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Abstract. We argue that formal modeling should be the starting point for any serious development
of computer systems. This claim poses a challenge for modeling: at first it must cope with the
constraints and scale of serious developments. Only then itis a suitable starting point. We present
three techniques, refinement, decomposition, and instantiation, that we consider indispensable for
modeling large and complex systems. The vehicle of our presentation is Event-B, but the techniques
themselves do not depend on it.
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1. Introduction

It is our belief that the people in charge of the development of large and complex computer systems must
adopt a point of view shared by all mature engineering disciplines, namely that of using an artifact to
reason about their future system during its construction. In these disciplines, people useblue-prints(in
the large sense of the term) which allows them to formally reason during the very construction process.

Most of the time, in our discipline, we do not use such artifacts. This results ina very heavy testing
phase on the final product, which is well known to happen quite often too late, especially, to correct
design flaws. The blue-print drawing of our discipline consists ofbuilding modelsof our future systems.
But in no way is the model of a program the program itself. For the simple reason that the model, like
the blue-print, must not be executable: you cannot drive the blue-printof a car. But the model of a
program (and more generally of a complex computer system), although not executable, allows you to
clearly express and identify the properties of the future system and prove that it satisfies them.

∗This work has been partly supported by IST FP6 Rigorous Open Development Environment for Complex Systems (RODIN,
IST-511599) Project.
†Address for correspondence: ETH Zurich, Switzerland
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Building models of large systems however is not an easy task. First of all, because, we lack expe-
rience in this activity. Such a discipline does not exist per se in Academia, where quite often model
building is confused with using a very high level programming language where execution is thus still
present. Moreover, reasoning means ensuring that the properties which define the future system can be
provedto be consistent in its model and kept while enhancing it until it reaches a status which is close
to the final product. As a matter of fact, doing a proof on a model replaces the (impossible) execution
of a test with a technique of far more relevance at this stage. But again, themastering of formal proving
techniques has not entered yet the standard curriculum of our discipline. As a consequence, people are
quite reluctant to adopt such an approach, simply because they do not know how to do it.

Another difficulty in model building, which is the one tackled in this paper, is dueto the fact that
modeling a large and complex computer system results in a large and complex model. As proofs will be
our preferred way to reason about models, it is thus clear that such proofs will be more and more difficult
to perform as models become inevitably larger and larger.

The aim of this paper is to propose and studythree techniqueswhich may be useful to solve this
difficulty while building large models. As we shall see, these techniques are not new in that they are
already used in one way or another in certain programming methodologies, which is not very surprising.
The first one,refinement, is already well known for many years in program design [24] although itis, in
our opinion, not used as it would deserve to be. The second one,decomposition[25], is also well known
and quite natural in the programming activity: when a computer program becomes too big, then cut it
into smaller pieces, which hopefully will be more tractable. In programming, however, decomposition
is often carried out in the reverse direction as composition. There is a difference in the way we think
about a system. By composing the system we create a system, whereas, by decomposing the system is
already there including its properties. The third one,generic instantiation[12], is also used in a limited
way in certain programming languages. We have chosen three references to programming texts to show
that these techniques are well-known outside formal methods. A discussionof corresponding techniques
in related formal methods can be found at the end of this article.

But, more interestingly, these techniques, although already present in various programming method-
ologies, are customarily applied in mathematics for mastering the complexity of largetheories.Refine-
mentmeans that a proof in a certain domain is better first studied in a more abstract domain where the
proof will be easier to perform. It is subsequently refined to the more concrete case.Decomposition
means that a large proof is better decomposed into a series of smaller lemmas, which are eventually used
to get structured and readable main proof (lemmas, needless to say, can also be reused in other different
large proofs). Finally,generic instantiation, is the usual way mathematics “works”: a general theory pa-
rameterized by carrier sets and constants together with corresponding axioms, say group theory, is later
used in another context where the sets and constants are instantiated provided the instantiated axioms are
themselves proved to be mere theorems in the new context. As a consequence, all results of the former
theory can be reused without being reproved. The mathematician has discovered that his specific prob-
lem, say a geometric problem, was just aninstanceof a more general well-known problem, say from
group theory.

