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Much has been learned in the last decade about concurrent programming..This patmr 
identifies the major concepts of concurrent programming and describes some of the more 
importam language notations for writing concurrent programs. The roles of processes, 
communication, and synchronization are discussed. Language notations for expressing 
concurrent execution and for specifying process interaction are surveyed. Synchronization 
primitives based on shared variables and on message passing are described. Finally, three 
general classes of concurrent programming languages are identified and compared. 

Categories and Subject Descriptors: D. 1.3 [Programming Techniques]: Concurrent 
Programming; D.3.3 [Programming Languages]: Language Constructs--concurrent 
programming structures; coroutines; D.4.1 [Operating Systems]: Process Management; D.4.7 
[Operating Systems]: Organization and Design 
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INTRODUCTION 

The complexion of concurrent program- 
ming has changed substantially in the past 
ten years. First, theoretical advances have 
prompted the definition of new program- 
ming notations that express concurrent 
computations simply, make synchroniza- 
tion requirements explicit, and facilitate 
formal correctness proofs. Second, the 
availability of inexpensive processors has 
made possible the construction of distrib- 
uted systems and multiprocessors that  were 
previously economically infeasible. Because 
of these two developments, concurrent pro- 
gramming no longer is the sole province of 
those who design and implement operating 
systems; it has become important to pro- 
grammers of all kinds of applications, in- 
cluding database management systems, 
large-scale parallel scientific computations, 
and real-time, embedded control systems. 
In fact, the discipline has matured to the 

point that  there are now undergraduate- 
level text books devoted solely to the topic 
[Holt et al., 1978; Ben-Ari, 1982]. In light of 
this growing range of applicability, it seems 
appropriate to survey the state of the art. 

This paper describes the concepts central 
to the design and construction of concur- 
rent programs and explores notations for 
describing concurrent computations. Al- 
though this description requires detailed 
discussions of some concur ren t  program- 
ming languages, we restrict attention to 
those whose designs we believe to be influ- 
ential or conceptually innovative. Not all 
the languages we discuss enjoy widespread 
use. Many are experimental efforts that 
focus on understanding the interactions of 
a given collection of constructs. Some have 
not even been implemented; others have 
been, but with little concern for efficiency, 
access control, data types, and other impor- 
tant (though nonconcurrency) issues. 

We proceed as follows. In Section 1 we 
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discuss the three issues that  underlie all 
concurrent programming notations: how to 
express concurrent execution, how pro- 
cesses communicate, and how processes 
synchronize. These issues are treated in 
detail in the remainder of the paper. In 
Section 2 we take a closer look at various 
ways to specify concurrent execution: co- 
routines, f o r k  and cobegin  statements, 
and process  declarations. In Section 3 we 
discuss synchronization primitives that  are 
used when communication uses shared 
variables. Two general types of synchroni- 
zation are considered--exclusion and con- 
dition synchronizationmand a variety of 
ways to implement them are described: 
busy-waiting, semaphores, conditional crit- 
ical regions, monitors, and path expres- 
sions. In Section 4 we discuss message-pass- 
ing primitives. We describe methods for 
specifying channels of communication and 
for synchronization, and higher level con- 

structs for performing remote procedure 
calls and atomic transactions. In Section 5 
we identify and compare three general 
classes of concurrent programming lan- 
guages. Finally, in Section 6, we summarize 
the major topics and identify directions in 
which the field is headed. 

1. CONCURRENT PROGRAMS: PROCESSES 
AND PROCESS INTERACTION 

1.1 Processes 

A sequential program specifies sequential 
execution of a list of statements; its execu- 
tion is called a process. A concurrent pro- 
gram specifies two or more sequential pro- 
grams that  may be executed concurrently 
as parallel processes. For example, an air- 
line reservation system that  involves proc- 
essing transactions from many terminals 
has a natural specification as a concurrent 
program in which each terminal is con- 
trolled by its own sequential process. Even 
when processes are not executed simulta- 
neously, it is often easier to structure a 
system as a collection of cooperating se- 
quential processes rather than as a single 
sequential program. A simple batch oper- 
ating system can be viewed as three proc- 
esses: a reader process, an executer process, 
and a printer process. The reader process 
reads cards from a card reader and places 
card images in an input buffer. The execu- 
ter process reads card images from the in- 
put buffer, performs the specified compu- 
tation (perhaps generating line images), 
and stores the results in an output buffer. 
The printer process retrieves line images 
from the output buffer and writes them to 
a printer. 

A concurrent program can be executed 
either by allowing processes to share one or 
more processors or by running each process 
on its own processor. The first approach is 
referred to as multiprogramming; it is sup- 
ported by an operating system kernel [Dijk- 
stra, 1968a] that  multiplexes the processes 
on the processor(s). The second approach 
is referred to as multiprocessing if the 
processors share a common memory (as 
in a multiprocessor [Jones and Schwarz, 
1980]), or as distributed processing if the 
processors are connected by a communica- 
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tions network. 1 Hybrid approaches also ex- 
i s t - f o r  example, processors in a distributed 
system are often multiprogrammed. 

The rate at which processes are executed 
depends on which approach is used. When 
each process is executed on its own pro- 
cessor, each is executed at a fixed, but per- 
haps unknown, rate; when processes share 
a processor, it is as if each is executed on 
a variable-speed processor. Because we 
would like to be able to understand a con- 
current program in terms of its component 
sequential processes and their interaction, 
without regard for how they are executed, 
we make no assumption about execution 
rates of concurrently executing processes, 
except that they all are positive. This is 
called the finite progress assumption. The 
correctness of a program for which only 
finite progress is assumed is thus independ- 
ent of whether that  program is executed on 
multiple processors or on a single multipro- 
grammed processor. 

1.2 Process Interaction 

In order to cooperate, concurrently execut- 
ing processes must communicate and syn- 
chronize. Communication allows execution 
of one process to influence execution of 
another. Interprocess communication is 
based on the use of shared variables (vari- 
ables that can be referenced by more than 
one process) or on message passing. 

Synchronization is often necessary when 
processes communicate. Processes are exe- 
cuted with unpredictable speeds. Yet, to 
communicate, one process must perform 
some action that  the other detects--an ac- 
tion such as setting the value of a variable 
or sending a message. This only works if 
the events "perform an action" and "detect 
an action" are constrained to happen in 
that  order. Thus one can view synchroni- 
zation as a set of constraints on the ordering 
of events. The programmer employs a syn- 
chronization mechanism to delay execu- 
tion of a process in order to satisfy such 
constraints. 

To make the concept of synchronization 
a bit more concrete, consider the batch 
operating system described above. A shared 

1 A concurrent  program tha t  is executed in this way is 
of ten called a distributed program. 
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buffer is used for communication between 
the reader process and the executer proc- 
ess. These processes must be synchronized 
so that, for example, the executer process 
never attempts to read a card image from 
the input if the buffer is empty. 

This view of synchronization follows 
from taking an operational approach to 
program semantics. An execution of a con- 
current program can be viewed as a se- 
quence of atomic actions, each resulting 
from the execution of an indivisible opera- 
tion. 2 This sequence will comprise some 
interleaving of t he  sequences of atomic ac- 
tions generated by the individual compo- 
nent processes. Rarely do all execution in- 
terleavings result in acceptable program be- 
havior, as is illustrated in the following. 
Suppose initially that  x ffi 0, that  process 
P1 increments x by 1, and that  process P2 
increments x by 2: 

PI: x :ffi x + 1 P2: x:-- x + 2 

It would seem reasonable to expect the final 
value of x, after P1 and P2 have executed 
concurrently, to be 3. Unfortunately, this 
will not always be the case, because assign- 
ment statements are not generally imple- 
mented as indivisible operations. For ex- 
ample, the above assignments might be 
implemented as a sequence of three indi- 
visible operations: (i) load a register with 
the value of x; (ii) add 1 or 2 to it; and (iii) 
store the result in x. Thus, in the program 
above, the final value of x might be 1, 2, or 
3. This anomalous behavior can be avoided 
by preventing interleaved execution of the 
two assignment statements-- that  is, by 
controlling the ordering of the" events cor- 
responding to the atomic actions. (If order- 
ing were thus controlled, each assignment 
statement would be an indivisible opera- 
tion.) In other words, execution of 1)1 and 
P2 must be synchronized by enforcing re- 
strictions on possible interleavings. 

The axiomatic approach [Floyd, 1967; 
Hoare, 1969; Dijkstra, 1976] provides a sec- 

2 We assume tha t  a single memory  reference is indivi- 
sible; ff two processes a t t empt  to reference the  same 
memory  cell a t  the  same time, t he  result  is as  if the  
references were made  serially. This  is a reasonable 
assumption in light of  the  way memory  is constructed.  
See Lampor t  [19801)] for a discussion of  some of  the  
implications of  relaxing this  assumption.  
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ond framework in which to view the role of 
synchronization. 3 In this approach, the se -  
m a n t i c s  of statements are defined, by ax- 
ioms and inference rules. This results 
in a formal logical system, called a 
"programming logic." Theorems in the logic 
have the form 

{P} S {Q} 

and specify a relation between statements 
(S) and two predicates, a precondition P 
and a postcondition Q. The axioms and 
inference rules are chosen so that theorems 
have the interpretation that if execution of 
S is started in any state that  satisfies the 
precondition, and if execution terminates, 
then the postcondition will be true of the 
resulting state. This allows statements to 
be viewed as relations between predicates. 

A proof  outline 4 provides one way to 
present a program and its proof. It consists 
of the program text interleaved with asser- 
tions so that  for each statement S, the triple 
(formed from (I) the assertion that tex- 
tually precedes S in the proof outline, (2) 
the statement S, and (3) the assertion that 
textually follows S in the proof outline) is 
a theorem in the programming logic. Thus 
the appearance of an assertion R in the 
proof outline signifies that R is true of the 
program state when control reaches that  
point. 

When concurrent execution is possible, 
the proof of a sequential process is valid 
only if concurrent execution of other pro- 
cesses cannot invalidate assertions that ap- 
pear in the proof [Ashcroft, 1975; Keller, 
1976; Owicki and Gries, 1976a, 1976b; Lam- 
port, 1977, 1980a; Lamport and Schneider, 
1982]. One way to establish this is to assume 
that the code between any two assertions 
in a proof outline is executed atomically s 
and then to prove a series of theorems 
showing t ha t  no statement in one process 
invalidates any assertion in the proof of 

3 We include brief discussions of axiomatic semantics 
here and elsewhere in the paper because of its impor- 
tance in helping to explain concepts. However, a full 
discussion of the semantics of concurrent computation 
is beyond the scope of this paper. 
a This  sometimes is called an asserted program. 
s This  should be construed as specifying what asser- 
tions mus t  be included in the proof rather than  as a 
restriction on how statements  are actually executed. 

another. These additional theorems consti- 
tute a proof of noninterference. To illus- 
trate this, consider the following excerpt 
from a proof outline of two concurrent pro- 
cesses P1 and P2: 

PI: . . .  P2: . . .  
{x > O) {x < 0} 

$1: x := 16 $2: x := - 2  

{x -- 16} . . .  
* * o  

In order to prove that execution of P2 does 
not interfere with the proof of P1, part of 
what we must show is that  execution of $2 
does not invalidate assertions {x > 0} and 
{x = 16} in the proof of P1. This is done by 
proving 

(x < 0 andx > 0} x :ffi -2  (x>0} 

and 

{x  < 0 a n d  x > 0} x :ffi - 2  (x  ffi 16} 

Both of these are theorems because the 
precondition of each, {x < 0 and  x > 0}, is 
false. What  we have shown is that  execution 
of $2 is not possible when either the pre- 
condition or postcondition of $1 holds (and 
thus $1 and $2 are mutually exclusive). 
Hence, $2 cannot invalidate either of these 
assertions. 

Synchronization mechanisms control in- 
terference in two ways. First, they can delay 
execution of a process until a given condi- 
tion {assertion) is true. By so doing, they 
ensure that  the precondition of the subse- 
quent statement is guaranteed to be true 
(provided that the assertion is not inter- 
fered with). Second, a synchronization 
mechanism can be used to ensure that a 
block of statements is an indivisible opera- 
tion. This eliminates the possibility of state- 
ments in other processes interfering with 
assertions appearing within the proof of 
that  block of statements. 

Both views of programs, operational and 
axiomatic, are useful. The operational ap- 
proach-viewing synchronization as an or- 
dering of events--is well suited to explain- 
ing how synchronization mechanisms work. 
For that  reason, the operational approach 
is used rather extensively in this survey. It 
also constitutes the philosophical basis for 
a family of synchronization mechanisms 
calledpath expressions [Campbell and Ha- 
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bermann, 1974], which are described in Sec- 
tion 3.5. 

Unfortunately, the operational approach 
does not really help one understand the 
behavior of a concurrent program or afgne 
convincingly about its correctness. Al- 
though it has borne fruit for simple concur- 
rent programs~such as transactions pro- 
cessed concurrently in a database system 
[Bernstein and Goodman, 1981]--the op- 
erational approach has only limited utility 
when applied to more complex concurrent 
programs [Akkoyunlu et al., 1978; Bern- 
stein and Schneider, 1978]. This limitation 
exists because the number of interleavings 
that  must be considered grows exponen- 
tially with the size of the component se- 
quential processes. Human minds are not 
good at such extensive case analysis. The 
axiomatic approach usually does not have 
this difficulty. It is perhaps the most prom- 
ising technique for understanding concur- 
rent programs. Some familiarity with for- 
mal logic is required for is use, however, 
and this has slowed its acceptance. 

To summarize, there are three main is- 
sues underlying the design of a notation for 
expressing a concurrent computation: 

6) how to indicate concurrent execution; 
(ii) which mode of interprocess communi- 

cation to use; 
(iii) which synchronization mechanism to 

use .  

Also, synchronization mechanisms can be 
viewed either as constraining the ordering 
of events or as controlling interference. We 
consider all these topics in depth in the 
remainder of the paper. 

2. SPECIFYING CONCURRENT EXECUTION 

Various notations have been proposed for 
specifying concurrent execution. Early pro- 
posals, such as the f o r k  statement, are 
marred by a failure to separate process 
definition from process synchronization. 
Later proposals separate these distinct con- 
cepts and characteristically possess syntac- 
tic restrictions that impose some structure 
on a concurrent program. This structure 
allows easy identification of those program 
segments that can be executed concur- 
rently. Consequently, such proposals are 
well suited for use with the axiomatic ap- 

° 7 

proach, because the s t i f l e  of the pro- 
gram itself clarifies the proof obligations for 
establishing noninterference. 

Below, we describe some representative 
constructs for expressing concurrent exe- 
cution. Each can be used to specify com- 
putations having a static (fixed) number of 
processes, or can be used in combination 
with process-creation mechanisms to spec- 
ify computations having a dynamic (vari- 
able) number of processes. 

2.1 Coroutines 

Coroutines are like subroutines, but allow 
transfer of control in a symmetric rather 
than strictly hierarchical way [Conway, 
1963a]. Control is transferred between co- 
routines by means of the resume state- 
ment. Execution of resume is like execu- 
tion of procedure call: it transfers control 
to the named routine, saving enough state 
information for control to return later to 
the instruction following the resume. 
(When a routine is first resumed, control is 
transferred to the beginning of that rou- 
tine.) However, control is returned to the 
original routine by executing another re- 
sume rather than by executing a procedure 
return. Moreover, any other coroutine can 
potentially transfer conWol back tothe orig- 
inal routine. (For example, coroutine C1 
could resume C2, which could resume C3, 
which could resume C1.) Thus resume 
serves as the only way to transfer control 
between coroutines, and one coroutine can 
transfer control to any other coroutine that 
it chooses. 

A use of coroutines appears in Figure 1. 
Note that resume is used to transfer con- 
trol between c0routines A and B, a call is 
used to initiate the coroutine Computation, 
and return is used to transfer control back 
to the caller P. The arrows in Figure 1 
indicate the transfers of control. 

