
0018-9162/06/$20.00 © 2006 IEEE October 2006 57P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

C O V E R F E A T U R E

absence of bugs in their software because they wouldn’t
be valid. The cost of these software bugs is staggering.
According to a report from the US Department of
Commerce’s National Institute of Standards and
Technology, the cost to the US economy could reach
$60 billion a year. You can multiply this by three to get
an estimate of the worldwide cost, a total that exceeds
the gross national product of many countries.

What’s to be done about this state of affairs? Can we
ever expect software to come with warranties of fitness
for purpose? In our vision of the future, we would expect
exactly that.

A growing number of academic and industrial
researchers believe that the way to revolutionize the pro-
duction of software is by using formal methods, and
they also believe that doing so is now feasible. In the
near future, researchers will use formal methods to give
software, even noncritical software, meaningful func-
tion and performance guarantees, and this will turn out
to be the cheapest way to do it.

Given the right computer-based tools, the use of for-
mal methods will become widespread, transforming the
practice of software engineering. The international com-
puter science community recently committed itself to
making this a reality within the next 15 to 20 years.

WHY NOW?
Theoretical computer science is a mature scientific dis-

cipline, beginning perhaps with the publication of Kurt
Gödel’s incompleteness theorem 75 years ago, when the

The computer science research community is collaborating to develop verification

technology that will demonstrably enhance the productivity and reliability with which

software is designed, developed, integrated, and maintained.

Jim Woodcock
University of York

“W e guarantee that our software will per-
form substantially in accordance with
the accompanying materials for a
period of 90 days from the date of
receipt, although the software may

contain errors and the installation may not complete
successfully.”

This is a typical software warranty, which is essen-
tially useless. Industry’s other products come with an
implied warranty of fitness for purpose, but not soft-
ware. Ironically, while a piece of software might not
have a proper warranty, its distribution CD probably
does: If the CD is badly scratched or otherwise faulty,
the supplier will replace it free of charge.

Tony Scott, the chief technology officer of General
Motors, spends more than $3 billion annually on hard-
ware and software. He says that his company would go
out of business if it sold its cars the way we sell our soft-
ware. In an eWeek interview (www.eweek.com), Scott
called on software suppliers to offer a warranty that
would cover any error that causes harm to a company’s
business. Thus, the supplier could be held accountable
if it ships an application with a known security prob-
lem that subsequently crashes the purchaser’s comput-
ers or affects its products. Currently, a customer can’t
hold the supplier liable for financial damages. Scott
would want the supplier to fix the software and com-
pensate the customer for the harm to its business.

Bugs have become an unpleasant fact for software
producers. They don’t offer warranties guaranteeing the

First Steps in the
Verified Software
Grand Challenge

58 Computer

only existing general-purpose computers were Turing
machines and electronics was in its infancy. Software
development theories—widely studied as formal soft-
ware engineering methods—have exploited fundamen-
tal results in computation theory, algorithm analysis,
and programming language semantics. Developers use
formal methods to produce precise documentation of
software’s purpose and to predict its behavior in prac-
tice. They also use these methods to document the inter-
face to a software system or
component as a contract between
client and supplier. This documen-
tation is amenable to rigorous math-
ematical analysis for compliance.

Using formal methods offers the
opportunity to experiment with
models, trying to find the best way
to structure abstract descriptions of
complicated systems. When done
successfully, this provides a clearer
picture of what the system is trying to achieve. This in
turn leads to a cleaner architecture, which makes it eas-
ier for clients to use and understand the system.

After more than 25 years of research and application,
formal methods have reached maturity. The Web con-
tains a snapshot of the current state, providing a wealth
of online resources. Universities around the world rou-
tinely teach formal methods, and a wide range of indus-
trial projects use them successfully. What has changed
recently is the arrival of a new wave of research using
powerful mathematics hidden behind the scenes in pro-
gram analysis and model-checking tools.