Overview. In the first section to follow, we discuss the kind of system that is of interestto us and
what we consider appropriate for modelling such systems. We also point out the main difference of final
verification versus correct construction. The latter being the heart of our modeling approach. Section 3
introduces modeling in a rather informal way, explaining in more detail what wemean by modeling
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and what to expect from its use. Section 4 defines modeling in a more formal way and starts to make
precise the kind of proofs we want to perform on models. The next threesections cover our three main
techniques: refinement (Section 5), decomposition (Section 6), and generic instantiation (Section 7).

2. On Modeling

We explain what we mean by complex and argue that usually such systems canbe modelled faithfully
with discrete techniques. Complex systems should be constructed to be correct as is the standard in other
engineering disciplines.

2.1. Complex Systems

What is common to, say, an electronic circuit, a file transfer protocol, an airline seat booking system,
a sorting program, a PC operating system, a network routing program, a nuclear plant control system,
a Smart-Card electronic purse, a launch vehicle flight controller? Does there exists any kind of unified
approach to study in-depth (and formally prove) the requirements, the specification, the design and the
implementation ofsystemsthat are so different in size and purpose?

We shall only give for the moment a very general answer. Almost all suchsystems arecomplexin
that they are made of many parts interacting with a highly evolving (and sometimes hostile) environment.
They also quite often involve several concurrent agents. They require a high degree of correctness.
Finally, most of them are the result of a construction process which is spread over several years and
which requires a large and talented team of engineers and technicians.

2.2. Discrete Systems

Although their behavior is certainly ultimately continuous, the systems which werelisted in the previous
section are most of the time operating in adiscrete fashion. This means that their behavior can be
faithfully abstractedby a succession of steady states intermixed with “jumps” that cause sudden state
changes. Of course, the number of possible changes is enormous, andthey are occurring in a concurrent
fashion at an unthinkable frequency. But this number and this high frequency do not change the very
nature of the problem: these systems are intrinsically discrete. They fall under the generic name of
transition systems. Having said this does not do much to move us towards a methodology, but it gives us
at leasta common point of departure.

Some of the examples envisaged above are “pure programs”. In other words, their transitions are
essentially concentrated inone mediumonly. The electronic circuit and the sorting program clearly fall
into this category. Most of the other examples however are far more complexthan just pure programs
because they involve many different agents and also a high amount of interaction with their environment.
This means that the transitions are “executed” by different kinds of entitiesacting concurrently. But,
again, this does not change the discrete nature of the problem, it only complicates matters.

2.3. Final Verification Versus Correct Construction

A very important activity (at least in terms of time and money) concerned with theconstruction of
discrete systems certainly consists of verifying that their implementations are operating in a, so called,
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correct fashion. Most of the time nowadays, this activity is realized during a lengthy and costly testing
phase, which we shall call a “laboratory execution”.

The verification of a discrete system by means of “laboratory executions”is certainly far more com-
plicated to realize (if not impossible in practice) on the multiple medium case than in thesingle medium
case. We already know that program testing (used as a verification process in almost all programming
projects) is by far incomplete. Not so much because of the impossibility to achieve total coverage of all
execution cases. The incompleteness is rather, in our view, the consequence of thelack of oracleswhich
would give,beforehandand independently of the tested objects, the expected results of a testing session.
Oracles themselves ought to be correct and may be difficult to get right for abstract properties expressed
on implementation level.

It is nevertheless the case that today the basic ingredients for complex system construction still are “a
very small design team of smart people, managing an army of implementers, eventually concluding the
construction process with a long and heavy testing phase”. A classical estimate for testing cost relates
it to about fifty per cent of the total development cost [13] and even morefor safety critical systems. Is
this a reasonable attitude nowadays? Our opinion is that a technology using such an approach is still in
its infancy. This was the case at the beginning of the last century for some technologies, which have now
reached a more mature state (e.g. avionics).

The technology we consider in this paper is that concerned with the construction ofcomplex discrete
systems. As long as the main verification method used is that of testing, we consider thatthis technology
will remain in an underdeveloped state. Testing does not involve any kind ofsophisticated reasoning. It
rather consists ofalways postponing any serious thinkingduring the specification and design phase. The
construction of the system will always be re-adapted and re-shaped according to the testing results (trial
and error). But, as one knows, it is quite often too late.