Each coroutine can be viewed as imple- 
menting a process. Execution of resume 
causes process sychronization. When Used 
with care, coroutines are an acceptable way 
to organize concurrent programs that share 
a single processor. In fact, multiprogram- 
ruing can also be implemented using co- 
routines. Coroutines are not adequate for 
true parallel processing, however, because 
their semantics allow for execution of only 
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p r o g r a m  P, 

call `4; 

end 

yco?n.ne 
resume B; 

resume  .4; 
resume  B ~ ... 

return 

Figure 1. A use of coroutines. 

one routine at a time. In essence, coroutines 
are concurrent processes in which process 
switching has been completely specified, 
rather than left to the discretion of the 
implementation. 

Statements to implement coroutines 
have been included in discrete event simu- 
lation languages such as SIMULA I [Ny- 
gaard and Dahl, 1978] and its succes- 
sors; the string-processing language SL5 
[Hanson and Griswold, 1978]; and systems 
implementation languages including 
BLISS [Wulf et al., 1971] and most recently 
Modula-2 [Wirth, 1982]. 

2.2 The fork and join Statements 

The f o r k  statement [Dennis and Van 
Horn, 1966; Conway, 1963b], like a call  or 
resume,  specifies that a designated routine 
should start executing. However, the invok- 
ing routine and the invoked routine proceed 
concurrently. To synchronize with comple- 
tion of the invoked routine, the invoking 
routine can execute a jo in  statement. Exe- 
cuting jo in  delays the invoking routine un- 
til the designated invoked routine has ter- 
minated. (The latter routine is often desig- 
nated by a value returned from execution 
of a prior fork.)  A use of f o r k  and join 
follows: 

program P1; program P2; 
, . .  o , o  

fork P2; . . .  
° o .  o o .  

join P2; end 
o , ,  

Execution of P2 is initiated when the f o r k  
in P1 is executed; P1 and 1'2 then execute 
concurrently until either P1 executes the 
join statement or P2 terminates. After P1 
reaches the jo in  and P2 terminates, P1 
executes the statements following the join. 

Because f o r k  and jo in  can appear in 
conditionals and loops, a detailed under- 
standing of program execution is necessary 
to understand which routines will be exe- 
cuted concurrently. Nevertheless, when 
used in a disciplined manner, the state- 
ments are practical and powerful. For ex- 
ample, f o r k  provides a direct mechanism 
for dynamic process creation, including 
multiple activations of the same program 
text. The UNIX 6 operating system [Ritchie 
and Thompson, 1974] makes extensive use 
of variants of f o r k  and join. Similar state- 
ments have also been included in PL/ I  and 
Mesa [Mitchell et al., 1979]. 

2.3 The cobegin Statement 

The cobeg in  statement 7 is a structured 
way of denoting concurrent execution of a 
set of statements. Execution of 

cobegin $1 II $2 II "'" U Sn coend 

causes concurrent execution of $1, $ 2 , . . . ,  
Sn. Each of the Si's may be any statement, 
including a cobeg in  or a block with local 
declarations. Execution of a cobeg in  state- 
ment terminates only when execution of all 
the Si's have terminated. 

Although cobeg in  is not as powerful as 
fo rk / jo in ,  s it is sufficient for specifying 

6 UNIX is a trademark of Bell Laboratories. 
7 This was first called p a r b e g i n  by Dijkstra [1968b]. 
s Execution of a concurrent program can be repre- 
sented by a process flow graph: an acyclic, directed 
graph having one node for each process and an arc 
from one node to another if the second cannot execute 
until the fncst has terminated [Shaw, 1974]. Without 
introducing extra processes or idle time, cobeg in  
and sequencing can only represent series-parallel 
(properly nested) process flow graphs. Using fo rk  and 
j o i n ,  the computation represented by any process flow 
graph can be specified directly. Furthermore, fo rk  can 
be used to create an arbitrary number of concurrent 
processes, whereas cobeg in  as defined in any existing 
language, can be used only to activate a fLxed number 
of processes. 
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program OPS YS; 

vat input_buffer : array [0.. N- l ]  of cardimage; 
output_buffer : array [O..N-I] of lineimage; 

process reader; 
var card " eardimage; 
loop 

read card from cardreader; 
deposit card in input_buffer 
end 

end; 

process executer; 
var card : cardimage; 

line : lineimage; 
loop 

fetch card from input_buffer; 
process card and generate line; 
deposit line in output_buffer 
end 

end; 

process printer; 
var line : lineimage; 
loop 

fetch line from output_buffer; 
print line on lineprinter 
end 

end 

end. 

Figure 2. Outline of batch operating system. 

most concurrent computations. Further- 
more, the syntax of the cobegin  statement 
makes explicit which routines are executed 
concurrently, and provides a single-entry, 
single-exit control structure. This allows 
the state transformation implemented by a 
cobeg in  to be understood by itself, and 
then to be used to understand the program 
in which it appears. 

Variants of cobeg in  have been included 
in ALGOL68 [van Wijngaarden et al., 
1975], Communicating Sequential Pro- 
cesses [Hoare, 1978], Edison [Brinch Han- 
sen, 1981], and Argus [Liskov and Scheifler, 
1982]. 

2.4 Process Declarations 

Large programs are often structured as a 
collection of sequential routines, which are 
executed concurrently. Although such rou- 
tines could be declared as procedures and 
activated by means of cobeg in  or fork,  the 
structure of a concurrent program is much 
clearer if the declaration of a routine states 
whether it will be executed concurrently. 

The process declaration provides such a 
facility. 

Use of process declarations to structure 
a concurrent program is illustrated in Fig- 
ure 2, which outlines the batch operating 
system described earlier. We shall use this 
notation for process declarations in the re- 
mainder of this paper to denote collections 
of routines that  are executed concurrently. 

In some concurrent programming lan- 
guages {e.g., Distributed Processes [Brinch 
Hansen, 1978] and SR [Andrews, 1981]), a 
collection of process declarations is equiv- 
alent to a single cobegin ,  where each of 
the declared processes is a component of 
the cobegin.  This means there is exactly 
one instance of each declared process. Al- 
ternatively, some languages provide an ex- 
plicit mechanism--fork  or something sim- 
i l a r - fo r  activating instances of process 
declarations. This explicit activation mech- 
anism can only be used during program 
initialization in some languages (e.g., Con- 
current PASCAL [Brinch Hansen, 1975] 
and Modula [Wirth, 1977a]). This leads to 
a fixed number of processe~ but  allows mul- 
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tiple instances of each declared process to 
be created. By contrast, in other languages 
(e.g., PLITS[Feldman, !979] and Ada 
[U. S. Department of Defense, 1981]) pro- 
cesses can be created at any time during 
execution, which makes possible computa- 
tions having a variable number of pro- 
cesses. 

3. SYNCHRONIZATION PRIMITIVES BASED 
ON SHARED VARIABLES 

When shared variables are used for inter- 
process communication, two types of syn- 
chronization are useful: mutual exclusion 
and condition synchronization. Mutual  ex- 
clusion ensures that  a sequence of state- 
ments is treated as an indivisible operation. 
Consider, for example, a complex data 
structure manipulated by means of opera- 
tions implemented as sequences of state- 
ments. If processes concurrently perform 
operations on the same shared data object, 
then unintended results might occur. (This 
was illustrated earlier where the statement 
x :ffi x + 1 had to be executed indivisibly 
for a meaningful computation to result.) A 
sequence of statements that  must appear 
to be executed as an indivisible operation is 
called a critical section. The term "mutual 
exclusion" refers to mutually exclusive ex- 
ecution of critical sections. Notice that  the 
effects of execution interleavings are visible 
only if two computations access shared var- 
ibles. If such is the case, one computation 
can see intermediate results produced by 
incomplete execution of the other. If two 
routines have no variables in common, then 
their execution need not be mutually exclu- 
sive. 

Another situation in which it is necessary 
to coordinate execution of concurrent proc- 
esses occurs when a shared data object is in 
a state inappropriate for executing a partic- 
ular operation. Any process attempting 
such an operation should be delayed until 
the state of the data object (i.e., the values 
of the variables that comprise the object) 
changes as a result of other processes exe- 
cuting operations. We shall call this type 
of synchronization condition synchroniza- 
tion. 9 Examples of condition synchroniza- 
tion appear in the simple batch operating 
system discussed above. A process attempt- 

9 Unfor tuna te ly ,  t he re  is no ' commonly  agreed upon  
t e r m  for this .  

ing to execute a "deposit" operation on a 
buffer (the buffer being a shared data ob- 
ject) should be delayed if the buffer has no 
space. Similarly, a process attempting to 
"fetch" from a buffer should be delayed if 
there is nothing in the buffer to remove. 

Below, we survey various mechanisms for 
implementing these two types of synchro- 
nization. 

3.1 Busy-Waiting 

One way to implement synchronization is 
to have processes set and test shared vari- 
ables. This approach works reasonably well 
for implementing condition synchroniza- 
tion, but not for implementing mutual ex- 
clusion, as will be seen. To signal a condi- 
tion, a process sets the value of a shared 
variable; to wait for that  condition, a proc- 
ess repeatedly tests the variable until it is 
found to have a desired value. Because a 
process waiting for a condition must re- 
peatedly test the shared variable, this tech- 
nique to delay a process is called busy-wait- 
ing and the process is said to be spinning. 
Variables that  are used in this way are 
sometimes called spin locks. 

To implement mutual exclusion using 
busy-waiting, statements that  signal and 
wait for conditions are combined into care- 
fully constructed protocols. Below, we pres- 
ent Peterson's solution to the two-pro- 
cess mutual exclusion problem [Peterson, 
1981]. (This solution is simpler than the so- 
lution proposed by Dekker [Shaw, 1974].) 
The solution involves an entry protocol, 
which a process executes before entering its 
critical section, and an exit protocol, which 
a process executes after finishing its critical 
section: 

process P1; 
loop 

Entry Protocol; 
Critical Section; 
Exit Protocol; 
Noncritical Section 
end 

end 

process P2; 
loop 

Entry Protocol; 
Critical Section; 
Exit Protocol; 
Noncritical Section 
end 

end 
Computing Surveys, Vol. 15, No. 1, March 1983 
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Three shared variables are used as follows that  the finite progress assuraption is not 
to realize the desired synchronization. Boo- invalidated by delays due tO ~synchroniza. 
lean variable enteri (i -- I or 2) is true when 
process Pi is executing its entry protocol or 
its critical section. Variable turn records 
the name of the next process to be granted 
entry into its own critical section; turn is 
used when both processes execute their re- 
spective entry protocols at about the same 
time. The solution is 

p r o g r a m  Mute.,:_ExanTph,; 

var enter l, enter2 : Boolean initial {false~false); 
turn : integer initial ("PI") ;  { or  "P2'" } 

process  P1; 
loop 

Entry_Protocol: 
enterl :=  true: { announce  intent to enter } 
turn : = " P 2 " :  { set priori ty to other  process } 

tion. In general, a synchronization mecha- 
nism is fair if no process is delayed forever, 
waiting for a condition that  occurs infinitely 
often; it is bounded fair if there exists an 
upper bound on how longa process will be 
delayed waiting for a condition that  occurs 
infinitely often. The above protocol is 
bounded fair, since a process waiting to 
enter its critical section is delayed for at 
most one execution of the other process' 
critical section; the variable turn ensures 
this. Peterson [1981] gives operational 
proofs of mutual exiZlusion, deadlock free- 
dom, and fairness; Dijkstra [1981a] gives 
axiomatic ones. 

Synchronization protocols that use only 
wh,e enter2 and turn = "Re" busy-waiting are difficult to design, under- 

do  skip; { wait  if o ther  process is in and  it is his turn  ! 
Critical Section; stand, and prove correct. First, although 
Exi t_Protocol :  

enterl :=./ah'e; { renounce  intent to enter  } 

Noncri t ical  Section 
end 

end: 

process P2: 
loop 

Ent ry_Protocol :  
enter2 := true; { a n n o u n c e  intent to enter } 
turn :=  " P I ' ;  { set pr ior i ty  to other  process ] 
while enterl  and turn ="PI '"  

do skip; { wait  if o ther  process is in and it is his turn  } 
Crit ical  Section: 

Exi t_Protocol :  
enterl :=.false; { renounce  intent  to  enter } 

Noncri t ical  Section 
end 

end 

end. 

In addition to implementing mutual ex- 
clusion, this solution has two other desira- 
ble properties. First, it is deadlock free. 
Deadlock is a state of affairs in which two 
or more processes are waiting for events 
that  will never occur. Above, deadlock 
could occur if each process could spin for- 
ever in its entry protocol; using turn pre- 
cludes deadlock. The second desirable 
property is fairness: 1° if a process is trying 
to enter its critical section, it will eventually 
be able to do so, provided that the other 
process exits its critical section. Fairness is 
a desirable property for a synchronization 
mechanism because its presence ensures 

~ ° A  m o r e  c o m p l e t e  d i s c u s s i o n  o f  f a i r n e s s  a p p e a r s  i n  
L e h m a n n  e t  a l .  [ 1 9 8 1 ] .  

instructions that  make two memory refer- 
ences part of a single indivisible operation 
(e.g., the T S  (test-and-set) instruction on 
the IBM 360/370 processors) help, such 
instructions do n o t  significantly simplify 
the task of designing synchronization pro- 
tocols. Second, busy-waiting wastes pro- 
cessor cycles. A processor executing a spin- 
ning process could usually be  ~employed 
more productively by running other pro- 
cesses until the awaited ~ condition occurs. 
Last, the busy-waiting~approach to syn- 
chronization burdens the programmer with 
deciding both what synchronization is re- 
quired and how to provide it. In reading a 
program that  uses busy-waiting, it may not 
be clear to the reader which program vari- 
ables are used for implementing synchro- 
nization and which are used for, say, inter- 
process communication. 

3.2 Semaphores 

Dijkstra was one of the first to appreciate 
the difficulties of using low-level mecha- 
nisms for process synchronization, and this 
prompted his development of semaphores 
[Dijkstra, 1968a, 19681)]. A semaphore is a 
nonnegative integer-valued variable on 
which two operations are defined: P and V. 
Given a semaphore s, P(s) delays until 
s > 0 and then executes s ~ s - 1; the test 
and decrement ar~ executed as an indivis- 
ible operation. V(s) executes s :ffi s + 1 as 
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an indivisible operation, n Most  semaphore  
implementat ions  are assumed to exhibit  
fairness: no process delayed while executing 
P(s) will r e m a i n  delayed forever  if V(s) 
operat ions are performed infinitely often. 
T h e  need for fairness arises when a number  
of  processes are s imultaneously delayed, all 
a t tempt ing  to execute a P operat ion on the 
same semaphore.  Clearly, the implementa-  
t ion must  choose which one will be allowed 
to proceed when a V is ul t imately  per- 
formed. A simple way to ensure fairness is 
to awaken processes in the order  in which 
they  were delayed. 

Semaphores  are a very  general  tool for 
solving synchronizat ion problems. To  im- 
p lement  a solution to the  mutua l  exclusion 
problem, each critical section is preceded 
by  a P operat ion and followed by  a V 
operat ion on the  same semaphore.  All mu- 
tual ly exclusive critical sections use the 
same semaphore,  which is initialized to one. 
Because such a semaphore  only takes on 
the  values zero and one, it  is of ten called a 
binary semaphore.  

To  implement  condit ion synchronization, 
shared variables are used to represent  the  
condition, and a semaphore  associated with 
the  condit ion is used to accomplish the 
synchronization.  After  a process has  made  
the condit ion true, it signals tha t  it has 
done so by  executing a V operation; a pro- 
cess delays unti l  a condit ion is t rue  by  
executing a P operation. A semaphore  tha t  
can take any nonnegat ive value is called a 
general or counting semaphore.  General  
semaphores  are often used for condit ion 
synchronizat ion when controlling resource 
allocation. Such a semaphore  has  as its 
initial value the  initial number  of  units  of 
the  resource; a P is used to delay a process 
until  a free resource uni t  is available; V is 
executed when  a uni t  of the  resource is 
re turned.  Binary  semaphores  are sufficient 

n p is the first letter of the Dutch word "passeren," 
which means "to pass"; V is the first letter of 
"vrygeven," the Dutch word for "to release" [Dijkstra, 
1981b]. Reflecting on the definitions of P and V, 
Dijkstra and his group observed the P might better 
stand for "prolagen" formed from the Dutch words 
"proberen" (meaning "to try") and "verlagen" (mean- 
ing "to decrease") and V for the Dutch word 
"verhogen" meaning "to increase." Some authors use 
wait for P and signal for V. 

for  some types of condit ion synchroniza- 
tion, no tably  those in which a resource has 
only one unit.  

