
Rigorous Software Development
Second Event-B Exercise sheet

Deadline: Dec. 20th 2019, 20:59

Manuel Carro

manuel.carro@upm.es

December 7th, 2019

1 Introduction

The goal of this exercise is to formally prove the correctness of an algorithm to perform
binary search in a sorted array. We want to know the position r of a value v which
we know is in a vector f that stores values in non-decreasing order (Section A). We
previously showed and proved correct (w.r.t. some invariants) an Event-B specification
which performs this search using (i) a random choice in the vector (Section B) and (ii)
a random choice in a shrinking window bounded by p and q (Section C).

2 Tasks in this exercise

We want to eliminate the non-determinism in the selection of r : we want r to be placed
in the point in the middle of p and q (approximately; when q −p is odd the midpoint
does not correspond to a position, but that should not be a problem). The rest is as
before: either p or q is updated depending on where f (r ) lies w.r.t. v .

Your tasks are:

1. Download and install RODIN.1 Remember to install the Atelier B provers. See

1I suppose you have already done it!

1

mailto:manuel.carro@upm.es


http://babel.ls.fi.upm.es/rsd/#rodin-tool

in the course web page and the instructions at

http://babel.ls.fi.upm.es/teaching/rsd/Slides/03-binary-search-refinement.pdf

In addition, the page

https://www3.hhu.de/stups/handbook/rodin/current/html/proving_perspective.html

has a good explanation of the meaning of every item in the proving perspective
— that should cover what we saw in the lecture on the refinement of the binary
search. I recommend reading it thoroughly.

2. Download the .zip file with the project up to the second version (there is a link
in the course web page) and import it into Rodin. See

https://www3.hhu.de/stups/handbook/rodin/current/html/sect0033.html

and the slides for instructions on how to import a project.

3. Generate your version of the second refinement with the selection policy men-
tioned above. It is possible to refine either BS_M0 or BS_M1. Refining BS_M1 should
leave fewer proofs to discharge, so that is my recommendation.2

There are two ways to do that:

• (Recommended) Have Rodin to generate a template for you and change it:

(a) Right click on BS_M1 (or BS_M1), select Refine, give the new machine a
name. The refined machine will be duplicated and all guards and ac-
tions will appear dimmed.

(b) If you need to edit any event, click on the extended keyword so that it
changes to not extended and you will be able to modify its code.

Initially, you will not see invariants or invariant-related proof obligations in
this refined machine — it is the same as previous one, and the invariants
from the previous machine still hold. You can add invariants if you think
they are necessary. Also, if you introduce new variables, you will have to add
new invariants for them.

2The guards can remain the same, so there is nothing to prove in that respect. The actions should
change, so a SIM(ulation) proof is necessary. Note the beauty that if the SIMulation of the actions in
BS_M2 is proved, then the invariants in BS_M1 are preserved by the actions in BS_M2, because these can
traverse only a subset of the states that BS_M1 does!

2

http://babel.ls.fi.upm.es/rsd/#rodin-tool
http://babel.ls.fi.upm.es/teaching/rsd/Slides/03-binary-search-refinement.pdf
https://www3.hhu.de/stups/handbook/rodin/current/html/proving_perspective.html
https://www3.hhu.de/stups/handbook/rodin/current/html/sect0033.html


• (Equally valid, basically same results, slightly more work) Create a new ma-
chine, declare that it refines BS_M1 adding a REFINES section (see machine
BS_M1), write the events that refine the previous events (you can use the
same names) and declare what event refines every new event.

4. Prove in Rodin the proof obligations not automatically discharged (those marked
in brown). I recommend repeating what I did in the binary search lecture to get
used to the interface of Rodin (which amounts to lassoing, instantiating, and us-
ing P0). Reversing the implication inside the universal quantifier appear helps,
but instantiating the correct part of left hand side is the key point.

Save the project after every discharged proof to update the proof status.

5. When all the proofs are discharged, export the project to a .zip file. See

https://www3.hhu.de/stups/handbook/rodin/current/html/sect0032.html

and the instructions in the slides for the 04/12/2019 session.

6. Check that you have exported it correctly:

• Temporarily rename the project you were working on.

• Import the project you just saved as explained before (follow

https://www3.hhu.de/stups/handbook/rodin/current/html/sect0033.html)

or the instructions in the slides for the 04/12/2019 session..

• Expand machines, check that all POs have been discharged.

7. Send it to me by email: manuel.carro@upm.es.

8. Deadline: Dec. 20th 2019, 20:59.

3

https://www3.hhu.de/stups/handbook/rodin/current/html/sect0032.html
https://www3.hhu.de/stups/handbook/rodin/current/html/sect0033.html
mailto:manuel.carro@upm.es


A Context: Axioms and constants
An Event-B Specification of BS C0

CONTEXT BS C0

CONSTANTS

n

f

v

AXIOMS

axm1: n ∈ N1

axm3: f ∈ 1 .. n→ N
axm4: ∀i·∀j ·(i ∈ 1 .. n ∧ j ∈ 1 .. n ∧ i ≤ j)⇒ f(i) ≤ f(j)

axm5: v ∈ ran(f)

END

09.11.2017 10:50 Page 1 of 1

4



B Random selection of a location within the vector
An Event-B Specification of BS M0

MACHINE BS M0

SEES BS C0

VARIABLES

r

INVARIANTS

inv1: r ∈ dom(f)

EVENTS

Initialisation

begin
act1: r :∈ 1 .. n

Should be dom(f) but that will force us to use PP to prove FIS. For simplicity we leave it like

this.

end

Event final 〈ordinary〉 =̂

when
grd2: f(r) = v

then
skip

end

Event progress 〈anticipated〉 =̂

when
grd1: f(r) 6= v

then
act1: r :∈ dom(f)

end

END

10.11.2017 09:35 Page 1 of 1

5



6



C Random selection of location place within a shrinking
window

An Event-B Specification of BS M1

MACHINE BS M1

REFINES BS M0

SEES BS C0

VARIABLES

r

p

q

INVARIANTS

inv1: p ∈ 1 .. n

inv2: q ∈ 1 .. n

inv3: r ∈ p .. q

inv4: v ∈ f [p .. q]

VARIANT

q − p

EVENTS

Initialisation

begin
act1: p := 1

act2: q := n

act3: r :∈ 1 .. n

end

Event final 〈ordinary〉 =̂

refines final

when
grd2: f(r) = v

then
skip

end

Event inc 〈convergent〉 =̂

refines progress

when
grd1: f(r) < v

then
act2: p := r + 1

act3: r :∈ r + 1 .. q

end

Event dec 〈convergent〉 =̂

refines progress

when
grd1: f(r) > v

then
act1: q := r − 1

act2: r :∈ p .. r − 1

end

END

26.11.2017 21:37 Page 1 of 1

7


	Introduction
	Tasks in this exercise
	Context: Axioms and constants
	Random selection of a location within the vector
	Random selection of location place within a shrinking window