In conclusion, testing always gives a shortsighted operational view over the system under construc-
tion: that of execution. In other technologies, say avionics, it is certainly the case that people eventually
do test what they are constructing, but the testing is just theroutine confirmationof a sophisticated design
process rather than a fundamental phase in it. As a matter of fact, most of thereasoning is donebeforethe
final object is ever constructed. It is performed on various “blue prints” (in the broad sense of the term)
by applying on them some well-defined practical theories. In our context as outlined in Sections 2.1
and 2.2, the “blue prints” are calleddiscrete models.

The purpose of this study is to incorporate such a “blue print” approach into the design of complex
discrete systems. It aims at presenting a theory able to facilitate the elaborationof reliable reasoning
(usually by proof) on such blue prints. But it also points out specific problems related to this approach
and tries to give possible solutions to them

3. Informal Overview of Discrete Models

In this section, we give an informal description of discrete models. It is formally defined in Section 4. A
discrete model is made of a state space and a number of transitions (Section 3.1). For the sake of easier
comprehension, we then give an operational interpretation of discrete models (Section 3.2). We then
present the kind of formal reasoning we want to express (Section 3.3).Finally, we address the problem
of mastering the complexity of models which is the main purpose of this paper (Section 3.4).
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3.1. State and Transitions

Roughly speaking, a discrete model [2, 6] is made of astaterepresented in terms of some significant
constants and variables (at a certain level of abstraction with regards to the real system under study)
within which the system is supposed to behave. The variables are very muchthe same as those used in
applied sciences (physics, biology, operational research) for studying natural systems. In these sciences,
people also build models. It helps them inferring some laws on reality by means of some reasoning that
they undertake on these models.

Besides the state, the model also contains a number oftransitionsthat can occur under certain cir-
cumstances. We call these transitions “events”. An event consists of two parts. The first is composed
of its guards. It is a set of predicates over the state constants and variables. It represents thenecessary
conditions for the event to occur. The second consists of itsactions. It describes the way certain state
variables are modified as a consequence of an occurrence of the event.

3.2. Operational Interpretation

As can be seen, a discrete dynamical model thus indeed constitutes a kind ofstate transition “machine”.
We can give such a machine an extremely simpleoperational interpretation. Notice that this interpre-
tation should not be considered as providing any “semantics” to our models (this will be given later by
means of a proof system), it is just given here to support theirinformal understanding.

First of all, the “execution” of an event, which describes a certain observable transition of the state
variables, is considered to takeno time. As an immediate consequence, no two events can occur simul-
taneously. The “execution” of an event corresponds to the following:

• When all event guards are false, then the model “execution” stops:it is said to have deadlocked.

• When some event guards are true, then one of the corresponding events necessarily occurs and the
state is modified accordingly, finally the guards are checked again, and soon.

This behavior clearly shows some possible non-determinism (called external non-determinism) as
several guards might be true simultaneously. We makeno assumptionconcerning the specific event
which is indeed executed among those whose guards are true. If at most one guard is true at a time, the
model is said to be deterministic.

Note that the fact that a model eventually deadlocks isnot at all mandatory. As a matter of fact, most
of the systems we study never deadlock: they run forever.

3.3. Formal Reasoning

The very elementary “machine” we have described in the previous section although primitive is never-
theless sufficiently elaborate to allow us to undertake some interesting formal reasoning. In the following
we envisage two kinds of discrete model properties.

Invariance. The first kind of properties that we want to prove about our models (andhence ultimately
about our real systems) are, so called,invariant properties. An invariant is a condition on the state
variables that must hold permanently. In order to achieve this, it is just required toprovethat, under the
invariant in question and under the guard of each event, the invariant stillholds after the variables have
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been modified according to the transition associated with that event. This topic will be further studied
and formalized in Section 4.5.

Reachability. We might also consider more complicated forms of reasoning [5, 17] involvingcondi-
tions which, in contrast with the invariants, do not hold permanently. The corresponding statements are
calledmodalities. In our approach we only consider a very special form of modality calledreachability.
What we would like to prove is that an event whose guard is not necessarily true now will nevertheless
certainly occur within a finite number of iterations. This topic will not be furtherstudied in this paper.

3.4. Managing the Complexity of Closed Models

Note that the models we are going to construct will not just describe the “control” part of our intended
system. It will also contain a certain representation of the environment within which the system we build
is supposed to behave. In fact, we shall quite often essentially constructclosed modelsable to exhibit
the actions and reactions which take place between some environment and a corresponding (possibly
distributed) controller, which we intend to construct.