As an example, consider Microsoft’s Static Device
Verifier (SDV) project. At one time, Microsoft’s flagship
product, Windows—which is used on most PCs world-
wide—was infamous because of its frequent crashes.
SDV forms a small but interesting part of a large effort
to improve Windows’ reliability. Analysis revealed that
device driver failures cause 85 percent of all Windows
XP crashes. Mastering the API used to program device
drivers is a complex and difficult task, and third-party
manufacturers, who are not Windows kernel experts,
write most device drivers.

To check whether a device driver uses the API prop-
erly, the SDV abstracts a small part of the driver code
as a Boolean program, with the bits representing impor-
tant observations about driver API usage. SDV then per-
forms symbolic model checking for conformance to an
abstract notion of correct API usage. For Microsoft to
release SDV to third-party developers, it had to become
a push-button tool, which thus embodies a large amount
of domain knowledge.

SDV is a good example of sophisticated theory hid-
den from programmers in a usable tool. A device driver
can fail for many reasons, and SDV doesn’t try to find
them all—it doesn’t check array bounds or do perfor-

mance checking. The result is a well-focused analysis
tool that eliminates a certain class of error: It’s like a
very advanced kind of type checking.

A GRAND CHALLENGE
The Verified Software Grand Challenge is an ambi-

tious, international, long-term research program for
achieving a substantial and useful body of code that has
been formally verified to the highest standards of rigor

and accuracy. Tony Hoare initiated
the Grand Challenge by calling on
the computer science community to
develop an integrated, automated
toolset that developers can use to
establish the correctness of soft-
ware. A workshop on verified soft-
ware was held in Menlo Park,
California, in February 2005, and
an IFIP Working Conference on
Verified Software: Theories, Tools,

and Experiments was held in Zurich in October 2005.
The Grand Challenge project is a 15-year research

program to demonstrate the feasibility of using formal
verification technology in industrial-scale software
development. The program has three objectives. It will

• establish a unified theory of program construction
and analysis;

• build a comprehensive and integrated suite of tools
that support verification activities, including specifi-
cation, validation, test-case generation, program
refinement, program analysis, program verification,
and runtime checking; and

• collect a repository of formal specifications and ver-
ified codes.

These programs will continue to evolve as verified code,
and they may even replace their unverified counterparts
in actual use.

Verification should be interpreted in a wide sense. There
are generic properties of interest apart from total correct-
ness, such as absence of runtime errors, data consistency,
timing behavior, accuracy, type correctness, termination,
translation validation, serializability, memory leakage,
information hiding, representation independence, and
information flow. There are also nonfunctional properties
such as dependability and aspects of safety and security.

The goal for the verified software challenge is to
develop verification technology to a point where it
demonstrably enhances the productivity and reliability
with which software is designed, developed, integrated,
and maintained. This work will impact related areas of
software development including software engineering,
safety-critical systems, mathematical modeling, and arti-
ficial intelligence.

In the past, many people have said, often quite justi-

After more than

25 years of research

and application,

formal methods

have reached maturity.

October 2006 59

fiably, that we can’t verify industrial software cost-effec-
tively. At the end of the project, we’ll be able to tell our
skeptics, “You can’t say anymore that it can’t be done.
Here, we’ve done it!”

PLANNING AND ROADMAP
The challenge’s long-term goal is to ensure that sci-

ence and practice converge, and that we routinely use
and teach the principles of software specification, design,
architecture, language, and seman-
tics. In 15 years we’ll have a well-
developed theory, a comprehensive
and powerful suite of tools, and a
compelling body of experimental
evidence demonstrating that we can
engineer reliable software cost-effec-
tively using formal verification tech-
niques.

In the first five years, researchers
will lay the foundations for the
work ahead through development of mature tools and
standards. To do this, we must start by building coop-
erating communities of researchers who share the same
ideals and objectives and are willing to collaborate and
compete to achieve them. These communities will
develop a research agenda for their specialist areas by
tackling initial case studies that demonstrate the state
of the art and highlight the shortcomings of current tech-
nologies. In the longer term, we’ll see a closer engage-
ment with industry and the development of a broader
user base.