A few examples will i l lustrate uses of 
semaphores.  We show a solution to the  two- 
process mutua l  exclusion problem in te rms 
of semaphores  in the  following: 

program Mutex__Example; 

var mutex : semaphore initial (i); 

process P1; 
loop 

P(mutex); { Entry Protocol } 
Critical Section; 
V(mutex); [ Exit Protocol } 
Noncritical Section 
end 

end; 

process P2; 
loop 

P(mutex); { Entry Protocol } 
Critical Section; 
V(mutex); { Exit Protocol } 
Noncritical Section 
end 

end 

end. 
Notice how simple and symmetr ic  the ent ry  
and exit protocols  are in this solution to the 
mutua l  exclusion problem. In particular,  
this use of P and V ensures bo th  mutua l  
exclusion and absence of deadlock. Also, if 
the  semaphore  implementa t ion  is fair and 
bo th  processes always exit their  critical sec- 
tions, each process eventual ly gets to enter  
its critical section. 

Semaphores  can also be used to solve 
selective mutual  exclusion problems. In the  
latter ,  shared  variables are par t i t ioned into 
disjoint sets. A semaphore  is associated 
with each set and used in the same way as 
mutex above to control  access to the vari- 
ables in t ha t  set. Critical sections tha t  ref- 
erence variables in the  same set execute 
with mutua l  exclusion, bu t  critical sections 
tha t  reference variables in different sets 
execute  concurrent ly.  However,  if two or 
more  processes require s imultaneous access 
to variables in two or more  sets, the  pro- 
g rammer  must  take care or deadlock could 
result.  Suppose tha t  two processes, P1 and 
P2, each require s imultaneous access to sets 
of  shared  variables A and B. Then ,  P1 and 
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P2 will deadlock if, for example, P1 acquires 
access to set A, P2 acquires access to set B, 
and then both processes try to acquire ac- 
cess to the set that  they do not yet have. 
Deadlock is avoided here (and in general) 
if processes first try to acquire access to the 
same set (e.g., A), and then try to acquire 
access to the other (e.g., B). 

Figure 3 shows how semaphores can be 
used for selective mutual exclusion and con- 
dition synchronization in an implementa- 
tion of our simple example operating 
system. Semaphore in___rnutex is used to 
implement mutually exclusive access to 
input__buffer and out__mutex is used to 
implement mutually exclusive access to 
output_buffer. 12 Because the buffers 
are disjoint, it is possible for opera- 
tions on input__buffer and output__buffer 
to proceed concurrently. Semaphores 
num cards, num__lines, free__cards, and 
free__lines are used for condition synchro- 
nization: num__cards (num__lines) is the 
number of card images (line images) that 
have been deposited but not yet fetched 
from input__buffer (output__buffer); 
free__cards (free__lines) is the number of 
free slots in input__buffer (output__buffer). 
Executing P(num__cards) delays a process 
until there is a card in input___buffer; 
P(free__cards) delays its invoker until 
there is space to insert a card in in- 
put__buffer. Semaphores num__lines and 
free__lines play corresponding roles with 
respect to output__buffer. Note that  before 
accessing a buffer, each process first waits 
for the condition required for access and 
then acquires exclusive access to the buffer. 
If this were not the case, deadlock could 
result. (The order in which V operations 
are performed after the buffer is accessed is 
not critical.) 

Semaphores can be implemented by us- 
ing busy-waiting. More commonly, how- 
ever, they are implemented by system calls 
to a kernel. A kernel {sometimes called a 
supervisor or nucleus) implements proc- 
esses on a processor [Dijkstra, 1968a; Shaw, 

~2 In this solution, careful implementation of the op- 
erations on the buffers obviates the need for sema- 
phores in_mutex  and out_mutex. The semaphores 
tha t  implement condition synchronization are suffi- 
cient to ensure mutually exclusive access to individual 
buffer slots. 

• 13 

program OPSY~,, .... 

vat in_mutex, out.Jnulex : semaphore initial (1, !); 
num_.cards, numJines : semaphoTe initial (0,0); 
free_cards, free-lines : semaphore initial (N,N); 
input_buffer : array [O..N-I] of:cardimage; 
output..buffer : array [O,.N-I] of lineimage; 

process reader; 
var card : cardimage; 
loop 

read card from cardreader; 
POCree_cards); P(in_mutex); 

deposit card in input..buffer; 
V(in_mutex); Y(num...cards) 
end 

end; 

process executer; 
var card : eardimage; 

line : lineimage; 
loop 

P(num_cards); P(in_mutex); 
fetch card from input_buffer; 

V(in_muwx); Y(free-cards); 
process card and generate line; 
P(free..lines); P(out_mutex); 

deposit line in output_buffer; 
V(out_mutex); V(num._lines) 
end 

end; 

process printer; ~ 
var line : lineimage; -~ 
loop 

P(num_lines); P(out_mutex); 
fetch line from output_buffer; 

V(out_mutex); VOrree_lines); 
print line on lineprinter 
end 

end 

end. 

Figure 3. Batch operating system with semaphores. 

1974]. At all times, each process is either 
ready to execute on the processor or is 
blocked, waiting to complete a P operation. 
The kernel maintains a ready list--a queue 
of descriptors for ready processes--and 
multiplexes the processor among these 
processes, running each process for some 
period of time. Descriptors for processes 
that  are blocked on a semaphore are stored 
on a queue associated with that  semaphore; 
they are not stored on the ready list, and 
hence the processes will not be executed. 
Execution of a P or V operation causes a 
trap to a kernel routine. For a P operation, 
if the semaphore is positive, it is decre- 
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mented; otherwise the descriptor for the 
executing process is moved to the s e m a -  
phore 's  queue. For a V operation, if the 
semaphore's queue is not empty, one de- 
scriptor is moved from that  queue to the 
ready list; otherwise the semaphore is in- 
cremented. 

This approach to implementing synchro- 
nization mechanisms is quite general and is 
applicable to the other mechanisms that  we 
shall discuss. Since the kernel is responsible 
for allocating processor cycles to processes, 
it can implement a synchronization mech- 
anism without using busy-waiting. It does 
this by not running processes that  are 
blocked. Of course, the names and details 
of the kernel calls will differ for each syn- 
chronization mechanism, but the net effects 
of these calls will be similar: to move pro- 
cesses on and off a ready list. 

Things are somewhat more complex 
when writing a kernel for a multiprocessor 
or distributed system. In a multiprocessor, 
either a single processor is responsible for 
maintaining the ready list and assigning 
processes to the other processors, or the 
ready list is shared [Jones and Schwarz, 
1980]. If the ready list is shared, it is subject 
to concurrent access, which requires that  
mutual exclusion be ensured. Usually, busy- 
waiting is used to ensure this mutual exclu- 
sion because operations on the ready list 
are fast and a processor cannot execute any 
process until it is able to access the ready 
list. In a distributed system, although one 
processor could maintain the ready list, it 
is more common for each processor to have 
its own kernel and hence its own ready list. 
Each kernel manages those processes resid- 
ing at one processor; if a process migrates 
from one processor to another, it comes 
under the control of the other's kernel. 

3.3 Conditional Critical Regions 

Although semaphores can be used to pro- 
gram almost any kind of synchronization, P 
and V are rather unstructured primitives, 
and so it is easy to err when using them. 
Execution of each critical section must be- 
gin with a P and end with a V (on the same 
semaphore). Omitting a P or V, or acciden- 
tally coding a P on one semaphore and a V 
on another can have disastrous effects, 

since mutually exclusive execution would 
no longer be ensured. Also, when using 
semaphores, a programmer can forget to 
include in critical sections all statements 
that  reference shared objects. This, too, 
could destroy the mutual exclusion re- 
quired within critical sections. A second 
difficulty with using semaphores is that  
both condition synchronization and mutual 
exclusion are programmed using the same 
pair of primitives. This makes it difficult to 
identify the purpose of a given P or V 
operation without looking at the other op- 
erations on the corresponding semaphore. 
Since mutual exclusion and condition syn- 
chronization are distinct concepts, they 
should have distinct notations. 

The condi t ional  cri t ical  region proposal 
[Hoare, 1972; Brinch Hansen 1972, 1973b] 
overcomes these difficulties by providing a 
structured notation for specifying synchro- 
nization. Shared variables are explicitly 
placed into groups, called resources. Each 
shared variable may be in at most one 
resource and may be accessed only in con- 
ditional critical region (CCR) statements 
that  name the resource. Mutual exclusion 
is provided by guaranteeing that  execution 
of different CCR statements, each naming 
the same resource, is not overlapped. Con- 
dition synchronization is provided by ex- 
plicit Boolean conditions in CCR state- 
ments. 

A resource r containing variables vl ,  
v 2 , . . . ,  v N  is declared as 13 

r e s o u r c e  r :  v l ,  v2, . . . .  vN 

The variables in r may only be accessed 
within CCR statements that  name r. Such 
statements have the form 

r e g i o n  r w h e n  B do  S 

where B is a Boolean expression and S is a 
statement list. (Variables local to the exe- 
cuting process may also appear in the CCR 
statement.) A CCR statement delays the 
executing process until B is true; S is then 
executed. The evaluation of B and execu- 
tion of S are uninterruptible by other CCR 
statements that  name the same resource. 

~3 Our notation combines aspects of those proposed by 
Hoare [1972] and by Brinch Hansen [1972, 1973b]. 
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Thus B is guaranteed to be true when exe- 
cution of S begins. The delay mechanism is 
usually assumed to be fair: a process await- 
ing a condition B that is repeatedly true 
will eventually be allowed to continue. 

One use of conditional critical regions is 
shown in Figure 4, which contains another 
implementation of our batch operating sys- 
tem example. Note how condition synchro- 
nization has been separated from mutual 
exclusion. The Boolean expressions in those 
CCR statements that  access the buffers 
explicitly specify the conditions required 
for access; thus mutual exclusion of differ- 
ent CCR statements that access the same 
buffer is implicit. 

Programs written in terms of conditional 
critical regions can be understood quite 
simply by using the axiomatic approach. 
Each CCR statement implements an oper- 
ation on the resource that  it names. Asso- 
ciated with each resource r is an invar ian t  
relat ion L: a predicate that  is true of the 
resource's state after the resource is initial- 
ized and after execution of any operation 
on the resource. For example, in O P S Y S  of 
Figure 4, the operations insert and remove 
items from bounded buffers and the buffers 
inp__buff  and out__buff  both satisfy the 
invariant 

IB: 
0 <_ head, tail _< N - 1 and 
0 <- size < N and 
tail = (head + size) rood N and 
slots[head] through slots[ (tail - 1) rood N] 

in the circular buffer contain 
the most recently inserted items 
in chronological order 

The Boolean expression B in each CCR 
statement is chosen so that  execution of the 
statement list, when started in any state 
that  satisfies Ir a nd  B, will terminate in a 
state that  satisfies It. Therefore the invar- 
iant is true as long as no process is in the 
midst of executing an operation (i.e., exe- 
cuting in a conditional critical region asso- 
ciated with the resource). Recall that  exe- 
cution of conditional critical regions asso- 
ciated with a given shared data object does 
not overlap. Hence the proofs of processes 
are interference free as long as (1) variables 
local to a process appear only in the proof 
of that process and (2) variables of a re- 

• 1 5  

program OPSY$; :~" 

type buffer(T) = r~'ord 
slots : array [O..N-I]  o f  T; 
head, tail : O..N-I initial (0, 0); 
size = O..N initial (0) 
end; 

vat inp_buff : buffer(cardimage); 
out_buff: buffer(lineimage); 

resource ib : inp_bufj~ ob : oul..bufJ~ 

process reader; 
var card : cardimage; 
loop 

read card from cardreader~ 
region ib when inp..buffMz¢ < N d o  

inp_buff.slots[inp_lmff.tail ] ;=  card; 
inp..buff.size := inp_b~fl~iz¢ + | ;  
inp_buff.tail := (inp..buff.~tail -~ 1) rood N 
end : ,  

end 
end; 

process executer; 
vat card : cardimage; 

line : lineimage; 
loop 

region ib when ,inp..buffsize > 0 do 
card := inp_bUffsiots[inp..buffhead] 
inp_buff, size := inp_buff.size -" I; 
inp_buff, head := (inp_lmff.head + 1) rood N 
end; 

process card and generate line;. 
region ob when out..buffsize < N do 

out_.buff, slots[out_.buff.tai~ := line; 
out_buff, size := out_buff.size + 1; 
out_buff, tail := (out_buff.tail+ !) rood N 
end 

end 
end; 

process printer; 
var line : lineimage; 
loop 

region ob when out_buffsize > 0 do 
fine := out_buff.slots[out.,buff.head]; 
out...buff size := out_buff.size - !; 
out_buffhead := (out_buffhead + 1) rood N 
end; 

print line on lineprinter 
end 

end 

end. 

Figure 4. Batch  opera t ing  s y s t e m  with C C R  s ta te -  
ments .  

source appear only in assertions within con- 
ditional critical regions for tha t  resource. 
Thus, once appropriate resource invariants 
have been defined, a concurrent  program 
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can be understood in terms of its compo- 
nent sequential processes. 

Although conditional critical regions 
have many virtues, they can be expensive 
to implement. Because conditions in CCR 
statements can contain references to local 
variables, each process must evaluate its 
own conditions. 14 On a multiprogrammed 
processor, this evaluation results in numer- 
ous context switches (frequent saving and 
restoring of process states), many of which 
may be unproductive because the activated 
process may still find the condition false. If 
each process is executed on its own pro- 
cessor and memory is shared, however, 
CCR statements can be implemented quite 
cheaply by using busy-waiting. 

CCR statements provide the synchroni- 
zation mechanism in the Edison language 
[Brinch Hansen, 1981], which is designed 
specifically for multiprocessor systems. 
Variants have also been used in Distributed 
Processes [Brinch Hansen, 1978] and Argus 
[Liskov and Scheifler, 1982]. 

3.4 Monitors 

Conditional critical regions are costly to 
implement on single processors. Also, CCR 
statements performing operations on re- 
source variables are dispersed throughout 
the processes. This means that  one has to 
study an entire concurrent program to see 
all the ways in which a resource is used. 
Monitors alleviate both these deficiencies. 
A monitor is formed by encapsulating both 
a resource definition and operations that  
manipulate it [Dijkstra, 1968b; Brinch Han- 
sen, 1973a; Hoare, 1974]. This allows a re- 
source subject to concurrent access to be 
viewed as a module [Parnas, 1972]. Conse- 
quently, a programmer can ignore the im- 
plementation details of the resource when 
using it, and can ignore how it is used 
when programming the monitor that  imple- 
ments it. 

3.4.1 Definition 

A monitor consists of a collection of per- 
manent  variables, used to store the re- 

~4 W h e n  delayed,  a process  could ins tead  place condi- 
t ion eva lua t ing  code in an  a rea  of  m e m o r y  accessible 
to o ther  processes,  b u t  th is  too is costly. 

rename : monitor; 

vat declarations of permanent  variables; 

procedure op l(parameters); 
var declarations of variables local to op]; 
begin 

code to implement opl 
end; 

procedure op N(parameters); 
vat declarations of  variables local to opN; 
begin 

code to implement opN 
end; 

begin 
code to initialize permanent  variables 

end 

Figure 5. Moni to r  s t ructure .  

source's state, and some procedures, which 
implement operations on the resource. A 
monitor also has permanent-variable ini- 
tialization code, which is executed once be- 
fore any procedure body is executed. The 
values of the permanent variables are re- 
tained between activations of monitor pro- 
cedures and may be accessed only from 
within the monitor. Monitor procedures 
can have parameters and local variables, 
each of which takes on new values for each 
procedure activation. The structure of a 
monitor with name rename and procedures 
opl, . . . ,  opN is shown in Figure 5. 