In doing so, we shall be able to plunge the model of the controller within (an abstraction of) its
environment (formalized as yet another model). The state of such a closedsystem thus contains “physi-
cal” variables (describing the environment state) as well as “logical” variables (describing the controller
state). And, in the same way, the transitions fall into two groups: those of the environment and those of
the controller. We shall also have to put into the model the way these two entities communicate.

But as we mentioned earlier, the number of transitions in the real systems under study is certainly
enormous. In addition, the number of variables describing the state of suchsystems is also extremely
large. How are we going to practically manage such a complexity? The answerto this question lies in
three concepts:refinement(section 5),decomposition(section 6), andgeneric instantiation(section 7).
It is important to note that these concepts are linked. As a matter of fact, one refines a model to later
decompose it, and, more importantly, one decomposes it to refine further morefreely. And finally, a
generic model development can be later instantiated, thus saving the user theeffort of redoing “similar”
proofs.

4. Machines and Contexts

When modeling a system we structure the formal model such that constant parts and variable parts are
kept in distinct entities,contextsandmachinesrespectively. In this section we describe these entities and
present an invariant property as described in Section 3.3.

4.1. State and Events

A formal discrete machineis made of three distinct elements: (1) a set of state variables collectively
denoted byv, (2) a conjoined list of predicates, the invariants, collectively denoted byI(v)1, and (3)
some transitions (called events). This is illustrated in Fig. 1.

1The invariant predicates are expressed using first order predicate calculus and set theory
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Figure 1. Machine

An event, namedE, has one of the following two forms:

E =̂ when G(v) then S(v) end

whereS(v) is anassignment(see next subsection) defining the transition associated with the event, and
G(v) denotes a conjoined list of predicates defining theguardof the event, which states the necessary
condition for the event to occur. They are both parameterized by the variablesv.

The second form describes an event which has some local variablest that are constrained by some
guardG(t, v):

E =̂ any t where G(t, v) then S(t, v) end

4.2. Assignments

We have three kinds of assignments for expressing the actions associatedwith an event: (1) the deter-
ministic multiple assignment, (2) the empty assignment (skip), and (3) the non-deterministic multiple
assignment.

Kind Assignment

deterministic x := E(t, v)

empty skip

non-deterministic x : | P (t, v, x′)

In the deterministic assignment,x denotes a list of variables (fromv), andE(t, v) denotes a list of set
theoretic expressions corresponding to each of the variables inx. In the non-deterministic assignment
P (t, v, x′) denotes a predicate, wherex′ denote the new values of the variablesx. As can be seen, not all
variables inv are necessarily “assigned” in an assignment.
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4.3. Before-After Predicates Associated with an Assignment

The before-after predicate is supposed to denote the relationship holdingbetween the state variables
of the machine just before (denoted byv) and after (denoted byv′) “applying” an assignment. More
generally, ifx denotes a list of state variables of the machine, we collectively denote byx′ their values
just after applying a assignment. The before-after predicate is defined as follows for the three kinds of
assignments:

Kind Assignment Before-after Predicate

deterministic x := E(t, v) x′ = E(t, v) ∧ y′ = y

empty skip v′ = v

non-deterministic x : | P (t, v, x′) P (t, v, x′) ∧ y′ = y

In this table, the lettery denotes the set of variables drawn fromv which are distinct from those inx. As
can be seen, these variables are not modified by the assignment, as shownby the predicatey′ = y in the
before-after predicate. It is thus important to note that the before-afterpredicate of an assignment of an
event isnot a universal propertyof that assignment: it depends on the variables of the machine where the
event resides. The most obvious case is that of the empty assignment. The non-deterministic assignment
is the most general form of assignment. For instance, a deterministic assignment x := E(t, v) can be
represented asx : | x′ = E(t, v).

Often the predicateP (t, v, x′) of a non-deterministic assignmentx : | P (t, v, x′) is of the particular
form ∃ `· Q(`, t, v) ∧ x′ = F (`, t, v), whereF (`, t, v) denotes a list of expressions matching the list of
variablesx′. In this case it is convenient to use an alternative notation:

var ` where Q(`, t, v) then x := F (`, t, v) end

to stand forx : | (∃ ` · Q(`, t, v) ∧ x′ = F (`, t, v)). Events are not structured further. This way we
obtain simple proof obligations involving events, that can be efficiently computed.

