applications Based on Lattices, pp. 1951 –1970.
ISSN: 0020-0255. DOI: 10.1016/j.ins.2010.07.033. URL: http:
//www.sciencedirect.com/science/article/B6V0C-50PJWYR-
2/2/26d8ff890f0effc98aa1c12225a5fb87 (cit. on pp. 20, 65, 83,
121, 124).

[MHV06] Susana Muñoz-Hernández and Claudio Vaucheret. “Default Val-
ues to Handle Incomplete Fuzzy Information”. In: FUZZ-IEEE.
2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006,
pp. 14 –21. ISBN: 0-7803-9488-7. DOI: 10.1109/FUZZY.2006.
1681688 (cit. on p. 77).

[MHV07] Susana Muñoz-Hernández and Claudio Vaucheret. “Fuzzy Pro-
log: Default Values to Represent Missing Information”. In: Com-
putational Intelligence Based on Lattice Theory. Ed. by Vassilis G.
Kaburlasos and Gerhard X. Ritter. Vol. 67. Studies in Computa-
tional Intelligence. Springer, 2007, pp. 287–308. ISBN: 978-3-
540-72686-9 (cit. on p. 77).

[MHVG02] Susana Muñoz-Hernández, Claudio Vaucheret, and Sergio
Guadarrama. “Combining Crisp and Fuzzy Logic in a Prolog
Compiler”. In: Joint Conference on Declarative Programming:
APPIA-GULP-PRODE 2002. Ed. by J.J. Moreno-Navarro and J.
Mariño. Madrid, Spain, 2002, pp. 23–38 (cit. on p. 15).

[MHW07a] Susana Muñoz-Hernández and Wiratna Sari Wiguna. “Fuzzy
Cognitive Layer in RoboCupSoccer”. In: 12th International Fuzzy
Systems Association World Congress (IFSA 2007). Foundations
of Fuzzy Logic and Soft Computing. Cancún, México: Springer,
2007, pp. 635–645 (cit. on p. 107).

[MHW07b] Susana Muñoz-Hernández and Wiratna Sari Wiguna. “Fuzzy Pro-
log as Cognitive Layer in RoboCupSoccer”. In: IEEE Symposium
on Computational Intelligence and Games (2007 IEEE Symposia
Series in Computational Intelligence). IEEE. Honolulu, Hawaii,
2007, pp. 340–345 (cit. on p. 107).

[MO84] Alan Mycroft and Richard A. O’Keefe. “A polymorphic type sys-
tem for PROLOG.” In: Artificial Intelligence 23.3 (1984), pp. 295–
307. ISSN: 0004-3702. DOI: http://dx.doi.org/10.1016/0004-
3702(84)90017-1 (cit. on p. 27).

[PC15a] Víctor Pablos-Ceruelo. FleSe framework working installation. [On-
line; accessed April 24, 2015]. 2015. URL: https://moises.ls.fi.
upm.es/java-apps/flese/ (cit. on pp. 119, 124).

page 137

http://dx.doi.org/10.1016/j.ins.2010.07.033
http://www.sciencedirect.com/science/article/B6V0C-50PJWYR-2/2/26d8ff890f0effc98aa1c12225a5fb87
http://www.sciencedirect.com/science/article/B6V0C-50PJWYR-2/2/26d8ff890f0effc98aa1c12225a5fb87
http://www.sciencedirect.com/science/article/B6V0C-50PJWYR-2/2/26d8ff890f0effc98aa1c12225a5fb87
http://dx.doi.org/10.1109/FUZZY.2006.1681688
http://dx.doi.org/10.1109/FUZZY.2006.1681688
http://dx.doi.org/http://dx.doi.org/10.1016/0004-3702(84)90017-1
http://dx.doi.org/http://dx.doi.org/10.1016/0004-3702(84)90017-1
https://moises.ls.fi.upm.es/java-apps/flese/
https://moises.ls.fi.upm.es/java-apps/flese/

BIBLIOGRAPHY

[PC15b] Víctor Pablos-Ceruelo. FleSe source code location. [Online; ac-
cessed April 24, 2015]. 2015. URL: http://babel.ls.fi.upm.es/
software/FleSe/ (cit. on pp. 119, 124).

