
Concepts and Notations for Concurrent Programming

GREGORY R. ANDREWS

Department of Computer Science, University of Arizona, Tucson, Arizona 85721

FRED B. SCHNEIDER

Department of Computer Science, Cornell University, Ithaca, New York 14853 .

Much has been learned in the last decade about concurrent programming..This patmr
identifies the major concepts of concurrent programming and describes some of the more
importam language notations for writing concurrent programs. The roles of processes,
communication, and synchronization are discussed. Language notations for expressing
concurrent execution and for specifying process interaction are surveyed. Synchronization
primitives based on shared variables and on message passing are described. Finally, three
general classes of concurrent programming languages are identified and compared.

Categories and Subject Descriptors: D. 1.3 [Programming Techniques]: Concurrent
Programming; D.3.3 [Programming Languages]: Language Constructs--concurrent
programming structures; coroutines; D.4.1 [Operating Systems]: Process Management; D.4.7
[Operating Systems]: Organization and Design

General Terms: Algorithms, Languages

INTRODUCTION

The complexion of concurrent program-
ming has changed substantially in the past
ten years. First, theoretical advances have
prompted the definition of new program-
ming notations that express concurrent
computations simply, make synchroniza-
tion requirements explicit, and facilitate
formal correctness proofs. Second, the
availability of inexpensive processors has
made possible the construction of distrib-
uted systems and multiprocessors that were
previously economically infeasible. Because
of these two developments, concurrent pro-
gramming no longer is the sole province of
those who design and implement operating
systems; it has become important to pro-
grammers of all kinds of applications, in-
cluding database management systems,
large-scale parallel scientific computations,
and real-time, embedded control systems.
In fact, the discipline has matured to the

point that there are now undergraduate-
level text books devoted solely to the topic
[Holt et al., 1978; Ben-Ari, 1982]. In light of
this growing range of applicability, it seems
appropriate to survey the state of the art.

This paper describes the concepts central
to the design and construction of concur-
rent programs and explores notations for
describing concurrent computations. Al-
though this description requires detailed
discussions of some concur ren t program-
ming languages, we restrict attention to
those whose designs we believe to be influ-
ential or conceptually innovative. Not all
the languages we discuss enjoy widespread
use. Many are experimental efforts that
focus on understanding the interactions of
a given collection of constructs. Some have
not even been implemented; others have
been, but with little concern for efficiency,
access control, data types, and other impor-
tant (though nonconcurrency) issues.

We proceed as follows. In Section 1 we

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
dateappear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1983 ACM 0010-4892/83/0300-0003 $00.75

Computing Surveys, Vol. 15, l ~ ~! March 1988

4 ° G.R. Andrews and F. B. Schneider

CONTENTS

INTRODUCTION
1. CONCURRENT PROGRAMS: PROCESSES

AND PROCESS INTERACTION
1.1 Processes
1.2 Process Interaction

2. SPECIFYING CONCURRENT EXECUTION
2.1 Coroutines
2.2 The fork and join Statements
2.3 The cobegin Statement
2.4 Process Declarations

3. SYNCHRONIZATION PRIMITIVES BASED
ON SHARED VARIABLES
3.1 Busy-Waiting
3.2 Semaphores
3.3 Conditional Critical Regions
3.4 Monitors
3.5 Path Expressions

4. SYNCHRONIZATION PRIMITIVES BASED
ON MESSAGE PASSING
4.1 Specifying Channels of Communication
4.2 Synchronization
4.3 Higher Level Message-Passing Constructs
4.4 An Axiomatic View of Message Passing
4.5 Programming Notations Based on Message

Passing
5. MODELS OF CONCURRENT

PROGRAMMING LANGUAGES
6. CONCLUSION
ACKNOWLEDGMENTS
REFERENCES

v

discuss the three issues that underlie all
concurrent programming notations: how to
express concurrent execution, how pro-
cesses communicate, and how processes
synchronize. These issues are treated in
detail in the remainder of the paper. In
Section 2 we take a closer look at various
ways to specify concurrent execution: co-
routines, f o r k and cobegin statements,
and process declarations. In Section 3 we
discuss synchronization primitives that are
used when communication uses shared
variables. Two general types of synchroni-
zation are considered--exclusion and con-
dition synchronizationmand a variety of
ways to implement them are described:
busy-waiting, semaphores, conditional crit-
ical regions, monitors, and path expres-
sions. In Section 4 we discuss message-pass-
ing primitives. We describe methods for
specifying channels of communication and
for synchronization, and higher level con-

structs for performing remote procedure
calls and atomic transactions. In Section 5
we identify and compare three general
classes of concurrent programming lan-
guages. Finally, in Section 6, we summarize
the major topics and identify directions in
which the field is headed.

1. CONCURRENT PROGRAMS: PROCESSES
AND PROCESS INTERACTION

1.1 Processes

A sequential program specifies sequential
execution of a list of statements; its execu-
tion is called a process. A concurrent pro-
gram specifies two or more sequential pro-
grams that may be executed concurrently
as parallel processes. For example, an air-
line reservation system that involves proc-
essing transactions from many terminals
has a natural specification as a concurrent
program in which each terminal is con-
trolled by its own sequential process. Even
when processes are not executed simulta-
neously, it is often easier to structure a
system as a collection of cooperating se-
quential processes rather than as a single
sequential program. A simple batch oper-
ating system can be viewed as three proc-
esses: a reader process, an executer process,
and a printer process. The reader process
reads cards from a card reader and places
card images in an input buffer. The execu-
ter process reads card images from the in-
put buffer, performs the specified compu-
tation (perhaps generating line images),
and stores the results in an output buffer.
The printer process retrieves line images
from the output buffer and writes them to
a printer.

A concurrent program can be executed
either by allowing processes to share one or
more processors or by running each process
on its own processor. The first approach is
referred to as multiprogramming; it is sup-
ported by an operating system kernel [Dijk-
stra, 1968a] that multiplexes the processes
on the processor(s). The second approach
is referred to as multiprocessing if the
processors share a common memory (as
in a multiprocessor [Jones and Schwarz,
1980]), or as distributed processing if the
processors are connected by a communica-

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming

tions network. 1 Hybrid approaches also ex-
i s t - f o r example, processors in a distributed
system are often multiprogrammed.

The rate at which processes are executed
depends on which approach is used. When
each process is executed on its own pro-
cessor, each is executed at a fixed, but per-
haps unknown, rate; when processes share
a processor, it is as if each is executed on
a variable-speed processor. Because we
would like to be able to understand a con-
current program in terms of its component
sequential processes and their interaction,
without regard for how they are executed,
we make no assumption about execution
rates of concurrently executing processes,
except that they all are positive. This is
called the finite progress assumption. The
correctness of a program for which only
finite progress is assumed is thus independ-
ent of whether that program is executed on
multiple processors or on a single multipro-
grammed processor.

1.2 Process Interaction

In order to cooperate, concurrently execut-
ing processes must communicate and syn-
chronize. Communication allows execution
of one process to influence execution of
another. Interprocess communication is
based on the use of shared variables (vari-
ables that can be referenced by more than
one process) or on message passing.

Synchronization is often necessary when
processes communicate. Processes are exe-
cuted with unpredictable speeds. Yet, to
communicate, one process must perform
some action that the other detects--an ac-
tion such as setting the value of a variable
or sending a message. This only works if
the events "perform an action" and "detect
an action" are constrained to happen in
that order. Thus one can view synchroni-
zation as a set of constraints on the ordering
of events. The programmer employs a syn-
chronization mechanism to delay execu-
tion of a process in order to satisfy such
constraints.

To make the concept of synchronization
a bit more concrete, consider the batch
operating system described above. A shared

1 A concurrent program tha t is executed in this way is
of ten called a distributed program.

* 5

buffer is used for communication between
the reader process and the executer proc-
ess. These processes must be synchronized
so that, for example, the executer process
never attempts to read a card image from
the input if the buffer is empty.

This view of synchronization follows
from taking an operational approach to
program semantics. An execution of a con-
current program can be viewed as a se-
quence of atomic actions, each resulting
from the execution of an indivisible opera-
tion. 2 This sequence will comprise some
interleaving of t he sequences of atomic ac-
tions generated by the individual compo-
nent processes. Rarely do all execution in-
terleavings result in acceptable program be-
havior, as is illustrated in the following.
Suppose initially that x ffi 0, that process
P1 increments x by 1, and that process P2
increments x by 2:

PI: x :ffi x + 1 P2: x:-- x + 2

It would seem reasonable to expect the final
value of x, after P1 and P2 have executed
concurrently, to be 3. Unfortunately, this
will not always be the case, because assign-
ment statements are not generally imple-
mented as indivisible operations. For ex-
ample, the above assignments might be
implemented as a sequence of three indi-
visible operations: (i) load a register with
the value of x; (ii) add 1 or 2 to it; and (iii)
store the result in x. Thus, in the program
above, the final value of x might be 1, 2, or
3. This anomalous behavior can be avoided
by preventing interleaved execution of the
two assignment statements-- that is, by
controlling the ordering of the" events cor-
responding to the atomic actions. (If order-
ing were thus controlled, each assignment
statement would be an indivisible opera-
tion.) In other words, execution of 1)1 and
P2 must be synchronized by enforcing re-
strictions on possible interleavings.

The axiomatic approach [Floyd, 1967;
Hoare, 1969; Dijkstra, 1976] provides a sec-

2 We assume tha t a single memory reference is indivi-
sible; ff two processes a t t empt to reference the same
memory cell a t the same time, t he result is as if the
references were made serially. This is a reasonable
assumption in light of the way memory is constructed.
See Lampor t [19801)] for a discussion of some of the
implications of relaxing this assumption.

Computing Surveys, Vol. 15, No. I, March 1983

6 * G.R. Andrews and F. B. Schneider

ond framework in which to view the role of
synchronization. 3 In this approach, the se -
m a n t i c s of statements are defined, by ax-
ioms and inference rules. This results
in a formal logical system, called a
"programming logic." Theorems in the logic
have the form

{P} S {Q}

and specify a relation between statements
(S) and two predicates, a precondition P
and a postcondition Q. The axioms and
inference rules are chosen so that theorems
have the interpretation that if execution of
S is started in any state that satisfies the
precondition, and if execution terminates,
then the postcondition will be true of the
resulting state. This allows statements to
be viewed as relations between predicates.

A proof outline 4 provides one way to
present a program and its proof. It consists
of the program text interleaved with asser-
tions so that for each statement S, the triple
(formed from (I) the assertion that tex-
tually precedes S in the proof outline, (2)
the statement S, and (3) the assertion that
textually follows S in the proof outline) is
a theorem in the programming logic. Thus
the appearance of an assertion R in the
proof outline signifies that R is true of the
program state when control reaches that
point.

When concurrent execution is possible,
the proof of a sequential process is valid
only if concurrent execution of other pro-
cesses cannot invalidate assertions that ap-
pear in the proof [Ashcroft, 1975; Keller,
1976; Owicki and Gries, 1976a, 1976b; Lam-
port, 1977, 1980a; Lamport and Schneider,
1982]. One way to establish this is to assume
that the code between any two assertions
in a proof outline is executed atomically s
and then to prove a series of theorems
showing t ha t no statement in one process
invalidates any assertion in the proof of

3 We include brief discussions of axiomatic semantics
here and elsewhere in the paper because of its impor-
tance in helping to explain concepts. However, a full
discussion of the semantics of concurrent computation
is beyond the scope of this paper.
a This sometimes is called an asserted program.
s This should be construed as specifying what asser-
tions mus t be included in the proof rather than as a
restriction on how statements are actually executed.

another. These additional theorems consti-
tute a proof of noninterference. To illus-
trate this, consider the following excerpt
from a proof outline of two concurrent pro-
cesses P1 and P2:

PI: . . . P2: . . .
{x > O) {x < 0}

$1: x := 16 $2: x := - 2

{x -- 16} . . .
* * o

In order to prove that execution of P2 does
not interfere with the proof of P1, part of
what we must show is that execution of $2
does not invalidate assertions {x > 0} and
{x = 16} in the proof of P1. This is done by
proving

(x < 0 andx > 0} x :ffi -2 (x>0}

and

{x < 0 a n d x > 0} x :ffi - 2 (x ffi 16}

Both of these are theorems because the
precondition of each, {x < 0 and x > 0}, is
false. What we have shown is that execution
of $2 is not possible when either the pre-
condition or postcondition of $1 holds (and
thus $1 and $2 are mutually exclusive).
Hence, $2 cannot invalidate either of these
assertions.

Synchronization mechanisms control in-
terference in two ways. First, they can delay
execution of a process until a given condi-
tion {assertion) is true. By so doing, they
ensure that the precondition of the subse-
quent statement is guaranteed to be true
(provided that the assertion is not inter-
fered with). Second, a synchronization
mechanism can be used to ensure that a
block of statements is an indivisible opera-
tion. This eliminates the possibility of state-
ments in other processes interfering with
assertions appearing within the proof of
that block of statements.

Both views of programs, operational and
axiomatic, are useful. The operational ap-
proach-viewing synchronization as an or-
dering of events--is well suited to explain-
ing how synchronization mechanisms work.
For that reason, the operational approach
is used rather extensively in this survey. It
also constitutes the philosophical basis for
a family of synchronization mechanisms
calledpath expressions [Campbell and Ha-

Computing Surveys, Vol. 15, No. I, March 1983

Concepts and Notations for Concurrent Programming

bermann, 1974], which are described in Sec-
tion 3.5.

Unfortunately, the operational approach
does not really help one understand the
behavior of a concurrent program or afgne
convincingly about its correctness. Al-
though it has borne fruit for simple concur-
rent programs~such as transactions pro-
cessed concurrently in a database system
[Bernstein and Goodman, 1981]--the op-
erational approach has only limited utility
when applied to more complex concurrent
programs [Akkoyunlu et al., 1978; Bern-
stein and Schneider, 1978]. This limitation
exists because the number of interleavings
that must be considered grows exponen-
tially with the size of the component se-
quential processes. Human minds are not
good at such extensive case analysis. The
axiomatic approach usually does not have
this difficulty. It is perhaps the most prom-
ising technique for understanding concur-
rent programs. Some familiarity with for-
mal logic is required for is use, however,
and this has slowed its acceptance.

To summarize, there are three main is-
sues underlying the design of a notation for
expressing a concurrent computation:

6) how to indicate concurrent execution;
(ii) which mode of interprocess communi-

cation to use;
(iii) which synchronization mechanism to

use .

Also, synchronization mechanisms can be
viewed either as constraining the ordering
of events or as controlling interference. We
consider all these topics in depth in the
remainder of the paper.

2. SPECIFYING CONCURRENT EXECUTION

Various notations have been proposed for
specifying concurrent execution. Early pro-
posals, such as the f o r k statement, are
marred by a failure to separate process
definition from process synchronization.
Later proposals separate these distinct con-
cepts and characteristically possess syntac-
tic restrictions that impose some structure
on a concurrent program. This structure
allows easy identification of those program
segments that can be executed concur-
rently. Consequently, such proposals are
well suited for use with the axiomatic ap-

° 7

proach, because the s t i f l e of the pro-
gram itself clarifies the proof obligations for
establishing noninterference.

Below, we describe some representative
constructs for expressing concurrent exe-
cution. Each can be used to specify com-
putations having a static (fixed) number of
processes, or can be used in combination
with process-creation mechanisms to spec-
ify computations having a dynamic (vari-
able) number of processes.

2.1 Coroutines

Coroutines are like subroutines, but allow
transfer of control in a symmetric rather
than strictly hierarchical way [Conway,
1963a]. Control is transferred between co-
routines by means of the resume state-
ment. Execution of resume is like execu-
tion of procedure call: it transfers control
to the named routine, saving enough state
information for control to return later to
the instruction following the resume.
(When a routine is first resumed, control is
transferred to the beginning of that rou-
tine.) However, control is returned to the
original routine by executing another re-
sume rather than by executing a procedure
return. Moreover, any other coroutine can
potentially transfer conWol back tothe orig-
inal routine. (For example, coroutine C1
could resume C2, which could resume C3,
which could resume C1.) Thus resume
serves as the only way to transfer control
between coroutines, and one coroutine can
transfer control to any other coroutine that
it chooses.

A use of coroutines appears in Figure 1.
Note that resume is used to transfer con-
trol between c0routines A and B, a call is
used to initiate the coroutine Computation,
and return is used to transfer control back
to the caller P. The arrows in Figure 1
indicate the transfers of control.

Each coroutine can be viewed as imple-
menting a process. Execution of resume
causes process sychronization. When Used
with care, coroutines are an acceptable way
to organize concurrent programs that share
a single processor. In fact, multiprogram-
ruing can also be implemented using co-
routines. Coroutines are not adequate for
true parallel processing, however, because
their semantics allow for execution of only

Computing Su~eys, Vol. lS, No. 1, Mar~h 1983

8 • G .R . Andrews and F. B. Schneider

p r o g r a m P,

call `4;

end

yco?n.ne
resume B;

resume .4;
resume B ~ ...

return

Figure 1. A use of coroutines.

one routine at a time. In essence, coroutines
are concurrent processes in which process
switching has been completely specified,
rather than left to the discretion of the
implementation.

Statements to implement coroutines
have been included in discrete event simu-
lation languages such as SIMULA I [Ny-
gaard and Dahl, 1978] and its succes-
sors; the string-processing language SL5
[Hanson and Griswold, 1978]; and systems
implementation languages including
BLISS [Wulf et al., 1971] and most recently
Modula-2 [Wirth, 1982].

2.2 The fork and join Statements

The f o r k statement [Dennis and Van
Horn, 1966; Conway, 1963b], like a call or
resume, specifies that a designated routine
should start executing. However, the invok-
ing routine and the invoked routine proceed
concurrently. To synchronize with comple-
tion of the invoked routine, the invoking
routine can execute a jo in statement. Exe-
cuting jo in delays the invoking routine un-
til the designated invoked routine has ter-
minated. (The latter routine is often desig-
nated by a value returned from execution
of a prior fork.) A use of f o r k and join
follows:

program P1; program P2;
, . . o , o

fork P2; . . .
° o . o o .

join P2; end
o , ,

Execution of P2 is initiated when the f o r k
in P1 is executed; P1 and 1'2 then execute
concurrently until either P1 executes the
join statement or P2 terminates. After P1
reaches the jo in and P2 terminates, P1
executes the statements following the join.