Our most important resource will be a joint research
roadmap that establishes a long-term, coordinated,
incremental research program. This will accelerate scal-
ing of the performance, robustness, and functionality of
basic verification technology. It will integrate and embed
this technology in program development and verifica-
tion methods and environments. It will ensure the rele-
vance and inclusion of basic ideas in university curricula.

We will achieve these objectives through pilot projects
that will evaluate feasibility and guide technology devel-
opment, and through large-scale experiments that bench-
mark the technology. The challenges in the roadmap will
be concrete, realistic, measurable, and verifiable, and we
can achieve this only through international cooperation.

VERIFIED SOFTWARE REPOSITORY
An early step toward the realization of the Verified

Software Grand Challenge will be the creation of a
Verified Software Repository. The Repository will main-
tain the evolving collection of state-of-the-art tools,
together with a representative portfolio of real programs
and specifications for testing, evaluating, and develop-
ing the tools. It will contribute initially to the inter-
working of tools, and eventually to their integration. It
will promote the transfer of relevant technology to indus-

trial tools and into software engineering practice. It will
build on the recognized achievements of practical for-
mal development of safety-critical computer applications
and contribute to the international initiative in verified
software, covering theory, tools, and experimental vali-
dation. The Repository’s most important contribution is
that it will serve as a means of accumulating results and
assessing progress throughout the project.

The Repository will be distributed among several sites
around the world, each reflecting
the particular interests and needs of
local scientists in their contribution
to the international effort. Its goals
will be to

• accelerate the development of
verification technology through
the development of better tools,
greater interoperability, and real-
istic benchmarks;

• provide a focus for the verification community to
ensure that the research results are relevant, replica-
ble, complementary, and cumulative, and promote
meaningful collaboration between complementary
techniques;

• provide open access to the latest results and educa-
tional material in areas relevant to verification
research;

• collect a significant body of verified code (specifica-
tions, derivations, proofs, implementations) that
addresses challenging applications;

• identify key metrics for evaluating the scale, efficiency,
depth, amortization, and reusability of the technology;

• enumerate challenge problems and areas for verifica-
tion, preferably ones that require multiple techniques;

• identify—and eventually standardize—formats for
representing and exchanging specifications, programs,
test cases, proofs, and benchmarks, to support tool
interoperability and comparison; and

• define quality standards for the contents of the
repository.

The Repository will form the hub of the project wheel.
This is where researchers conduct the experiments that
will drive the theoretical and technological innovations
needed for the challenge project to be successful. The
research community will be the force that drives the hub,
and the challenge problems will be what motivate the
community. Researchers have already proposed suitable
problems, including verifying the Apache Web server, a
reference implementation of the TCP/IP stack, and the
Linux kernel.

MONDEX CASE STUDY
Researchers began the technical work on the Grand

Challenge in January 2006 with the Mondex case study,

Our most important resource

will be a joint research

roadmap that establishes

a long-term, coordinated,

incremental research program.

60 Computer

a yearlong pilot project. This short project is intended to
demonstrate how different research groups around the
world can collaborate and compete in scientific experi-
ments and to generate artifacts to populate the
Repository. We chose as our problem the verification of
a key property of the Mondex smart card, a 10-year-
old product, to examine the state of the art in proof
mechanization.

Mondex is an electronic purse hosted on a smart card,
one of a series of products developed to the high-assur-
ance Information Technology Security Level E6 standard
by a consortium led by NatWest, a
United Kingdom high-street bank.

When you want to pay someone
some money, you take some elec-
tronic cash out of your electronic
purse and deposit it in theirs. To do
this, the two purses interact with
each other using a communications
device to exchange the required
value. Strong guarantees are needed
to ensure that such transactions are
secure, in spite of power failures and mischievous
attacks, so that electronic cash can’t be counterfeited.