[PC15c] Víctor Pablos-Ceruelo. RFuzzy applications and more location.
[Online; accessed April 24, 2015]. 2015. URL: http://babel.ls.fi.
upm.es/software/RFuzzy/applications/ (cit. on pp. 107, 119).

[PC15d] Víctor Pablos-Ceruelo. RFuzzy source code location. [Online; ac-
cessed April 24, 2015]. 2015. URL: http://babel.ls.fi.upm.es/
software/RFuzzy/ (cit. on pp. 23, 119, 124).

[PCMH11] Víctor Pablos-Ceruelo and Susana Muñoz-Hernández. “Introduc-
ing priorities in RFuzzy: Syntax and Semantics”. In: CMMSE
2011 : Proceedings of the 11th International Conference on Math-
ematical Methods in Science and Engineering. Vol. 3. Benidorm
(Alicante), Spain, 2011, pp. 918–929. ISBN: 978-84-614-6167-
7. URL: http://gsii .usal .es/~CMMSE/index.php?option=
com_content{\&}task=view{\&}id=15{\&}Itemid=16 (cit. on
pp. 20, 65, 83–85, 121).

[PCMH14a] Víctor Pablos-Ceruelo and Susana Muñoz-Hernández. “A Frame-
work for Modelling Real-World Knowledge Capable of Obtaining
Answers to Fuzzy and Flexible Searches”. In: Computational
Intelligence - Revised and Selected Papers of the International Joint
Conference IJCCI 2013 held in Vilamoura, Portugal, August 2013.
Springer Verlag – accepted, 2014, to appear (cit. on p. 20).

[PCMH14b] Víctor Pablos-Ceruelo and Susana Muñoz-Hernández. “Enriching
Traditional Databases with Fuzzy Definitions to Allow Flexible
and Expressive Searches”. In: Proceedings of the International
Conference on Fuzzy Computation Theory and Applications. Ed. by
António Dourado, José M. Cadenas, and Joaquim Filipe. Rome,
Italy, 2014, pp. 111–118. ISBN: 978-989-758-053-6. DOI: http:
//dx.doi.org/10.5220/0005074101110118 (cit. on pp. 20, 121).

[PCMH14c] Víctor Pablos-Ceruelo and Susana Muñoz-Hernández. “FleSe:
A Tool for Posing Flexible and Expressive (Fuzzy) Queries to
a Regular Database”. In: Distributed Computing and Artificial
Intelligence, 11th International Conference. Ed. by Sigeru Omatu,
Hugues Bersini, Juan M. Corchado Rodríguez, Sara Rodríguez,
Pawel Pawlewski, and Edgardo Bucciarelli. Vol. 290. Advances
in Intelligent Systems and Computing. DCAI 2014. Salamanca,
Spain: Springer, 2014, pp. 157–164. ISBN: 978-3-319-07592-1.

page 138

http://babel.ls.fi.upm.es/software/FleSe/
http://babel.ls.fi.upm.es/software/FleSe/
http://babel.ls.fi.upm.es/software/RFuzzy/applications/
http://babel.ls.fi.upm.es/software/RFuzzy/applications/
http://babel.ls.fi.upm.es/software/RFuzzy/
http://babel.ls.fi.upm.es/software/RFuzzy/
http://gsii.usal.es/~CMMSE/index.php?option=com_content{\&}task=view{\&}id=15{\&}Itemid=16
http://gsii.usal.es/~CMMSE/index.php?option=com_content{\&}task=view{\&}id=15{\&}Itemid=16
http://dx.doi.org/http://dx.doi.org/10.5220/0005074101110118
http://dx.doi.org/http://dx.doi.org/10.5220/0005074101110118

BIBLIOGRAPHY

URL: http://dx.doi.org/10.1007/978-3-319-07593-8_20 (cit. on
pp. 20, 121).

[PCMH14d] Víctor Pablos-Ceruelo and Susana Muñoz-Hernández. “Intro-
ducing Similarity Relations in a Framework for Modelling Real-
World Fuzzy Knowledge”. In: IPMU (3). Ed. by Anne Laurent,
Olivier Strauss, Bernadette Bouchon-Meunier, and Ronald R.
Yager. Vol. 444. Communications in Computer and Information
Science. online isbn: 978-3-319-08852-5, series issn: 1865-0929.
Springer International Publishing, 2014, pp. 51–60. ISBN: 978-
3-319-08851-8. DOI: 10.1007/978-3-319-08852-5_6 (cit. on
pp. 20, 121).