Because f o r k and jo in can appear in
conditionals and loops, a detailed under-
standing of program execution is necessary
to understand which routines will be exe-
cuted concurrently. Nevertheless, when
used in a disciplined manner, the state-
ments are practical and powerful. For ex-
ample, f o r k provides a direct mechanism
for dynamic process creation, including
multiple activations of the same program
text. The UNIX 6 operating system [Ritchie
and Thompson, 1974] makes extensive use
of variants of f o r k and join. Similar state-
ments have also been included in PL/ I and
Mesa [Mitchell et al., 1979].

2.3 The cobegin Statement

The cobeg in statement 7 is a structured
way of denoting concurrent execution of a
set of statements. Execution of

cobegin $1 II $2 II "'" U Sn coend

causes concurrent execution of $1, $ 2 , . . . ,
Sn. Each of the Si's may be any statement,
including a cobeg in or a block with local
declarations. Execution of a cobeg in state-
ment terminates only when execution of all
the Si's have terminated.

Although cobeg in is not as powerful as
fo rk / jo in , s it is sufficient for specifying

6 UNIX is a trademark of Bell Laboratories.
7 This was first called p a r b e g i n by Dijkstra [1968b].
s Execution of a concurrent program can be repre-
sented by a process flow graph: an acyclic, directed
graph having one node for each process and an arc
from one node to another if the second cannot execute
until the fncst has terminated [Shaw, 1974]. Without
introducing extra processes or idle time, cobeg in
and sequencing can only represent series-parallel
(properly nested) process flow graphs. Using fo rk and
j o i n , the computation represented by any process flow
graph can be specified directly. Furthermore, fo rk can
be used to create an arbitrary number of concurrent
processes, whereas cobeg in as defined in any existing
language, can be used only to activate a fLxed number
of processes.

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent]Programming

program OPS YS;

vat input_buffer : array [0.. N- l] of cardimage;
output_buffer : array [O..N-I] of lineimage;

process reader;
var card " eardimage;
loop

read card from cardreader;
deposit card in input_buffer
end

end;

process executer;
var card : cardimage;

line : lineimage;
loop

fetch card from input_buffer;
process card and generate line;
deposit line in output_buffer
end

end;

process printer;
var line : lineimage;
loop

fetch line from output_buffer;
print line on lineprinter
end

end

end.

Figure 2. Outline of batch operating system.

most concurrent computations. Further-
more, the syntax of the cobegin statement
makes explicit which routines are executed
concurrently, and provides a single-entry,
single-exit control structure. This allows
the state transformation implemented by a
cobeg in to be understood by itself, and
then to be used to understand the program
in which it appears.

Variants of cobeg in have been included
in ALGOL68 [van Wijngaarden et al.,
1975], Communicating Sequential Pro-
cesses [Hoare, 1978], Edison [Brinch Han-
sen, 1981], and Argus [Liskov and Scheifler,
1982].

2.4 Process Declarations

Large programs are often structured as a
collection of sequential routines, which are
executed concurrently. Although such rou-
tines could be declared as procedures and
activated by means of cobeg in or fork, the
structure of a concurrent program is much
clearer if the declaration of a routine states
whether it will be executed concurrently.

The process declaration provides such a
facility.

Use of process declarations to structure
a concurrent program is illustrated in Fig-
ure 2, which outlines the batch operating
system described earlier. We shall use this
notation for process declarations in the re-
mainder of this paper to denote collections
of routines that are executed concurrently.

In some concurrent programming lan-
guages {e.g., Distributed Processes [Brinch
Hansen, 1978] and SR [Andrews, 1981]), a
collection of process declarations is equiv-
alent to a single cobegin , where each of
the declared processes is a component of
the cobegin. This means there is exactly
one instance of each declared process. Al-
ternatively, some languages provide an ex-
plicit mechanism--fork or something sim-
i l a r - fo r activating instances of process
declarations. This explicit activation mech-
anism can only be used during program
initialization in some languages (e.g., Con-
current PASCAL [Brinch Hansen, 1975]
and Modula [Wirth, 1977a]). This leads to
a fixed number of processe~ but allows mul-

Computing $urveys,~ol. 15, No. 1, Ma~h 1983

10 ° G. R. Andrews and F. B. Schneider

tiple instances of each declared process to
be created. By contrast, in other languages
(e.g., PLITS[Feldman, !979] and Ada
[U. S. Department of Defense, 1981]) pro-
cesses can be created at any time during
execution, which makes possible computa-
tions having a variable number of pro-
cesses.

3. SYNCHRONIZATION PRIMITIVES BASED
ON SHARED VARIABLES

When shared variables are used for inter-
process communication, two types of syn-
chronization are useful: mutual exclusion
and condition synchronization. Mutual ex-
clusion ensures that a sequence of state-
ments is treated as an indivisible operation.
Consider, for example, a complex data
structure manipulated by means of opera-
tions implemented as sequences of state-
ments. If processes concurrently perform
operations on the same shared data object,
then unintended results might occur. (This
was illustrated earlier where the statement
x :ffi x + 1 had to be executed indivisibly
for a meaningful computation to result.) A
sequence of statements that must appear
to be executed as an indivisible operation is
called a critical section. The term "mutual
exclusion" refers to mutually exclusive ex-
ecution of critical sections. Notice that the
effects of execution interleavings are visible
only if two computations access shared var-
ibles. If such is the case, one computation
can see intermediate results produced by
incomplete execution of the other. If two
routines have no variables in common, then
their execution need not be mutually exclu-
sive.

Another situation in which it is necessary
to coordinate execution of concurrent proc-
esses occurs when a shared data object is in
a state inappropriate for executing a partic-
ular operation. Any process attempting
such an operation should be delayed until
the state of the data object (i.e., the values
of the variables that comprise the object)
changes as a result of other processes exe-
cuting operations. We shall call this type
of synchronization condition synchroniza-
tion. 9 Examples of condition synchroniza-
tion appear in the simple batch operating
system discussed above. A process attempt-

9 Unfor tuna te ly , t he re is no ' commonly agreed upon
t e r m for this .

ing to execute a "deposit" operation on a
buffer (the buffer being a shared data ob-
ject) should be delayed if the buffer has no
space. Similarly, a process attempting to
"fetch" from a buffer should be delayed if
there is nothing in the buffer to remove.

Below, we survey various mechanisms for
implementing these two types of synchro-
nization.

3.1 Busy-Waiting

One way to implement synchronization is
to have processes set and test shared vari-
ables. This approach works reasonably well
for implementing condition synchroniza-
tion, but not for implementing mutual ex-
clusion, as will be seen. To signal a condi-
tion, a process sets the value of a shared
variable; to wait for that condition, a proc-
ess repeatedly tests the variable until it is
found to have a desired value. Because a
process waiting for a condition must re-
peatedly test the shared variable, this tech-
nique to delay a process is called busy-wait-
ing and the process is said to be spinning.
Variables that are used in this way are
sometimes called spin locks.

To implement mutual exclusion using
busy-waiting, statements that signal and
wait for conditions are combined into care-
fully constructed protocols. Below, we pres-
ent Peterson's solution to the two-pro-
cess mutual exclusion problem [Peterson,
1981]. (This solution is simpler than the so-
lution proposed by Dekker [Shaw, 1974].)
The solution involves an entry protocol,
which a process executes before entering its
critical section, and an exit protocol, which
a process executes after finishing its critical
section:

process P1;
loop

Entry Protocol;
Critical Section;
Exit Protocol;
Noncritical Section
end

end

process P2;
loop

Entry Protocol;
Critical Section;
Exit Protocol;
Noncritical Section
end

end
Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming • 11

Three shared variables are used as follows that the finite progress assuraption is not
to realize the desired synchronization. Boo- invalidated by delays due tO ~synchroniza.
lean variable enteri (i -- I or 2) is true when
process Pi is executing its entry protocol or
its critical section. Variable turn records
the name of the next process to be granted
entry into its own critical section; turn is
used when both processes execute their re-
spective entry protocols at about the same
time. The solution is

p r o g r a m Mute.,:_ExanTph,;

var enter l, enter2 : Boolean initial {false~false);
turn : integer initial ("PI") ; { or "P2'" }

process P1;
loop

Entry_Protocol:
enterl := true: { announce intent to enter }
turn : = " P 2 " : { set priori ty to other process }

tion. In general, a synchronization mecha-
nism is fair if no process is delayed forever,
waiting for a condition that occurs infinitely
often; it is bounded fair if there exists an
upper bound on how longa process will be
delayed waiting for a condition that occurs
infinitely often. The above protocol is
bounded fair, since a process waiting to
enter its critical section is delayed for at
most one execution of the other process'
critical section; the variable turn ensures
this. Peterson [1981] gives operational
proofs of mutual exiZlusion, deadlock free-
dom, and fairness; Dijkstra [1981a] gives
axiomatic ones.

Synchronization protocols that use only
wh,e enter2 and turn = "Re" busy-waiting are difficult to design, under-

do skip; { wait if o ther process is in and it is his turn !
Critical Section; stand, and prove correct. First, although
Exi t_Protocol :

enterl :=./ah'e; { renounce intent to enter }

Noncri t ical Section
end

end:

process P2:
loop

Ent ry_Protocol :
enter2 := true; { a n n o u n c e intent to enter }
turn := " P I ' ; { set pr ior i ty to other process]
while enterl and turn ="PI '"

do skip; { wait if o ther process is in and it is his turn }
Crit ical Section:

Exi t_Protocol :
enterl :=.false; { renounce intent to enter }

Noncri t ical Section
end

end

end.

In addition to implementing mutual ex-
clusion, this solution has two other desira-
ble properties. First, it is deadlock free.
Deadlock is a state of affairs in which two
or more processes are waiting for events
that will never occur. Above, deadlock
could occur if each process could spin for-
ever in its entry protocol; using turn pre-
cludes deadlock. The second desirable
property is fairness: 1° if a process is trying
to enter its critical section, it will eventually
be able to do so, provided that the other
process exits its critical section. Fairness is
a desirable property for a synchronization
mechanism because its presence ensures

~ ° A m o r e c o m p l e t e d i s c u s s i o n o f f a i r n e s s a p p e a r s i n
L e h m a n n e t a l . [1 9 8 1] .

instructions that make two memory refer-
ences part of a single indivisible operation
(e.g., the T S (test-and-set) instruction on
the IBM 360/370 processors) help, such
instructions do n o t significantly simplify
the task of designing synchronization pro-
tocols. Second, busy-waiting wastes pro-
cessor cycles. A processor executing a spin-
ning process could usually be ~employed
more productively by running other pro-
cesses until the awaited ~ condition occurs.
Last, the busy-waiting~approach to syn-
chronization burdens the programmer with
deciding both what synchronization is re-
quired and how to provide it. In reading a
program that uses busy-waiting, it may not
be clear to the reader which program vari-
ables are used for implementing synchro-
nization and which are used for, say, inter-
process communication.

3.2 Semaphores

Dijkstra was one of the first to appreciate
the difficulties of using low-level mecha-
nisms for process synchronization, and this
prompted his development of semaphores
[Dijkstra, 1968a, 19681)]. A semaphore is a
nonnegative integer-valued variable on
which two operations are defined: P and V.
Given a semaphore s, P(s) delays until
s > 0 and then executes s ~ s - 1; the test
and decrement ar~ executed as an indivis-
ible operation. V(s) executes s :ffi s + 1 as

Compufliig Surveys, VoL 16, No. I, Match 1983

12 • G. R. Andrews and F. B. Schneider

an indivisible operation, n Most semaphore
implementat ions are assumed to exhibit
fairness: no process delayed while executing
P(s) will r e m a i n delayed forever if V(s)
operat ions are performed infinitely often.
T h e need for fairness arises when a number
of processes are s imultaneously delayed, all
a t tempt ing to execute a P operat ion on the
same semaphore. Clearly, the implementa-
t ion must choose which one will be allowed
to proceed when a V is ul t imately per-
formed. A simple way to ensure fairness is
to awaken processes in the order in which
they were delayed.

Semaphores are a very general tool for
solving synchronizat ion problems. To im-
p lement a solution to the mutua l exclusion
problem, each critical section is preceded
by a P operat ion and followed by a V
operat ion on the same semaphore. All mu-
tual ly exclusive critical sections use the
same semaphore, which is initialized to one.
Because such a semaphore only takes on
the values zero and one, it is of ten called a
binary semaphore.

To implement condit ion synchronization,
shared variables are used to represent the
condition, and a semaphore associated with
the condit ion is used to accomplish the
synchronization. After a process has made
the condit ion true, it signals tha t it has
done so by executing a V operation; a pro-
cess delays unti l a condit ion is t rue by
executing a P operation. A semaphore tha t
can take any nonnegat ive value is called a
general or counting semaphore. General
semaphores are often used for condit ion
synchronizat ion when controlling resource
allocation. Such a semaphore has as its
initial value the initial number of units of
the resource; a P is used to delay a process
until a free resource uni t is available; V is
executed when a uni t of the resource is
re turned. Binary semaphores are sufficient

n p is the first letter of the Dutch word "passeren,"
which means "to pass"; V is the first letter of
"vrygeven," the Dutch word for "to release" [Dijkstra,
1981b]. Reflecting on the definitions of P and V,
Dijkstra and his group observed the P might better
stand for "prolagen" formed from the Dutch words
"proberen" (meaning "to try") and "verlagen" (mean-
ing "to decrease") and V for the Dutch word
"verhogen" meaning "to increase." Some authors use
wait for P and signal for V.

for some types of condit ion synchroniza-
tion, no tably those in which a resource has
only one unit.

A few examples will i l lustrate uses of
semaphores. We show a solution to the two-
process mutua l exclusion problem in te rms
of semaphores in the following:

program Mutex__Example;

var mutex : semaphore initial (i);

process P1;
loop

P(mutex); { Entry Protocol }
Critical Section;
V(mutex); [Exit Protocol }
Noncritical Section
end

end;

process P2;
loop

P(mutex); { Entry Protocol }
Critical Section;
V(mutex); { Exit Protocol }
Noncritical Section
end

end

end.
Notice how simple and symmetr ic the ent ry
and exit protocols are in this solution to the
mutua l exclusion problem. In particular,
this use of P and V ensures bo th mutua l
exclusion and absence of deadlock. Also, if
the semaphore implementa t ion is fair and
bo th processes always exit their critical sec-
tions, each process eventual ly gets to enter
its critical section.

Semaphores can also be used to solve
selective mutual exclusion problems. In the
latter , shared variables are par t i t ioned into
disjoint sets. A semaphore is associated
with each set and used in the same way as
mutex above to control access to the vari-
ables in t ha t set. Critical sections tha t ref-
erence variables in the same set execute
with mutua l exclusion, bu t critical sections
tha t reference variables in different sets
execute concurrent ly. However, if two or
more processes require s imultaneous access
to variables in two or more sets, the pro-
g rammer must take care or deadlock could
result. Suppose tha t two processes, P1 and
P2, each require s imultaneous access to sets
of shared variables A and B. Then , P1 and

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming

P2 will deadlock if, for example, P1 acquires
access to set A, P2 acquires access to set B,
and then both processes try to acquire ac-
cess to the set that they do not yet have.
Deadlock is avoided here (and in general)
if processes first try to acquire access to the
same set (e.g., A), and then try to acquire
access to the other (e.g., B).

Figure 3 shows how semaphores can be
used for selective mutual exclusion and con-
dition synchronization in an implementa-
tion of our simple example operating
system. Semaphore in___rnutex is used to
implement mutually exclusive access to
input__buffer and out__mutex is used to
implement mutually exclusive access to
output_buffer. 12 Because the buffers
are disjoint, it is possible for opera-
tions on input__buffer and output__buffer
to proceed concurrently. Semaphores
num cards, num__lines, free__cards, and
free__lines are used for condition synchro-
nization: num__cards (num__lines) is the
number of card images (line images) that
have been deposited but not yet fetched
from input__buffer (output__buffer);
free__cards (free__lines) is the number of
free slots in input__buffer (output__buffer).
Executing P(num__cards) delays a process
until there is a card in input___buffer;
P(free__cards) delays its invoker until
there is space to insert a card in in-
put__buffer. Semaphores num__lines and
free__lines play corresponding roles with
respect to output__buffer. Note that before
accessing a buffer, each process first waits
for the condition required for access and
then acquires exclusive access to the buffer.
If this were not the case, deadlock could
result. (The order in which V operations
are performed after the buffer is accessed is
not critical.)

Semaphores can be implemented by us-
ing busy-waiting. More commonly, how-
ever, they are implemented by system calls
to a kernel. A kernel {sometimes called a
supervisor or nucleus) implements proc-
esses on a processor [Dijkstra, 1968a; Shaw,

~2 In this solution, careful implementation of the op-
erations on the buffers obviates the need for sema-
phores in_mutex and out_mutex. The semaphores
tha t implement condition synchronization are suffi-
cient to ensure mutually exclusive access to individual
buffer slots.

• 13

program OPSY~,,

vat in_mutex, out.Jnulex : semaphore initial (1, !);
num_.cards, numJines : semaphoTe initial (0,0);
free_cards, free-lines : semaphore initial (N,N);
input_buffer : array [O..N-I] of:cardimage;
output..buffer : array [O,.N-I] of lineimage;

process reader;
var card : cardimage;
loop

read card from cardreader;
POCree_cards); P(in_mutex);

deposit card in input..buffer;
V(in_mutex); Y(num...cards)
end

end;

process executer;
var card : eardimage;

line : lineimage;
loop

P(num_cards); P(in_mutex);
fetch card from input_buffer;

V(in_muwx); Y(free-cards);
process card and generate line;
P(free..lines); P(out_mutex);

deposit line in output_buffer;
V(out_mutex); V(num._lines)
end

end;

process printer; ~
var line : lineimage; -~
loop

P(num_lines); P(out_mutex);
fetch line from output_buffer;

V(out_mutex); VOrree_lines);
print line on lineprinter
end

end

end.

Figure 3. Batch operating system with semaphores.

1974]. At all times, each process is either
ready to execute on the processor or is
blocked, waiting to complete a P operation.
The kernel maintains a ready list--a queue
of descriptors for ready processes--and
multiplexes the processor among these
processes, running each process for some
period of time. Descriptors for processes
that are blocked on a semaphore are stored
on a queue associated with that semaphore;
they are not stored on the ready list, and
hence the processes will not be executed.
Execution of a P or V operation causes a
trap to a kernel routine. For a P operation,
if the semaphore is positive, it is decre-

Computing Surveys, V~l, 15, No. 1, March 1983

14 • G. R. A n d r e w s a n d F. B. Schne ider

mented; otherwise the descriptor for the
executing process is moved to the s e m a -
phore 's queue. For a V operation, if the
semaphore's queue is not empty, one de-
scriptor is moved from that queue to the
ready list; otherwise the semaphore is in-
cremented.