Procedure opJ  within monitor mname is 
invoked by executing 

call mname.opJ (arguments). 

The invocation has the usual semantics 
associated with a procedure call. In addi- 
tion, execution of the procedures in a given 
monitor is guaranteed to be mutually exclu- 
sive. This ensures that  the permanent vari- 
ables are never accessed concurrently. 

A variety of constructs have been pro- 
posed for realizing condition synchroniza- 
tion in monitors. We first describe the pro- 
posal made by Hoare [1974] and then con- 
sider other proposals. A condition variable 
is used to delay processes executing in a 
monitor; it may be declared only within a 
monitor. Two operations are defined on 
condition variables: s ignal  and wait .  If 
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type buffer(T} = monitor; 

vat { the variables satisfy invariant IB - -  see See. 4.3 } 
slots : array 10..N-I] of  7~ 
head, tail : 0 . .N-I ;  
size : 0.. N; 
notfull ,  n o t e m p t y  : condit ion; 

procedure deposi t (p  : 7); 
begin 

i f  size = N then notfull .wait;  
slots[tat1] := p; 
size := size + I; 
tail := (tail + 1) rood N; 
notempty .s ignal  

end; 

procedure fetch(var it : 7); 
begin 

if size = 0 then notempty .wai t ;  
it := slots[head]; 
size :=size  - 1; 
head  := (head + 1) rood N; 
not  ful l .s ignal  

end; 

begin 
size := O; head  := O; tail := 0 

end 

Figure 6. Bounded buffer monitor.  

cond is a condition variable, then execution 
of 

c o n d . w a i t  

causes the invoker to be blocked on cond 
and to relinquish its mutually exclusive 
control of the monitor. Execution of 

cond.signal 

works as follows: if no process is blocked on 
cond, the invoker continues; otherwise, the 
invoker is temporarily suspended and one 
process blocked on cond is react ivated.A 
process suspended due to a s ignal  opera- 
tion continues when there is no other proc- 
ess executing in the monitor. Moreover, 
signalers are given priority over processes 
trying to commence execution of a monitor 
procedure. Condition variables are assumed 
to be fair in the sense that a process will 
not forever remain suspended on a condi- 
tion variable that  is signaled infinitely of- 
ten. Note that  the introduction of condition 
variables allows more than one process to 
be in the same monitor, although all but 
one will be delayed at wa i t  or s ignal  op- 
erations. 

program OPSY$; ~, 

type buffer(T} = .,.; { see Figure 5 } 

var i np . .bu f f  : buffer(cardimage); 
o u t _ b u f f :  buffer(lineimage); 

process reader; 
var card : cardimage; 
loop 

read card from ¢ardreader; 
call inp . .buf fdepos i t (card)  
end 

end; 

process executer; 
var card : cardimage; 

line : lineimage; 
loop 

call inp_buff . fetch(card);  
process card  and generate line; 
call out_buf f ,  deposit(l ine) 
end 

end; 

process printer; 
var line : lineimage; 
loop 

¢all out . .buf f fe tch( l ine);  
print line on lineprinter 
end 

end 

end. 

Figure 7. 
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Ba tch  operating sys tem with  monitors.  

An example of a monitor that  defines a 
bounded buffer type is given in Figure 6. 
Our batch operating system can be pro- 
grammed using two instances of the 
bounded buffer in Figure 6; these are shared 
by three processes, as shown in Figure 7. 

At times, a programmer requires more 
control over the order in which delayed 
processes are awakened. To implement 
such medium-term scheduling, 15 the prior- 
ity wai t  statement can be used. This state- 
ment 

cond.wait(p) 

has the same semantics as cond.wait, ex- 
cept that  in the former processes blocked 
on condition variable cond are awakened in 
ascending order of p. {Consequently, con- 

~5 This  is in contras t  to s h o r t - t e r m  s c h e d u l i n g ,  which 
is concerned wi th  how processors are assigned to ready 
processes, and l o n g - t e r m  s c h e d u l i n g ,  which refers to 
how jobs  are selected to be processed. 
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dition variables used in this way are not 
necessarily fair.) 

A common problem involving medium- 
term scheduling is "shortest-job-next" re- 
source allocation. A resource is to be allo- 
cated to at most one user at a time; if more 
than one user is waiting for the resource 
when it is released, it is allocated to the 
user who will use it for the shortest amount 
of time. A monitor to implement such an 
allocator is shown below. The monitor has 
two procedures: ( 1 ) request  (time: integer), 
which is called by users to request access 
to the resource for t ime units; and (2) 
release, which is called by users to relin- 
quish access to the resource: 

shortest._next_allocator : monitor; 

var free : Boolean; 
turn : condition; 

procedure request(time : integer); 
begin 

if not free then turn.wait(time); 
free :=false 

end; 

procedure release; 
begin 

free := true; 
turn.signal 

end; 

begin 
free := true  

end 

3.4.2 Other Approaches to Condition 
Synchronization 

3.4.2.1 Queues a n d  Delay~Continue. In 
Concurrent PASCAL [Brinch Hansen, 
1975], a slightly simpler mechanism is pro- 
vided for implementing condition synchro- 
nization and medium-term scheduling. 
Variables of type queue can be defined and 
manipulated with the operations de lay  
(analogous to wait)  and con t inue  (analo- 
gous to signal).  In contrast to condition 
variables, at most one process can be sus- 
pended on a given queue at any time. This 
allows medium-term scheduling to be im- 
plemented by (1) defining an array of 
queues and (2) performing a con t inue  op- 
eration on that  queue on which the next- 
process-to-be-awakened has been delayed. 

The semantics of con t inue  are also slightly 
different from signal.  Executing cont inue  
causes the invoker to return from its mon- 
itor call, whereas s ignal  does not. As be- 
fore, a process blocked on the selected 
queue resumes execution of the monitor 
procedure within which it was delayed. 

It is both cheaper and easier to imple- 
ment con t inue  than s ignal  because s ignal  
requires code to ensure that  processes sus- 
pended by s ignal  operations reacquire con- 
trol of the monitor before other, newer 
processes attempting to begin execution in 
that  monitor. With both s ignal  and con- 
tinue, the objective is to ensure that  a 
condition is not invalidated between the 
time it is signaled and the time that  the 
awakened process actually resumes execu- 
tion. Although con t inue  has speed and 
cost advantages, it is less powerful than 
signal.  A monitor written using condition 
variables cannot always be translated di- 
rectly into one that  uses queues without 
also adding monitor procedures [Howard, 
19761)]. Clearly, these additional procedures 
complicate the interface provided by the 
monitor. Fortunately, most synchroniza- 
tion problems that  arise in practice can be 
coded using either discipline. 

3.4.2.2 Condi t ional  Wa i t  and  Au tomat i c  
Signal .  In contrast to semaphores, s ignals  
on condition variables are not saved: a proc- 
ess always delays after executing wai t ,  even 
if a previous s ignal  did not awaken any 
process. ~6 This can make s ignal  and wai t  
difficult to use correctly, because other vari- 
ables must be used to record that  a s ignal  
was executed. These variables must also be 
tested by a process, before executing wait ,  
to guard against waiting if the event corre- 
sponding to a s ignal  has already occurred. 

Another difficulty is that, in contrast to 
conditional critical regions, a Boolean 
expression is not syntactically associated 
with s ignal  and wait ,  or with the condition 
variable itself. Thus, it is not easy to deter- 
mine why a process was delayed on a con- 
dition variable, unless s ignal  and w a i t  are 
used in a very disciplined manner. It helps 
if (1) each w a i t  on a condition variable is 

~e The limitations of condition variables discussed in 
this section also apply to queue variables. 
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contained in an i f  statement in which the 
Boolean expression is the negation of the 
desired condition synchronization, and (2) 
each s ignal  statement on the same condi- 
tion variable is contained in an i f  statement 
in which the Boolean expression gives the 
desired condition synchronization. Even so, 
syntactically identical Boolean expressions 
may have different values if they contain 
references to local variables, which they 
often do. Thus there is no guarantee that 
an awakened process will actually see the 
condition for which it was waiting. A final 
difficulty with w a i t  and s ignal  is that, 
because s ignal  is preemptive, the state of 
permanent variables seen by a signaler can 
change between the time a s ignal  is exe- 
cuted and the time that the signaling pro- 
cess resumes execution. 

To mitigate these difficulties, Hoare 
[1974] proposed the conditional wait state- 
ment 

wait (B) 

where B is a Boolean expression involving 
the permanent or local variables of the 
monitor. Execution of wai t (B)  delays the 
invoker until B becomes true; no s ignal  is 
required to reactivate processes delayed by 
a conditional wait statement. This synchro- 
nization facility is expensive because it is 
necessary to evaluate B every time any 
process exits the monitor or becomes 
blocked at a conditional wait and because 
a context switch could be required for each 
evaluation (due to the presence of local 
variables in the condition). However, the 
construct is unquestionably a very clean 
one with which to program. 

An efficient variant of the conditonal 
wait was proposed by Kessels [1977] for use 
when only permanent variables appear in 
B. The buffer monitor, in Figure 6 satisfies 
this requirement. In Kessels' proposal, one 
declares conditions of the form 

cname : condition B 

Execut ing  the s t a t emen t  cname .wai t  
causes B, a Boolean expression, to be eval- 
uated. If B is true, the process continues; 
otherwise the process relinquishes control 
of the monitor and is delayed on cname. 
Whenever a process relinquishes control of 
the monitor, the system evaluates those 

" 19 
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Boolean expressions associated ~ t h  all 
conditions for which there are waiting pro- 
cesses. If one of these Boolean expressions 
is found to be true, one of the waiting pro- 
cesses is granted control of the monitor. If 
none is found to be true, a n e w  invocation 
of one of the monitor's procedures is per- 
mitted. 

Using Kessels' proposal, the buffer mon- 
itor in Figure 6 could be recoded as follows. 
First, the declarations of not__full and 
not._empty are changed to 

not_full : condition size < N; 
not__empty : condition size > 0 

Second, the first statement in deposit is 
replaced by 

not__full, wait 

and the first statement in fetch is replaced 
by 

not__empty, wait 

Finally, the s ignal  statements are deleted. 
The absence of a s igna l  primitive is note- 

worthy. The implementation provides an 
automatic signal, which, though some- 
what more costly, is less error prone than 
explicitly programmed s ignal  operations. 
The s ignal  operation cannot be acciden- 
tally omitted and never signals the wrong 
condition. Furthermore, the programmer 
explicitly specifies the conditions being 
awaited. The primary limitation of  the pro- 
posal is that  it cannot be used ~ solve most 
scheduling problems, because operation pa- 
rameters, which are not permanent vari- 
ables, may not appear in conditions. 

3.4.2.3 Signals as Hints. Mesa [Mitchell 
et al., 1979; Lampson and Redell, 1980] 
employs yet another approach to condition 
synchronization. Condition variables are 
provided, but  only as a way for a process to 
relinquish control of a monitor. In Mesa, 
execution of 

cond.notify 

causes a process waiting on condition vari- 
able cond to resume at some time in the 
future. This is called signal and continue 
because the process performing the notify 
immediately continues execution rather 
than being suspended. 'Performing a notify 
merely gives a hint t ~  a waiting process 
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that  it might be able to proceed. 17 There- 
fore, in Mesa one writes 

while not B do wait cond endloop 

instead of 

if not B then cond.wait 

as would be done using Hoare's condition 
variables. Boolean condition B is guaran- 
teed to be true upon termination of the 
loop, as it was in the two conditional-wait/ 
automatic-signal proposals. Moreover, the 
(possible) repeated evaluation of the Boo- 
lean expression appears in the actual mon- 
itor code--there are no hidden implemen- 
tation costs. 

The no t i fy  primitive is especially useful 
if the executing process has higher priority 
than the waiting processes. It also allows 
the following extensions to condition vari- 
ables, which are often useful when doing 
systems programming: 

(i) A time-out interval t can be associated 
with each condition variable. If a pro- 
cess is ever suspended on this condition 
variable for longer than t time units, a 
notify is automatically performed by 
the system. The awakened process can 
then decide whether to perform an- 
other w a i t  or to take other action. 

(ii) A b r o a d c a s t  primitive can be defined. 
Its execution causes all processes wait- 
ing on a condition variable to resume 
at some time in the future (subject to 
the mutual exclusion constraints asso- 
ciated with execution in a monitor). 
This primitive is useful ff more than 
one process could proceed when a con- 
dition becomes true. The broadcast 
primitive is also useful when a condi- 
tion involves local variables because in 
this case the signaler cannot evaluate 
the condition (B above) for which a 
process is waiting. Such a primitive is, 
in fact, used in UNIX [Ritchie and 
Thompson, 1974]. 

3.4.3 An Axiomatic View 

The valid states of a resource protected by 
a monitor can be characterized by an asser- 

17 Of course, it is prudent to perform not i fy  operations 
only when there is reason to believe that the awakened 
process will actually be able to proceed; but the burden 
of checking the condition is on the waiting process. 

tion called the moni tor  invariant .  This 
predicate should be true of the monitor's 
permanent variables whenever no process 
is executing in the monitor. Thus a process 
must reestablish the monitor invariant be- 
fore the process exits the monitor or per- 
forms a wai t (de lay)  or signal(continue). 
The monitor invariant can be assumed to 
be true of the permanent variables when- 
ever a process acquires control of the mon- 
itor, regardless of whether it acquires con- 
trol by calling a monitor procedure or by 
being reactivated following a w a i t  or sig- 
nal. 

The fact that  monitor procedures are 
mutually exclusive simplifies noninterfer- 
ence proofs. One need not consider inter- 
leaved execution of monitor procedures. 
However, interference can arise when pro- 
gramming condition synchronization. Re- 
call that  a process will delay its progress in 
order to implement medium-term schedul- 
ing, or to await some condition. Mecha- 
nisms that  delay a process cause its execu- 
tion to be suspended and control of the 
monitor to be relinquished; the process re- 
sumes execution with the understanding 
that  both some condition B and the moni- 
tor invariant will be true. The truth of B 
when the process awakens can be ensured 
by checking for it automatically or by re- 
quiring that  the programmer build these 
tests into the program. If programmed 
checks are used, they can appear either in 
the process that  establishes the condition 
(for condition variables and queues) or in 
the process that  performed the wait  (the 
Mesa model). 

If the signaler checks for the condition, 
we must ensure that  the condition is not 
invalidated between the time that  the sig- 
nal occurs and the time that  the blocked 
process actually executes. That  is, we must 
ensure that  other execution in the monitor 
does not interfere with the condition. If the 
signaler does not immediately relinquish 
control of the monitor (e.g., if no t i fy  is 
used), interference might be caused by the 
process that  established the condition in 
the first place. Also, if the signaled process 
does not get reactivated before new calls of 
monitor procedures are allowed, interfer- 
ence might be caused by some process that  
executes after the condition has been sig- 
naled (this can happen in Modula [Wirth, 
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1977a]). Proof rules for monitors and the 
various signaling disciplines are discussed 
by Howard [1976a, 1976b]. 

3.4.4 Nested Monitor Calls 

When structuring a system as a hierarchical 
collection of monitors, it is likely that  mon- 
itor procedures will be called from within 
other monitors. Such nested monitor calls 
have caused much discussion [Haddon, 
1977; Lister, 1977; Parnas, 1978; Wettstein, 
1978]. The controversy is over what (if any- 
thing) should be done if a process having 
made a nested monitor call is suspended in 
another monitor. The mutual exclusion in 
the last monitor called will be relinquished 
by the process, due to the semantics of 
wa i t  and equivalent operations. However, 
mutual exclusion will not be relinquished 
by processes in monitors from which nested 
calls have been made. Processes that at- 
tempt to invoke procedures in these moni- 
tors will become blocked. This has perform- 
ance implications, since blockage will de- 
crease the amount of concurrency exhibited 
by the system. 