Completely distributed transactions compound the
problem: There’s no centralized control. Once released
into the field, each purse must act individually, without
any external arbitration, to ensure the security of all its
transactions. The card must implement all security mea-
sures locally, without real-time external audit logging
or monitoring.

Such products are seriously security critical. Needing
convincing assurance of correctness, NatWest decided
to use formal methods in its development process. The
UK has a lot of experience with using Z—one of the
notations recommended by the E6 evaluators—in the
development of critical systems, so they chose it as the
notation for modeling the Mondex protocols and prov-
ing them correct.

Susan Stepney and David Cooper of Logica carried
out the work with consultancy from the University of
Oxford. Together the team developed formal models of
the implemented system and the abstract security pol-
icy, providing rigorous proofs by hand that the system
design possessed all the required security properties.

The abstract security policy specification is about 20
pages of Z. The concrete system specification, including
the n-step value-transfer protocol, is about 60 pages.
The verification, presented at a level of detail suitable
for external evaluation, is about 200 pages of refinement
proof plus another 100 pages of derivation of the par-
ticular refinement rules the project needed.

Since the proof ran to several hundred pages,
Stepney and Cooper had to carefully structure it to
make sure it could be understood, either by a third
party or by the original proof team later on. The var-

ious groups now working on Mondex have much
appreciated this careful structuring.

The original proof was vital in successfully getting the
required certification. It was also useful in finding and
evaluating different models of the smart card. For exam-
ple, during the proof, the team made a key modeling dis-
covery of classifying certain partially completed trans-
actions as definitely aborted or maybe aborted. This
clarified the specification and the team’s understanding
of the protocol, and it probably would not have been
discovered without doing the proof.

Finding the right abstraction
meant that the security property
could be stated precisely, and it
explained why the protocol was
secure. The value amount in a purse
partway through the transfer proto-
col is not obvious. By having an
abstract definition of the transfer, it
was possible to state precisely the
balance and thus show that the pro-
tocol could only create value, not

transfer it. This description is useful even for someone
who does not intend to read the Z specifications.

The original proof revealed a bug in the proposed
implementation of a secondary protocol. The failed
proof and the understanding of what had gone wrong
gave a convincing counterexample that the protocol was
flawed, and led to changing the design to correct it. The
third-party evaluators also found a bug: One of the
proofs needed to be tightened up to remove an undis-
charged assumption.

A commercially sanitized version of the Mondex
documentation is publicly available. It contains the Z
specifications of the security properties, an abstract spec-
ification, an intermediate-level design, and a concrete
design, with handwritten correctness proofs of security
and conformance of each design level. During the origi-
nal project, mechanizing the proofs using a theorem
prover for Z was not a question. Significantly, some
strongly believed that mechanizing such a large proof
cost-effectively was beyond the state of the art for the
tools then available. Our challenge in this initial pilot
project is to investigate the degree of automation that the
correctness proofs can now achieve.

Several groups took up the Mondex challenge. They
proposed using the following formalisms: Alloy at the
Massachusetts Institute of Technology; Event-B at the
University of Southampton; OCL (object constraint lan-
guage) at the University of Bremen; Perfect Developer
at Escher Technologies; Raise (rigorous approach to
industrial software engineering) at the United Nations
University, Macao, and the Technical University of
Denmark; and Z at the University of York. They agreed
to work for one year without funding. Separately, a
group at the University of Augsburg worked on the ver-

Our challenge is to

investigate the degree

of automation that

the correctness proofs

can now achieve.

ification using the Karlsruhe interactive verifier (KIV)
and abstract state machines (ASMs).

Two distinct approaches quickly emerged in the early
stages of the project. The archaeologists wanted to pro-
ceed by making as few changes as possible to the origi-
nal documentation. According to this approach, these
models have been very successful; surely, it would be
cheating to change them just to make the verification
easier? And if we did change the model and then found
some bugs, how would we know that they had anything
to do with the original specification?