This approach to implementing synchro-
nization mechanisms is quite general and is
applicable to the other mechanisms that we
shall discuss. Since the kernel is responsible
for allocating processor cycles to processes,
it can implement a synchronization mech-
anism without using busy-waiting. It does
this by not running processes that are
blocked. Of course, the names and details
of the kernel calls will differ for each syn-
chronization mechanism, but the net effects
of these calls will be similar: to move pro-
cesses on and off a ready list.

Things are somewhat more complex
when writing a kernel for a multiprocessor
or distributed system. In a multiprocessor,
either a single processor is responsible for
maintaining the ready list and assigning
processes to the other processors, or the
ready list is shared [Jones and Schwarz,
1980]. If the ready list is shared, it is subject
to concurrent access, which requires that
mutual exclusion be ensured. Usually, busy-
waiting is used to ensure this mutual exclu-
sion because operations on the ready list
are fast and a processor cannot execute any
process until it is able to access the ready
list. In a distributed system, although one
processor could maintain the ready list, it
is more common for each processor to have
its own kernel and hence its own ready list.
Each kernel manages those processes resid-
ing at one processor; if a process migrates
from one processor to another, it comes
under the control of the other's kernel.

3.3 Conditional Critical Regions

Although semaphores can be used to pro-
gram almost any kind of synchronization, P
and V are rather unstructured primitives,
and so it is easy to err when using them.
Execution of each critical section must be-
gin with a P and end with a V (on the same
semaphore). Omitting a P or V, or acciden-
tally coding a P on one semaphore and a V
on another can have disastrous effects,

since mutually exclusive execution would
no longer be ensured. Also, when using
semaphores, a programmer can forget to
include in critical sections all statements
that reference shared objects. This, too,
could destroy the mutual exclusion re-
quired within critical sections. A second
difficulty with using semaphores is that
both condition synchronization and mutual
exclusion are programmed using the same
pair of primitives. This makes it difficult to
identify the purpose of a given P or V
operation without looking at the other op-
erations on the corresponding semaphore.
Since mutual exclusion and condition syn-
chronization are distinct concepts, they
should have distinct notations.

The condi t ional cri t ical region proposal
[Hoare, 1972; Brinch Hansen 1972, 1973b]
overcomes these difficulties by providing a
structured notation for specifying synchro-
nization. Shared variables are explicitly
placed into groups, called resources. Each
shared variable may be in at most one
resource and may be accessed only in con-
ditional critical region (CCR) statements
that name the resource. Mutual exclusion
is provided by guaranteeing that execution
of different CCR statements, each naming
the same resource, is not overlapped. Con-
dition synchronization is provided by ex-
plicit Boolean conditions in CCR state-
ments.

A resource r containing variables vl ,
v 2 , . . . , v N is declared as 13

r e s o u r c e r : v l , v2, vN

The variables in r may only be accessed
within CCR statements that name r. Such
statements have the form

r e g i o n r w h e n B do S

where B is a Boolean expression and S is a
statement list. (Variables local to the exe-
cuting process may also appear in the CCR
statement.) A CCR statement delays the
executing process until B is true; S is then
executed. The evaluation of B and execu-
tion of S are uninterruptible by other CCR
statements that name the same resource.

~3 Our notation combines aspects of those proposed by
Hoare [1972] and by Brinch Hansen [1972, 1973b].

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts a n d Nota t ions for C o n c u r r e n t P r o g r a m m i n g

Thus B is guaranteed to be true when exe-
cution of S begins. The delay mechanism is
usually assumed to be fair: a process await-
ing a condition B that is repeatedly true
will eventually be allowed to continue.

One use of conditional critical regions is
shown in Figure 4, which contains another
implementation of our batch operating sys-
tem example. Note how condition synchro-
nization has been separated from mutual
exclusion. The Boolean expressions in those
CCR statements that access the buffers
explicitly specify the conditions required
for access; thus mutual exclusion of differ-
ent CCR statements that access the same
buffer is implicit.

Programs written in terms of conditional
critical regions can be understood quite
simply by using the axiomatic approach.
Each CCR statement implements an oper-
ation on the resource that it names. Asso-
ciated with each resource r is an invar ian t
relat ion L: a predicate that is true of the
resource's state after the resource is initial-
ized and after execution of any operation
on the resource. For example, in O P S Y S of
Figure 4, the operations insert and remove
items from bounded buffers and the buffers
inp__buff and out__buff both satisfy the
invariant

IB:
0 <_ head, tail _< N - 1 and
0 <- size < N and
tail = (head + size) rood N and
slots[head] through slots[(tail - 1) rood N]

in the circular buffer contain
the most recently inserted items
in chronological order

The Boolean expression B in each CCR
statement is chosen so that execution of the
statement list, when started in any state
that satisfies Ir a nd B, will terminate in a
state that satisfies It. Therefore the invar-
iant is true as long as no process is in the
midst of executing an operation (i.e., exe-
cuting in a conditional critical region asso-
ciated with the resource). Recall that exe-
cution of conditional critical regions asso-
ciated with a given shared data object does
not overlap. Hence the proofs of processes
are interference free as long as (1) variables
local to a process appear only in the proof
of that process and (2) variables of a re-

• 1 5

program OPSY$; :~"

type buffer(T) = r~'ord
slots : array [O..N-I] o f T;
head, tail : O..N-I initial (0, 0);
size = O..N initial (0)
end;

vat inp_buff : buffer(cardimage);
out_buff: buffer(lineimage);

resource ib : inp_bufj~ ob : oul..bufJ~

process reader;
var card : cardimage;
loop

read card from cardreader~
region ib when inp..buffMz¢ < N d o

inp_buff.slots[inp_lmff.tail] ;= card;
inp..buff.size := inp_b~fl~iz¢ + | ;
inp_buff.tail := (inp..buff.~tail -~ 1) rood N
end : ,

end
end;

process executer;
vat card : cardimage;

line : lineimage;
loop

region ib when ,inp..buffsize > 0 do
card := inp_bUffsiots[inp..buffhead]
inp_buff, size := inp_buff.size -" I;
inp_buff, head := (inp_lmff.head + 1) rood N
end;

process card and generate line;.
region ob when out..buffsize < N do

out_.buff, slots[out_.buff.tai~ := line;
out_buff, size := out_buff.size + 1;
out_buff, tail := (out_buff.tail+ !) rood N
end

end
end;

process printer;
var line : lineimage;
loop

region ob when out_buffsize > 0 do
fine := out_buff.slots[out.,buff.head];
out...buff size := out_buff.size - !;
out_buffhead := (out_buffhead + 1) rood N
end;

print line on lineprinter
end

end

end.

Figure 4. Batch opera t ing s y s t e m with C C R s ta te -
ments .

source appear only in assertions within con-
ditional critical regions for tha t resource.
Thus, once appropriate resource invariants
have been defined, a concurrent program

Compu t l~Lrveys , Vol. 15, No. i~ March 1983

16 • G. R. Andrews and F. B. Schneider

can be understood in terms of its compo-
nent sequential processes.

Although conditional critical regions
have many virtues, they can be expensive
to implement. Because conditions in CCR
statements can contain references to local
variables, each process must evaluate its
own conditions. 14 On a multiprogrammed
processor, this evaluation results in numer-
ous context switches (frequent saving and
restoring of process states), many of which
may be unproductive because the activated
process may still find the condition false. If
each process is executed on its own pro-
cessor and memory is shared, however,
CCR statements can be implemented quite
cheaply by using busy-waiting.

CCR statements provide the synchroni-
zation mechanism in the Edison language
[Brinch Hansen, 1981], which is designed
specifically for multiprocessor systems.
Variants have also been used in Distributed
Processes [Brinch Hansen, 1978] and Argus
[Liskov and Scheifler, 1982].

3.4 Monitors

Conditional critical regions are costly to
implement on single processors. Also, CCR
statements performing operations on re-
source variables are dispersed throughout
the processes. This means that one has to
study an entire concurrent program to see
all the ways in which a resource is used.
Monitors alleviate both these deficiencies.
A monitor is formed by encapsulating both
a resource definition and operations that
manipulate it [Dijkstra, 1968b; Brinch Han-
sen, 1973a; Hoare, 1974]. This allows a re-
source subject to concurrent access to be
viewed as a module [Parnas, 1972]. Conse-
quently, a programmer can ignore the im-
plementation details of the resource when
using it, and can ignore how it is used
when programming the monitor that imple-
ments it.

3.4.1 Definition

A monitor consists of a collection of per-
manent variables, used to store the re-

~4 W h e n delayed, a process could ins tead place condi-
t ion eva lua t ing code in an a rea of m e m o r y accessible
to o ther processes, b u t th is too is costly.

rename : monitor;

vat declarations of permanent variables;

procedure op l(parameters);
var declarations of variables local to op];
begin

code to implement opl
end;

procedure op N(parameters);
vat declarations of variables local to opN;
begin

code to implement opN
end;

begin
code to initialize permanent variables

end

Figure 5. Moni to r s t ructure .

source's state, and some procedures, which
implement operations on the resource. A
monitor also has permanent-variable ini-
tialization code, which is executed once be-
fore any procedure body is executed. The
values of the permanent variables are re-
tained between activations of monitor pro-
cedures and may be accessed only from
within the monitor. Monitor procedures
can have parameters and local variables,
each of which takes on new values for each
procedure activation. The structure of a
monitor with name rename and procedures
opl, . . . , opN is shown in Figure 5.

Procedure opJ within monitor mname is
invoked by executing

call mname.opJ (arguments).

The invocation has the usual semantics
associated with a procedure call. In addi-
tion, execution of the procedures in a given
monitor is guaranteed to be mutually exclu-
sive. This ensures that the permanent vari-
ables are never accessed concurrently.

A variety of constructs have been pro-
posed for realizing condition synchroniza-
tion in monitors. We first describe the pro-
posal made by Hoare [1974] and then con-
sider other proposals. A condition variable
is used to delay processes executing in a
monitor; it may be declared only within a
monitor. Two operations are defined on
condition variables: s ignal and wait . If

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming ,

type buffer(T} = monitor;

vat { the variables satisfy invariant IB - - see See. 4.3 }
slots : array 10..N-I] of 7~
head, tail : 0 . .N-I ;
size : 0.. N;
notfull , n o t e m p t y : condit ion;

procedure deposi t (p : 7);
begin

i f size = N then notfull .wait;
slots[tat1] := p;
size := size + I;
tail := (tail + 1) rood N;
notempty .s ignal

end;

procedure fetch(var it : 7);
begin

if size = 0 then notempty .wai t ;
it := slots[head];
size :=size - 1;
head := (head + 1) rood N;
not ful l .s ignal

end;

begin
size := O; head := O; tail := 0

end

Figure 6. Bounded buffer monitor.

cond is a condition variable, then execution
of

c o n d . w a i t

causes the invoker to be blocked on cond
and to relinquish its mutually exclusive
control of the monitor. Execution of

cond.signal

works as follows: if no process is blocked on
cond, the invoker continues; otherwise, the
invoker is temporarily suspended and one
process blocked on cond is react ivated.A
process suspended due to a s ignal opera-
tion continues when there is no other proc-
ess executing in the monitor. Moreover,
signalers are given priority over processes
trying to commence execution of a monitor
procedure. Condition variables are assumed
to be fair in the sense that a process will
not forever remain suspended on a condi-
tion variable that is signaled infinitely of-
ten. Note that the introduction of condition
variables allows more than one process to
be in the same monitor, although all but
one will be delayed at wa i t or s ignal op-
erations.

program OPSY$; ~,

type buffer(T} = .,.; { see Figure 5 }

var i np . .bu f f : buffer(cardimage);
o u t _ b u f f : buffer(lineimage);

process reader;
var card : cardimage;
loop

read card from ¢ardreader;
call inp . .buf fdepos i t (card)
end

end;

process executer;
var card : cardimage;

line : lineimage;
loop

call inp_buff . fetch(card);
process card and generate line;
call out_buf f , deposit(l ine)
end

end;

process printer;
var line : lineimage;
loop

¢all out . .buf f fe tch(l ine);
print line on lineprinter
end

end

end.

Figure 7.

17

Ba tch operating sys tem with monitors.

An example of a monitor that defines a
bounded buffer type is given in Figure 6.
Our batch operating system can be pro-
grammed using two instances of the
bounded buffer in Figure 6; these are shared
by three processes, as shown in Figure 7.

At times, a programmer requires more
control over the order in which delayed
processes are awakened. To implement
such medium-term scheduling, 15 the prior-
ity wai t statement can be used. This state-
ment

cond.wait(p)

has the same semantics as cond.wait, ex-
cept that in the former processes blocked
on condition variable cond are awakened in
ascending order of p. {Consequently, con-

~5 This is in contras t to s h o r t - t e r m s c h e d u l i n g , which
is concerned wi th how processors are assigned to ready
processes, and l o n g - t e r m s c h e d u l i n g , which refers to
how jobs are selected to be processed.

Computing Surveys, Vol. 15t No.~i, -~!.areh 1983

18 • G. R. Andrews and F. B. Schneider

dition variables used in this way are not
necessarily fair.)

A common problem involving medium-
term scheduling is "shortest-job-next" re-
source allocation. A resource is to be allo-
cated to at most one user at a time; if more
than one user is waiting for the resource
when it is released, it is allocated to the
user who will use it for the shortest amount
of time. A monitor to implement such an
allocator is shown below. The monitor has
two procedures: (1) request (time: integer),
which is called by users to request access
to the resource for t ime units; and (2)
release, which is called by users to relin-
quish access to the resource:

shortest._next_allocator : monitor;

var free : Boolean;
turn : condition;

procedure request(time : integer);
begin

if not free then turn.wait(time);
free :=false

end;

procedure release;
begin

free := true;
turn.signal

end;

begin
free := true

end

3.4.2 Other Approaches to Condition
Synchronization

3.4.2.1 Queues a n d Delay~Continue. In
Concurrent PASCAL [Brinch Hansen,
1975], a slightly simpler mechanism is pro-
vided for implementing condition synchro-
nization and medium-term scheduling.
Variables of type queue can be defined and
manipulated with the operations de lay
(analogous to wait) and con t inue (analo-
gous to signal). In contrast to condition
variables, at most one process can be sus-
pended on a given queue at any time. This
allows medium-term scheduling to be im-
plemented by (1) defining an array of
queues and (2) performing a con t inue op-
eration on that queue on which the next-
process-to-be-awakened has been delayed.

The semantics of con t inue are also slightly
different from signal. Executing cont inue
causes the invoker to return from its mon-
itor call, whereas s ignal does not. As be-
fore, a process blocked on the selected
queue resumes execution of the monitor
procedure within which it was delayed.

It is both cheaper and easier to imple-
ment con t inue than s ignal because s ignal
requires code to ensure that processes sus-
pended by s ignal operations reacquire con-
trol of the monitor before other, newer
processes attempting to begin execution in
that monitor. With both s ignal and con-
tinue, the objective is to ensure that a
condition is not invalidated between the
time it is signaled and the time that the
awakened process actually resumes execu-
tion. Although con t inue has speed and
cost advantages, it is less powerful than
signal. A monitor written using condition
variables cannot always be translated di-
rectly into one that uses queues without
also adding monitor procedures [Howard,
19761)]. Clearly, these additional procedures
complicate the interface provided by the
monitor. Fortunately, most synchroniza-
tion problems that arise in practice can be
coded using either discipline.

3.4.2.2 Condi t ional Wa i t and Au tomat i c
Signal . In contrast to semaphores, s ignals
on condition variables are not saved: a proc-
ess always delays after executing wai t , even
if a previous s ignal did not awaken any
process. ~6 This can make s ignal and wai t
difficult to use correctly, because other vari-
ables must be used to record that a s ignal
was executed. These variables must also be
tested by a process, before executing wait ,
to guard against waiting if the event corre-
sponding to a s ignal has already occurred.

Another difficulty is that, in contrast to
conditional critical regions, a Boolean
expression is not syntactically associated
with s ignal and wait , or with the condition
variable itself. Thus, it is not easy to deter-
mine why a process was delayed on a con-
dition variable, unless s ignal and w a i t are
used in a very disciplined manner. It helps
if (1) each w a i t on a condition variable is

~e The limitations of condition variables discussed in
this section also apply to queue variables.

Computing Surveys, "Col. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming•

contained in an i f statement in which the
Boolean expression is the negation of the
desired condition synchronization, and (2)
each s ignal statement on the same condi-
tion variable is contained in an i f statement
in which the Boolean expression gives the
desired condition synchronization. Even so,
syntactically identical Boolean expressions
may have different values if they contain
references to local variables, which they
often do. Thus there is no guarantee that
an awakened process will actually see the
condition for which it was waiting. A final
difficulty with w a i t and s ignal is that,
because s ignal is preemptive, the state of
permanent variables seen by a signaler can
change between the time a s ignal is exe-
cuted and the time that the signaling pro-
cess resumes execution.

To mitigate these difficulties, Hoare
[1974] proposed the conditional wait state-
ment

wait (B)

where B is a Boolean expression involving
the permanent or local variables of the
monitor. Execution of wai t (B) delays the
invoker until B becomes true; no s ignal is
required to reactivate processes delayed by
a conditional wait statement. This synchro-
nization facility is expensive because it is
necessary to evaluate B every time any
process exits the monitor or becomes
blocked at a conditional wait and because
a context switch could be required for each
evaluation (due to the presence of local
variables in the condition). However, the
construct is unquestionably a very clean
one with which to program.

An efficient variant of the conditonal
wait was proposed by Kessels [1977] for use
when only permanent variables appear in
B. The buffer monitor, in Figure 6 satisfies
this requirement. In Kessels' proposal, one
declares conditions of the form

cname : condition B

Execut ing the s t a t emen t cname .wai t
causes B, a Boolean expression, to be eval-
uated. If B is true, the process continues;
otherwise the process relinquishes control
of the monitor and is delayed on cname.
Whenever a process relinquishes control of
the monitor, the system evaluates those

" 19
. . . . f ~ : , ? - •~,•

Boolean expressions associated ~ t h all
conditions for which there are waiting pro-
cesses. If one of these Boolean expressions
is found to be true, one of the waiting pro-
cesses is granted control of the monitor. If
none is found to be true, a n e w invocation
of one of the monitor's procedures is per-
mitted.