The nested monitor call problem can be 
approached in a number of ways. One ap- 
proach is to prohibit nested monitor calls, 
as was done in SIMONE [Kaubisch et al., 
1976], or or to prohibit nested calls to mon- 
itors that are not lexically nested, as was 
done in Modula [Wirth, 1977a]. A second 
approach is to release the mutual exclusion 
on all monitors along the call chain when a 
nested call is made and that process be- 
comes blocked. TM This release-and-reac- 
quire approach would require that the mon- 
itor invariant be established before any 
monitor call that will block the process. 
Since the designer cannot know a priori 
whether a call will block a process, the 
monitor invariant would have to be estab- 
lished before every call. A third approach 
is the definition of special-purpose con- 
structs that can be used for particular sit- 
uations in which nested calls often arise. 

~s Once signaled, the  process  will need  to reacquire  
exclusive access to all moni to rs  along the  call cha in  
before r e suming  execution.  However,  if p e r m a n e n t  
moni to r  var iables  were no t  passed  as reference pa ram-  
e ters  in any  of  the  calls, t h e  process could reacquire  
exclusive access incremental ly ,  as it  r e tu rns  to each  
moni tor .  

The manager construct [Silberschatz et al., 
1977] for handling dynamic resource allo- 
cation problems and the scheduler monitor 
[Schneider and Bernstein, 1978] for sched- 
uling access to shared resources are both 
based on this line of thought. 

The last approach to the nested monitor 
call problem, and probably t h e  most rea- 
sonable, is one that  appreciates that moni- 
tors are only a structuring tool for resources 
that are subject to concurrent access [An- 
drews and McGraw, 1977; Paruas, 1978]. 
Mutual exclusion of monitor procedures is 
only one way tQ preserve the integrity of 
the permanent variables that  make up a 
resource. There are cases in which the op- 
erations provided by a given monitor can 
be executed concurrently without adverse 
effects, and even cases in which more than 
one instance of the same monitor procedure 
can be executed in parallel (e.g., several 
activations of a read procedure, in a moni- 
tor that encapsulates a database)~. Monitor 
procedures can be executed concurrently, 
provided that they do not interfere wi th  
each other. Also, there are cases in which 
the monitor invariant can be easily estab- 
lished before a nested monitor call is made, 
and so mutual exclusion for the monitor 
can be released. Based on such reasoning, 
Andrews and McGraw [1977] defines a 
monitorlike construct that  allows the pro- 
grammer to specify that  certain monitor 
procedures be executed concurrently and 
that mutual exclusion b e  released for cer- 
tain calls. The Mesa language [Mitchell et 
al., 1979] also provides mechanisms that 
give the programmer control over the gran- 
ularity of exclusion. 

3.4.5 Programming Notations Based 
on Monitors 

Numerous programming languages have 
been proposed and implemented that use 
monitors for synchronizing access to shared 
variables. Below, we very briefly discuss 
two of the most important: Concurrent 
PASCAL and Modula. These languages 
have received widespread use, introduced 
novel constructs to handle machine-de- 
pendent systems-programming issues, and 
inspired other language designs, such as 
Mesa [Mitchell et al., 1979] and PASCAL- 
Plus [Welsh and Bustard, 1979]. 
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3.4.5.1 Concurrent PASCAL.  Concur- 
rent PASCAL [Brinch Hansen, 1975, 1977] 
was the first programming language to sup- 
port monitors. Consequently, it provided a 
vehicle for evaluating monitors as a system- 
structuring device. The language has been 
used to write several operating systems, 
including Solo, a single-user operating sys- 
tem [Brinch Hansen, 1976a, 1976b], Job 
Stream, a batch operating system for pro- 
cessing PASCAL programs, and a real-time 
process control system [Brinch Hansen, 
1977]. 

One of the major goals of Concurrent 
PASCAL was to ensure that programs ex- 
hibited reproducible behavior [Brinch Han- 
sen, 1977]. Monitors ensured that patholog- 
ical interleavings of concurrently executed 
routines that shared data were no longer 
possible (the compiler generates code to 
provide the necessary mutual exclusion). 
Concurrent execution in other modules 
(called classes) was not possible, due to 
compile,time restrictions on the dissemi- 
nation of class names and scope rules for 
class declarations. 

Concurrent PASCAL also succeeded in 
providing the programmer with a clean ab- 
stract machine, thereby eliminating the 
need for coding at the assembly language 
level. A systems programming language 
must have facilities to allow access to I/O 
devices and other hardware resources. In 
Concurrent PASCAL, I/O devices and the 
like are viewed as monitors implemented 
directly in hardware. To perform an I/O 
operation, the corresponding "monitor" is 
called; the call returns when the I/O has 
completed. Thus the Concurrent PASCAL 
run-time system implements synchronous 
I/O and "abstracts out" the notion of an 
interrupt. 

Various aspects of Concurrent PASCAL, 
including its approach to I/O, have been 
analyzed by Loehr [1977], Silberschatz 
[1977], and Keedy [1979]. 

3.4.5.2 Modula. Modula was developed 
for programming small, dedicated com- 
puter systems, including process control ap- 
plications [Wirth, 1977a, I977b, 1977c, 
1977d]. The language is largely based on 
PASCAL and includes processes, interface 
modules, which are like monitors, and de- 
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vice modules, whicli  are  special interface 
modules for programming device drivers. 

The run-time support system for Modula 
is small and efficient. The kerne~ for a PDP- 
11/45 requires only 98 words of storage and 
is extremely fast [Wirth,1977c]. It does not 
time slice the processor among processes, 
as Concurrent PASCAL does. Rather, cer- 
tain kernel-supported operations--wait, 
for example--always cause the processor to 
be switched. (The programmer must be 
aware of this and design programs accord- 
ingly.) This turnsout to be both a strength 
and weakness of Modula. A small and effi- 
cient kernel, where the programmer has 
some control over processor switching, al- 
lows Modula to be used for process control 
applications, as intended. Unfortunately, in 
order to be able to construct such a kernel, 
some of the constructs in t h e  language-- 
notably those concerning multiprogram- 
ruing--have asso'ciated restrictions that can 
only be understood in terms of the kernel's 
implementation. A variety of subtle inter- 
actions between the Vari0us synchroniza- 
tion constructs must be understood in order 
to program in Modula without experiencing 
unpleasant surprises. Some of these patho- 
logical interactions are described by Bern- 
stein andEnsor [1981]. 

Modula implements an abstract machine 
that is well suited for dealing with inter- 
rupts and I/O devices on PDP-11 proces- 
sors. Unlike Concurrent PASCAL, in which 
the run-time kernel handles interrupts and 
I/O, Modula leaves support for devices in 
the programmer's domain. Thus new de- 
vices can be added without modifying the 
kernel. An I/O device is considered to be a 
process that is implemented in hardware. A 
software process can start an I/O operation 
and then execute a doio statement (which 
is like a wai t  except that it delays the 
invoker until the kernel receives an inter- 
rupt from the corresponding device). Thus 
interrupts are viewed as signal (send in 
Modula) operations generated by the hard- 
ware. Device modules are interface modules 
that control I/O devices. Each contains, in 
addition to some procedures, a device pro- 
cess, which starts I/O operations and exe- 
cutes doio statements to relinquish control 
of the processor (pending receipt of the 
corresponding I/O interrupt). The address 
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of the interrupt vector for the device is 
declared in the heading of the device mod- 
ule, so that  the compiler can do the neces- 
sary binding. Modula also has provisions 
for controlling the processor priority regis- 
ter, thus allowing a programmer to exploit 
the priority interrupt architecture of the 
processor when structuring programs. 

A third novel aspect of Modula is that 
variables declared in interface modules can 
be exported. Exported variables can be ref- 
erenced (but not modified) from outside the 
scope of their defining interface module. 
This allows concurrent access to these vari- 
ables, which, of course, can lead to difficulty 
unless the programmer ensures that inter- 
ference cannot occur. However, when used 
selectively, this feature increases the effi- 
ciency of programs that access such vari- 
ables. 

In summary, Modula is less constraining 
than Concurrent PASCAL, but  requires the 
programmer to be more careful. Its specific 
strengths and weaknesses have been eval- 
uated by Andrews [1979], Holden and 
Wand [1980], and Bernstein and Ensor 
[1981]. Wirth, Modula's designer, has gone 
on to develop Modula-2 [Wirth, 1982]. 
Modula-2 retains the basic modular struc- 
ture of Modula, but  provides more flexible 
facilities for concurrent programming and 
these facilities have less subtle semantics. 
In particular, Modula-2 provides coroutines 
and hence explicit transfer of control be- 
tween processes. Using these, the program- 
mer builds support for exclusion and con- 
dition synchronization, as required. In 
particular, the programmer can construct 
monitorlike modules. 

3.5 Path Expressions 

Operations defined by a monitor are exe- 
cuted with mutual exclusion. Other syn- 
chronization of monitor procedures is real- 
ized by explicitly performing w a i t  and sig- 
na l  operations on condition variables (or 
by some similar mechanism). Conse- 
quently, synchronization of monitor opera- 
tions is realized by code scattered through- 
out the monitor. Some of this code, such as 
w a i t  and signal,  is visible to the program- 
mer. Other code, such as the code ensuring 
mutual exclusion of monitor procedures, is 
not. 

. : o  . 
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Another approach to defining a module  
subject to concurrent access is to provide a 
mechanism with which a programmer spec- 
ifies, in one place in each module, all con- 
straints on the execution of operations de- 
fined by that module. Implementation of 
the operations is separated from the speci- 
fication of the constraints. Moreover, code 
to enforce the constraints is generated by a 
compiler. This is the approach taken in a 
class of synchronization mechanisms called 
path expressions. 

Path expressions were first defined by 
Campbell and Habermann [1974]. Subse- 
quent extensions and variations have also 
been proposed [Habermann, 1975; Lauer 
and Campbell, 1975; Campbell, 1976; Flon 
and Habermann, 1976; Lauer and Shields, 
1978; Andler, 1979]. Below, we describe one 
specific proposal [Campbell, 1976] that has 
been incorporated into Path PASCAL, an 
implemented systems programming lan- 
guage [Campbell and Kolstad, 1979]. 

When path expressions are used, a mod- 
ule that implements a resource has a struc- 
ture like that of a monitor. It contains per- 
manent variables, which store the state of 
the resource, and procedures, which realize 
operations on the resource. Path expres- 
sions in the header of each resource define 
constraints on the order in which opera- 
tions are executed. No synchronization 
code is programmed in the procedures. 

The syntax of a path expression is 

path path__list end 

A path list contains operation names 
and path operators. Path operators include 
...., for concurrency, ";" for sequencing, 
"n : {path list)" to specify up to n con- 
current activations of path--~ist, and 
"[path list]" to specify an unbounded 
number of concurrent activations of 
path list. 

For example, the path expression 

path deposit, fetch end 

places no constraints on the order of exe- 
cution of deposit and fetch and no con- 
straints on the number of activations of 
either operation. This absence of.synchro- 
nization constraints is eqm'valent to that  

p ~  
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specified by the path expressions 

path [deposit], [ fetch] end 
o r  

path [deposit, fetch] end 

(A useful application of the "[...  ]" opera- 
tor will be shown later.) In contrast, 

path deposit; fetch end 

specifies that  each fetch be preceded by a 
deposit; multiple activations of each oper- 
ation can execute concurrently as long as 
the number of active or completed fetch 
operations never exceeds the number of 
completed deposit operations. A module 
implementing a bounded buffer of size one 
might well contain the path 

path 1 : (deposit; fetch) end 

to specify that  the first invoked operation 
be a deposit, that  each deposit be followed 
by a fetch, and that  at most one instance of 
the path "deposit; fetch" be active--in 
short, that  deposit and fetch alternate and 
are mutually exclusive. Synchronization 
constraints for a bounded buffer of size N 
are specified by 
path N: (1 : (deposit); 1 : (fetch)) end 

This ensures that  (i) activations of deposit 
are mutually exclusive, (ii) activations of 
fetch are mutually exclusive, (iii) each ac- 
tivation of fetch is preceded by a completed 
deposit, and (iv) the number of completed 
deposit operations is never more than N 
greater than the number of completed fetch 
operations. The bounded buffers we have 
been using for OPSYS, our batch operating 
system, would be defined by 

module buffer( 7); 

path N:( l:(deposit); l:OCetch) ) end, 

var { the variables satisfy the invariant  IB (see Sec. 4.3) 
with size equal  to the number of executions of 
deposit minus the number of executions of fetch } 

slots : array [0 . .N- I ]  of T; 
head, tail : 0 . .N- l ;  

procedure deposit(p : 7); 
begin 

slots[tail] := p; 
tail := (tail + I) rood N 
end; 

procedure fetch(vat it : 7); 
begin 

it := slots[head]; 
head := (head + 1) rood N 
end; 
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begin 
head := O; tail := 0 
end. 

Note that  one deposit and one fetch can 
proceed concurrently, which was not pos- 
sible in the buffer monitor given in Figure 
6. For this reason, there is no variable size 
because it would have been subject to con- 
current access. 

As a last example, consider the readers/ 
writers problem [Courtois et al., 1971]. In 
this problem, processes read or write rec- 
ords in a shared data base. To ensure that  
processes read consistent data, either an 
unbounded number of concurrent reads or 
a single write may be executed at any time. 
The path expression 

path 1 : ([read], write) end 

specifies this constraint. (Actually, this 
specifies the "weak reader's preference" so- 
lution to the readers/writers problem: read- 
ers can prevent writers from accessing the 
database.) 

Path expressions are strongly motivated 
by, and based on, the operational approach 
to program semantics. A path expression 
defines all legal sequences of the operation 
executions for a resource. This set of se- 
quences can be viewed as a formal language, 
in which each sentence is a sequence of 
operation names. In light of this, the re- 
semblance between path expressions 
and regular expressions should not be 
surprising. 

While path expressions provide an ele- 
gant notation for expressing synchroniza- 
tion constraints described operationally, 
they are poorly suited for specifying con- 
dition synchronization [Bloom, 1979]. 
Whether an operation can be executed 
might depend on the state of a resource in 
a way not directly related to the history of 
operations already performed. Certain var- 
iants of the readers/writers problem (e.g., 
writers preference, fair access for readers 
and writers) require access to the state of 
the resourcemin this case, the number of 
waiting readers and waiting writers--in 
order to implement the desired synchroni- 
zation. The shortest__next__allocator mo- 
nitor of Section 3.4.1 is an example of a 
resource in which a parameter's value de- 
termines whether execution of an operation 
(request) should be permitted to continue. 
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In fact, most resources that involve sched- 
uling require access to parameters and/or 
to state information when making synchro- 
nization decisions. In order to use path 
expressions to specify solutions to such 
problems, additional mechanisms must be 
introduced. In some cases, definition of ad- 
ditional operations on the resource is suffi- 
cient; in other cases "queue" resources, 
which allow a process to suspend itself and 
be reactivated by a "scheduler," must be 
added. The desire to realize condition syn- 
chronization using path expressions has 
motivated many of the proposed exten- 
sions. Regrettably, none of these extensions 
have solved the entire problem in a way 
consistent with the elegance and simplicity 
of the original proposal. However, path 
expressions have proved useful for spec- 
ifying the semantics of concurrent com- 
putations [Shields, 1979; Shaw, 1980, 
Best, 1982]. 

4. SYNCHRONIZATION PRIMITIVES BASED 
ON MESSAGE PASSING 

Critical regions, monitors, and path expres- 
sions are one outgrowth of semaphores; 
they all provide structured ways to control 
access to shared variables. A different out- 
growth is message passing, which can be 
viewed as extending semaphores to convey 
data as well as to implement synchroniza- 
tion. When message passing is used for 
communication and synchronization, pro- 
cesses send and receive messages instead 
of reading and writing shared variables. 
Communication is accomplished because a 
process, upon receiving a message, obtains 
values from some sender process. Synchro- 
nization is accomplished because a message 
can be received only after it has been sent, 
which constrains the order in which these 
two events can occur. 

A message is sent by executing 

send expression__list 
to destination~designator. 