4.4. Contexts

In the previous sections, we have assumed that a discrete model was made of a set of variables, invariants,
and events. There is a need for a second kind component beside the machines mentioned so far, called
contexts. As we shall see in Section 7, contexts play a very important rôle in the generic instantiation
mechanism. In fact, the contexts associated with a given machine define the way this machine ispara-
meterizedand can subsequently be instantiated. Each machine may reference a context. When this is the
case, the machine is said to “see” that context.

A context may contain two kinds of objects:carrier setsandconstants. Carrier sets (globally denoted
here bys) are just represented by their name. The different carrier sets of a context are completely
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Figure 2. Machine and Context

independent. The only requirement we have concerning these sets is thatthey are non-empty. The
constants (here globally denoted byc) are defined (usually indeterminately) by means of a number of
axiomsP (s, c) also depending on the carrier setss. Contexts (as well as machines) may contain theorems
that can be proved from axioms (resp. invariants and axioms of seen contexts). This allows for sharing
of the corresponding proofs as usual in mathematical theories. We do notpresent context or machine
theorems in this article as their use and benefits are well-known. Theorems were known as assertions in
the B-Method [1].

When a machineM sees a contextC, then all sets and constants defined inC can be used inM. In
Fig.2, you can see the contents of machines and contexts and their relationship:

4.5. Invariant Preservation

We present an invariant property corresponding to the description in Section 3.3. LetM be a machine
with variablesv, seeing a contextC with setss and constantsc. The axioms of the sets and constants
of C are denoted byP (s, c) and the invariant ofM by I(s, c, v). Let E be an event ofM with guard
G(s, c, v) and before-after predicateR(s, c, v, v′). The statement to prove in order to guarantee thatE
maintains invariantI(s, c, v) is the following:

P (s, c) ∧ I(s, c, v) ∧ G(s, c, v) ∧ R(s, c, v, v′) ⇒ I(s, c, v′) INV

Note, that each proof obligation presented in this article are assumed to be∀-quantified over all carrier
sets, constants, and variables occurring free in the proof obligation.

5. Refinement

Refinement allows us to build a modelgraduallyby making it more and more precise (that is, expressing
more relevant properties of reality). In other words, we are not going tobuild a single model representing
once and for all the future system in a flat manner: this is clearly impossible due to the size of the state
and the number of its transitions. It would also make the resulting model very difficult to master (if
not just to read). We are rather going to construct an ordered sequence of models, where each model is
supposed to be a refinement of the one preceding it in the sequence. Thismeans that a refined (more
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Figure 3. Machine Refinement and Context Extension

concrete) model usually has more variables than its abstraction: the new variables result from having a
closer, i.e. more detailed, look at our system.

A useful analogy is that of the scientist looking through a microscope. In doing so, the reality is
the same, the microscope does not change it,our view of reality is just more accurate: some previously
invisible details of the reality are now revealed by the microscope. An even more powerful microscope
will reveal more details, etc. A refined model is thus one which is spatially larger than its previous
abstractions.

In correlation to thisspatial extension, there is a correspondingtemporal extension: this is because
the new variables can be modified by some transitions, which could not have been present in the previous
abstractions, simply, because the concerned variables did not exist in them. Practically this is realized by
means ofnew eventsinvolving the new variables only (they refine some implicit events doing “nothing” in
the abstraction). Refinement will thus result in a discrete observation of reality, which is now performed
using afiner time granularity.

We distinguish two principal uses of refinement,superposition[6] refinement anddata-refinement
[7]. Superposition refinement corresponds solely to a spatial and temporal extension of a model. Data-
refinement is used in order to modify the state so that it can be implemented on a computer by means of
some programming language.

5.1. Machine Refinement and Context Extension

From a given machineM, a new machineN can be built and asserted to be a refinement ofM. Machine
M is said to be anabstractionof N and machineN is said to be arefinementof M or aconcrete version
of it. Likewise, contextC, seen by a machineM, can beextendedto a contextD, which is then seen by
N. This is represented in Fig. 3.
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Note that it is not necessary to extend contextC when refining machineM. In this restricted case,
machineN just sees contextC as does its abstractionM. This is illustrated in Fig. 4.