Using Kessels' proposal, the buffer mon-
itor in Figure 6 could be recoded as follows.
First, the declarations of not__full and
not._empty are changed to

not_full : condition size < N;
not__empty : condition size > 0

Second, the first statement in deposit is
replaced by

not__full, wait

and the first statement in fetch is replaced
by

not__empty, wait

Finally, the s ignal statements are deleted.
The absence of a s igna l primitive is note-

worthy. The implementation provides an
automatic signal, which, though some-
what more costly, is less error prone than
explicitly programmed s ignal operations.
The s ignal operation cannot be acciden-
tally omitted and never signals the wrong
condition. Furthermore, the programmer
explicitly specifies the conditions being
awaited. The primary limitation of the pro-
posal is that it cannot be used ~ solve most
scheduling problems, because operation pa-
rameters, which are not permanent vari-
ables, may not appear in conditions.

3.4.2.3 Signals as Hints. Mesa [Mitchell
et al., 1979; Lampson and Redell, 1980]
employs yet another approach to condition
synchronization. Condition variables are
provided, but only as a way for a process to
relinquish control of a monitor. In Mesa,
execution of

cond.notify

causes a process waiting on condition vari-
able cond to resume at some time in the
future. This is called signal and continue
because the process performing the notify
immediately continues execution rather
than being suspended. 'Performing a notify
merely gives a hint t ~ a waiting process

Computing Surveys, VoL 15, N0. ' l , !~ch 1983

20 • G. R. A n d r e w s a n d F. B. Schne ider

that it might be able to proceed. 17 There-
fore, in Mesa one writes

while not B do wait cond endloop

instead of

if not B then cond.wait

as would be done using Hoare's condition
variables. Boolean condition B is guaran-
teed to be true upon termination of the
loop, as it was in the two conditional-wait/
automatic-signal proposals. Moreover, the
(possible) repeated evaluation of the Boo-
lean expression appears in the actual mon-
itor code--there are no hidden implemen-
tation costs.

The no t i fy primitive is especially useful
if the executing process has higher priority
than the waiting processes. It also allows
the following extensions to condition vari-
ables, which are often useful when doing
systems programming:

(i) A time-out interval t can be associated
with each condition variable. If a pro-
cess is ever suspended on this condition
variable for longer than t time units, a
notify is automatically performed by
the system. The awakened process can
then decide whether to perform an-
other w a i t or to take other action.

(ii) A b r o a d c a s t primitive can be defined.
Its execution causes all processes wait-
ing on a condition variable to resume
at some time in the future (subject to
the mutual exclusion constraints asso-
ciated with execution in a monitor).
This primitive is useful ff more than
one process could proceed when a con-
dition becomes true. The broadcast
primitive is also useful when a condi-
tion involves local variables because in
this case the signaler cannot evaluate
the condition (B above) for which a
process is waiting. Such a primitive is,
in fact, used in UNIX [Ritchie and
Thompson, 1974].

3.4.3 An Axiomatic View

The valid states of a resource protected by
a monitor can be characterized by an asser-

17 Of course, it is prudent to perform not i fy operations
only when there is reason to believe that the awakened
process will actually be able to proceed; but the burden
of checking the condition is on the waiting process.

tion called the moni tor invariant . This
predicate should be true of the monitor's
permanent variables whenever no process
is executing in the monitor. Thus a process
must reestablish the monitor invariant be-
fore the process exits the monitor or per-
forms a wai t (de lay) or signal(continue).
The monitor invariant can be assumed to
be true of the permanent variables when-
ever a process acquires control of the mon-
itor, regardless of whether it acquires con-
trol by calling a monitor procedure or by
being reactivated following a w a i t or sig-
nal.

The fact that monitor procedures are
mutually exclusive simplifies noninterfer-
ence proofs. One need not consider inter-
leaved execution of monitor procedures.
However, interference can arise when pro-
gramming condition synchronization. Re-
call that a process will delay its progress in
order to implement medium-term schedul-
ing, or to await some condition. Mecha-
nisms that delay a process cause its execu-
tion to be suspended and control of the
monitor to be relinquished; the process re-
sumes execution with the understanding
that both some condition B and the moni-
tor invariant will be true. The truth of B
when the process awakens can be ensured
by checking for it automatically or by re-
quiring that the programmer build these
tests into the program. If programmed
checks are used, they can appear either in
the process that establishes the condition
(for condition variables and queues) or in
the process that performed the wait (the
Mesa model).

If the signaler checks for the condition,
we must ensure that the condition is not
invalidated between the time that the sig-
nal occurs and the time that the blocked
process actually executes. That is, we must
ensure that other execution in the monitor
does not interfere with the condition. If the
signaler does not immediately relinquish
control of the monitor (e.g., if no t i fy is
used), interference might be caused by the
process that established the condition in
the first place. Also, if the signaled process
does not get reactivated before new calls of
monitor procedures are allowed, interfer-
ence might be caused by some process that
executes after the condition has been sig-
naled (this can happen in Modula [Wirth,

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming • 21

1977a]). Proof rules for monitors and the
various signaling disciplines are discussed
by Howard [1976a, 1976b].

3.4.4 Nested Monitor Calls

When structuring a system as a hierarchical
collection of monitors, it is likely that mon-
itor procedures will be called from within
other monitors. Such nested monitor calls
have caused much discussion [Haddon,
1977; Lister, 1977; Parnas, 1978; Wettstein,
1978]. The controversy is over what (if any-
thing) should be done if a process having
made a nested monitor call is suspended in
another monitor. The mutual exclusion in
the last monitor called will be relinquished
by the process, due to the semantics of
wa i t and equivalent operations. However,
mutual exclusion will not be relinquished
by processes in monitors from which nested
calls have been made. Processes that at-
tempt to invoke procedures in these moni-
tors will become blocked. This has perform-
ance implications, since blockage will de-
crease the amount of concurrency exhibited
by the system.

The nested monitor call problem can be
approached in a number of ways. One ap-
proach is to prohibit nested monitor calls,
as was done in SIMONE [Kaubisch et al.,
1976], or or to prohibit nested calls to mon-
itors that are not lexically nested, as was
done in Modula [Wirth, 1977a]. A second
approach is to release the mutual exclusion
on all monitors along the call chain when a
nested call is made and that process be-
comes blocked. TM This release-and-reac-
quire approach would require that the mon-
itor invariant be established before any
monitor call that will block the process.
Since the designer cannot know a priori
whether a call will block a process, the
monitor invariant would have to be estab-
lished before every call. A third approach
is the definition of special-purpose con-
structs that can be used for particular sit-
uations in which nested calls often arise.

~s Once signaled, the process will need to reacquire
exclusive access to all moni to rs along the call cha in
before r e suming execution. However, if p e r m a n e n t
moni to r var iables were no t passed as reference pa ram-
e ters in any of the calls, t h e process could reacquire
exclusive access incremental ly , as it r e tu rns to each
moni tor .

The manager construct [Silberschatz et al.,
1977] for handling dynamic resource allo-
cation problems and the scheduler monitor
[Schneider and Bernstein, 1978] for sched-
uling access to shared resources are both
based on this line of thought.

The last approach to the nested monitor
call problem, and probably t h e most rea-
sonable, is one that appreciates that moni-
tors are only a structuring tool for resources
that are subject to concurrent access [An-
drews and McGraw, 1977; Paruas, 1978].
Mutual exclusion of monitor procedures is
only one way tQ preserve the integrity of
the permanent variables that make up a
resource. There are cases in which the op-
erations provided by a given monitor can
be executed concurrently without adverse
effects, and even cases in which more than
one instance of the same monitor procedure
can be executed in parallel (e.g., several
activations of a read procedure, in a moni-
tor that encapsulates a database)~. Monitor
procedures can be executed concurrently,
provided that they do not interfere wi th
each other. Also, there are cases in which
the monitor invariant can be easily estab-
lished before a nested monitor call is made,
and so mutual exclusion for the monitor
can be released. Based on such reasoning,
Andrews and McGraw [1977] defines a
monitorlike construct that allows the pro-
grammer to specify that certain monitor
procedures be executed concurrently and
that mutual exclusion b e released for cer-
tain calls. The Mesa language [Mitchell et
al., 1979] also provides mechanisms that
give the programmer control over the gran-
ularity of exclusion.

3.4.5 Programming Notations Based
on Monitors

Numerous programming languages have
been proposed and implemented that use
monitors for synchronizing access to shared
variables. Below, we very briefly discuss
two of the most important: Concurrent
PASCAL and Modula. These languages
have received widespread use, introduced
novel constructs to handle machine-de-
pendent systems-programming issues, and
inspired other language designs, such as
Mesa [Mitchell et al., 1979] and PASCAL-
Plus [Welsh and Bustard, 1979].

Computing Surveys, V~I. 16, NO; 1, March 1983
J : - .

. . . . : ~:~:: ~ . : : :~:i ~ ,

22 • G. R. Andrews and F. B. Schneider

3.4.5.1 Concurrent PASCAL. Concur-
rent PASCAL [Brinch Hansen, 1975, 1977]
was the first programming language to sup-
port monitors. Consequently, it provided a
vehicle for evaluating monitors as a system-
structuring device. The language has been
used to write several operating systems,
including Solo, a single-user operating sys-
tem [Brinch Hansen, 1976a, 1976b], Job
Stream, a batch operating system for pro-
cessing PASCAL programs, and a real-time
process control system [Brinch Hansen,
1977].

One of the major goals of Concurrent
PASCAL was to ensure that programs ex-
hibited reproducible behavior [Brinch Han-
sen, 1977]. Monitors ensured that patholog-
ical interleavings of concurrently executed
routines that shared data were no longer
possible (the compiler generates code to
provide the necessary mutual exclusion).
Concurrent execution in other modules
(called classes) was not possible, due to
compile,time restrictions on the dissemi-
nation of class names and scope rules for
class declarations.

Concurrent PASCAL also succeeded in
providing the programmer with a clean ab-
stract machine, thereby eliminating the
need for coding at the assembly language
level. A systems programming language
must have facilities to allow access to I/O
devices and other hardware resources. In
Concurrent PASCAL, I/O devices and the
like are viewed as monitors implemented
directly in hardware. To perform an I/O
operation, the corresponding "monitor" is
called; the call returns when the I/O has
completed. Thus the Concurrent PASCAL
run-time system implements synchronous
I/O and "abstracts out" the notion of an
interrupt.

Various aspects of Concurrent PASCAL,
including its approach to I/O, have been
analyzed by Loehr [1977], Silberschatz
[1977], and Keedy [1979].

3.4.5.2 Modula. Modula was developed
for programming small, dedicated com-
puter systems, including process control ap-
plications [Wirth, 1977a, I977b, 1977c,
1977d]. The language is largely based on
PASCAL and includes processes, interface
modules, which are like monitors, and de-

Computing Surveys, Vot. 15, No. 1, March 1983

vice modules, whicli are special interface
modules for programming device drivers.

The run-time support system for Modula
is small and efficient. The kerne~ for a PDP-
11/45 requires only 98 words of storage and
is extremely fast [Wirth,1977c]. It does not
time slice the processor among processes,
as Concurrent PASCAL does. Rather, cer-
tain kernel-supported operations--wait,
for example--always cause the processor to
be switched. (The programmer must be
aware of this and design programs accord-
ingly.) This turnsout to be both a strength
and weakness of Modula. A small and effi-
cient kernel, where the programmer has
some control over processor switching, al-
lows Modula to be used for process control
applications, as intended. Unfortunately, in
order to be able to construct such a kernel,
some of the constructs in t h e language--
notably those concerning multiprogram-
ruing--have asso'ciated restrictions that can
only be understood in terms of the kernel's
implementation. A variety of subtle inter-
actions between the Vari0us synchroniza-
tion constructs must be understood in order
to program in Modula without experiencing
unpleasant surprises. Some of these patho-
logical interactions are described by Bern-
stein andEnsor [1981].

Modula implements an abstract machine
that is well suited for dealing with inter-
rupts and I/O devices on PDP-11 proces-
sors. Unlike Concurrent PASCAL, in which
the run-time kernel handles interrupts and
I/O, Modula leaves support for devices in
the programmer's domain. Thus new de-
vices can be added without modifying the
kernel. An I/O device is considered to be a
process that is implemented in hardware. A
software process can start an I/O operation
and then execute a doio statement (which
is like a wai t except that it delays the
invoker until the kernel receives an inter-
rupt from the corresponding device). Thus
interrupts are viewed as signal (send in
Modula) operations generated by the hard-
ware. Device modules are interface modules
that control I/O devices. Each contains, in
addition to some procedures, a device pro-
cess, which starts I/O operations and exe-
cutes doio statements to relinquish control
of the processor (pending receipt of the
corresponding I/O interrupt). The address

Concepts and Notations

of the interrupt vector for the device is
declared in the heading of the device mod-
ule, so that the compiler can do the neces-
sary binding. Modula also has provisions
for controlling the processor priority regis-
ter, thus allowing a programmer to exploit
the priority interrupt architecture of the
processor when structuring programs.

A third novel aspect of Modula is that
variables declared in interface modules can
be exported. Exported variables can be ref-
erenced (but not modified) from outside the
scope of their defining interface module.
This allows concurrent access to these vari-
ables, which, of course, can lead to difficulty
unless the programmer ensures that inter-
ference cannot occur. However, when used
selectively, this feature increases the effi-
ciency of programs that access such vari-
ables.

In summary, Modula is less constraining
than Concurrent PASCAL, but requires the
programmer to be more careful. Its specific
strengths and weaknesses have been eval-
uated by Andrews [1979], Holden and
Wand [1980], and Bernstein and Ensor
[1981]. Wirth, Modula's designer, has gone
on to develop Modula-2 [Wirth, 1982].
Modula-2 retains the basic modular struc-
ture of Modula, but provides more flexible
facilities for concurrent programming and
these facilities have less subtle semantics.
In particular, Modula-2 provides coroutines
and hence explicit transfer of control be-
tween processes. Using these, the program-
mer builds support for exclusion and con-
dition synchronization, as required. In
particular, the programmer can construct
monitorlike modules.

3.5 Path Expressions

Operations defined by a monitor are exe-
cuted with mutual exclusion. Other syn-
chronization of monitor procedures is real-
ized by explicitly performing w a i t and sig-
na l operations on condition variables (or
by some similar mechanism). Conse-
quently, synchronization of monitor opera-
tions is realized by code scattered through-
out the monitor. Some of this code, such as
w a i t and signal, is visible to the program-
mer. Other code, such as the code ensuring
mutual exclusion of monitor procedures, is
not.

. : o .

for Concurrent P r o g r a m m e . . 23

Another approach to defining a module
subject to concurrent access is to provide a
mechanism with which a programmer spec-
ifies, in one place in each module, all con-
straints on the execution of operations de-
fined by that module. Implementation of
the operations is separated from the speci-
fication of the constraints. Moreover, code
to enforce the constraints is generated by a
compiler. This is the approach taken in a
class of synchronization mechanisms called
path expressions.

Path expressions were first defined by
Campbell and Habermann [1974]. Subse-
quent extensions and variations have also
been proposed [Habermann, 1975; Lauer
and Campbell, 1975; Campbell, 1976; Flon
and Habermann, 1976; Lauer and Shields,
1978; Andler, 1979]. Below, we describe one
specific proposal [Campbell, 1976] that has
been incorporated into Path PASCAL, an
implemented systems programming lan-
guage [Campbell and Kolstad, 1979].

When path expressions are used, a mod-
ule that implements a resource has a struc-
ture like that of a monitor. It contains per-
manent variables, which store the state of
the resource, and procedures, which realize
operations on the resource. Path expres-
sions in the header of each resource define
constraints on the order in which opera-
tions are executed. No synchronization
code is programmed in the procedures.

The syntax of a path expression is

path path__list end

A path list contains operation names
and path operators. Path operators include
...., for concurrency, ";" for sequencing,
"n : {path list)" to specify up to n con-
current activations of path--~ist, and
"[path list]" to specify an unbounded
number of concurrent activations of
path list.

For example, the path expression

path deposit, fetch end

places no constraints on the order of exe-
cution of deposit and fetch and no con-
straints on the number of activations of
either operation. This absence of.synchro-
nization constraints is eqm'valent to that

p ~

Computi~ Survey~.Vol~ 15, NO. !~Mareh 1983

24 • G.R. Andrews and F. B. Schneider

specified by the path expressions

path [deposit], [fetch] end
o r

path [deposit, fetch] end

(A useful application of the "[...]" opera-
tor will be shown later.) In contrast,

path deposit; fetch end

specifies that each fetch be preceded by a
deposit; multiple activations of each oper-
ation can execute concurrently as long as
the number of active or completed fetch
operations never exceeds the number of
completed deposit operations. A module
implementing a bounded buffer of size one
might well contain the path

path 1 : (deposit; fetch) end

to specify that the first invoked operation
be a deposit, that each deposit be followed
by a fetch, and that at most one instance of
the path "deposit; fetch" be active--in
short, that deposit and fetch alternate and
are mutually exclusive. Synchronization
constraints for a bounded buffer of size N
are specified by
path N: (1 : (deposit); 1 : (fetch)) end

This ensures that (i) activations of deposit
are mutually exclusive, (ii) activations of
fetch are mutually exclusive, (iii) each ac-
tivation of fetch is preceded by a completed
deposit, and (iv) the number of completed
deposit operations is never more than N
greater than the number of completed fetch
operations. The bounded buffers we have
been using for OPSYS, our batch operating
system, would be defined by

module buffer(7);

path N:(l:(deposit); l:OCetch)) end,

var { the variables satisfy the invariant IB (see Sec. 4.3)
with size equal to the number of executions of
deposit minus the number of executions of fetch }

slots : array [0 . .N- I] of T;
head, tail : 0 . .N- l ;

procedure deposit(p : 7);
begin

slots[tail] := p;
tail := (tail + I) rood N
end;

procedure fetch(vat it : 7);
begin

it := slots[head];
head := (head + 1) rood N
end;

Computing Surveys, Vol. 15, No. 1, March 1983

begin
head := O; tail := 0
end.

Note that one deposit and one fetch can
proceed concurrently, which was not pos-
sible in the buffer monitor given in Figure
6. For this reason, there is no variable size
because it would have been subject to con-
current access.

As a last example, consider the readers/
writers problem [Courtois et al., 1971]. In
this problem, processes read or write rec-
ords in a shared data base. To ensure that
processes read consistent data, either an
unbounded number of concurrent reads or
a single write may be executed at any time.
The path expression

path 1 : ([read], write) end

specifies this constraint. (Actually, this
specifies the "weak reader's preference" so-
lution to the readers/writers problem: read-
ers can prevent writers from accessing the
database.)

Path expressions are strongly motivated
by, and based on, the operational approach
to program semantics. A path expression
defines all legal sequences of the operation
executions for a resource. This set of se-
quences can be viewed as a formal language,
in which each sentence is a sequence of
operation names. In light of this, the re-
semblance between path expressions
and regular expressions should not be
surprising.