[PCMH14e] Víctor Pablos-Ceruelo and Susana Muñoz-Hernández. “On mod-
elling real-world knowledge to get answers to fuzzy and flexible
searches without human intervention”. In: Fuzzy Systems (FUZZ-
IEEE), 2014 IEEE International Conference on. Beijing, China,
2014, pp. 2329–2336. ISBN: 978-1-4799-2073-0. DOI: 10.1109/
FUZZ-IEEE.2014.6891723 (cit. on pp. 20, 121).

[PCMH15] Víctor Pablos-Ceruelo and Susana Muñoz-Hernández. “FleSe”.
In: unknown 0.0 (2015). to be published, pp. 0 –0 (cit. on pp. 20,
121).

[PCMHS08] Víctor Pablos-Ceruelo, Susana Muñoz-Hernández, and Hannes
Strass. “RFuzzy framework”. In: 18th Workshop on Logic-based
methods in Programming Environments, WLPE 2008. Ed. by Puri
Arenas and Damiano Zanardini. Vol. abs/0903.2188. Udine,
Italy, 2008, pp. 62–76. URL: http://arxiv.org/pdf/0903.2188v1
(cit. on pp. 20, 121, 124).

[PCSMH09] Víctor Pablos-Ceruelo, Hannes Strass, and Susana Muñoz-
Hernández. “RFuzzy—A framework for multi-adjoint Fuzzy
Logic Programming”. In: Fuzzy Information Processing Society,
2009. NAFIPS 2009. Annual Meeting of the North American Fuzzy
Information Processing Society Annual Conference. Cincinnati,
Ohio, USA, 2009, pp. 1–6. ISBN: 978-1-4244-4575-2. DOI:
10.1109/NAFIPS.2009.5156427 (cit. on pp. 20, 121, 124).

[PGAF12] Ana M. Palacios, María José Gacto, and Jesús Alcalá-Fdez. “Min-
ing fuzzy association rules from low-quality data”. In: Soft Com-
put. 16.5 (2012), pp. 883–901 (cit. on p. 17).

[PC13] João Paulo Carvalho. “On the semantics and the use of fuzzy
cognitive maps and dynamic cognitive maps in social sciences”.
In: Fuzzy Sets and Systems 214 (2013), pp. 6–19 (cit. on p. 110).

page 139

http://dx.doi.org/10.1007/978-3-319-07593-8_20
http://dx.doi.org/10.1007/978-3-319-08852-5_6
http://dx.doi.org/10.1109/FUZZ-IEEE.2014.6891723
http://dx.doi.org/10.1109/FUZZ-IEEE.2014.6891723
http://arxiv.org/pdf/0903.2188v1
http://dx.doi.org/10.1109/NAFIPS.2009.5156427

BIBLIOGRAPHY

[Pav79] Jan Pavelka. “On fuzzy logic I, II and III”. In: Zeitschrift für Math-
ematische Logik und Grundlagen der Mathematik 25.5 (1979),
pp. 45–52, 119–134, 447–464. ISSN: 0044-3050 (cit. on pp. 17,
45).

[PS87] Fernando C. N. Pereira and Stuart M. Shieber. Prolog and Natural-
Language Analysis (Center for the Study of Language and Informa-
tion - Lecture Notes). 1st ed. Center for the Study of Language
and Inf, June 1987. ISBN: 0937073172. URL: http://www.mtome.
com/Publications/PNLA/pnla-digital.html (cit. on p. 7).

[PTC02] Ana Pradera, Enric Trillas, and Tomasa Calvo. “A general
class of triangular norm-based aggregation operators: quasi-
linear T-S operators”. In: International Journal of Approximate
Reasoning 30.1 (2002), pp. 57 –72. ISSN: 0888-613X. DOI:
DOI:10.1016/S0888-613X(02)00064-6. URL: http://www.
sciencedirect . com / science / article / B6V07 - 45BHK72 - 2 / 2 /
d67dbc30d5491e0df09600a3d771f3fc (cit. on p. 15).