The message contains the values of the 
expressions in expression__list at the time 
send is executed. The destination~des- 
ignator gives the programmer control over 
where the message goes, and hence over 
which statements can receive it. A message 

• 2 5  

is received by executing 

receive variable__list 
from source__designator 

where variable__list is a list of variables. 
The source~designator gives the program- 
mer control over where the message came 
from, and hence over which statements 
could have sent it. Receipt of a message 
causes, first, assignment of the values in the 
message to the variables in variable~list 
and, second, subsequent destruction of the 
message. TM 

Designing message-passing primitives in- 
volves making choices about the form and 
semantics of these general commands. Two 
main issues must be addressed: How are 
source and destination designators speci- 
fied? How is communication synchronized? 
Common alternative solutions for these is- 
sues are described in the next two sections. 
Then higher level message-passing con- 
structs, semantic issues, and languages 
based on message passing are discussed. 

4.1 Specifying Channels of Communication 

Taken together, the destination and source 
designators define a communications chan- 
nel. Various schemes have been proposed 
for naming channels. The simplest channel- 
naming scheme is for process names to 
serve as source and destination designators. 
We refer to this as direct naming. Thus 

send card to executer 

sends a message that  can be received only 
by the executer process. Similarly, 

receive line from executer 
permits receipt only of a message sent by 
the executer process. 

Direct naming is easy to implement and 
to use. It makes it possible for a process to 
control the times at which it receives mes- 
sages from each other process. Our simple 
batch operating system might be pro- 
grammed using direct naming as shown in 
Figure 8. 

The batch operating system also illus- 
trates an important paradigm for process 

~9 A broadcast can be modeled by the concurrent exe- 
cution of a collection of sends, each sending the 
message to a different destination. A nondestructive 
receive can be modeled by a receive, immediately 
followed by a send. 
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program OPSYS; 

process reader; 
var card : cardimage; 
loop 

read card from cardreader; 
send card to execuwr 
end 

end; 

process executer; 
var card : cardimage; line : lineimage; 
loop 

receive card from reader; 
process card and generate line; 
send line to printer 
end 

end; 

process printer; 
var line : lineimage; 
loop 

receive line from executer; 
print line on lineprinter 
end 

end 

end. 

Figure 8. Batch operating system with message 
passing. 

interaction--a pipeline. A pipeline is a col- 
lection of concurrent processes in which the 
output of each process is used as the input 
to another. Information flows analogously 
to the way liquid flows in a pipeline. Here, 
information flows from the reader process 
to the executer process and then from the 
executer process to the printer process. Di- 
rect naming is particularly well suited for 
programming pipelines. 

Another important paradigm for process 
interaction is the client/server relation- 
ship. Some server processes render a ser- 
vice to some client processes. A client can 
request that  a service be performed by 
sending a message to one of these servers. 
A server repeatedly receives a request for 
service from a client, performs that  service, 
and (if necessary) returns a completion 
message to that  client. 

The interaction between an I/O driver 
process and processes that  use it--for ex- 
ample, the lineprinter driver and the 
printer process in our operating system 
example--illustrates this paradigm. The 
lineprinter driver is a server; it repeatedly 
receives requests to print a line on the 
printer, starts that  I/O operation, and then 

awaits the interrupt signifying completion 
of the I/O operation. Depending on the 
application, it might also send a completion 
message to the client after the line has been 
printed. 

Unfortunately, direct naming is not al- 
ways well suited for client/server interac- 
tion. Ideally, the rece ive  in a server should 
allow receipt of a message from any client. 
If there is only one client, then direct nam- 
ing will work well; difficulties arise if there 
is more than one client because, at the very 
least, a rece ive  would be required for each. 
Similarly, if there is more than one server 
(and all servers are identical), then the 
send in a client should produce a message 
that  can be received by any server. Again, 
this cannot be accomplished easily with 
direct naming. Therefore, a more sophisti- 
cated scheme for defining communications 
channels is required. 

One such scheme is based on the use of 
global names, sometimes called mailboxes. 
A mailbox can appear as the destination 
designator in any process' s end  statements 
and as the source designator in any process' 
rece ive  statements. Thus messages sent to 
a given mailbox can be received by any 
process that  executes a receive  naming 
that  mailbox. 

This scheme is particularly well suited 
for programming client/server interactions. 
Clients send their service requests to a sin- 
gle mailbox; servers receive service requests 
from that  mailbox. Unfortunately, imple- 
menting mailboxes can be quite costly with- 
out a specialized communications network 
[Gelernter and Bernstein, 1982]. When a 
message is sent, it must be relayed to all 
sites where a rece ive  could be performed 
on the destination mailbox; then, after a 
message has been received, all these sites 
must be notified that  the message is no 
longer available for receipt. 

The special case of mailboxes, in which 
a mailbox name can appear as the source 
designator in receive  statements in one 
process only, does not suffer these imple- 
mentation difficulties. Such mailboxes are 
often called ports  [Balzer, 1971]. Ports are 
simple to implement, since all receives 
that  designate a port occur in the same 
process. Moreover, ports allow a straight- 
forward solution to the multiple-clients/ 
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single-server problem. (The multiple- 
clients/multiple-server problem, however, 
is not easily solved with ports.) 

To summarize, when direct naming is 
used, communication is one to one since 
each communicating process names the 
other. When port naming is used, commu- 
nication can be many to one since each port 
has one receiver but may have many 
senders. The most general scheme is global 
naming, which can be many to many. Di- 
rect naming and port naming are special 
cases of global naming; they limit the kinds 
of interactions that can be programmed 
directly, but  are more efficient to imple- 
ment. 

Source and destination designators can 
be fixed at compile time, called static chan- 
nel naming, or they can be computed at 
run time, called dynamic channel naming. 
Although widely used, static naming pre- 
sents two problems. First, it precludes a 
program from communicating along chan- 
nels not known at compile time, and thus 
limits the program's ability to exist in a 
changing environment. For example, this 
would preclude implementing the I /O re- 
direction or pipelines provided by UNIX 
[Ritchie and Thompson, 1974]. 2° The sec- 
ond problem is this: if a program might ever 
need access to a channel, it must perma- 
nently have the access. In many applica- 
tions, such as file systems, it is more desir- 
able to allocate communications channels 
to resources (such as files) dynamically. 

To support dynamic channel naming, an 
underlying, static channel-naming scheme 
could be augmented by variables that con- 
tain source or destination designators. 
These variables can be viewed as contain- 
ing capabilities for the communications 
channel [Baskett et al., 1977; Solomon and 
Finkel, 1979; Andrews, 1982]. 

4.2 Synchronization 

Another important property of message- 
passing statements concerns whether their 

20 Although in UNIX most commands read from and 
write to the user's terminal, one can specify that a 
command read its input from a file or write its output 
to a File. Also, one can specify that commands be 
connected in a pipeline, These options are provided 
by a dynamic channel-naming scheme that  is trans- 
parent to the implementation of each command. 

• 27 

execution could cause a delay. A statement 
is nonblocking if its execution never delays 
its invoker; otherwise the statement is said 
to be blocking. In some message-passing 
schemes, messages are buffered between 
the time they are sent and received. Then, 
if the buffer is full whena  s e n d  is executed, 
there are two options: the send  might delay 
until there is space in the buffer for the 
message, or the s end  might return a code 
to the invoker, indicating that, because the 
buffer was full, the message could not be 
sent. Similarly, execution of a receive,  
when no message that  satisfies the source 
designator is available fo r  receipt, might 
either cause a delay or terminate with a 
code, signifying that  no message was avail- 
able. 

If the system has an effectively un- 
bounded buffer capacity, then: a process is 
never delayed when executing a send.  This 
is variously called asynchronous message 
passing and send no, wait. Asynchronous 
message passing allows a sender to get ar- 
bitrarily far ahead of a receiver. Conse- 
quently, when a message is received, it con- 
tains information about the sender's state 
that is not necessarily still its current state. 
At the other extreme, with no buffering, 
execution of a send  is always delayed until 
a corresponding 2~ rece ive  is executed; then 
the message is transferred and both pro- 
ceed. This is called synchronous message 
passing. When synchronous message pass- 
ing is used, a message exchange represents 
a synchronization point in the execution of 
both the sender and receiver. Therefore, 
the message received will always corre- 
spond to the sender's current state. More- 
over, when the s end  terminates, the sender 
can make assertions about the state of the 
receiver. Between these two extremes is 
buffered message passing, in which the 
buffer has finite bounds. Buffered message 
passing allows the sender to get ahead of 
the receiver, but  not arbitrarily far ahead. 

The blocking form of the r ece ive  state- 
ment is the most common, because a re- 
ceiving process often has nothing else to do 
while awaiting receipt of a message. How- 
ever, most languages and operating systems 

2~ Correspondence is determined .by the source and 
destination designators. 
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also provide a nonblocking r e c e i v e  or a 
means  to tes t  whether  execution of a r e -  
c e i v e  would block. This  enables a process 
to receive all available messages and then  
select one to process (effectively, to sched- 
ule them).  

Sometimes,  fur ther  control  over  which 
messages can be received is provided. T h e  
s ta tement  

rece ive  variable__list 
f rom source__designator when  B 

permits  receipt  of  only those messages tha t  
make  B true.  This  allows a process to 
"peek"  at  the  contents  of a delivered mes- 
sage before receiving it. Al though this fa- 
cility, is not  necessa ry - -a  process can al- 
ways receive and store copies of messages 
unti l  appropria te  to act  on them, as shown 
in the  shortest-next-al locator  example at  
the end of  this sec t ion- - the  conditional re- 
ceive makes  possible concise solutions to 
many  synchronizat ion problems. Two lan- 
guages tha t  provide such a facility, P L I T S  
and SR, are  described in Sect ion 4.5. 

A blocking r e c e i v e  implicitly imple- 
ments  synchronizat ion between sender  and 
receiver  because the receiver  is delayed un- 
til af ter  the  message is sent. To  implement  
such synchronizat ion with nonblocking r e -  
ce ive ,  busy-waiting is required. However,  
blocking message-passing s ta tements  can 
achieve the  same semantic effects as non- 
blocking ones by using what  we shall call 
se lec t ive  c o m m u n i c a t i o n s ,  which is based 
on Dijkstra 's  guarded commands  [Dijkstra, 
1975]. 

In a select ive-communicat ions state- 
ment ,  a g u a r d e d  c o m m a n d  has the  form 

guard --~ statement 

T h e  guard consists of a Boolean expression, 
optionally followed by  a message-passing 
s ta tement .  T h e  guard succeeds  if the  Boo- 
lean expression is t rue  and executing the 
message-passing s ta tement  would not  cause 
a delay; the guard f a i l s  if the  Boolean 
expression is false; the guard (temporarily) 
ne i ther  succeeds nor  fails if the Boolean 
expression is t rue  bu t  the  message-passing 
s ta tement  cannot  ye t  be executed wi thout  
causing delay. The  al ternat ive s ta tement  

i f  GI --* S1 
~ G2.--~ $2 

, o .  

Q Gn-.->Sn 
fi 

is executed as follows. If  at  least one guard 
succeeds, one of  them, Gi, is selected 
nondeterminist ically;  the message-passing 
s t a t emen t  in Gi is executed (if present);  
t hen  Si,  the  s t a tement  following the guard, 
is executed. I f  all guards fail, the  command  
aborts.  I f  all guards nei ther  succeed nor  fail, 
execut ion is delayed until  some guard suc- 
ceeds. (Obviously, deadlock could result.) 
Execut ion of the  i terat ive s t a t emen t  is the 
same as for the  al ternat ive s ta tement ,  ex- 
cept  selection and execution of a guarded 
command  is repea ted  unti l  all guards fail, 
a t  which t ime the  i terat ive s ta tement  ter- 
minates  ra the r  t han  aborts.  

To  il lustrate the  use of selective com- 
munications,  we implement  a buf fer  pro- 
cess, which stores data  produced by a pro-  
d u c e r  process and allows these data  to be 
re t r ieved by  a c o n s u m e r  process: 22 

process buffer; 

var slots : array [0..N-l] of T; 
head, tail: 0..N-I; 
size : O..N; 

head := O; tail := O; size := O; 
do size<N; receive slots[tail] from producer 

size :=size + 1; 
tail := (tail + 1) rood N 

fl size>O; send slots[head] to consumer -- 
size := size - 1; 
head := (head + 1) rood N 

od 

end 

T h e  producer  and consumer  are as follows: 

process producer; 
vat stuff: T; 
loop 

generate stuff', 
send stuf f  to buffer 
end 

end; 

22 Even if message passing is asynchronous, such a 
buffer may still be required if there are multiple pro- 
ducers or consumers. 
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process consumer; 
var stuff: T; 
loop 

receive stuff from buffer; 
u s e  s t u f f  

end 
end 

If s end  statements cannot appear in 
guards, selective communication is straight- 
forward to implement. A delayed process 
determines which Boolean expressions 
in guards are true, and then awaits ar- 
rival of a message that allows execution of 
the r ece ive  in one of these guards. (If the 
guard did not contain a receive,  the pro- 
cess would not be delayed.) If both s e n d  
and rece ive  statements can appear in 
guards, 2~ implementation is much more 
costly because a process needs to negotiate 
with other processes to determine ff they 
can communicate, and these processes 
could also be in the middle of such a nego- 
tiation. For example, three processes could 
be executing selective-communications 
statements in which any pair could com- 
municate; the problem is to decide which 
pair communicates and which one remains 
delayed. Development of protocols that 
solve this problem in an efficient and dead- 
lock-free way remains an active research 
area [Schwartz, 1978; Silberschatz, 1979; 
Bernstein, 1980; Van de Snepscheut, 1981; 
Schneider, 1982; Reif and Spirakis, 1982]. 

Unfortunately, if send  statements are 
not permitted to appear in guards, pro- 
gramming with blocking s end  and blocking 
r ece ive  becomes somewhat more complex. 
In the example above, the buffer process 
above would be changed to first wait for a 
message from the consumer requesting 
data (a r ece ive  would appear in the second 
guard instead of the send)  and then to send 
the data. The difference in the protocol 
used by this new buffer process when inter- 
acting with the consumer and that used 
when interacting with the producer process 
is misleading; a producer/consumer rela- 
tionship is inherently symmetric, and the 
program should mirror this fact. 

e3 A l s o  n o t e  t h a t  a l l o w i n g  o n l y  s e n d  s t a t e m e n t s  in  
g u a r d s  is  n o t  v e r y  use fu l .  

* 29 

Some proqess relationships .are inher- 
ently asymmetric. In client/server interac- 
tions, the server often takes different ac- 
tions in response to different kinds of client 
requests. For example, a shortest-job-next 
allocator (see Section 3.4.1) that  receives 
"allocation" requests on a reques t~por t  
and "release" requests on a release_port  
can be programmed using message passing 
as follows: 
process shortest_next..allocator; 

var.free : Boolean; 
t ime : integer; 
elient_id : proeess_id; 
declarations of a priority queue and other local variables; 

.free := true; 

do true; receive (time, elient_.id) from request, por t  
if.free -- 

f ree  :=.false; 
send allocation to elient..id 

not .free -- 
save elient-Jd on priority queue ordered by t ime 

fi 

I] not free; receive release from ~'elease...port 
if not priority queue empty --  

remove client.dd with smallest t ime from queue; 
send allocation to client_Jd 

I] priority queue empty -7' 
.free := true 

fi 
od 

end 

A client makes a request by executing 

s e n d  {time, my__id) to request_-.port; 
receive allocation , 

from shortest.._next__allocator 

and indicates that it has finished using the 
resource by executing 

s e n d  release to  release__port 

4.3 Higher Level Message-Passing 
Constructs 

4.3.1 Remote Procedure Call 

The primitives of the previous section are 
sufficient to program a n y  type of process 
interaction using message passing. To pro- 
gram client/server interactions, however, 
both the client and server execute two mes- 
sage-passing statements: the client a s e n d  
followed by a receive ,  and the server a 
r ece ive  followed by a send.  Because this 
type of interaction is very common, higher 
level statements that  directly support it 
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have been proposed. These are termed re- 
mote procedure call statements because of 
the interface that  they present: a client 
"calls" a procedure that  is executed on a 
potentially remote machine by a server. 