While path expressions provide an ele-
gant notation for expressing synchroniza-
tion constraints described operationally,
they are poorly suited for specifying con-
dition synchronization [Bloom, 1979].
Whether an operation can be executed
might depend on the state of a resource in
a way not directly related to the history of
operations already performed. Certain var-
iants of the readers/writers problem (e.g.,
writers preference, fair access for readers
and writers) require access to the state of
the resourcemin this case, the number of
waiting readers and waiting writers--in
order to implement the desired synchroni-
zation. The shortest__next__allocator mo-
nitor of Section 3.4.1 is an example of a
resource in which a parameter's value de-
termines whether execution of an operation
(request) should be permitted to continue.

Concepts and Notations for Concurrent Programming

In fact, most resources that involve sched-
uling require access to parameters and/or
to state information when making synchro-
nization decisions. In order to use path
expressions to specify solutions to such
problems, additional mechanisms must be
introduced. In some cases, definition of ad-
ditional operations on the resource is suffi-
cient; in other cases "queue" resources,
which allow a process to suspend itself and
be reactivated by a "scheduler," must be
added. The desire to realize condition syn-
chronization using path expressions has
motivated many of the proposed exten-
sions. Regrettably, none of these extensions
have solved the entire problem in a way
consistent with the elegance and simplicity
of the original proposal. However, path
expressions have proved useful for spec-
ifying the semantics of concurrent com-
putations [Shields, 1979; Shaw, 1980,
Best, 1982].

4. SYNCHRONIZATION PRIMITIVES BASED
ON MESSAGE PASSING

Critical regions, monitors, and path expres-
sions are one outgrowth of semaphores;
they all provide structured ways to control
access to shared variables. A different out-
growth is message passing, which can be
viewed as extending semaphores to convey
data as well as to implement synchroniza-
tion. When message passing is used for
communication and synchronization, pro-
cesses send and receive messages instead
of reading and writing shared variables.
Communication is accomplished because a
process, upon receiving a message, obtains
values from some sender process. Synchro-
nization is accomplished because a message
can be received only after it has been sent,
which constrains the order in which these
two events can occur.

A message is sent by executing

send expression__list
to destination~designator.

The message contains the values of the
expressions in expression__list at the time
send is executed. The destination~des-
ignator gives the programmer control over
where the message goes, and hence over
which statements can receive it. A message

• 2 5

is received by executing

receive variable__list
from source__designator

where variable__list is a list of variables.
The source~designator gives the program-
mer control over where the message came
from, and hence over which statements
could have sent it. Receipt of a message
causes, first, assignment of the values in the
message to the variables in variable~list
and, second, subsequent destruction of the
message. TM

Designing message-passing primitives in-
volves making choices about the form and
semantics of these general commands. Two
main issues must be addressed: How are
source and destination designators speci-
fied? How is communication synchronized?
Common alternative solutions for these is-
sues are described in the next two sections.
Then higher level message-passing con-
structs, semantic issues, and languages
based on message passing are discussed.

4.1 Specifying Channels of Communication

Taken together, the destination and source
designators define a communications chan-
nel. Various schemes have been proposed
for naming channels. The simplest channel-
naming scheme is for process names to
serve as source and destination designators.
We refer to this as direct naming. Thus

send card to executer

sends a message that can be received only
by the executer process. Similarly,

receive line from executer
permits receipt only of a message sent by
the executer process.

Direct naming is easy to implement and
to use. It makes it possible for a process to
control the times at which it receives mes-
sages from each other process. Our simple
batch operating system might be pro-
grammed using direct naming as shown in
Figure 8.

The batch operating system also illus-
trates an important paradigm for process

~9 A broadcast can be modeled by the concurrent exe-
cution of a collection of sends, each sending the
message to a different destination. A nondestructive
receive can be modeled by a receive, immediately
followed by a send.

Computing Surveys, Vol. 15, No. 1~ March 1983

26 * G. R. Andrews and F. B. Schneider

program OPSYS;

process reader;
var card : cardimage;
loop

read card from cardreader;
send card to execuwr
end

end;

process executer;
var card : cardimage; line : lineimage;
loop

receive card from reader;
process card and generate line;
send line to printer
end

end;

process printer;
var line : lineimage;
loop

receive line from executer;
print line on lineprinter
end

end

end.

Figure 8. Batch operating system with message
passing.

interaction--a pipeline. A pipeline is a col-
lection of concurrent processes in which the
output of each process is used as the input
to another. Information flows analogously
to the way liquid flows in a pipeline. Here,
information flows from the reader process
to the executer process and then from the
executer process to the printer process. Di-
rect naming is particularly well suited for
programming pipelines.

Another important paradigm for process
interaction is the client/server relation-
ship. Some server processes render a ser-
vice to some client processes. A client can
request that a service be performed by
sending a message to one of these servers.
A server repeatedly receives a request for
service from a client, performs that service,
and (if necessary) returns a completion
message to that client.

The interaction between an I/O driver
process and processes that use it--for ex-
ample, the lineprinter driver and the
printer process in our operating system
example--illustrates this paradigm. The
lineprinter driver is a server; it repeatedly
receives requests to print a line on the
printer, starts that I/O operation, and then

awaits the interrupt signifying completion
of the I/O operation. Depending on the
application, it might also send a completion
message to the client after the line has been
printed.

Unfortunately, direct naming is not al-
ways well suited for client/server interac-
tion. Ideally, the rece ive in a server should
allow receipt of a message from any client.
If there is only one client, then direct nam-
ing will work well; difficulties arise if there
is more than one client because, at the very
least, a rece ive would be required for each.
Similarly, if there is more than one server
(and all servers are identical), then the
send in a client should produce a message
that can be received by any server. Again,
this cannot be accomplished easily with
direct naming. Therefore, a more sophisti-
cated scheme for defining communications
channels is required.

One such scheme is based on the use of
global names, sometimes called mailboxes.
A mailbox can appear as the destination
designator in any process' s end statements
and as the source designator in any process'
rece ive statements. Thus messages sent to
a given mailbox can be received by any
process that executes a receive naming
that mailbox.

This scheme is particularly well suited
for programming client/server interactions.
Clients send their service requests to a sin-
gle mailbox; servers receive service requests
from that mailbox. Unfortunately, imple-
menting mailboxes can be quite costly with-
out a specialized communications network
[Gelernter and Bernstein, 1982]. When a
message is sent, it must be relayed to all
sites where a rece ive could be performed
on the destination mailbox; then, after a
message has been received, all these sites
must be notified that the message is no
longer available for receipt.

The special case of mailboxes, in which
a mailbox name can appear as the source
designator in receive statements in one
process only, does not suffer these imple-
mentation difficulties. Such mailboxes are
often called ports [Balzer, 1971]. Ports are
simple to implement, since all receives
that designate a port occur in the same
process. Moreover, ports allow a straight-
forward solution to the multiple-clients/

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming

single-server problem. (The multiple-
clients/multiple-server problem, however,
is not easily solved with ports.)

To summarize, when direct naming is
used, communication is one to one since
each communicating process names the
other. When port naming is used, commu-
nication can be many to one since each port
has one receiver but may have many
senders. The most general scheme is global
naming, which can be many to many. Di-
rect naming and port naming are special
cases of global naming; they limit the kinds
of interactions that can be programmed
directly, but are more efficient to imple-
ment.

Source and destination designators can
be fixed at compile time, called static chan-
nel naming, or they can be computed at
run time, called dynamic channel naming.
Although widely used, static naming pre-
sents two problems. First, it precludes a
program from communicating along chan-
nels not known at compile time, and thus
limits the program's ability to exist in a
changing environment. For example, this
would preclude implementing the I /O re-
direction or pipelines provided by UNIX
[Ritchie and Thompson, 1974]. 2° The sec-
ond problem is this: if a program might ever
need access to a channel, it must perma-
nently have the access. In many applica-
tions, such as file systems, it is more desir-
able to allocate communications channels
to resources (such as files) dynamically.

To support dynamic channel naming, an
underlying, static channel-naming scheme
could be augmented by variables that con-
tain source or destination designators.
These variables can be viewed as contain-
ing capabilities for the communications
channel [Baskett et al., 1977; Solomon and
Finkel, 1979; Andrews, 1982].

4.2 Synchronization

Another important property of message-
passing statements concerns whether their

20 Although in UNIX most commands read from and
write to the user's terminal, one can specify that a
command read its input from a file or write its output
to a File. Also, one can specify that commands be
connected in a pipeline, These options are provided
by a dynamic channel-naming scheme that is trans-
parent to the implementation of each command.

• 27

execution could cause a delay. A statement
is nonblocking if its execution never delays
its invoker; otherwise the statement is said
to be blocking. In some message-passing
schemes, messages are buffered between
the time they are sent and received. Then,
if the buffer is full whena s e n d is executed,
there are two options: the send might delay
until there is space in the buffer for the
message, or the s end might return a code
to the invoker, indicating that, because the
buffer was full, the message could not be
sent. Similarly, execution of a receive,
when no message that satisfies the source
designator is available fo r receipt, might
either cause a delay or terminate with a
code, signifying that no message was avail-
able.

If the system has an effectively un-
bounded buffer capacity, then: a process is
never delayed when executing a send. This
is variously called asynchronous message
passing and send no, wait. Asynchronous
message passing allows a sender to get ar-
bitrarily far ahead of a receiver. Conse-
quently, when a message is received, it con-
tains information about the sender's state
that is not necessarily still its current state.
At the other extreme, with no buffering,
execution of a send is always delayed until
a corresponding 2~ rece ive is executed; then
the message is transferred and both pro-
ceed. This is called synchronous message
passing. When synchronous message pass-
ing is used, a message exchange represents
a synchronization point in the execution of
both the sender and receiver. Therefore,
the message received will always corre-
spond to the sender's current state. More-
over, when the s end terminates, the sender
can make assertions about the state of the
receiver. Between these two extremes is
buffered message passing, in which the
buffer has finite bounds. Buffered message
passing allows the sender to get ahead of
the receiver, but not arbitrarily far ahead.

The blocking form of the r ece ive state-
ment is the most common, because a re-
ceiving process often has nothing else to do
while awaiting receipt of a message. How-
ever, most languages and operating systems

2~ Correspondence is determined .by the source and
destination designators.

Computing Surveys, Vol. 15r ~Io~ I, MoJ~¢h 1983

28 • G. R . A n d r e w s a n d F. B. S c h n e i d e r

also provide a nonblocking r e c e i v e or a
means to tes t whether execution of a r e -
c e i v e would block. This enables a process
to receive all available messages and then
select one to process (effectively, to sched-
ule them).

Sometimes, fur ther control over which
messages can be received is provided. T h e
s ta tement

rece ive variable__list
f rom source__designator when B

permits receipt of only those messages tha t
make B true. This allows a process to
"peek" at the contents of a delivered mes-
sage before receiving it. Al though this fa-
cility, is not necessa ry - -a process can al-
ways receive and store copies of messages
unti l appropria te to act on them, as shown
in the shortest-next-al locator example at
the end of this sec t ion- - the conditional re-
ceive makes possible concise solutions to
many synchronizat ion problems. Two lan-
guages tha t provide such a facility, P L I T S
and SR, are described in Sect ion 4.5.

A blocking r e c e i v e implicitly imple-
ments synchronizat ion between sender and
receiver because the receiver is delayed un-
til af ter the message is sent. To implement
such synchronizat ion with nonblocking r e -
ce ive , busy-waiting is required. However,
blocking message-passing s ta tements can
achieve the same semantic effects as non-
blocking ones by using what we shall call
se lec t ive c o m m u n i c a t i o n s , which is based
on Dijkstra 's guarded commands [Dijkstra,
1975].

In a select ive-communicat ions state-
ment , a g u a r d e d c o m m a n d has the form

guard --~ statement

T h e guard consists of a Boolean expression,
optionally followed by a message-passing
s ta tement . T h e guard succeeds if the Boo-
lean expression is t rue and executing the
message-passing s ta tement would not cause
a delay; the guard f a i l s if the Boolean
expression is false; the guard (temporarily)
ne i ther succeeds nor fails if the Boolean
expression is t rue bu t the message-passing
s ta tement cannot ye t be executed wi thout
causing delay. The al ternat ive s ta tement

i f GI --* S1
~ G2.--~ $2

, o .

Q Gn-.->Sn
fi

is executed as follows. If at least one guard
succeeds, one of them, Gi, is selected
nondeterminist ically; the message-passing
s t a t emen t in Gi is executed (if present);
t hen Si, the s t a tement following the guard,
is executed. I f all guards fail, the command
aborts. I f all guards nei ther succeed nor fail,
execut ion is delayed until some guard suc-
ceeds. (Obviously, deadlock could result.)
Execut ion of the i terat ive s t a t emen t is the
same as for the al ternat ive s ta tement , ex-
cept selection and execution of a guarded
command is repea ted unti l all guards fail,
a t which t ime the i terat ive s ta tement ter-
minates ra the r t han aborts.

To il lustrate the use of selective com-
munications, we implement a buf fer pro-
cess, which stores data produced by a pro-
d u c e r process and allows these data to be
re t r ieved by a c o n s u m e r process: 22

process buffer;

var slots : array [0..N-l] of T;
head, tail: 0..N-I;
size : O..N;

head := O; tail := O; size := O;
do size<N; receive slots[tail] from producer

size :=size + 1;
tail := (tail + 1) rood N

fl size>O; send slots[head] to consumer --
size := size - 1;
head := (head + 1) rood N

od

end

T h e producer and consumer are as follows:

process producer;
vat stuff: T;
loop

generate stuff',
send stuf f to buffer
end

end;

22 Even if message passing is asynchronous, such a
buffer may still be required if there are multiple pro-
ducers or consumers.

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming

process consumer;
var stuff: T;
loop

receive stuff from buffer;
u s e s t u f f

end
end

If s end statements cannot appear in
guards, selective communication is straight-
forward to implement. A delayed process
determines which Boolean expressions
in guards are true, and then awaits ar-
rival of a message that allows execution of
the r ece ive in one of these guards. (If the
guard did not contain a receive, the pro-
cess would not be delayed.) If both s e n d
and rece ive statements can appear in
guards, 2~ implementation is much more
costly because a process needs to negotiate
with other processes to determine ff they
can communicate, and these processes
could also be in the middle of such a nego-
tiation. For example, three processes could
be executing selective-communications
statements in which any pair could com-
municate; the problem is to decide which
pair communicates and which one remains
delayed. Development of protocols that
solve this problem in an efficient and dead-
lock-free way remains an active research
area [Schwartz, 1978; Silberschatz, 1979;
Bernstein, 1980; Van de Snepscheut, 1981;
Schneider, 1982; Reif and Spirakis, 1982].

Unfortunately, if send statements are
not permitted to appear in guards, pro-
gramming with blocking s end and blocking
r ece ive becomes somewhat more complex.
In the example above, the buffer process
above would be changed to first wait for a
message from the consumer requesting
data (a r ece ive would appear in the second
guard instead of the send) and then to send
the data. The difference in the protocol
used by this new buffer process when inter-
acting with the consumer and that used
when interacting with the producer process
is misleading; a producer/consumer rela-
tionship is inherently symmetric, and the
program should mirror this fact.

e3 A l s o n o t e t h a t a l l o w i n g o n l y s e n d s t a t e m e n t s in
g u a r d s is n o t v e r y use fu l .

* 29

Some proqess relationships .are inher-
ently asymmetric. In client/server interac-
tions, the server often takes different ac-
tions in response to different kinds of client
requests. For example, a shortest-job-next
allocator (see Section 3.4.1) that receives
"allocation" requests on a reques t~por t
and "release" requests on a release_port
can be programmed using message passing
as follows:
process shortest_next..allocator;

var.free : Boolean;
t ime : integer;
elient_id : proeess_id;
declarations of a priority queue and other local variables;

.free := true;

do true; receive (time, elient_.id) from request, por t
if.free --

f ree :=.false;
send allocation to elient..id

not .free --
save elient-Jd on priority queue ordered by t ime

fi

I] not free; receive release from ~'elease...port
if not priority queue empty --

remove client.dd with smallest t ime from queue;
send allocation to client_Jd

I] priority queue empty -7'
.free := true

fi
od

end

A client makes a request by executing

s e n d {time, my__id) to request_-.port;
receive allocation ,

from shortest.._next__allocator

and indicates that it has finished using the
resource by executing

s e n d release to release__port

4.3 Higher Level Message-Passing
Constructs

4.3.1 Remote Procedure Call

The primitives of the previous section are
sufficient to program a n y type of process
interaction using message passing. To pro-
gram client/server interactions, however,
both the client and server execute two mes-
sage-passing statements: the client a s e n d
followed by a receive , and the server a
r ece ive followed by a send. Because this
type of interaction is very common, higher
level statements that directly support it

Computing Surveys, Vol. 15, No. 1, M~¢h 1983

30 • G. R. Andrews and F. B. Schneider

have been proposed. These are termed re-
mote procedure call statements because of
the interface that they present: a client
"calls" a procedure that is executed on a
potentially remote machine by a server.

When remote procedure calls are used, a
client interacts with a server by means of a
call statement. This statement has a form
similar to that used for a procedure call in
a sequential language:

call service(value__args; result__args)

The service is really the name of a channel.
If direct naming is used, service designates
the server process; if port or mailbox nam-
ing is used, service might designate the kind
of service requested. Remote call is exe-
cuted as follows: the value arguments are
sent to the appropriate server, and the call-
ing process delays until both the service has
been performed and the results have been
returned and assigned to the result argu-
ments. Thus such a call could be translated
into a send, immediately followed by a
receive. Note that the client cannot forget
to wait for the results of a requested service.

There are two basic approaches to spec-
ifying the server side of a remote procedure
call. In the first, the remote procedure is a
declaration, like a procedure in a sequential
language: 24

remote procedure service
(in value__,parameters;
out result__parameters)

body
end

However, such a procedure declaration is
implemented as a process. This process, the
server, awaits receipt of a message contain-
ing value arguments from some calling
process, assigns them to the value param-
eters, executes its body, and then returns a
reply message containing the values of the
result parameters. Note that even if there
are no value or result parameters, the syn-
chronization resulting from the implicit
s end and receive occurs. A remote proce-
dure declaration can be implemented as a
single process that repeatedly loops [An-
drews, 1982], in which case calls to the
same remote procedure would execute se-

e4 This is another reason this kind of interaction is
termed "remote procedure call."

quentially. Alternatively, a new process can
be created for each execution of call
[Brinch Hansen, 1978; Cook, 1980; Liskov
and Scheifler, 1982]; these could execute
concurrently, meaning that the different
instances of the server might need to syn-
chronize if they share variables.