[Prz89a] Teodor C. Przymusinski. “Non-Monotonic Formalisms and Logic
Programming”. In: Logic Programming, Proceedings of the Sixth
International Conference, Lisbon, Portugal, June 19-23, 1989.
Ed. by Giorgio Levi and Maurizio Martelli. MIT Press, 1989,
pp. 655–674. ISBN: 0-262-62065-0 (cit. on p. 94).

[Prz89b] Teodor C. Przymusinski. “On the Declarative and Procedural Se-
mantics of Logic Programs”. In: Journal of Automated Reasoning
5.2 (1989), pp. 167–205 (cit. on p. 90).

[RCN15] RCN Radio. Nocturna. [Online; accessed March 23, 2015]. 2015.
URL: http://www.rcnradio.com/content/nocturna-rcn (cit. on
p. 107).

[Rey15] Diego Reyes Prieto. Radio Interview to Susana Muñoz-Hernández
about emotion recognition. 2015. URL: http://babel.ls.fi.upm.es/
software/rfuzzy/applications/ (cit. on p. 107).

[RM03] Rita A. Ribeiro and Ana M. Moreira. “Fuzzy query interface for a
business database”. In: International Journal of Human-Computer
Studies 58.4 (2003), pp. 363 –391. ISSN: 1071-5819. DOI: 10.
1016/S1071-5819(03)00010-7. URL: http://www.sciencedirect.
com/science/article/pii/S1071581903000107 (cit. on p. 113).

page 140

http://www.mtome.com/Publications/PNLA/pnla-digital.html
http://www.mtome.com/Publications/PNLA/pnla-digital.html
http://dx.doi.org/DOI: 10.1016/S0888-613X(02)00064-6
http://www.sciencedirect.com/science/article/B6V07-45BHK72-2/2/d67dbc30d5491e0df09600a3d771f3fc
http://www.sciencedirect.com/science/article/B6V07-45BHK72-2/2/d67dbc30d5491e0df09600a3d771f3fc
http://www.sciencedirect.com/science/article/B6V07-45BHK72-2/2/d67dbc30d5491e0df09600a3d771f3fc
http://www.rcnradio.com/content/nocturna-rcn
http://babel.ls.fi.upm.es/software/rfuzzy/applications/
http://babel.ls.fi.upm.es/software/rfuzzy/applications/
http://dx.doi.org/10.1016/S1071-5819(03)00010-7
http://dx.doi.org/10.1016/S1071-5819(03)00010-7
http://www.sciencedirect.com/science/article/pii/S1071581903000107
http://www.sciencedirect.com/science/article/pii/S1071581903000107

BIBLIOGRAPHY

[Rob65] J. A. Robinson. “A Machine-Oriented Logic Based on the Reso-
lution Principle”. In: J. ACM 12.1 (Jan. 1965), pp. 23–41. ISSN:
0004-5411. DOI: 10.1145/321250.321253. URL: http://doi.acm.
org/10.1145/321250.321253 (cit. on p. 7).

[Rob97] Ken Robinson. “The B Method and the B Toolkit”. In: Alge-
braic Methodology and Software Technology. Vol. 1349. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1997,
pp. 576–580. DOI: 10.1007/bfb0000503. URL: http://dx.doi.
org/10.1007/bfb0000503 (cit. on p. 6).

[Rop+12] Jorge Ropero, Ariel Gómez, Alejandro Carrasco, and Carlos
León. “A Fuzzy Logic intelligent agent for Information Extraction:
Introducing a new Fuzzy Logic-based term weighting scheme”.
In: Expert Systems with Applications 39.4 (2012), pp. 4567 –4581.
ISSN: 0957-4174. DOI: http://dx.doi.org/10.1016/j.eswa.2011.
10.009. URL: http://www.sciencedirect.com/science/article/pii/
S0957417411014941 (cit. on p. 112).

[Rou75] Philippe Roussel. Prolog: Manuel de Référence et Utilisation (Tech-
nical Report). Marseille, France, 1975 (cit. on p. 8).