The technologists, on the other
hand, wanted to use the best proof
technology currently available, but
these new tools don’t work for Z.
They had two choices, translate the
existing models into new languages
or create new models better suited
to new tools.

Z at York
At the University of York, I

worked with Leonardo Freitas to tackle the Mondex
problem using the Z/Eves theorem prover. As archaeol-
ogists, our main objective was to mechanize all proofs,
while remaining as faithful as possible to the original
formalization.

We worked directly with the existing Z specifications
and made changes in only two places to make explicit
some information about finiteness. We succeeded in
mechanizing the first 13 chapters of the monograph
detailing the original work, about half of the total, and we
expect to complete the remaining chapters in the near
future. As this is not a full-time activity, the initial work
took about a month to complete. We estimate that this
initial effort took about seven working days using Z/Eves.

In addition to using the Z specifications, we also found
the informal proofs useful. They indicated which theo-
rems to prove and told us how to go about proving them
using Z/Eves, which is not usually as obvious as it
sounds. The later parts of the development have partic-
ularly thorough proofs that we followed closely in the
mechanization.

Proving the correctness of the description of the
Mondex protocols required proving about 140 verifi-
cation conditions, and the difficulty of the proofs varies
considerably. On average, each VC requires about five
proof steps. Because Z/Eves has a considerable amount
of built-in automation, some steps require little interac-
tion with the prover. Other parts of proofs are repeti-
tive steps from previous proofs, which can be abstracted
into general lemmas with some effort. Some intermedi-
ate steps require familiarity with the way that Z/Eves
works internally, while others are creative steps requir-
ing domain knowledge, such as instantiating quantified
variables. Finally, the process requires some general the-

ories about language constructs (mostly finiteness
results), which are sometimes hard to prove. In all, there
are about 200 trivial steps, 400 intermediate ones, and
100 requiring creativity.

The work revealed some bugs. In the intermediate
design level, missing properties mean that the system
permits operations involving nonauthentic purses.

Our preliminary findings are very encouraging. The
Z/Eves theorem prover hasn’t changed over the past 10
years, so our mechanization could have been carried out
during the original project, and the effort required

would have been a matter of weeks,
not months. What was lacking was
motivation and expertise, not proof
technology.

Raise at Macao and DTU
Chris George from the United

Nations University, Macao, and
Anne Haxthausen from the Tech-
nical University of Denmark used
the Raise method and its specifica-

tion language, RSL, which is inspired by the Vienna devel-
opment method, communicating sequential processes
(CSP), and ACT-ONE. Developers use RSL to express
high-level abstract specifications as well as low-level
designs, including using explicit imperative programming
constructs such as loops. To verify RSL specifications,
developers translate them into a prototype verification
system (PVS).

The initial RSL specifications were transliterations of
their Z counterparts, but the researchers soon felt inhib-
ited by this. Because they weren’t the specifications the
researchers would have written most naturally in RSL,
mechanizing them was awkward. They quickly changed
course and created their own models directly in RSL.

They defined three levels of specifications. The
abstract level describes Mondex simply as a problem in
accounting. There are no purses or protocol messages;
there are just three bottom-line values and some abstract
operations that transfer money appropriately between
them. At the middle level, there are abstract purses and
concrete operations, but no details of the mechanisms
that preserve the asserted invariant about the overall
value not increasing. At this level, each operation is
proved correct with respect to the abstract specification.
Finally, the concrete level gives full details of the value-
transferring protocol, and each operation is proved to
implement its middle version.

The current specification is the tenth version, com-
prising about 2,200 lines of RSL in 13 files, with 366
proofs, half of which were proved automatically. Some
proofs were particularly difficult. A typical invariant
proof for the concrete level is about 300 prover com-
mands (there are 11 of these proofs). Proving that the
concrete invariant implied the abstract one was difficult

October 2006 61

The current specification is the

tenth version, comprising about

2,200 lines of RSL in 13 files, with

366 proofs, half of which were

proved automatically.