When remote procedure calls are used, a 
client interacts with a server by means of a 
call  statement. This statement has a form 
similar to that  used for a procedure call in 
a sequential language: 

call service(value__args; result__args) 

The service is really the name of a channel. 
If direct naming is used, service designates 
the server process; if port or mailbox nam- 
ing is used, service might designate the kind 
of service requested. Remote call  is exe- 
cuted as follows: the value arguments are 
sent to the appropriate server, and the call- 
ing process delays until both the service has 
been performed and the results have been 
returned and assigned to the result argu- 
ments. Thus such a call  could be translated 
into a send,  immediately followed by a 
receive.  Note that  the client cannot forget 
to wait for the results of a requested service. 

There are two basic approaches to spec- 
ifying the server side of a remote procedure 
call. In the first, the remote procedure is a 
declaration, like a procedure in a sequential 
language: 24 

remote procedure service 
(in value__,parameters; 
out  result__parameters) 

body 
end 

However, such a procedure declaration is 
implemented as a process. This process, the 
server, awaits receipt of a message contain- 
ing value arguments from some calling 
process, assigns them to the value param- 
eters, executes its body, and then returns a 
reply message containing the values of the 
result parameters. Note that  even if there 
are no value or result parameters, the syn- 
chronization resulting from the implicit 
s end  and receive  occurs. A remote proce- 
dure declaration can be implemented as a 
single process that  repeatedly loops [An- 
drews, 1982], in which case calls  to the 
same remote procedure would execute se- 

e4 This is another reason this kind of interaction is 
termed "remote procedure call." 

quentially. Alternatively, a new process can 
be created for each execution of call 
[Brinch Hansen, 1978; Cook, 1980; Liskov 
and Scheifler, 1982]; these could execute 
concurrently, meaning that  the different 
instances of the server might need to syn- 
chronize if they share variables. 

In the second approach to specifying the 
server side, the remote procedure is a state- 
ment, which can be placed anywhere any 
other statement can be placed. Such a 
statement has the general form 

accept  service(in value__parameters; 
out result-_parameters) --* body 

Execution of this statement delays the 
server until a message resulting from a call 
to the service has arrived. Then the body is 
executed, using the values of the value pa- 
rameters and any other variables accessible 
in the scope of the statement. Upon termi- 
nation, a reply message, containing the val- 
ues of the result parameters, is sent to the 
calling process. The server then continues 
execution. 2s 

When accept  or similar statements are 
used to specify the server side, remote pro- 
cedure call is called a rendezvous [Depart- 
ment of Defense, 1981] because the client 
and server "meet" for the duration of the 
execution of the body of the accep t  state- 
ment and then go their separate ways. One 
advantage of the rendezvous approach is 
that  client calls may be serviced at times 
of the server's choosing; accept  statements, 
for example, can be interleaved or nested. 
A second advantage is that  the server can 
achieve different effects for calls to the 
same service by using more than one ac -  
c e p t  statement, each with a different body. 
(For example, the first accep t  of a service 
might perform initialization.} The final, and 
most important, advantage is that  the 
server can provide more than one kind of 
service. In particular, accept  is often com- 
bined with selective communications to en- 

25 Different semantics result depending on whether 
the reply message is sent by a synchronous or by an 
asynchronous send.  A synchronous s e n d  delays the 
server until the results have been received by the 
caller. Therefore, when the server continues, it can 
assert that the reply message has been received and 
that  the result parameters have been assigned to the 
result arguments. Use of asynchronous send  does not 
allow this, but does not delay the server, either. 
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able a server to wait for and select one of 
several requests to service [U. S. Depart- 
ment of Defense, 1981; Andrews, 1981]. 
This is illustrated in the following imple- 
mentation of the bounded buffer: 

process buffer; 

vat slots : array [O..N-I] of T; 
head, tail: O..N-I; 
size : O..N; 

head := O; tail := O; size := O; 
do size<N; accept deposit(in value : 7) -- 

slots[tail] := value; 
size :=size + 1; 
tail := (tail + 1) rood N 

fl size>O; accept fetch(out value : 7) - -  
value := slots[head]; 
size := size - 1; 
head := (head + 1) rood N 

od 

end. 

The buffer process implements two opera- 
tions: deposit and fetch. The first is invoked 
by a producer by executing 

call deposit (stuff) 

The second is invoked by a consumer by 
executing 

call fetch (stuff) 

Note that depos i t  and f e t ch  are handled by 
the buf fer  process in a symmetric manner, 
even though send  statements do not ap- 
pear in guards, because remote procedure 
calls always involve two messages, one in 
each direction. Note also that  buf fer  can be 
used by multiple producers and multiple 
consumers. 

Although remote procedure call is a use- 
ful, high-level mechanism for client/server 
interactions, not all such interactions can 
be directly programmed by using it. For 
example, the s h o r t e s t _ _ n e x t ~ a l l o c a t o r  of 
the previous section still requires two 
client/server exchanges to service alloca- 
tion requests because the allocator must 
look at the parameters of a request in order 
to decide if the request should be delayed. 
Thus the client must use one operation to 
transmit the request arguments and an- 
other to wait for an allocation. If there are 
a small number of different scheduling 
priorities, this can be overcome by associ- 
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ating a different serveroperation with each 
priority level. Ada [U. S. Department of 
Defense, 1981] supports this nicely by 
means of arrays of operations. In general, 
however, a mechanism is required to enable 
a server to accept a call that minimizes 
some function of the parameters of the 
called operation. SR [Andrews, 1981] in- 
cludes such a mechanism (see Section 
4.5.4). 

4.3.2 Atomic Transactions 
7 

An often-cited advantage of multiple-pro. 
cessor systems is that they can be made 
resilient to failures. Designing programs 
that exhibit this fault tolerance is not a 
simple matter. While a discussion of how to 
design fault-tolerant programs is beyond 
the scope of this survey, we comment 
briefly on how fault-tolerance issues have 
affected the design of higher level message- 
passing statements. 2~ 

Remote procedure call provides a clean 
way to program client/server interactions. 
Ideally, we would like a remotecall, like a 
procedure call in a sequential programming 
notation, to have exactly once semantics: 
each remote call should terminate only 
after the named remote procedure has been 
executed exactly once by the server [Nel- 
son, 1981; Spector, 1982]. Unfortunately, a 
failure may mean that a client is forever 
delayed awaiting the response to a remote 
call. This might occur if 

(i) the message signifying the remote pro- 
cedure invocation is lost by the net- 
work, or 

(ii) the reply message is lost, or 
(iii) the server crashes duringexecution of 

the remote procedure (but before the 
reply message is sent). 

This difficulty can be overcome by attach- 
ing a time-out interval to the remote call; 
if no response is received by the client 
before the time-out interval expires, the 
client presumes that  the server has failed 
and takes some action. 

Deciding what action to take after a de- 
tected failure can be difficult. In Case (i) 
above, the correct action would be to re- 

2~ For a general discussion, the interested reader is 
referred to Kohler 1981. 
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transmit the message. In Case (ii), however, 
retransmittal would cause a second execu- 
tion of the remote procedure body. This is 
undesirable unless the procedure is idem- 
potent,  meaning that  the repeated execu- 
tion has the same effect as a single execu- 
tion. Finally, the correct action in Case (iii) 
would depend on exactly how much of the 
remote procedure body was executed, what 
parts of the computation were lost, what 
parts must be undone, etc. In some cases, 
this could be handled by saving state infor- 
mation, called checkpoints, and program- 
ming special recovery actions. A more gen- 
eral solution would be to view execution of 
a remote procedure in terms of atomic 
transactions. 

An atomic transaction [Lomet, 1977; 
Reed, 1979; Lampson, 1981] is an all-or- 
nothing computation--either it installs a 
complete collection of changes to some 
variables or it installs no changes, even if 
interrupted by a failure. Moreover, atomic 
transactions are assumed to be indivisible 
in the sense that  partial execution of an 
atomic transaction is not visible to any 
concurrently executing atomic transaction. 
The first attribute is called failure atomic- 
ity, and the second synchronization atom- 
icity. 

Given atomic transactions, it is possible 
to construct a remote procedure call mech- 
anism with at most  once semantics--re- 
ceipt of a reply message means that  the 
remote procedure was executed exactly 
once, and failure to receive a reply message 
means the remote procedure invocation 
had no (permanent) effect [Liskov and 
Scheifler, 1982; Spector, 1982]. This is done 
by making execution of a remote procedure 
an atomic transaction that  is allowed to 
"commit" only after the reply has ben re- 
ceived by the client. In some circumstances, 
even more complex mechanisms are useful. 
For example, when nested remote calls  
occur, failure while executing a higher level 
call should cause the effects of lower level 
(i.e., nested) calls to be undone, even if 
those calls have already completed [Liskov 
and Scheifler, 1982]. 

The main consideration in the design of 
these mechanisms is that  may it not be 
possible for a process to see system data in 

an inconsistent state following partial exe- 
cution of a remote procedure. The use of 
atomic transactions is one way to do this, 
but it is quite expensive [Lampson and 
Sturgis, 1979; Liskov, 1981]. Other tech- 
niques to ensure the invisibility of incon- 
sistent states have been proposed [Lynch, 
1981; Schlichting and Schneider, 1981], and 
this remains an active area of research. 

4.4 An Axiomatic View of Message Passing 

When message passing is used for commu- 
nication and synchronization, processes 
usually do not share variables. Nonetheless, 
interference can still arise. In order to prove 
that  a collection of processes achieves a 
common goal, it is usually necessary to 
make assertions in one process about the 
state of others. Processes learn about each 
other's state by exchanging messages. In 
particular, receipt of a message not only 
causes the transfer of values from sender to 
receiver but also facilitates the "transfer" 
of a predicate. This allows the receiver to 
make a~sertions about the state of the 
sender, such as about how far the sender 
has progressed in its computation. Clearly, 
subsequent execution by the sender might 
invalidate such an assertion. Thus it is pos- 
sible for the sender to interfere with an 
assertion in the receiver. 

It turns out that  two distinct kinds of 
interference must be considered when mes- 
sage passing is used [Schlichting and 
Schneider, 1982a]. The first is similar to 
that  occurring when shared variables are 
used: assertions made in one process about 
the state of another must not be invalidated 
by concurrent execution. The second form 
of interference arises only when asynchro- 
nous or buffered message passing is used. If 
a sender "transfers" a predicate with a mes- 
sage, the "transferred" predicate must be 
true when the message is received: receipt 
of a message reveals information about the 
state of the sender at the time that  the 
message was sent, which is not necessarily 
the sender's current state. 

The second type of interference is not 
possible when synchronous message pass- 
ing is used, because, after sending a mes- 
sage, the sender does not progress until the 
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message has been received. This is a good 
reason to prefer the use of synchronous 
send  over asynchronous send  (and to pre- 
fer synchronous send  for sending the reply 
message in a remote procedure body). One 
often hears the argument that asynchro- 
nous send  does not restrict parallelism as 
much as synchronous send  and so it is 
preferable. However, the amount of paral- 
lelism that can be exhibited by a program 
is determined by program structure and not 
by choice of communications primitives. 
For example, addition of an intervening 
buffer process allows the sender to be exe- 
cuted concurrently with the receiving proc- 
ess. Choosing a communications primitive 
merely establishes whether the program- 
mer will have to do the additional work (of 
defining more processes) to allow a high 
degree of parallel activity or will have to do 
additional work (of using the primitives in 
a highly disciplined way) to control the 
amount of parallelism. Nevertheless, a va- 
riety of "safe" uses of asynchronous mes- 
sage passing have been identified: the 
"transfer" of monotonic predicates and the 
use of "acknowledgment" protocols, for 
example. These schemes are studied in 
Schlichting and Schneider [1982b], where 
they are shown to follow directly from sim- 
ple techniques to avoid the second kind of 
interference. 

Formal proof techniques for various 
types of message-passing primitives have 
been developed. Axioms for buffered, asyn- 
chronous message passing were first pro- 
posed in connection with Gypsy [Good et 
al., 1979]. Several people have developed 
proof systems for synchronous message- 
passing statementswin particular the input 
and output commands in CSP [Apt et al., 
1980; Cousot and Cousot, 1980; Levin and 
Gries, 1981; Misra and Chandy, 1981; Soun- 
dararajan, 1981; Lamport and Schneider, 
1982; Schlichting and Schneider, 1982a]. 
Also, several people have developed proof 
rules for asynchronous message passing 
[Misra et  al., 1982; Schl icht ing and 
Schneider, 1982b], and proof rules for 
remote procedures and rendezvous [Bar- 
ringer and Mearns, 1982; Gerth, 1982; 
Gerth et al., 1982; Schlichting and Schnei- 
der, 1982a]. 
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4.5 Programming Notations Based 
on Message Passing 

A large number of concurrent programming 
languages have been proposed that use 
message passing for communication and 
synchronization. This should not be too 
surprising; because the two major message- 
passing design issues--channel naming and 
synchronization--are orthogonal, the var- 
ious alternatives for each can be combined 
in many ways. In the following, we sum- 
marize the important characteristics of four 
languages: CSP, PLITS, Ada, and SR. Each 
is well documented in the literature and 
was innovative in some regard. Also, each 
reflects a different combination of the two 
design alternatives. Some other languages 
that have been influential--Gypsy, Distrib- 
uted Processes, StarMod and Argus--are 
then briefly discussed. 

4.5.1 Communicating Sequential Processes 

Communicat ing Sequential  Processes 
(CSP) [Hoare, 1978] is a programming 
notation based on synchronous message 
passing and selective communications. The 
concepts embodied in CSP hav e greatly in- 
fluenced subsequent work in concurrent 
programming language design and the de- 
sign of distributed programs. 

In CSP, processes are denoted by a var- 
iant of the cobegln statement. Processes 
may share read-only variables, but use in- 
put/output commands for synchronization 
and communication. Direct (and static) 
channel naming is used and message pass- 
ing is synchronous. 

An output command in CSP has the form 

destination!expression 

where destination is a process name and 
expression is a simple or structured value. 
An input command has the form 

source?target 

where source is a process name and target 
is a simple or structured variable local to 
the process containing the input command. 
The commands 

Pr!expression 
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in process Ps  and 

Ps?target 

in process Pr match if target and expres- 
sion have the same type. Two processes 
communicate if they execute a matching 
pair of input/output  commands. The result 
of communication is that the expression's 
value is assigned to the target variable; both 
processes then proceed independently and 
concurrently. 

A restricted form of selective communi- 
cations statement is supported by CSP. In- 
put  commands can appear in guards of al- 
ternative and iterative statements, but  out- 
put  commands may not. This allows an 
efficient implementation, but  makes certain 
kinds of process interaction awkward to 
express, as was discussed in Section 4.2. 

By combining communication com- 
mands with alternative and iterative state- 
ments, CSP provides a powerful mecha- 
nism for programming process interaction. 
Its strength is that it is based on a simple 
idea-- input /output  commands-- that  is 
carefully integrated with a few other mech- 
anisms. CSP is not a complete concurrent 
programming language, nor was it intended 
to be. For example, static direct naming is 
often awkward to use. Fortunately, this de- 
ficiency is easily overcome by using ports; 
how to do so was discussed briefly by Hoare 
[Hoare, 1978] and is described in detail by 
Kieburtz and Silberschatz [1979]. Recently, 
two languages based on CSP have also been 
described [Jazayeri et al., 1980; Roper and 
Barter, 1981]. 

4.5.2 PLITS 

PLITS, an acronym for "Programming 
Language In The Sky," was developed at 
the University of Rochester [Feldman, 
1979]. The design of PLITS is based on the 
premise that  it is inherently difficult to 
combine a high degree of parallelism with 
data sharing and therefore message passing 
is the appropriate means for process inter- 
action in a distributed system. Part  of an 
ongoing research project in programming 
language design and distributed computa- 
tion, PLITS is being used to program ap- 
plications that  are executed on Rochester's 
Intelligent Gateway (RIG) computer net- 
work [Ball et al., 1976]. 