[Sch+08] Tom Schrijvers, Vítor Santos Costa, Jan Wielemaker, and Bart
Demoen. “Towards Typed Prolog”. In: ICLP ’08: Proceedings of the
24th International Conference on Logic Programming. Udine, Italy:
Springer-Verlag, 2008, pp. 693–697. ISBN: 978-3-540-89981-5.
DOI: http://dx.doi.org/10.1007/978-3-540-89982-2_59 (cit. on
p. 27).

[Sha83] Ehud Y. Shapiro. “Logic programs with uncertainties: a tool for
implementing rule-based systems”. In: IJCAI’83: Proceedings of
the Eighth international joint conference on Artificial intelligence.
Karlsruhe, West Germany: Morgan Kaufmann Publishers Inc.,
1983, pp. 529–532 (cit. on p. 13).

[SDM89] Z. Shen, L. Ding, and M. Mukaidono. “Fuzzy Resolution Princi-
ple”. In: Proc. of 18th International Symposium on Multiple-valued
Logic. Vol. 5. 1989 (cit. on p. 14).

[Spi89] J. M. Spivey. The Z notation: a reference manual. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1989. ISBN: 0-13-983768-X
(cit. on p. 6).

[SS94] Leon Sterling and Ehud Shapiro. The art of Prolog (2nd ed.):
advanced programming techniques. Cambridge, MA, USA: MIT
Press, 1994. ISBN: 0-262-19338-8 (cit. on pp. 6, 11).

page 141

http://dx.doi.org/10.1145/321250.321253
http://doi.acm.org/10.1145/321250.321253
http://doi.acm.org/10.1145/321250.321253
http://dx.doi.org/10.1007/bfb0000503
http://dx.doi.org/10.1007/bfb0000503
http://dx.doi.org/10.1007/bfb0000503
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2011.10.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2011.10.009
http://www.sciencedirect.com/science/article/pii/S0957417411014941
http://www.sciencedirect.com/science/article/pii/S0957417411014941
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-89982-2_59

BIBLIOGRAPHY

[SMHPC09] Hannes Strass, Susana Muñoz-Hernández, and Víctor Pablos-
Ceruelo. “Operational Semantics for a Fuzzy Logic Program-
ming System with Defaults and Constructive Answers”. In: IF-
SA/EUSFLAT Conf. Ed. by João Paulo Carvalho, Didier Dubois,
Uzay Kaymak, and João Miguel da Costa Sousa. 2009, pp. 1827–
1832. ISBN: 978-989-95079-6-8 (cit. on pp. 20, 121, 124).

[Tak91] Y. Takahashi. “A fuzzy query language for relational databases”.
In: Systems, Man and Cybernetics, IEEE Transactions on 21.6
(1991), pp. 1576–1579. ISSN: 0018-9472. DOI: 10.1109/21.
135699 (cit. on p. 112).

[Tar55] Alfred Tarski. “A Lattice-Theoretical fixpoint theorem and its ap-
plications”. English. In: Pacific Journal of Mathematics 5 (1955),
pp. 285–309. URL: http://projecteuclid.org/DPubS?service=
UI{\&}version=1.0{\&}verb=Display{\&}handle=euclid.
pjm/1103044538 (cit. on pp. 39, 40, 64).

[The15a] The AdaCore company. The Ada programming language. [Online;
accessed March 23, 2015]. 2015. URL: http://www.adacore.
com/adaanswers/about/ada/ (cit. on p. 5).

[The15b] The CLIP Lab. The Ciao Prolog Development System WWW Site.
[Online; accessed March 23, 2015]. 2015. URL: http://ciaohome.
org/ (cit. on p. 53).

[TB04] George Theodorakopoulos and John S. Baras. “Trust evaluation
in ad-hoc networks”. In: WiSe ’04: Proceedings of the 3rd ACM
workshop on Wireless security. Philadelphia, PA, USA: ACM, 2004,
pp. 1–10. ISBN: 1-58113-925-X. DOI: http://doi.acm.org/10.
1145/1023646.1023648 (cit. on p. 29).

[Tin05] Leonid José Tineo. A contribution to Database Flexible Querying:
Fuzzy Quantified Queries Evaluation (PhD. Thesis). 2005 (cit. on
p. 112).