62 Computer

(150 prover commands). Proving that some sets defined
by comprehension are finite also was difficult, a diffi-
culty that the Z/Eves group also encountered.

The large amount of reworking of models was a fea-
ture of the original Mondex project. By starting afresh,
the RSL group didn’t benefit from using the modeling
details that the original Mondex team had carefully
worked out.

The biggest problem the group experienced with
automating the proofs in RSL was identifying a suitable
invariant. First, they would propose an invariant, then
they would carry out a proof that the operations pre-
served at a particular level. Next,
they would try to prove refinement
to the next level, only to discover
that the proposed invariant was too
weak. Then they would find a
stronger invariant that let them
complete the refinement proofs, but
then they would discover that it was
too strong, and they couldn’t prove
that it really was invariant at the
higher level. So they would weaken
it again, only to find that the refinement proofs no longer
worked. Thus, they were back where they started.
Eventually, they were successful in finding the right
invariant, but it’s interesting to think how delicate the
proofs are.

The RSL models have many large proofs with similar
structure, and it’s tempting to abstract common lemmas.
Although it seems worthwhile to generalize a typical
proof as a reusable tactic, writing good tactics is difficult.
One incautious grind command in PVS eventually gen-
erated 1,580 subgoals.

The RSL group turned out to be technologists, pre-
ferring to construct entirely new models more suitable
for their modeling and verification technology.

Perfect Developer at Escher
UK-based Escher Technologies chose to use Perfect

Developer, a tool for the rigorous development of com-
puter programs, starting from a formal specification and
refining to code. PD supports the correctness-by-con-
struction paradigm, in which static analysis verifies com-
ponent interfaces to ensure that the components will
strictly conform to their contracts at runtime. This work
used the Perfect Specification Language, which has an
object-oriented style, producing code in both Java and
C++.

Escher researcher David Crocker wanted to achieve a
fully automatic proof of the Mondex case study and to
produce an implementation in Java. As a side effect, he
wanted to learn more about how best to represent sys-
tem-level specifications in Perfect and to understand and
then overcome any limitations of the PD prover.
Although this clearly marks him as a technologist,

because the Perfect specifications are recognizable as
translations of the original Z specifications, the model
is faithful. Since the PD prover is fully automatic, the
details of proofs are completely hidden from the user
and thus don’t obviously follow the originals.

The first step was to translate the concrete model from
Z to PD. Crocker had to revise the refinement steps to
make them more suitable for PD. Where PD did not auto-
matically discharge the verification conditions, it pro-
vided additional assertions as hints, and where necessary,
the PD team enhanced the prover. Finally, PD generated
working code for the purse and other components.

Instead of starting from an atomic
abstraction of the protocol, the PD
team wanted to recognize that trans-
actions are fundamentally non-
atomic, and instead reformulated the
security properties to consider this.
The particular problem that they
needed to solve was to account for
value that has been debited from a
sending purse, but has not yet been
credited to the intended recipient. If

the recipient is still expecting it, the transaction is in tran-
sit; if the recipient has recorded the transaction in its
exception log, it is lost.

Currently, PD generates 213 verification conditions
and proves 191 of them automatically. Some of the 22
unproven VCs are actually requirements on the envi-
ronment; others are due to prover limitations. There are
about 550 lines of Perfect, and the proof run takes about
six hours. PD discharges all successful VCs in less than
six minutes. The team spent about 60 hours on the
project.

KIV at Augsburg
Led by Gerhard Schellhorn, the team from the

University of Augsburg can claim the prize of being the
first to mechanize the entire Mondex proof. They used
the KIV specification and verification system and
demonstrated that even though the handmade proofs
were rigorous, they could still find small errors. They
used ASM to provide an alternative formalization of the
communication protocol. They are also technologists,
but with a close eye on archaeology, as the original work
clearly inspired the models and proofs.