In the second approach to specifying the
server side, the remote procedure is a state-
ment, which can be placed anywhere any
other statement can be placed. Such a
statement has the general form

accept service(in value__parameters;
out result-_parameters) --* body

Execution of this statement delays the
server until a message resulting from a call
to the service has arrived. Then the body is
executed, using the values of the value pa-
rameters and any other variables accessible
in the scope of the statement. Upon termi-
nation, a reply message, containing the val-
ues of the result parameters, is sent to the
calling process. The server then continues
execution. 2s

When accept or similar statements are
used to specify the server side, remote pro-
cedure call is called a rendezvous [Depart-
ment of Defense, 1981] because the client
and server "meet" for the duration of the
execution of the body of the accep t state-
ment and then go their separate ways. One
advantage of the rendezvous approach is
that client calls may be serviced at times
of the server's choosing; accept statements,
for example, can be interleaved or nested.
A second advantage is that the server can
achieve different effects for calls to the
same service by using more than one ac -
c e p t statement, each with a different body.
(For example, the first accep t of a service
might perform initialization.} The final, and
most important, advantage is that the
server can provide more than one kind of
service. In particular, accept is often com-
bined with selective communications to en-

25 Different semantics result depending on whether
the reply message is sent by a synchronous or by an
asynchronous send. A synchronous s e n d delays the
server until the results have been received by the
caller. Therefore, when the server continues, it can
assert that the reply message has been received and
that the result parameters have been assigned to the
result arguments. Use of asynchronous send does not
allow this, but does not delay the server, either.

Computing Surveys, Vol. 15, No. 1, March 1983

Concep t s a n d N o t a t i o n s f o r C o n c u r r e n t : P r o g r a m m i t ~ g

able a server to wait for and select one of
several requests to service [U. S. Depart-
ment of Defense, 1981; Andrews, 1981].
This is illustrated in the following imple-
mentation of the bounded buffer:

process buffer;

vat slots : array [O..N-I] of T;
head, tail: O..N-I;
size : O..N;

head := O; tail := O; size := O;
do size<N; accept deposit(in value : 7) --

slots[tail] := value;
size :=size + 1;
tail := (tail + 1) rood N

fl size>O; accept fetch(out value : 7) - -
value := slots[head];
size := size - 1;
head := (head + 1) rood N

od

end.

The buffer process implements two opera-
tions: deposit and fetch. The first is invoked
by a producer by executing

call deposit (stuff)

The second is invoked by a consumer by
executing

call fetch (stuff)

Note that depos i t and f e t ch are handled by
the buf fer process in a symmetric manner,
even though send statements do not ap-
pear in guards, because remote procedure
calls always involve two messages, one in
each direction. Note also that buf fer can be
used by multiple producers and multiple
consumers.

Although remote procedure call is a use-
ful, high-level mechanism for client/server
interactions, not all such interactions can
be directly programmed by using it. For
example, the s h o r t e s t _ _ n e x t ~ a l l o c a t o r of
the previous section still requires two
client/server exchanges to service alloca-
tion requests because the allocator must
look at the parameters of a request in order
to decide if the request should be delayed.
Thus the client must use one operation to
transmit the request arguments and an-
other to wait for an allocation. If there are
a small number of different scheduling
priorities, this can be overcome by associ-

° 31

ating a different serveroperation with each
priority level. Ada [U. S. Department of
Defense, 1981] supports this nicely by
means of arrays of operations. In general,
however, a mechanism is required to enable
a server to accept a call that minimizes
some function of the parameters of the
called operation. SR [Andrews, 1981] in-
cludes such a mechanism (see Section
4.5.4).

4.3.2 Atomic Transactions
7

An often-cited advantage of multiple-pro.
cessor systems is that they can be made
resilient to failures. Designing programs
that exhibit this fault tolerance is not a
simple matter. While a discussion of how to
design fault-tolerant programs is beyond
the scope of this survey, we comment
briefly on how fault-tolerance issues have
affected the design of higher level message-
passing statements. 2~

Remote procedure call provides a clean
way to program client/server interactions.
Ideally, we would like a remotecall, like a
procedure call in a sequential programming
notation, to have exactly once semantics:
each remote call should terminate only
after the named remote procedure has been
executed exactly once by the server [Nel-
son, 1981; Spector, 1982]. Unfortunately, a
failure may mean that a client is forever
delayed awaiting the response to a remote
call. This might occur if

(i) the message signifying the remote pro-
cedure invocation is lost by the net-
work, or

(ii) the reply message is lost, or
(iii) the server crashes duringexecution of

the remote procedure (but before the
reply message is sent).

This difficulty can be overcome by attach-
ing a time-out interval to the remote call;
if no response is received by the client
before the time-out interval expires, the
client presumes that the server has failed
and takes some action.

Deciding what action to take after a de-
tected failure can be difficult. In Case (i)
above, the correct action would be to re-

2~ For a general discussion, the interested reader is
referred to Kohler 1981.

Computing Surveys, Vol. 16,No. 1, March 1983

32 * G. R. Andrews and F. B. Schneider

transmit the message. In Case (ii), however,
retransmittal would cause a second execu-
tion of the remote procedure body. This is
undesirable unless the procedure is idem-
potent, meaning that the repeated execu-
tion has the same effect as a single execu-
tion. Finally, the correct action in Case (iii)
would depend on exactly how much of the
remote procedure body was executed, what
parts of the computation were lost, what
parts must be undone, etc. In some cases,
this could be handled by saving state infor-
mation, called checkpoints, and program-
ming special recovery actions. A more gen-
eral solution would be to view execution of
a remote procedure in terms of atomic
transactions.

An atomic transaction [Lomet, 1977;
Reed, 1979; Lampson, 1981] is an all-or-
nothing computation--either it installs a
complete collection of changes to some
variables or it installs no changes, even if
interrupted by a failure. Moreover, atomic
transactions are assumed to be indivisible
in the sense that partial execution of an
atomic transaction is not visible to any
concurrently executing atomic transaction.
The first attribute is called failure atomic-
ity, and the second synchronization atom-
icity.

Given atomic transactions, it is possible
to construct a remote procedure call mech-
anism with at most once semantics--re-
ceipt of a reply message means that the
remote procedure was executed exactly
once, and failure to receive a reply message
means the remote procedure invocation
had no (permanent) effect [Liskov and
Scheifler, 1982; Spector, 1982]. This is done
by making execution of a remote procedure
an atomic transaction that is allowed to
"commit" only after the reply has ben re-
ceived by the client. In some circumstances,
even more complex mechanisms are useful.
For example, when nested remote calls
occur, failure while executing a higher level
call should cause the effects of lower level
(i.e., nested) calls to be undone, even if
those calls have already completed [Liskov
and Scheifler, 1982].

The main consideration in the design of
these mechanisms is that may it not be
possible for a process to see system data in

an inconsistent state following partial exe-
cution of a remote procedure. The use of
atomic transactions is one way to do this,
but it is quite expensive [Lampson and
Sturgis, 1979; Liskov, 1981]. Other tech-
niques to ensure the invisibility of incon-
sistent states have been proposed [Lynch,
1981; Schlichting and Schneider, 1981], and
this remains an active area of research.

4.4 An Axiomatic View of Message Passing

When message passing is used for commu-
nication and synchronization, processes
usually do not share variables. Nonetheless,
interference can still arise. In order to prove
that a collection of processes achieves a
common goal, it is usually necessary to
make assertions in one process about the
state of others. Processes learn about each
other's state by exchanging messages. In
particular, receipt of a message not only
causes the transfer of values from sender to
receiver but also facilitates the "transfer"
of a predicate. This allows the receiver to
make a~sertions about the state of the
sender, such as about how far the sender
has progressed in its computation. Clearly,
subsequent execution by the sender might
invalidate such an assertion. Thus it is pos-
sible for the sender to interfere with an
assertion in the receiver.

It turns out that two distinct kinds of
interference must be considered when mes-
sage passing is used [Schlichting and
Schneider, 1982a]. The first is similar to
that occurring when shared variables are
used: assertions made in one process about
the state of another must not be invalidated
by concurrent execution. The second form
of interference arises only when asynchro-
nous or buffered message passing is used. If
a sender "transfers" a predicate with a mes-
sage, the "transferred" predicate must be
true when the message is received: receipt
of a message reveals information about the
state of the sender at the time that the
message was sent, which is not necessarily
the sender's current state.

The second type of interference is not
possible when synchronous message pass-
ing is used, because, after sending a mes-
sage, the sender does not progress until the

Computing Surveys, Vol. 15, No. 1, March 1983

message has been received. This is a good
reason to prefer the use of synchronous
send over asynchronous send (and to pre-
fer synchronous send for sending the reply
message in a remote procedure body). One
often hears the argument that asynchro-
nous send does not restrict parallelism as
much as synchronous send and so it is
preferable. However, the amount of paral-
lelism that can be exhibited by a program
is determined by program structure and not
by choice of communications primitives.
For example, addition of an intervening
buffer process allows the sender to be exe-
cuted concurrently with the receiving proc-
ess. Choosing a communications primitive
merely establishes whether the program-
mer will have to do the additional work (of
defining more processes) to allow a high
degree of parallel activity or will have to do
additional work (of using the primitives in
a highly disciplined way) to control the
amount of parallelism. Nevertheless, a va-
riety of "safe" uses of asynchronous mes-
sage passing have been identified: the
"transfer" of monotonic predicates and the
use of "acknowledgment" protocols, for
example. These schemes are studied in
Schlichting and Schneider [1982b], where
they are shown to follow directly from sim-
ple techniques to avoid the second kind of
interference.

Formal proof techniques for various
types of message-passing primitives have
been developed. Axioms for buffered, asyn-
chronous message passing were first pro-
posed in connection with Gypsy [Good et
al., 1979]. Several people have developed
proof systems for synchronous message-
passing statementswin particular the input
and output commands in CSP [Apt et al.,
1980; Cousot and Cousot, 1980; Levin and
Gries, 1981; Misra and Chandy, 1981; Soun-
dararajan, 1981; Lamport and Schneider,
1982; Schlichting and Schneider, 1982a].
Also, several people have developed proof
rules for asynchronous message passing
[Misra et al., 1982; Schl icht ing and
Schneider, 1982b], and proof rules for
remote procedures and rendezvous [Bar-
ringer and Mearns, 1982; Gerth, 1982;
Gerth et al., 1982; Schlichting and Schnei-
der, 1982a].

Concepts and Notations for Coneurrent:'Programrning " 33

4.5 Programming Notations Based
on Message Passing

A large number of concurrent programming
languages have been proposed that use
message passing for communication and
synchronization. This should not be too
surprising; because the two major message-
passing design issues--channel naming and
synchronization--are orthogonal, the var-
ious alternatives for each can be combined
in many ways. In the following, we sum-
marize the important characteristics of four
languages: CSP, PLITS, Ada, and SR. Each
is well documented in the literature and
was innovative in some regard. Also, each
reflects a different combination of the two
design alternatives. Some other languages
that have been influential--Gypsy, Distrib-
uted Processes, StarMod and Argus--are
then briefly discussed.

4.5.1 Communicating Sequential Processes

Communicat ing Sequential Processes
(CSP) [Hoare, 1978] is a programming
notation based on synchronous message
passing and selective communications. The
concepts embodied in CSP hav e greatly in-
fluenced subsequent work in concurrent
programming language design and the de-
sign of distributed programs.

In CSP, processes are denoted by a var-
iant of the cobegln statement. Processes
may share read-only variables, but use in-
put/output commands for synchronization
and communication. Direct (and static)
channel naming is used and message pass-
ing is synchronous.

An output command in CSP has the form

destination!expression

where destination is a process name and
expression is a simple or structured value.
An input command has the form

source?target

where source is a process name and target
is a simple or structured variable local to
the process containing the input command.
The commands

Pr!expression

Computing b-kwve~s, Vol. 16. No. 1, M~rch 1983

34 • G. R. Andrews and F. B. Schneider

in process Ps and

Ps?target

in process Pr match if target and expres-
sion have the same type. Two processes
communicate if they execute a matching
pair of input/output commands. The result
of communication is that the expression's
value is assigned to the target variable; both
processes then proceed independently and
concurrently.

A restricted form of selective communi-
cations statement is supported by CSP. In-
put commands can appear in guards of al-
ternative and iterative statements, but out-
put commands may not. This allows an
efficient implementation, but makes certain
kinds of process interaction awkward to
express, as was discussed in Section 4.2.

By combining communication com-
mands with alternative and iterative state-
ments, CSP provides a powerful mecha-
nism for programming process interaction.
Its strength is that it is based on a simple
idea-- input /output commands-- that is
carefully integrated with a few other mech-
anisms. CSP is not a complete concurrent
programming language, nor was it intended
to be. For example, static direct naming is
often awkward to use. Fortunately, this de-
ficiency is easily overcome by using ports;
how to do so was discussed briefly by Hoare
[Hoare, 1978] and is described in detail by
Kieburtz and Silberschatz [1979]. Recently,
two languages based on CSP have also been
described [Jazayeri et al., 1980; Roper and
Barter, 1981].

4.5.2 PLITS

PLITS, an acronym for "Programming
Language In The Sky," was developed at
the University of Rochester [Feldman,
1979]. The design of PLITS is based on the
premise that it is inherently difficult to
combine a high degree of parallelism with
data sharing and therefore message passing
is the appropriate means for process inter-
action in a distributed system. Part of an
ongoing research project in programming
language design and distributed computa-
tion, PLITS is being used to program ap-
plications that are executed on Rochester's
Intelligent Gateway (RIG) computer net-
work [Ball et al., 1976].

A PLITS program consists of a number
of modules; active modules are processes.
Message passing is the sole means for in-
termodule interaction. So as not to restrict
parallelism, message passing is asynchro-
nous. A module sends a message containing
the values of some expressions to a module
modname by executing

send expressions to modname [about key]

The " a b o u t key" phrase is optional. If in-
cluded, it attaches an identifying transac-
tion key to the message. This key can then
be used to identify the message uniquely,
or the same key Can be attached to several
different messages to allow messages to be
grouped.

A module receives messages by executing

receive variables [from modname]
[about key]

If the last two phrases are omitted, execu-
tion of r e ce i ve delays the executing mod-
ule until the arrival of any message. If the
phrase " f rom modname" is included, exe-
cution is delayed until a message from the
named module arrives. Finally, if the phrase
"about key" is included, the module is de-
layed until a message with the indicated
transaction key has arrived.

By combining the options in send and
r ece i ve in different ways, a programmer
can exert a variety of controls over com-
munication. When both the sending and
receiving modules name each other, com-
munication is direct. The effect of port
naming is realized by having a receiving
module not name the source module. Fi-
nally, the use of transaction keys allows the
receiver to select a particular kind of mes-
sage; this provides a facility almost as pow-
erful as attaching " w h e n B " to a r ece ive
statement.

In PLITS, execution of r ece ive can
cause blocking. PLITS also provides prim-
itives to test whether messages with certain
field values or transaction keys are avail-
able for receipt; this enables a process to
avoid blocking when there is no message
available.

PLITS programs interface to the oper-
ating systems of the processors that make
up RIG. Each host system provides device
access, a file system, and job control. A

Computing Surveys, Vo|. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming

communications kernel on each machine
provides the required support for inter-
processor communication.

4.5.3 A d a 27

Ada [U. S. Department of Defense, 1981] is
a language intended for programming
embedded real-time, process-control sys-
tems. Because of this, Ada includes facili-
ties for multiprocessing and device control.
With respect to concurrent .programming,
Ada's main innovation is the rendezvous
form of remote procedure call.

Processes in Ada are called tasks. A task
is activated when the block containing its
declaration is entered. Tasks may be nested
and may interact by using shared variables
declared in enclosing blocks. (No special
mechanisms for synchronizing access to
shared variables are provided.)

The primary mechanism for process in-
teraction is the remote procedure call. Re-
mote procedures in Ada are called entries;
they are ports into a server process speci-
fied by means of an accept statement,
which is similar in syntax and semantics to
the accept statement described in Section
4.3.1. Entries are invoked by execution of a
remote call. Selective communications is
supported using the select statement,
which is like an alternative statement.

Both call and accept statements are
blocking. Since Ada programs might have
to meet real-time response constraints, the
language includes mechanisms to prevent
or control the length of time that a process
is delayed when it becomes blocked. Block-
ing on call can be avoided by using the
conditional entry call, which performs a
call only if a rendezvous is possible imme-
diately. Blocking on accept can be avoided
by using a mechanism that enables a server
to determine the number of waiting calls.
Blocking on select can be avoided by
means of the else guard, which is true if
none of the other guards are. Finally, a task
can suspend execution for a time interval
by means of the de lay statement. This
statement can be used within a guard of
select to ensure that a process is eventually
awakened.

° 3 5

In order to allow the programmer to con-
trol I /O devices, Ada allowsentries to be
bound to interrupt vector locations. Inter-
rupts become calls to those entries and can
therefore be serviced by a task that receives
the interrupt by means of an accept state-
ment.

Since its inception, Ada has generated
controversy [Hoare, 1981], much of which
is not related to concurrency. However, few
applications using the concurrent program-
ruing features have been programmed, and
at the time of this writing no compiler for
full Ada has been validated. Implementa-
tion of some of the concurrent program-
ming aspects of Ada is likely to be hard. A
paper by Welsh and Lister [1981] compares
the concurrency aspects of Ada to CSP and
Distributed Processes [Brinch Hansen,
1978]; Wegner and Smolka [1983] compare
Ada, CSP, and monitors.

4.5.4 SR

SIR (Synchronizing Resources) [Andrews,
1981, 1982], like Ada, uses the rendezvous
form of remote procedure call and port
naming. However, there are notable differ-
ences between the languages, as described
below. A compiler for SIR has been imple-
mented on PDP-11 processors and the lan-
guage is being used in the construction of a
UNIX-like network operating system.

An SIR program consists of one or more
resources. 2s The resource~ construct sup-
ports both control of process interaction
and data abstraction. (In contrast, Ada has
two distinct constructs for this--the task
and the package.) Resources contain one or
more processes. Processes interact by using
operations, which are similar to Ada en-
tries. Also, processes in the same resource
may interact by means of shared variables.

Unlike Ada, operations may be invoked
by either send, which is nonblocking, or
call, which is blocking. (The server that
implements an operation can require a par-
ticular form of invocation, if necessary.)
Thus both asynchronous message passing
and remote call are supported. Operations
may be named either statically in the pro-
gram text or dynamically by means of ca-

~Ada is a trademark of the U. S. Department of 28 SR's resources are not to be cQnfused with resources
Defense. in conditional critical region s .