[TLM10] Teresa Trigo de la Vega, Pedro Lopez-García, and Susana Muñoz-
Hernández. “A Fuzzy Approach to Resource Aware Automatic
Parallelization”. In: Computational Intelligence - Revised and
Selected Papers of the International Joint Conference, IJCCI 2010,
Valencia, Spain, October 2010. Ed. by Kurosh Madani, António
Dourado Correia, Agostinho C. Rosa, and Joaquim Filipe.
Vol. 399. Studies in Computational Intelligence. Springer, 2010,
pp. 229–245. ISBN: 978-3-642-27533-3. DOI: 10.1007/978-3-
642-27534-0_15. URL: http://dx.doi.org/10.1007/978-3-642-
27534-0_15 (cit. on p. 108).

page 142

http://dx.doi.org/10.1109/21.135699
http://dx.doi.org/10.1109/21.135699
http://projecteuclid.org/DPubS?service=UI{\&}version=1.0{\&}verb=Display{\&}handle=euclid.pjm/1103044538
http://projecteuclid.org/DPubS?service=UI{\&}version=1.0{\&}verb=Display{\&}handle=euclid.pjm/1103044538
http://projecteuclid.org/DPubS?service=UI{\&}version=1.0{\&}verb=Display{\&}handle=euclid.pjm/1103044538
http://www.adacore.com/adaanswers/about/ada/
http://www.adacore.com/adaanswers/about/ada/
http://ciaohome.org/
http://ciaohome.org/
http://dx.doi.org/http://doi.acm.org/10.1145/1023646.1023648
http://dx.doi.org/http://doi.acm.org/10.1145/1023646.1023648
http://dx.doi.org/10.1007/978-3-642-27534-0_15
http://dx.doi.org/10.1007/978-3-642-27534-0_15
http://dx.doi.org/10.1007/978-3-642-27534-0_15
http://dx.doi.org/10.1007/978-3-642-27534-0_15

BIBLIOGRAPHY

[TLGMH10] Teresa Trigo de la Vega, Pedro Lopez-García, and Susana Muñoz-
Hernández. “Towards Fuzzy Granularity Control in Parallel/Dis-
tributed Computing”. In: IJCCI (ICFC-ICNC). Ed. by Joaquim
Filipe and Janusz Kacprzyk. Best Student Paper Award ICFC
2010. SciTePress, 2010, pp. 43–55. ISBN: 978-989-8425-32-4
(cit. on p. 108).

[TCC95] Enric Trillas, Susana Cubillo, and Juan Luis Castro. “Conjunction
and disjunction on ([0,1], ≤)”. In: Fuzzy Sets and Systems 72.2
(1995), pp. 155–165. ISSN: 0165-0114. DOI: http://dx.doi.org/
10.1016/0165-0114(94)00348-B (cit. on p. 15).

[VGMH02] Claudio Vaucheret, Sergio Guadarrama, and Susana Muñoz-
Hernández. “Fuzzy Prolog: A Simple General Implementation
Using CLP(R)”. In: Logic for Programming, Artificial Intelligence,
and Reasoning, LPAR 2002. Ed. by M. Baaz and A. Voronkov.
Vol. 2514. LNAI. Tbilisi, Georgia: Springer, 2002, pp. 450–463.
ISBN: 3-540-00010-0 (cit. on p. 14).

[Voj01] Peter Vojtáš. “Fuzzy logic programming”. In: Fuzzy Sets and
Systems 124.3 (2001), pp. 361–370 (cit. on pp. 14, 17, 44).

[WXW02] Jia-Bing Wang, Zheng-Quan Xu, and Neng-Chao Wang. “A fuzzy
logic with similarity”. In: Proceedings of the 2002 International
Conference on Machine Learning and Cybernetics. Vol. 3. 2002,
pp. 1178 –1183. DOI: 10.1109/ICMLC.2002.1167386. URL:
http :// ieeexplore . ieee .org/xpls/abs_all . jsp?arnumber=
1167386{\&}tag=1 (cit. on p. 111).

[WZL00] Kewen Wang, Lizhu Zhou, and Fangzhen Lin. “Alternating Fix-
point Theory for Logic Programs with Priority”. In: Proceedings
of the First International Conference on Computational Logic. CL
’00. London, UK: Springer-Verlag, 2000, pp. 164–178. ISBN: 3-
540-67797-6. URL: http://portal.acm.org/citation.cfm?id=
647482.728274 (cit. on pp. 55, 84).