The Augsburg team mechanically verified the full
Mondex case study in KIV, except for the operations
that transcribe failure logs from a smart card to a cen-
tral archive. These are orthogonal to the protocol for
money transfer. Z’s relational approach is quite differ-
ent from ASMs’ operational flavor, and the two refine-
ment theories have their differences. The Augsburg
group decided to mimic the data refinement proofs faith-
fully to succeed in verifying the challenge, so they for-
malized Z’s underlying data refinement theory.

Although it seems

worthwhile to generalize

a typical proof as a reusable

tactic, writing good tactics

is difficult.

The Augsburg group completed their work in four
weeks. Of course, the level of expertise with formal ver-
ification influences the time needed for verification in
general and with the KIV system in particular. The group
required a week to familiarize themselves with the case
study and to establish the initial ASMs. They took
another week to verify the essential proof obligations of
correctness and invariance for the ASM refinement.
Specifying the Mondex refinement theory and general-
izing the proof obligations to cope with invariants took
another week. Finally, proving the data refinement and
polishing the theories for publication took another week.

The existence of a nearly correct
refinement relation helped to com-
plete the work in four weeks.
Usually, finding invariants and
incrementally refining relations
takes more time than verifying the
correct solution. On the other hand,
the group believes that sticking to
ASM refinement would have short-
ened the verification time. The main
data proofs for the Mondex refine-
ment consist of 1,839 proof steps with 372 interactions.

The Augsburg work is interesting, both technically
and organizationally. These researchers became aware of
the challenge after other groups had started their work,
and they completed their mechanization independently.
This is limited but encouraging evidence that the verifi-
cation community is keen to take up the challenges we’re
proposing.

NEXT STEPS
The Mondex case study shows that the verification

community is willing to undertake competitive and col-
laborative projects, and that there is value in doing so.
We call on other researchers and tool builders to join
the project by reusing the Mondex example.

A series of pilot projects of increasing scope and com-
plexity will follow the Mondex project. An ideal pilot
project has the following characteristics:

• It is of sufficient complexity that traditional meth-
ods, such as testing and code reviews, are inadequate
to establish its correctness.

• It is of sufficient simplicity that specification, design,
and a dedicated team can complete the verification in
two years.

• It will have an impact beyond the verification com-
munity.

• Existing documentation is freely available.
• It is amenable to different approaches.

Rajeev Joshi and Gerard Holzmann from NASA’s Jet
Propulsion Laboratory have proposed a verifiable file
store as the next pilot project. This challenge satisfies

the criteria given for ideal pilot projects:

• Many widely used and heavily tested file systems still
contain serious bugs that can cause disastrous con-
sequences, including deletion of the root directory.

• Most modern file systems conform to the Posix stan-
dard, and they use well-understood data structures
and algorithms. This gives us confidence that a mod-
est-sized team could accomplish the work within
two years.

• Because file systems organize most electronic data,
their correctness is of great importance when using

computers.
• There is plenty of open source doc-

umentation for today’s file systems.
• Researchers can approach the

project in different ways: They can
design a new file system from
scratch using refinement or verify
an existing open source file sys-
tem. Model checking and theorem
proving are both applicable.

The challenge is to produce the following: a formal
behavioral specification of the functionality that the file
system provides; a list of assumptions made about the
underlying hardware; and a set of invariants, assertions,
and properties concerning key data structures and algo-
rithms in the implementation.

Posix uses careful informal prose to describe the
behavior of functions, such as create, open, read, and
write. Thus, the first task in the pilot project will be to
capture a formal specification of the relevant parts of
the standard. There are some existing partial formal-
izations, such as Carroll Morgan and Bernard Sufrin’s Z
specifications of the Unix filing system1 and the Synergy
file system from William R. Bevier and colleagues.2

These efforts might be useful departure points for devel-
oping a more complete specification.

Providing a rigorous formal statement of the file sys-
tem’s properties, especially its robustness with respect to
power failure, requires relying on certain behavioral
assumptions about the underlying hardware. To make the
file system useful, researchers must be precise about mak-
ing assumptions regarding typical hardware, such as hard
drives or flash memory. Ideally, the file system will be
usable with different types of hardware, perhaps provid-
ing different reliability guarantees. Performance concerns
dictate using caches and write buffers, which increase the
danger of inconsistencies in the presence of concurrent
thread accesses and unexpected power failures.