A PLITS program consists of a number 
of modules; active modules are processes. 
Message passing is the sole means for in- 
termodule interaction. So as not to restrict 
parallelism, message passing is asynchro- 
nous. A module sends a message containing 
the values of some expressions to a module 
modname by executing 

send expressions to modname [about key] 

The " a b o u t  key" phrase is optional. If in- 
cluded, it attaches an identifying transac- 
tion key to the message. This key can then 
be used to identify the message uniquely, 
or the same key Can be attached to several 
different messages to allow messages to be 
grouped. 

A module receives messages by executing 

receive variables [from modname ] 
[about key] 

If the last two phrases are omitted, execu- 
tion of r e ce i ve  delays the executing mod- 
ule until the arrival of any message. If the 
phrase " f rom modname" is included, exe- 
cution is delayed until a message from the 
named module arrives. Finally, if the phrase 
"about key" is included, the module is de- 
layed until a message with the indicated 
transaction key has arrived. 

By combining the options in send  and 
r ece i ve  in different ways, a programmer 
can exert a variety of controls over com- 
munication. When both the sending and 
receiving modules name each other, com- 
munication is direct. The effect of port 
naming is realized by having a receiving 
module not name the source module. Fi- 
nally, the use of transaction keys allows the 
receiver to select a particular kind of mes- 
sage; this provides a facility almost as pow- 
erful as attaching " w h e n  B "  to a r ece ive  
statement. 

In PLITS, execution of r ece ive  can 
cause blocking. PLITS also provides prim- 
itives to test whether messages with certain 
field values or transaction keys are avail- 
able for receipt; this enables a process to 
avoid blocking when there is no message 
available. 

PLITS programs interface to the oper- 
ating systems of the processors that  make 
up RIG. Each host system provides device 
access, a file system, and job control. A 
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communications kernel on each machine 
provides the required support for inter- 
processor communication. 

4.5.3 A d a  27 

Ada [U. S. Department of Defense, 1981] is 
a language intended for programming 
embedded real-time, process-control sys- 
tems. Because of this, Ada includes facili- 
ties for multiprocessing and device control. 
With respect to concurrent .programming, 
Ada's main innovation is the rendezvous 
form of remote procedure call. 

Processes in Ada are called tasks. A task 
is activated when the block containing its 
declaration is entered. Tasks may be nested 
and may interact by using shared variables 
declared in enclosing blocks. (No special 
mechanisms for synchronizing access to 
shared variables are provided.) 

The primary mechanism for process in- 
teraction is the remote procedure call. Re- 
mote procedures in Ada are called entries; 
they are ports into a server process speci- 
fied by means of an accept  statement, 
which is similar in syntax and semantics to 
the accept  statement described in Section 
4.3.1. Entries are invoked by execution of a 
remote call. Selective communications is 
supported using the select  statement, 
which is like an alternative statement. 

Both call  and accept  statements are 
blocking. Since Ada programs might have 
to meet real-time response constraints, the 
language includes mechanisms to prevent 
or control the length of time that  a process 
is delayed when it becomes blocked. Block- 
ing on call can be avoided by using the 
conditional entry call, which performs a 
call  only if a rendezvous is possible imme- 
diately. Blocking on accept  can be avoided 
by using a mechanism that  enables a server 
to determine the number of waiting calls. 
Blocking on select  can be avoided by 
means of the else guard, which is true if 
none of the other guards are. Finally, a task 
can suspend execution for a time interval 
by means of the de lay  statement. This 
statement can be used within a guard of 
select  to ensure that  a process is eventually 
awakened. 

° 3 5  

In order to allow the programmer to con- 
trol I /O devices, Ada allowsentries to be 
bound to interrupt vector locations. Inter- 
rupts become calls to those entries and can 
therefore be serviced by a task that  receives 
the interrupt by means of an accept  state- 
ment. 

Since its inception, Ada has generated 
controversy [Hoare, 1981], much of which 
is not related to concurrency. However, few 
applications using the concurrent program- 
ruing features have been programmed, and 
at the time of this writing no compiler for 
full Ada has been validated. Implementa- 
tion of some of the concurrent program- 
ming aspects of Ada is likely to be hard. A 
paper by Welsh and Lister [1981] compares 
the concurrency aspects of Ada to CSP and 
Distributed Processes [Brinch Hansen, 
1978]; Wegner and Smolka [1983] compare 
Ada, CSP, and monitors. 

4.5.4 SR 

SIR (Synchronizing Resources) [Andrews, 
1981, 1982], like Ada, uses the rendezvous 
form of remote procedure call and port 
naming. However, there are notable differ- 
ences between the languages, as described 
below. A compiler for SIR has been imple- 
mented on PDP-11 processors and the lan- 
guage is being used in the construction of a 
UNIX-like network operating system. 

An SIR program consists of one or more 
resources. 2s The resource~ construct sup- 
ports both control of process interaction 
and data abstraction. (In contrast, Ada has 
two distinct constructs for this--the task 
and the package.) Resources contain one or 
more processes. Processes interact by using 
operations, which are similar to Ada en- 
tries. Also, processes in the same resource 
may interact by means of shared variables. 

Unlike Ada, operations may be invoked 
by either send, which is nonblocking, or 
call, which is blocking. (The server that  
implements an operation can require a par- 
ticular form of invocation, if necessary.) 
Thus both asynchronous message passing 
and remote call are supported. Operations 
may be named either statically in the pro- 
gram text or dynamically by means of ca- 

~Ada is a trademark of the U. S. Department of 28 SR's resources are not to be cQnfused with resources 
Defense. in conditional critical region s . 
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pability variables, which are variables hav- 
ing fields whose values are the names of 
operations. A process can therefore have a 
changing set of communication channels. 

In SR, operations are specified by the in 
statement, which also supports selective 
communications. Each guard in an in state- 
ment has the form 

op_.name(parameters) [and B] [by A] 

where B is an optional Boolean expression 
and A is an optional arithmetic expression. 
The phrase "and  B "  allows selection of the 
operation to be dependent on the value of 
B, which may contain references to param- 
eters. The phrase "by  A "  controls which 
invocation of op__name is selected if more 
than one invocation is pending that satisfies 
B. This can be used to express scheduling 
constraints succinctly. For example, it per- 
mits a compact solution to the shortest-job- 
next allocation problem discussed earlier. 
Although somewhat expensive to imple- 
ment because it requires reevaluation of A 
whenever a selection is made, this facility 
turns out to be less costly to use than 
explicitly programmed scheduling queues, 
if the expected number of pending invoca- 
tions is small (which is usually the case). 

Operations may also be declared to be 
procedures .  In SR, a procedure is short- 
hand for a process that  repeatedly executes 
an in statement. Thus such operations are 
executed sequentially. 

To support device control, SR provides 
a variant of the resource called a real  re- 
source. A real resource is similar to a Mod- 
ula device module: it can contain device- 
driver processes and it allows variables to 
be bound to device-register addresses. Op- 
erations in real resources can be bound to 
interrupt vector locations. A hardware in- 
terrupt is treated as a s end  to such an 
operation; interrupts are processed by 
means of in statements. 

4.5.5 Some Other Language Notations Based 
on Message Passing 

Gypsy [Good et al., 1979], one of the first 
high-level languages based on message 
passing, uses mailbox naming and buffered 
message passing. A major focus of Gypsy 
was the development of a programming 
language well suited for constructing veri- 

fiable systems. It has been used to imple- 
ment special-purpose systems for singie- 
and multiprocessor architectures. 

Distributed Processes (DP) [Brinch Han- 
sen, 1978] was the first language to be based 
on remote procedure calls. It can be viewed 
as a language that implements monitors by 
means of active processes rather than col- 
lections of passive procedures. In DP, re- 
mote procedures are specified as externally 
callable procedures declared along with a 
host process and shared variables. When a 
remote procedure is called, a server process 
is created to execute the body of the pro- 
cedure. The server processes created for 
different calls and the host process execute 
with mutual exclusion. The servers and 
host synchronize by means of a variant of 
conditional critical regions. An extension of 
D P  that employs the rendezvous form of 
remote procedure call and thus has a more 
efficient implementation is described by 
Mao and Yeh [1980]. 

StarMod [Cook, 1980] synthesizes as- 
pects of Modula and Distributed Processes: 
it borrows modularization ideas from Mod- 
ula and communication ideas from Distrib- 
uted Processes. A module contains one or 
more processes and, optionally, variables 
shared by those processes. Synchronization 
within a module is provided by semaphores. 
Processes in different modules interact by 
means of remote procedure call; StarMod 
provides both remote procedures and ren- 
dezvous for implementing the server side. 
In StarMod, as in SR, both send  and call  
can be used to initiate communication, the 
choice being dictated by whether the in- 
voked operation returns values. 

Argus [Liskov and Scheifler, 1982] also 
borrows ideas from Distributed Processes--  
remote procedures implemented by dynam- 
ically created processes, which synchronize 
using critical regions--but goes much fur- 
ther. It  has extensive support for program- 
ming atomic transactions. The language 
also includes exception handling and recov- 
ery mechanisms, which are invoked if fail- 
ures occur during execution of atomic trans- 
actions. Argus is higher level than the other 
languages surveyed here in the sense that  
it attaches more semantics to remote call. 
A prototype implementation of Argus is 
nearing completion. 
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5. MODELS OF CONCURRENT 
PROGRAMMING LANGUAGES 

Most of this survey has been devoted to 
mechanisms for process interaction and 
programming languages that use them. De- 
spite the resulting large variety of lan- 
guages, each can be viewed as belonging to 
one of three classes: procedure oriented, 
message oriented, or operation oriented. 
Languages in the same class provide the 
same basic kinds of mechanisms for process 
interaction and have similar attributes. 

Inprocedure-oriented languages, process 
interaction is based on shared variables. 
(Because monitor-based languages are the 
most widely known languages in this 
class, this is often called the monitor 
model.) These languages contain both ac- 
tive objects (processes) and shared, passive 
objects (modules, monitors, etc.). Passive 
objects are represented by shared variables, 
usually with some procedures that imple- 
ment the operations on the objects. Pro- 
cesses access the objects they require di- 
rectly and thus interact by accessing shared 
objects. Because passive objects are shared, 
they are subject to concurrent access. 
Therefore, procedure-oriented languages 
provide means for ensuring mutual exclu- 
sion. Concurrent PASCAL, Modula, Mesa, 
and Edison are examples of such languages. 

Message- and operation-oriented lan- 
guages are both based on message passing, 
but reflect different views of process inter- 
action. Message-oriented languages pro- 
vide send  and r ece ive  as the primary 
means for process interaction. In contrast 
to procedure-oriented languages, there are 
no shared, passive objects, and so processes 
cannot directly access all objects. Instead, 
each object is managed by a single process, 
its caretaker, which performs all operations 
on it. When an operation is to be performed 
on an object, a message is sent to its care- 
taker, which performs the operation and 
then (possibly) responds with a completion 
message. Thus, objects are never subject to 
concurrent access. CSP, Gypsy, and PLITS 
are examples of message-oriented lan- 
guages. 

Operation-oriented languages provide 
remote procedure call as the primary means 
for process interaction. These languages 
combine aspects of the other two classes. 

As in a message-oriented language, each 
object has a caretaker process associated 
with it; as in a procedure-oriented language, 
operations are performed on an object by 
calling a procedure. The difference is that  
the caller of an operation and the caretaker 
that  implements it synchronize while the 
operation is executed. Both then proceed 
asynchronously. Distributed Processes, 
StarMod, Ada, and SR are examples of 
operation-oriented languages. 

Languages in each of these classes are 
roughly equivalent in expressive power. 
Each can be used to implement various 
types of cooperation between concurrently 
executing processes, including client/server 
interactions and pipelines. Operation-ori- 
ented languages are well suited for pro- 
gramming client/server systems, and mes- 
sage-oriented languages are well suited for 
programming pipelined computations. 

Languages in each class can be used to 
write concurrent programs for uniproces- 
sors, multiprocessors, and distributed sys- 
tems. Not all three classes are equally 
suited for all three architectures, however. 
Procedure-oriented languages are the most 
efficient to implement on contemporary 
single processors. Since it is expensive to 
simulate shared memory if none is present, 
implementing procedure-oriented lan- 
guages on a distributed system can be 
costly. Nevertheless, procedure-oriented 
languages can be used to program a distrib- 
uted system--an individual program is 
written for each processor and the com- 
munications network is viewed as a shared 
object. Message-oriented languages can be 
implemented with or without shared mem- 
ory. In the latter case, the existence of a 
communications network is made com- 
pletely transparent, which frees the pro- 
grammer from concerns about how the net- 
work is accessed and where processes are 
located. This is an advantage of message- 
oriented languages over procedure-oriented 
languages when programming a distributed 
system. Operation-oriented languages en- 
joy the advantages of both procedure-ori- 
ented and message-oriented languages. 
When shared memory is available, an op- 
eration-oriented language can, in many 
cases, be implemented like a procedure-ori- 
ented language [Habermann and Nassi, 
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Figure 9. Synchronization techniques and language classes. 

1980]; otherwise it can be implemented us- 
ing message passing. Recent research has 
shown that  both message- and operation- 
oriented languages can be implemented 
quite efficiently on distributed systems if 
special software/fnTnware is used in the 
implementation of the language's mecha- 
nisms [Nelson, 1981; Spector, 1982]. 

In a recent paper, Lauer and Needham 
argued that  procedure-oriented and mes- 
sage-oriented languages are equals in terms 
of expressive power, logical equivalence, 
and performance [Lauer and Needham, 
1979]. (They did not consider operation- 
oriented languages, which have only re- 
cently come into existence.) Their thesis 
was examined in depth by Reid [1980], who 
reached many conclusions that  we share. 
At an abstract level, the three types of 
languages are interchangeable. One can 
transform any program written using the 
mechanisms found in languages of one class 
into a program using the mechanisms of 
another class without affecting perform- 
ance. However, the classes emphasize dif- 
ferent styles of programmingNthe same 
program written in languages of different 
classes is often best structured in entirely 
different ways. Also, each class provides a 
type of flexibility not present in the others. 
Program fragments that are easy to de- 
scribe using the mechanisms of one can be 
awkward to describe using the mechanisms 
of another. One might argue (as do Lauer 
and Needham) that  such use of these mech- 

anisms is a bad idea. We, however, favor 
programming in the style appropriate to 
the language. 

6. CONCLUSION 

This paper has discussed two aspects of 
concurrent programming: the key con- 
cepts--specification of processes and con- 
trol of their interaction--and important 
language notations. Early work on operat- 
ing systems led to the discovery of two 
types of synchronization: mutual exclusion 
and condition synchronization. This stim- 
ulated development of synchronization 
primitives, a number of which are described 
in this paper. The historical and conceptual 
relationships among these primitives are 
illustrated in Figure 9. 

The difficulty of designing concurrent 
programs that  use busy-waiting and their 
inefficiency led to the definition of sema- 
phores. Semaphores were then extended in 
two ways: (1) constructs were defined that  
enforced their structured use, resulting in 
critical regions, monitors, and path expres- 
sions; (2) "data" were added to the syn- 
chronization associated with semaphores, 
resulting in message-passing primitives. Fi- 
nally, the procedural interface of monitors 
was combined with message passing, result- 
ing in remote procedure call. 

Since the first concurrent programming 
languages were defined only a decade ago, 
practical experience has increased our un- 
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derstanding of how to engineer such pro- 
grams, and the development of formal tech- 
niques has greatly increased our under- 
standing of the basic concepts. Although 
there are a variety of different program- 
ming languages, there are only three essen- 
tially different kinds: procedure oriented, 
message oriented, and operation oriented. 
This, too, is illustrated in Figure 9. 

At present, many of the basic problems 
that arise when constructing concurrent 
programs have been identified, solutions to 
these problems are by and large under- 
stood, and substantial progress has been 
made toward the design of notations to 
express those solutions. Much remains to 
be done, however. The utility of various 
languages--really, combinations of con- 
structs--remains to be investigated. This 
requires using the languages to develop sys- 
tems and then analyzing how they helped 
or hindered the development. In addition, 
the interaction of fault tolerance and con- 
current programming is not well under- 
stood. Little is known about the design of 
distributed (decentralized) concurrent pro- 
grams. Last, devising formal techniques to 
aid the programmer in constructing correct 
programs remains an important open prob- 
lem. 
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