[Wan+07] Xizhao Wang, Eric C.C. Tsang, Suyun Zhao, Degang Chen, and
Daniel S. Yeung. “Learning fuzzy rules from fuzzy samples based
on rough set technique”. In: Information Sciences 177.20 (2007),
pp. 4493 –4514. ISSN: 0020-0255. DOI: DOI:10.1016/j.ins.2007.
04.010. URL: http://www.sciencedirect.com/science/article/
B6V0C-4NN0WFB-2/2/47188b1f12603fcacf0e46ddb9f20904
(cit. on p. 15).

page 143

http://dx.doi.org/http://dx.doi.org/10.1016/0165-0114(94)00348-B
http://dx.doi.org/http://dx.doi.org/10.1016/0165-0114(94)00348-B
http://dx.doi.org/10.1109/ICMLC.2002.1167386
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1167386{\&}tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1167386{\&}tag=1
http://portal.acm.org/citation.cfm?id=647482.728274
http://portal.acm.org/citation.cfm?id=647482.728274
http://dx.doi.org/DOI: 10.1016/j.ins.2007.04.010
http://dx.doi.org/DOI: 10.1016/j.ins.2007.04.010
http://www.sciencedirect.com/science/article/B6V0C-4NN0WFB-2/2/47188b1f12603fcacf0e46ddb9f20904
http://www.sciencedirect.com/science/article/B6V0C-4NN0WFB-2/2/47188b1f12603fcacf0e46ddb9f20904

BIBLIOGRAPHY

[YH10] Yingjie Yang and Chris Hinde. “A new extension of fuzzy
sets using rough sets: R-fuzzy sets”. In: Information Sci-
ences 180.3 (2010), pp. 354 –365. ISSN: 0020-0255. DOI:
DOI : 10 . 1016 / j . ins . 2009 . 10 . 004. URL: http : / / www.
sciencedirect . com / science / article / B6V0C - 4XFFJSC - 2 / 2 /
1b4c9840729bace77020a1e7bcf812cc (cit. on p. 15).

[Zad72] L. A. Zadeh. “A Fuzzy-Set-Theoretic Interpretation of Linguistic
Hedges”. In: Journal of Cybernetics 2.3 (1972), pp. 4–34. DOI:
10.1080/01969727208542910. eprint: http://dx.doi.org/10.
1080/01969727208542910. URL: http://dx.doi.org/10.1080/
01969727208542910 (cit. on pp. 81, 125).

[Zad65] Lotfi A. Zadeh. “Fuzzy Sets”. In: Information and Control 8.3
(1965), pp. 338–353 (cit. on pp. 11, 14).

[Zad75a] Lotfi A. Zadeh. “The concept of a linguistic variable and its ap-
plication to approximate reasoning - I”. In: Information Sciences
8.3 (1975), pp. 199–249. DOI: 10.1016/0020-0255(75)90036-5.
URL: http://dx.doi.org/10.1016/0020-0255(75)90036-5 (cit.
on pp. 11, 12).

[Zad75b] Lotfi A. Zadeh. “The concept of a linguistic variable and its ap-
plication to approximate reasoning - II”. In: Information Sciences
8.4 (1975), pp. 301–357. DOI: 10.1016/0020-0255(75)90046-8.
URL: http://dx.doi.org/10.1016/0020-0255(75)90046-8 (cit.
on pp. 11, 12).

[Zad75c] Lotfi A. Zadeh. “The concept of a linguistic variable and its
application to approximate reasoning - III”. In: Information
Sciences 9.1 (1975), pp. 43–80. DOI: 10.1016/0020-0255(75)
90017-1. URL: http://dx.doi.org/10.1016/0020-0255(75)
90017-1 (cit. on pp. 11, 12).

[Zad08] Lotfi A. Zadeh. “Is there a need for fuzzy logic?” In: Informa-
tion Sciences 178.13 (2008), pp. 2751–2779. ISSN: 0020-0255.
DOI: DOI :10 .1016/ j . ins .2008 .02 .012. URL: http : //www.
sciencedirect . com / science / article / B6V0C - 4S03RJC - 1 / 2 /
109dfdae2551800f42203a199f55504e (cit. on p. 11).