Corap,t~ Sut*oyo, Vet, ~5,N¢~ t, March LgS3

36 • G. R. A n d r e w s a n d F. B. Schne ider

pability variables, which are variables hav-
ing fields whose values are the names of
operations. A process can therefore have a
changing set of communication channels.

In SR, operations are specified by the in
statement, which also supports selective
communications. Each guard in an in state-
ment has the form

op_.name(parameters) [and B] [by A]

where B is an optional Boolean expression
and A is an optional arithmetic expression.
The phrase "and B " allows selection of the
operation to be dependent on the value of
B, which may contain references to param-
eters. The phrase "by A " controls which
invocation of op__name is selected if more
than one invocation is pending that satisfies
B. This can be used to express scheduling
constraints succinctly. For example, it per-
mits a compact solution to the shortest-job-
next allocation problem discussed earlier.
Although somewhat expensive to imple-
ment because it requires reevaluation of A
whenever a selection is made, this facility
turns out to be less costly to use than
explicitly programmed scheduling queues,
if the expected number of pending invoca-
tions is small (which is usually the case).

Operations may also be declared to be
procedures . In SR, a procedure is short-
hand for a process that repeatedly executes
an in statement. Thus such operations are
executed sequentially.

To support device control, SR provides
a variant of the resource called a real re-
source. A real resource is similar to a Mod-
ula device module: it can contain device-
driver processes and it allows variables to
be bound to device-register addresses. Op-
erations in real resources can be bound to
interrupt vector locations. A hardware in-
terrupt is treated as a s end to such an
operation; interrupts are processed by
means of in statements.

4.5.5 Some Other Language Notations Based
on Message Passing

Gypsy [Good et al., 1979], one of the first
high-level languages based on message
passing, uses mailbox naming and buffered
message passing. A major focus of Gypsy
was the development of a programming
language well suited for constructing veri-

fiable systems. It has been used to imple-
ment special-purpose systems for singie-
and multiprocessor architectures.

Distributed Processes (DP) [Brinch Han-
sen, 1978] was the first language to be based
on remote procedure calls. It can be viewed
as a language that implements monitors by
means of active processes rather than col-
lections of passive procedures. In DP, re-
mote procedures are specified as externally
callable procedures declared along with a
host process and shared variables. When a
remote procedure is called, a server process
is created to execute the body of the pro-
cedure. The server processes created for
different calls and the host process execute
with mutual exclusion. The servers and
host synchronize by means of a variant of
conditional critical regions. An extension of
D P that employs the rendezvous form of
remote procedure call and thus has a more
efficient implementation is described by
Mao and Yeh [1980].

StarMod [Cook, 1980] synthesizes as-
pects of Modula and Distributed Processes:
it borrows modularization ideas from Mod-
ula and communication ideas from Distrib-
uted Processes. A module contains one or
more processes and, optionally, variables
shared by those processes. Synchronization
within a module is provided by semaphores.
Processes in different modules interact by
means of remote procedure call; StarMod
provides both remote procedures and ren-
dezvous for implementing the server side.
In StarMod, as in SR, both send and call
can be used to initiate communication, the
choice being dictated by whether the in-
voked operation returns values.

Argus [Liskov and Scheifler, 1982] also
borrows ideas from Distributed Processes--
remote procedures implemented by dynam-
ically created processes, which synchronize
using critical regions--but goes much fur-
ther. It has extensive support for program-
ming atomic transactions. The language
also includes exception handling and recov-
ery mechanisms, which are invoked if fail-
ures occur during execution of atomic trans-
actions. Argus is higher level than the other
languages surveyed here in the sense that
it attaches more semantics to remote call.
A prototype implementation of Argus is
nearing completion.

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming • 37

5. MODELS OF CONCURRENT
PROGRAMMING LANGUAGES

Most of this survey has been devoted to
mechanisms for process interaction and
programming languages that use them. De-
spite the resulting large variety of lan-
guages, each can be viewed as belonging to
one of three classes: procedure oriented,
message oriented, or operation oriented.
Languages in the same class provide the
same basic kinds of mechanisms for process
interaction and have similar attributes.

Inprocedure-oriented languages, process
interaction is based on shared variables.
(Because monitor-based languages are the
most widely known languages in this
class, this is often called the monitor
model.) These languages contain both ac-
tive objects (processes) and shared, passive
objects (modules, monitors, etc.). Passive
objects are represented by shared variables,
usually with some procedures that imple-
ment the operations on the objects. Pro-
cesses access the objects they require di-
rectly and thus interact by accessing shared
objects. Because passive objects are shared,
they are subject to concurrent access.
Therefore, procedure-oriented languages
provide means for ensuring mutual exclu-
sion. Concurrent PASCAL, Modula, Mesa,
and Edison are examples of such languages.

Message- and operation-oriented lan-
guages are both based on message passing,
but reflect different views of process inter-
action. Message-oriented languages pro-
vide send and r ece ive as the primary
means for process interaction. In contrast
to procedure-oriented languages, there are
no shared, passive objects, and so processes
cannot directly access all objects. Instead,
each object is managed by a single process,
its caretaker, which performs all operations
on it. When an operation is to be performed
on an object, a message is sent to its care-
taker, which performs the operation and
then (possibly) responds with a completion
message. Thus, objects are never subject to
concurrent access. CSP, Gypsy, and PLITS
are examples of message-oriented lan-
guages.

Operation-oriented languages provide
remote procedure call as the primary means
for process interaction. These languages
combine aspects of the other two classes.

As in a message-oriented language, each
object has a caretaker process associated
with it; as in a procedure-oriented language,
operations are performed on an object by
calling a procedure. The difference is that
the caller of an operation and the caretaker
that implements it synchronize while the
operation is executed. Both then proceed
asynchronously. Distributed Processes,
StarMod, Ada, and SR are examples of
operation-oriented languages.

Languages in each of these classes are
roughly equivalent in expressive power.
Each can be used to implement various
types of cooperation between concurrently
executing processes, including client/server
interactions and pipelines. Operation-ori-
ented languages are well suited for pro-
gramming client/server systems, and mes-
sage-oriented languages are well suited for
programming pipelined computations.

Languages in each class can be used to
write concurrent programs for uniproces-
sors, multiprocessors, and distributed sys-
tems. Not all three classes are equally
suited for all three architectures, however.
Procedure-oriented languages are the most
efficient to implement on contemporary
single processors. Since it is expensive to
simulate shared memory if none is present,
implementing procedure-oriented lan-
guages on a distributed system can be
costly. Nevertheless, procedure-oriented
languages can be used to program a distrib-
uted system--an individual program is
written for each processor and the com-
munications network is viewed as a shared
object. Message-oriented languages can be
implemented with or without shared mem-
ory. In the latter case, the existence of a
communications network is made com-
pletely transparent, which frees the pro-
grammer from concerns about how the net-
work is accessed and where processes are
located. This is an advantage of message-
oriented languages over procedure-oriented
languages when programming a distributed
system. Operation-oriented languages en-
joy the advantages of both procedure-ori-
ented and message-oriented languages.
When shared memory is available, an op-
eration-oriented language can, in many
cases, be implemented like a procedure-ori-
ented language [Habermann and Nassi,

Computing Surveys~ Vol. 15, No. 1, March 1983

38 • G. R. A n d r e w s a n d F. B. Schne ider

Busy -Waiting

Semaphores

Critical Regions

PROCEDURE / MESSA GE
ORIENTED ~{ ORIENTED

Monitors Message Passing

Path Expressions

Remote Procedure Call

OPERA TION ORIENTED
Figure 9. Synchronization techniques and language classes.

1980]; otherwise it can be implemented us-
ing message passing. Recent research has
shown that both message- and operation-
oriented languages can be implemented
quite efficiently on distributed systems if
special software/fnTnware is used in the
implementation of the language's mecha-
nisms [Nelson, 1981; Spector, 1982].

In a recent paper, Lauer and Needham
argued that procedure-oriented and mes-
sage-oriented languages are equals in terms
of expressive power, logical equivalence,
and performance [Lauer and Needham,
1979]. (They did not consider operation-
oriented languages, which have only re-
cently come into existence.) Their thesis
was examined in depth by Reid [1980], who
reached many conclusions that we share.
At an abstract level, the three types of
languages are interchangeable. One can
transform any program written using the
mechanisms found in languages of one class
into a program using the mechanisms of
another class without affecting perform-
ance. However, the classes emphasize dif-
ferent styles of programmingNthe same
program written in languages of different
classes is often best structured in entirely
different ways. Also, each class provides a
type of flexibility not present in the others.
Program fragments that are easy to de-
scribe using the mechanisms of one can be
awkward to describe using the mechanisms
of another. One might argue (as do Lauer
and Needham) that such use of these mech-

anisms is a bad idea. We, however, favor
programming in the style appropriate to
the language.

6. CONCLUSION

This paper has discussed two aspects of
concurrent programming: the key con-
cepts--specification of processes and con-
trol of their interaction--and important
language notations. Early work on operat-
ing systems led to the discovery of two
types of synchronization: mutual exclusion
and condition synchronization. This stim-
ulated development of synchronization
primitives, a number of which are described
in this paper. The historical and conceptual
relationships among these primitives are
illustrated in Figure 9.

The difficulty of designing concurrent
programs that use busy-waiting and their
inefficiency led to the definition of sema-
phores. Semaphores were then extended in
two ways: (1) constructs were defined that
enforced their structured use, resulting in
critical regions, monitors, and path expres-
sions; (2) "data" were added to the syn-
chronization associated with semaphores,
resulting in message-passing primitives. Fi-
nally, the procedural interface of monitors
was combined with message passing, result-
ing in remote procedure call.

Since the first concurrent programming
languages were defined only a decade ago,
practical experience has increased our un-

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent ProKfamming

derstanding of how to engineer such pro-
grams, and the development of formal tech-
niques has greatly increased our under-
standing of the basic concepts. Although
there are a variety of different program-
ming languages, there are only three essen-
tially different kinds: procedure oriented,
message oriented, and operation oriented.
This, too, is illustrated in Figure 9.

At present, many of the basic problems
that arise when constructing concurrent
programs have been identified, solutions to
these problems are by and large under-
stood, and substantial progress has been
made toward the design of notations to
express those solutions. Much remains to
be done, however. The utility of various
languages--really, combinations of con-
structs--remains to be investigated. This
requires using the languages to develop sys-
tems and then analyzing how they helped
or hindered the development. In addition,
the interaction of fault tolerance and con-
current programming is not well under-
stood. Little is known about the design of
distributed (decentralized) concurrent pro-
grams. Last, devising formal techniques to
aid the programmer in constructing correct
programs remains an important open prob-
lem.

ACKNOWLEDGMENTS

Numerous people have been kind enough to provide
very helpful comments on earlier drafts of this survey:
David Gries, Phil Kaslo, Lynn Kivell, Gary Levin, IRon
Olsson, Rick Schlichting, and David Wright. Three
referees, and also Eike Best and Michael Scott, pro-
vided valuable comments on the penultimate draft.
Tony Wasserman has also provided helpful advice; it
has been a joy to have him as the editor for this paper.
Rachel Rutherford critiqued the ultimate draft and
made numerous useful, joyfully picturesque com-
ments.

This work was supported in part by NSF Grants
MCS 80-01668 and MCS 82-02869 at Arizona and MCS
81-03605 at Cornell.

REFERENCES

AKKOYUNLU, E. A., BERNSTEIN, A. J., SCHNEIDER, F.
B., AND SILBERSCHATZ, A. "Conditions for the
equivalence of synchronous and asynchronous
systems." IEEE Trans. Soflw. Eng. SE-4, 6 (Nov.
1978), 507-516.

ANDLER, S. "Predicate path expressions." In Prec.
6th A CM Syrup. Principles of Programming Lan-

39

guages (San Antonio, Tex.,.Jal~ 1979). ACM,
New York, 1979, pp: 226-236.

ANDREWS, G.R. "The design era message switching
system: An apl~l!cation and evaluation of Mod-
ula." IEEE Trans. 8oftw. Eng. SE-5, 2 (March
1979), 138-147.

ANDREWS, G.R. "Synchronizing resources." ACM
Trans. Prog. Lang. 8yst. 3, 4 (Oct. 1981), 405-430.

ANDREWS, G.R. "The distributed programming lan-
guage SR--Mechanisms, design, and implemen-
tation." Softw. Pract. Exper. 12, 8 (Aug. 1982),
719-754.

ANDREWS, G. R., AND McGRAw, J . R . "Language
features for process interaction." In Prec. ACM
Conf. Language Design for Reliable Software,
S[GPLAN Not. 12, 3 (March 1977), 114-127.

APT, K. R., FRANCEZ, N., AND DE;ROEVER, W.P. "A
proof system for communicating sequential proc-
esses." ACM Trans. Prog. Lang. Syst. 2, 3 (July
1980), 359-385.

ASCHCROFT, E.A. "Proving assertions about parallel
programs." J. Comput. Syst. 10 (Jan. 1975), 110-
135.

BALL, E., FELDMAN, J., Low, J,, RASHID, R., AND
ROVNER, P. "RIG, Rochester's intelligent gate-
way: System overview." IEEE Trans. Softw. Eng.

• SE-2, 4 (Dec. 1976), 321-328.
BALZER, R. M. "PORTS--A method for dynamic

interprogram communication and job control." In
Prec. AFIPS Spring Jt. Computer Conf. (Atlantic
City, N. J., May 18-20, 1971), col 38. AFIPS
Press, Arlington, Va., 1971, pp. 485-489.

BARRINGER, H., AND MEARNS, L "Axioms and proof
rules for Ada tasks." IEE Prec. 129, Pt. E, 2
(March 1982), 38-48.

BASKETT, F., HOWARD, J. H., AND MONTAGUE, J.
T. "Task communication in DEMOS." In Prec.
6th Syrup. Operating Systems Principles (West
Lafayette, Indiana, Nov. 16-18, 1977). ACM, New
York, 1977, pp. 23-31.

BEN-ARI, M. Principles of COncurrent Program-
ming. Prentice-Hall, Englewood Cliffs, N~ J., 1982.

BERNSTEIN, A.J. "Output guards and nondetermin-
ism in communicating sequential processes."
ACM Trans. Prog. Lang. Syst. 2, 2 (Apr. 1980),
234-238.

BERNSTEIN, A. J., AND ENSOR, J.R. "A modification
of Modula." Softw. Praet. Exper. 11 (1981), 237-
255.

BERNSTEIN, A. J., AND SCHNEIDER, F.B. "On lan-
guage restrictions to ensure deterministic behav-
ior in concurrent systems," In J. Moneta (Ed.),
Prec. 3rd Jerusalem Conf. Information Technol-
ogy JCIT3. North-Holland Publ., Amsterdam,
1978, pp. 537-541.

BERNSTEIN, P. A., AND GOODMAN, N. "Concurrency
control in distributed database systems." ACM
Comput. Surv. 13, 2 (June 1981), 185-221.

BEST, E. "Relational semantics of concurrent pro-
grams (with some applications)." In Prec. IFIP
WG2.2 Conf. North-Holland Publ., Amsterdam,
1982.

Computing Surveys, VoL 15, No. 1, March 1983

40 • G. R. A n d r e w s a n d F. B. Schneider

BLOOM, T. "Evaluating synchronization mecha-
nisms." In Proc. 7th Symp. Operating Systems
Principles (Pacific Grove, Calif., Dec. 10-12,
1979). ACM, New York, 1979, pp. 24-32. •

BRINCH HANSEN, P. "Structured multiprogram-
ruing." Commun. ACM 15, 7 (July 1972), 574-578.

BRINCH HANSEN, P. Operating System Principles.
Prentice-Hall, Englewood Cliffs, N. J., 1973. (a)

BRINCH HANSEN, P. "Concurrent programming con-
cepts." ACM Comput. Surv. 5, 4 (Dec. 1973), 223-
245. (b)

BRINCH HANSEN, P. "The programming language
Concurrent Pascal." IEEE Trans Softw. Eng.
SE-1, 2 (June 1975), 199-206.

BRINCH HANSEN, P. "The Solo operating system:
Job interface." Soflw. Pract. Exper. 6 (1976), 151-
164. (a)

BRINCH HANSEN, P. "The Solo operating system:
Processes, monitors, and classes." Softw. Pract.
Exper. 6 (1976), 165-200. (b)

BRINCH HANSEN, P. The Architecture of Concurrent
Programs. Prentice-Hall, Englewood Cliffs, N. J.,
1977.

BRINCH HANSEN, P. "Distributed processes: A con-
current programming concept." Commun. ACM
21, 11 (Nov. 1978), 934-941.

BRINCH HANSEN, P. "Edison: A multiprocessor lan-
guage." Softw. Praet. Exper. 11, 4 (Apr. 1981),
325-361.

CAMPBELL, R.H. "Path expressions: A technique for
specifying process synchronization." Ph.D. disser-
tation, Computing Laboratory, University of
Newcastle upon Tyne, Aug. 1976.

CAMPBELL, R. H., AND HABERMANN, A. N. "The
specification of process synchronization by path
expressions." Lecture Notes in Computer Science,
vol. 16. Springer-Verlag, New York, 1974, pp. 89-
102.

CAMPBELL, R. H., AND KOLSTAD, R.B. "Path expres-
sions in Pascal." In Proc. 4th Int. Conf. on Soft-
ware Eng. (Munich, Sept. 17-19, 1979). IEEE,
New York, 1979, pp. 212-219.

CONWAY, M. E. "Design of a separable transition-
diagram compiler." Commun. ACM 6, 7 (July
1963), 396-408. (a)

CONWAY, M.E. "A multiprocessor system design."
In Proc. AFIPS Fall Jt. Computer Conf. (Las
Vegas, Nev., Nov., 1963), vol. 24. Spartan Books,
Baltimore, Maryland, pp. 139-146. (b)

COOK, R. P. "*MOD--A language for distributed
programming." IEEE Trans. Softw. Eng. SE-6,
6 (Nov. 1980), 563-571.

COURTOIS, P. J., HEYMANS, F., AND PARNAS, D.
L. "Concurrent control with 'readers' and
'writers'." Commun. ACM 14, 10 (Oct. 1971), 667-
668.

CousoT, P., AND COUSOT, R. "Semantic analysis of
communicating sequential processes." In Proc.
7th Int. Colloquium Automata, Languages and
Programming (ICALP80), Lecture Notes in
Computer Science, vol. 85. Springer-Verlag, New
York, 1980, pp. 119-133.