The implementation’s proof of correctness will be for-
mal descriptions of design properties, such as data struc-
ture invariants, annotations describing locking protection
of data, and pre- and postconditions for library functions.
Most typical file systems require using many common

October 2006 63

The first task in the pilot

project will be to capture

a formal specification

of the relevant parts

of the standard.

64 Computer

data structures such as hash tables, linked lists, and search
trees. The file system’s proof of correctness will result in
the development of libraries of formally stated properties
and proofs of these data structures that will be useful in
other verification efforts. These will be additional com-
ponents that are useful for the Repository.

Joshi and Holzmann have a long-term task at JPL to
solve the problem of building reliable software using
automated verification tools rather than traditional ad
hoc processes. As part of this task, they’re building a
reliable file system to use flash memory for use as non-
volatile storage on board future space missions. Flash
memory is useful for this purpose because it has no mov-
ing parts, consumes low power, is easily available, and
has been used on several recent NASA missions, such as
the Mars Exploration Rovers and Deep Impact. Building
a robust flash file system, however, is a nontrivial task.

The problem is compounded by certain faults that
must be tolerated, such as arbitrary bit flips, blocks that
unexpectedly become permanently unusable, and lim-
ited block lifetimes (typically 100,000 uses). In addition,
a flash file system written for use on a spacecraft must
obey additional constraints; for example, flight software
typically is allowed to allocate memory only during
initialization.

A wareness is growing in industry that something
must be done about software reliability. Bill Joy,
Sun’s cofounder and former chief scientist, said, “I

have a few more things I want to do: I still think the tools
we have for building reliable software are inadequate”
(CRN, Nov. 1999). The International Technology
Roadmap for Semiconductors is an assessment of its
industry’s technology requirements that is intended to
ensure continued performance enhancements in inte-

grated circuits. The 2005 roadmap states, “Without
major breakthroughs, verification will be a nonscalable,
show-stopping barrier to further progress in the semi-
conductor industry.”

What evidence do we have that large software com-
panies will take any notice of this? Bill Gates described
his company’s progress in the area in a keynote address
at the WinHec conference in 2002. Gates said, “software
verification … has been the Holy Grail of computer sci-
ence for many decades; but now in some very key areas,
for example, driver verification, we’re building tools that
can do actual proof about the software and how it works
in order to guarantee reliability.”

This article describes the first few steps for the Verified
Software Grand Challenge. If you want to get involved,
visit http://qpq.csl.sri.com and join us. You can find
more information by visiting http://vstte.ethz.ch or by
Googling us. ■

References

1. C. Morgan and B. Sufrin, “Specification of the Unix Filing
System,” IEEE Trans. Software Eng., Feb. 1984, pp. 128-142.

2. W.R. Bevier, R. Cohen, and J. Turner, A Specification for the
Synergy File System, tech. report TR-120, Computational
Logic Inc., 1995.

Jim Woodcock is the Anniversary Professor of Software
Engineering in the Department of Computer Science, Uni-
versity of York. His research interests include formal meth-
ods, unifying theories of programming, software
archaeology, and large-scale industrial applications. Wood-
cock received a PhD in computation from the University of
Liverpool. He is a Fellow of the British Computer Society
and an executive member of the UK Computing Research
Committee. Contact him at jim@cs.york.ac.uk.

www.computer.org/join/grades.htm

GIVE YOUR CAREER A BOOST ■ UPGRADE YOUR MEMBERSHIP

Advancing in the IEEE Computer Society can elevate your standing in
the profession.

Application to Senior-grade membership recognizes
✔ ten years or more of professional expertise

Nomination to Fellow-grade membership recognizes
✔ exemplary accomplishments in computer engineering

REACH HIGHER