[ZN09] Sławomir Zadrożny and Katarzyna Nowacka. “Fuzzy information
retrieval model revisited”. In: Fuzzy Sets and Systems 160.15
(2009). Special Issue: The Application of Fuzzy Logic and Soft
Computing in Information Management, pp. 2173 –2191. ISSN:
0165-0114. DOI: http://dx.doi.org/10.1016/j.fss.2009.02.

page 144

http://dx.doi.org/DOI: 10.1016/j.ins.2009.10.004
http://www.sciencedirect.com/science/article/B6V0C-4XFFJSC-2/2/1b4c9840729bace77020a1e7bcf812cc
http://www.sciencedirect.com/science/article/B6V0C-4XFFJSC-2/2/1b4c9840729bace77020a1e7bcf812cc
http://www.sciencedirect.com/science/article/B6V0C-4XFFJSC-2/2/1b4c9840729bace77020a1e7bcf812cc
http://dx.doi.org/10.1080/01969727208542910
http://dx.doi.org/10.1080/01969727208542910
http://dx.doi.org/10.1080/01969727208542910
http://dx.doi.org/10.1080/01969727208542910
http://dx.doi.org/10.1080/01969727208542910
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1016/0020-0255(75)90046-8
http://dx.doi.org/10.1016/0020-0255(75)90046-8
http://dx.doi.org/10.1016/0020-0255(75)90017-1
http://dx.doi.org/10.1016/0020-0255(75)90017-1
http://dx.doi.org/10.1016/0020-0255(75)90017-1
http://dx.doi.org/10.1016/0020-0255(75)90017-1
http://dx.doi.org/DOI: 10.1016/j.ins.2008.02.012
http://www.sciencedirect.com/science/article/B6V0C-4S03RJC-1/2/109dfdae2551800f42203a199f55504e
http://www.sciencedirect.com/science/article/B6V0C-4S03RJC-1/2/109dfdae2551800f42203a199f55504e
http://www.sciencedirect.com/science/article/B6V0C-4S03RJC-1/2/109dfdae2551800f42203a199f55504e
http://dx.doi.org/http://dx.doi.org/10.1016/j.fss.2009.02.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.fss.2009.02.012

BIBLIOGRAPHY

012. URL: http://www.sciencedirect.com/science/article/pii/
S0165011409001080 (cit. on p. 112).

[Zem89] Maria Zemankova. “FIIS: A Fuzzy Intelligent Information Sys-
tem”. In: IEEE Data Eng. Bull. 12.2 (1989), pp. 11–20 (cit. on
p. 112).

page 145

http://dx.doi.org/http://dx.doi.org/10.1016/j.fss.2009.02.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.fss.2009.02.012
http://www.sciencedirect.com/science/article/pii/S0165011409001080
http://www.sciencedirect.com/science/article/pii/S0165011409001080

	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Resumen
	Summary
	Introduction
	A Fuzzy World
	Logic Programming and Logic
	Fuzzy Logic
	Fuzzy Approaches in Logic Programming
	Fuzzy Prolog
	RFuzzy Approach Motivation

	Multi-Adjoint Semantics
	Structure of the Work

	The initial version of the fuzzy logic framework: RFuzzy v.1
	Syntax
	Declarative Semantics
	Least Model Semantics
	Least Fixpoint Semantics

	Operational Semantics
	About multi-adjoint logic programming
	Using the Framework. Implementation Details
	The programs syntax
	Constructive Answers
	Implementation details

	Management of priorities in the framework: RFuzzy v.2
	Syntax
	Semantics

	Extending the framework with similarity and negation: RFuzzy v.3
	Syntax
	Syntactic constructions for writing programs
	The semantics of the framework's configuration file
	Low level semantics
	High level semantics

	Real Application Cases
	Emotion Recognition
	Robocup Control Implementation
	Fuzzy Granularity Control in Parallel/Distributed Computing
	FleSe (Flexible Searches in Databases)
	Preliminaries
	Comparison with other approaches
	The Architecture of the FleSe Application
	Example of Usage of The Framework User Interface

	Chapter final notes

	Conclusions
	About the authorship of the contents
	Current Work

	Bibliography