DENNXS, J. B., AND VAN HORN, E.C. "Programming
semantics for multiprogrammed computations."
Commun. ACM 9, 3 (March 1966), 143-155.

DIJKSTRA, E.W. "The structure of the 'THE' mul-
tiprogramming system." Commun. ACM 11, 5
(May 1968), 341-346. (a)

DIJKSTRA, E. W. "Cooperating sequential proc-
esses." In F. Genuys (Ed.), Programming Lan-
guages. Academic Press, New York, 1968. (b)

DIJKSTRA, E.W. "Guarded commands, nondetermi-
nacy, and formal derivation of programs." Com-
mun. ACM 18, 8 (Aug. 1975), 453-457.

DIJKSTRA, E. W. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, N. J., 1976.

DIJKSTRA, E.W. "An assertional proof of a program
by G. L. Peterson." EWD 779 (Feb. 1979), Nu-
enen, The Netherlands. (a)

DIJKSTRA, E. W. Personal communication, Oct.
1981. (b)

FELDMAN, J.A.. "High level programming for dis-
tributed computing." Commun. ACM 22, 6 (June
1979), 353-368.

FLON, L., AND HABERMANN, A. N. "Towards the
construction of verifiable software systems." In
Proc. ACM Conf. Data, SIGPLAN Not. 8, 2
(March 1976), 141-148.

FLOYD, R.W. "Assigning meanings to programs." In
Proc. Am. Math. Soc. Symp. Applied Mathemat-
ics, vol. 19, pp. 19-31, 1967.

GELERNTER, D., AND BERNSTEIN, A.J . "Distributed
communication via global buffer." In Proc. Symp.
Principles of Distributed Computing (Ottawa,
Canada, Aug. 18-20, 1982). ACM, New York, 1982,
pp. 10-18.

GERTH, R. "A sound and complete Hoare axiomati-
zation of the Ada-rendezvous." In Proc. 9th Int.
Colloquium Automata, Languages and Pro-
gramming (ICALP82), Lecture Notes in Com-
puter Science, vol. 140. Springer-Verlag, New
York, 1982, pp. 252-264.

GERTH, R., DE ROEVER, W. P., AND RONCKEN,
M. "Procedures and concurrency: A study in
proof." In 5th Int. Symp. Programming, Lecture
Notes in Computer Science, vol. 137. Springer-
Verlag, New York, 1982, pp. 132-163.

GOOD, D. I., COHEN, R. M., AND KEETON-WILLIAMS,
J. "Principles of proving concurrent programs in
Gypsy." In Proc. 6th ACM Symp. Principles of
Programming Languages (San Antonio, Texas,
Jan. 29-31, 1979). ACM, New York, 1979, pp. 42-
52.

HABERMANN, A. N. "Path expressions." Dep. of
Computer Science, Carnegie-Mellon Univ., Pitts-
burgh, Pennsylvania, June, 1975.

HABERMANN, A. N., AND NASSI, I.R. "Efficient im-
plementation of Ada tasks." Tech. Rep. CMU-
CS-80-103, Carnegie-Mellon Univ., Jan. 1980.

HADDON, B.K. "Nested monitor calls." Oper. Syst.
Rev. 11, 4 (Oct. 1977), 18-23.

HANSON, D. R., AND GRISWOLD, R. E. "The SL5
procedure mechanism." Commun. ACM 21, 5
(May 1978), 392-400.

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming ~

HOAHE, C. A.R. "An axiomatic basis for computer
programming." Commun. ACM. 12, 10 (Oct.

• 1969), 576-580, 583.
HOARE, C. A.R. "Towards a theory of parallel pro-

gramming." In C. A. R. Hoare and R. H. Perrott
(Eds.), Operating Systems Techniques. Academic
Press, New York, 1972, pp. 61-71.

HOARE, C. A. R. "Monitors: An operating system
structuring concept." Commun. ACM 17, 10 (Oct.
1974), 549-557.

HOARE, C. A.R. "Communicating sequential proc-
esses." Commun. ACM 21, 8 (Aug. 1978), 666-677.

HOARE, C. A.R. "The emperor's old clothes." Com-
mun. ACM 24, 2 (Feb. 1981), 75-83.

HOLDEN, J., AND WAND, I. C. "An assessment of
Modula." Softw. Pract. Exper. 10 (1980), 593-
621.

HOLT, R. C., GRAHAM, G. S., LAZOWSKA, E. D., AND
SCOTT, M.A. Structured Concurrent Program-
ming with Operating Systems Applications. Ad-
dison-Wesley, Reading, Mass., 1978.

HOWARD, J.H. "Proving monitors." Commun. ACM
19, 5 (May 1976), 273-279. (a)

HOWARD, J.H. "Signaling in monitors." In Proc. 2nd
Int. Conf. Software Engineering (San Francisco,
Oct. 13-15, 1976). IEEE, New York, 1976, pp. 47-
52. (b)

JAZAYERL M., et al. "CSP/80: A language for com-
municating processes." In Proc. Fall IEEE
COMPCON80 (Sept. 1980). IEEE, New York,
1980, pp. 736-740.

JONES, A. K., AND SCHWARZ, P. "Experience using
multiprocessor systems~A status report." ACM
Comput. Surv. 12, 2 (June 1980), 121-165.

KAUBISCH, W. H., PERROTT, R. H., AND HOARE, C. A.
R. "Quasiparallel programming." Softw. Pract.
Exper. 6 (1976), 341-356.

KEEDY, J.L. "On structuring operating systems with
monitors." Aust. Comput. J. 10, 1 (Feb. 1978), 23-
27. Reprinted in Oper. Syst. Rev. 13,1 (Jan. 1979),
5-9.

KELLER, R.M. "Formal verification of parallel pro-
grams." Commun. ACM 19, 7 (July 1976), 371-
384.

KESSELS, J. L.W. "An alternative to event queues
for synchronization in monitors." Commun. ACM
20, 7 (July 1977), 500-503.

KIEBURTZ, a . S., AND SILBERSCHATZ, A. "Com-
ments on 'communicating sequential processes.'"
ACM Trans. Program. Lang. Syst. 1, 2 (Oct.
1979), 218-225.

KOHLER, W.H. "A survey of techniques for synchro-
nization and recovery in decentralized computer
systems." ACM Comput. Surv. 13, 2 (June 1981),
149-183.

LAMPORT, L. "Proving the correctness of nmlti-
process programs." IEEE Trans. Softw. Eng.
SE-3, 2 (March 1977), 125-143.

LAMPORT, L. "The 'Hoare logic' of concurrent pro-
grams." Acta Inform. 14, 21-37. (a)

LAMPOHT, L. "The mutual exclusion problem." Op.

• 41

56, SRI International, Menlo Parl~,. Calif., Oct.
1980. (b)

LAMPORT, L., AND SCHNEIDER, ~F. B. "The 'Hoare
logic' of CSP, and all that." Tech. Rep. TR 82-
490, Dep. Computer Sci., Cornell Univ., May,
1982.

LAMPSON, B.W. "Atomic transactions." In Distrib-
uted Systems--Architecture and Implementa-
tion, Lecture Notes in Computer Science, col. 105.
Springer-Verlag, New York, 1981.

LAMPSON, B. W., AND REDELL, D.D. "Experience
with processes and monitors in Mesa." Commun.
ACM 23, 2 (Feb. 1980), 105-11.7.

LAMPSON, B. W., AND STURGIS, H.E. "Crash recov-
ery in a distributed data storage system." Xerox
Palo Alto Research Center, Apr. 1979.

LAUER, H. C., AND NEEDHAM, R.M. "On the duality
of operating system struci~ares." In Proc. 2nd Int.
Syrup. Operating Systems (IRIA, Paris, Oct.
1978); reprinted in Oper. Syst. Rev. 13, 2 (Apr.
1979), 3-19.

LAURa, P. E., AND CAMPBELL, R.H. "Formal se-
mantics of a class of high level primitives for
coordinating concurrent processes." Aeta Inform.
5 (1975), 297-332.

LAUER, P. E., AND SHIELDS, M.W. "Abstract speci-
fication of resource accessing disciplines: Ade-
quacy, starvation, priority and interrupts." SIG-
PLAN Not. 13, 12 (Dec. 1978), 41-59.

LEHMANN, D., PNUELI, A., AND STAVI, J.
"Impartiality, justice and fairness: The ethics of
concurrent termination." Automata, Languages
and Programming, Lecture Notes in Computer
Science, col. 115. Springer-Verlag, New York,
1981, pp. 264-277.

LEVIN, G. M., AND GRIES, D. "A proof technique for
communicating sequential processes." Acta In-
form. 15 (1981), 281-302.

LISKOV, B.L. "On linguistic support for distributed
programs." In Proc. IEEE Syrup. Reliability in
Distributed Software and Database Systems
(Pittsburgh, July 21-22, 1981). IEEE, New York,
1981, pp. 53-60.

LISKOV, B. L., AND SCHEIFLER, R. "Guardians and
actions: Linguistic support for robust, distributed
programs." In Proc. 9th ACM Symp. Principles
of Programming Languages (Albuquerque, New
Mexico, Jan. 25-27, 1982). ACM, New York, 1982,
pp. 7-19.

LISTER, A. "The problem of nested monitor calls."
Oper. Syst. Rev. 11, 3 (July 1977), 5-7.

LOEtlR, K.-P. "Beyond Concurrent Pascal." In Proc.
6th ACM Syrup. Operating Systems Principles
(West Lafayette, Ind., Nov. 16-18, 1977). ACM,
New York, 1977, pp. 173-180.

LOMET, D.B. "Process structuring, synchronization,
and recovery using atomic transactions." In Proc.
ACM Conf. Language Design for Reliable Soft-
ware, SIGPLAN Not. 12, 3 (March 1977), 128-
137.

LYNCH, N.A. "Multilevel atomicity--A new correct-
ness criterion for distributed databases." Tech.

Computing Surveys, Vol. 15, No. !, March 1983

42 ° G. R. A n d r e w s a n d F. B. Schne ider

Rep. GIT-ICS-81/05, School of Information and
Computer Sciences, Georgia Tech., May 1981.

MAD, T. W., AND YEH, R.T. "Communication port:
A language concept for concurrent programming."
IEEE Trans. Softw. Eng. SE-6, 2 (March 1980),
194-204.

MISRA, J., AND CHANDY, K. "Proofs of networks of
processes." IEEE Trans. Softw. Eng. SE-7, 4
(July 1981), 417-426.

MISRA, J., CHANDY, K. M., AND SMITH, T.
"Proving safety and liveness of communicating
processes with examples." In Proc. Symp, Prin-
ciples of Distributed Computing (Ottawa, Can-
ada, Aug. 18-20, 1982). ACM, New York, 1982, pp.
201-208.

MITCHELL, J. G., MAYBURY, W., AND SWEET,
R. "Mesa language manual, version 5.0." Rep.
CSL-79-3, Xerox Paid Alto Research Center, Apr.
1979.

NELSON, B.J. "Remote procedure call." Ph.D. the-
sis. Rep. CMU-CS-81-119, Dep. of Computer Sci-
ence, Carnegie-Mellon Univ., May 1981.

NYGAARD, K., AND DAHL, O.J. "The development
of the SIMULA languages." Preprints ACM SIG-
PLAN History of Programming Languages Con-
ference, SIGPLAN Not. 13, 8 (Aug. 1978), 245-
272.

OwIcEI, S, S., AND GRIES, D. "An axiomatic proof
technique for parallel programs." Acta Inform. 6
(1976), 319-340. (a)

OWICKI, S. S., AND GRIES, D. "Verifying properties
of parallel programs: an axiomatic approach."
Commun. ACM 19, 5 (May 1976), 279-285. (b)

PARNAS, D.L. "On the criteria to be used in decom-
posing systems into modules." Commun. ACM 15,
12 (Dec. 1972), 1053-1058.

PARNAS, D.L. "The non-problem of nested monitor
calls." Oper. Syst. ReD. 12, 1 (Jan. 1978), 12-14.

PETERSON, G.L. "Myths about the mutual exclusion
problem." Inform. Process. Lett. 12, 3 (June
1981), 115-116.

REED, D.P. "Implementing atomic actions on de-
centralized data." ACM Trans. Comput. Syst. 1,
1 (Feb. 1983), 3-23.

REID, L. G. "Control and communication in pro-
grammed systems." Ph.D. thesis, Rep. CMU-CS-
80-142, Dep. of Computer Science, Carnegie-Mel.
Ion Univ., Sept. 1980.

REIF, J. H., AND SPIRAKIS, P.G. "Unbounded speed
variability in distributed communications sys-
tems." In Proe. 9th ACM Conf. Principles of
Programming Languages (Albuquerque, N. M.,
Jan. 25-27, 1982). ACM, New York, 1982, pp. 46-
56.

RITCHIE, D. M., AND THOMPSON, K. "The UNIX
timesharing system, Commun. ACM 17, 7 (July
1974), 365-375.

ROPER, T. J., AND BARTER, C.J. "A communicating
sequential process language and implementa-
tion." Softw. Pract. Exper. 11 (1981), 1215-1234.

SCHLICHTII~G, R. D., AND SCHNEIDER, F. B. "An
approach to designing fault-tolerant computing

systems." Tech. Rep. TR 81-479, Dep. of Com-
puter Sci., Cornell Univ., Nov. 1981,

SCHLICHTING, R. D., AND SCHNEIDER, F.B. "Using
message passing for distributed programming:
Proof rules and disciplines." Tech. Rep. TR 82-
491, Dep. of Computer Science, Cornell Univ.,
May 1982. (a)

SCHLICHTING, R. D., AND SCHNEIDER, F. B. "Un-
derstanding and using asynchronous message
passing primitives." In Proc. Syrup. Principles of
Distributed Computing (Ottawa, Canada, Aug.
18-20, 1982). ACM, New York, 1982, pp. 141-
147. (b)

SCHNEIDER, F. B. "Synchronization in distributed
programs." A CM Trans. Program. Lang. Syst. 4,
2 (Apr. 1982), 125-148.

SCHNEIDER, F. B., AND BERNSTEIN, A. J. "Sched-
uling in Concurrent Pascal." Oper. Syst. ReD. 12,
2 (Apr. 1978), 15-20.

SCHWARTZ, J. S. "Distributed synchronization of
communicating sequential processes." Tech. Rep.,
Dep. of Artificial Intelligence, Univ. of Edinburgh,
July 1978.

SHAW, A.C. The Logical Design of Operating Sys-
tems. Prentice-Hall, Englewood Cliffs, N. J., 1974.

SHAW, A.C. "Software specification languages based
on regular expressions." In W. E. Riddle and R.
E. Fairley (Eds.), Software Development Tools.
Springer-Verlag, New York, 1980, pp. 148-175.

SHIELDS, M. W. "Adequate path expressions." In
Proc. Int. Syrup. Semantics of Concurrent Com-
putation, Lecture Notes in Computer Science, vol.
70. Springer-Verlag, New York, pp. 249-265.

SILBERSCHATZ, A. "On the input/output mechanism
in Concurrent Pascal." In Proc. COMPSAC '77--
IEEE Computer Society Computer Software and
Applications Conference (Chicago, Ill., Nov.
1977). IEEE, New York, 1977, pp. 514-518.

SILBERSCHATZ, A. "Communication and synchroni-
zation in distributed programs." IEEE Trans.
Softw. Eng. SE-5, 6 (Nov. 1979), 542-546.

SILBERSCHATZ, A., KIEBURTZ, R. B., AND BERNSTEIN,
A . J . "Extending Concurrent Pascal to allow
dynamic resource management." IEEE Trans.
Softw. Eng. SE°3, 3 (May 1977), 210-217.

SOLOMON, M. H., AND FINKEL, R .A . "The Roscoe
distributed operating system." In Proc. 7th Symp.
Operating System Principles (Pacific Grove,
Calif., Dec. 10-12, 1979). ACM, New York, 1979,
pp. 108-114.

SOUNDARARAJAN, N. "Axiomatic semantics of com-
municating sequential processes." Tech. Rep.,
Dep. of Computer and Information Science, Ohio
State Univ., 1981.

SPECTOR, A.Z. "Performing remote operations effi-
ciently on a local computer network." Commun.
ACM 25, 4 (Apr. 1982), 246-260.

U.S. DEPARTMENT OF DEFENSE. Programming
Language Ada: Reference Manual, vol. 106, Lec-
ture Notes in Computer Science. Springer-Verlag,
New York, 1981.

VAN DE SNEPSCHEUT, J. L .A. "Synchronous corn-

Computing Surveys, Vol. 15, No. 1, March 1983

Concepts and Notations for Concurrent Programming

munication between synchronization compo-
nents." Inform. Process. Lett. 13, 3 (Dec. 1981),
127-130.

VAN WIJNGAARDEN, A., MAILLOUX, B. J., PECK, J. L.,
KOSTER, C. H. A., SINTZOFF, M., LINDSEY, C. H.,
MEERTENS, L. G. L. T., AND FISKER, R.
G. "Revised report on the algorithm language
ALGOL68."Acta Inform. 5, 1-3 (1975), 1-236.

WEGNER, P., AND SMOLKA, S.A. "Processes, tasks
and monitors: A comparative study of concurrent
programming primitives." IEEE Trans. Softw.
Eng., to appear, 1983.

WELSH, J., AND BUSTARD, D.W. "Pascal-Plus--An-
other language for modular multiprogramming."
Softw. Pract. Exper. 9 (1979), 947-957.

WELSH, J., AND LISTER, A. "A comparative study of
task communication in Ada." Soflw. Pract. Exper.
11 (1981), 257-290.

• 43

WETTSTEIN, H. "The problem of nested monitor
cells revisited." Oper. Syst. Rev. 12, 1 (Jan. 1978),
19-23.

WIRTH, N. "Modula: A language for modular multi-
programming." Softw. Pract. Exper. 7 (1977), 3-
35. (a)

WIRTH, N. "The use of ModulE." Softw. Pract. Ex-
per. 7 (1977), 37-65. (b)

WIRTH, 1NT. "Design and implementation of Modula."
Softw. Pract Exper, 7 (1977), 67-84. (c)

WIRTH, N. "Toward a discipline of real-time pro-
gramming." Commun. ACM 20, 8 (Aug. 1977),
577-583. (d)

WIRTH, N. Programming in Modula-2. Springer-
Verlag, New York, 1982.

WULF, W. A., RUSSELL, D. B., AND HABERMANN, A.
N. BLISS: A language for systems program-
ming. Commun. ACM 14, 12 (Dec. 1971), 780-790.

Received September 1982; final revision accepted February 1983

Computing Surveys, Vol. 15, No. 1,~Mareh 1983