The sets and constants of an abstract context are kept in its extension. In other words, the extension
of a context just consists of adding new setst and new constantsd. These are defined by means of new
axiomsQ(s, t, c, d). Consequently, no specific proof obligations are associated with contextextension.
In this article we present singleton context extension and context reference to achieve conceptual sim-
plicity. The generalization to multiple context extension and reference is not difficult and particularly
useful in conjunction with decomposition as presented in Section 6.

The situation is not the same when refining machines. The concrete machineN (which supposedly
“sees” concrete contextD) has a collection of state variablesw, which must becompletely distinct2 from
the collectionv of variables in the abstractionM. MachineN also has an invariant dealing with these
variablesw. But contrarily to the case of abstract machineM where the invariant exclusively depended
on the local variables of this machine, this time it is possible to have the invariant of N also depending on
the variablesv of its abstractionM. This is the reason why we collectively name this invariant ofN the
gluing invariantJ(s, t, c, d, v, w): it “glues” the state of the concrete machineN to that of its abstraction
M. In Section 5.2 and Section 5.3 we present invariant preservation proofobligations for events. To
simplify the presentation we only consider events without local variables.

5.2. Refinement of Existing Events

The new machineN has a number of events that have a corresponding event in the abstractmachineM.
Suppose the abstract event has the guardG(s, c, v) and the before-after predicateR(s, c, v, v′) and the co-
rresponding concrete event has the guardH(s, t, c, d, w) and the before-after predicateS(s, t, c, d, w, w′).

2We place this constraint in this paper to achieve conceptual simplicity. By imposing simple naming rules and using a sophisti-
cated renaming scheme, we actually allow transparent reuse of variables in Event-B.
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The latter is said torefinethe former if the following holds:

P (s, c) ∧ I(s, c, v) ∧ Q(s, t, c, d) ∧ J(s, t, c, d, v, w) ∧

H(s, t, c, d, w) ∧ S(s, t, c, d, w, w′)

⇒ REF1

G(s, c, v) ∧ ∃ v′ · (R(s, c, v, v′) ∧ J(s, t, c, d, v′, w′) )

5.3. Introducing New Events in a Refinement

New events can be introduced in a refinement. In this case, the refinement mechanism is slightly different
from the refinement of existing events. It contains three constraints, which are the following:

1. Each new event must refine animplicit eventwhich does nothing (skip).

2. Taken together the new events mustnot diverge(run for ever) because divergence would mean that
previously enabled abstract events could effectively be disabled.

3. The concrete machine must not deadlock before its abstraction, otherwise the concrete machine
might not achieve what the abstract machine had previously required.

We now formalize the three constraints we have just mentioned. Suppose we have an abstract ma-
chineM seeing a contextC as above. This machine is refined to a more concrete machineN seeing the
refinementD of contextC, again as above. In the refined machineN, we supposedly have a new event
with guardH(s, t, c, d, w) and before-after predicateS(s, t, c, d, w, w′). Constraint 1 (refiningskip)
leads to the following statement to prove:

P (s, c) ∧ I(s, c, v) ∧ Q(s, t, c, d) ∧ J(s, t, c, d, v, w) ∧

H(s, t, c, d, w) ∧ S(s, t, c, d, w, w′)

⇒ REF2

J(s, t, c, d, v, w′)

In order to prove that the new events do not diverge as required by constraint 2, it is necessary to
exhibit a variantV (s, t, c, d, w) in form of a natural-number expression3. And it is then necessary to
prove that each new event decreases thatsamevariant. Here is the corresponding statement to be proved:

P (s, c) ∧ I(s, c, v) ∧ Q(s, t, c, d) ∧ J(s, t, c, d, v, w) ∧

H(s, t, c, d, w) ∧ S(s, t, c, d, w, w′)

⇒ REF3

V (s, t, c, d, w) ∈ N ∧ V (s, t, c, d, w′) < V (s, t, c, d, w)

3More generally, we require the variant to be an expression over a well-founded set.
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Figure 5. Machine Refinements and Context Extensions

Finally, constraint 3 about the relative deadlock-freeness of the refined machine with respect to the
abstract machine, can be formalized as follows (where theGi denote the abstract guards, whereas theHj

denote the concrete ones):

P (s, c) ∧ I(s, c, v) ∧ Q(s, t, c, d) ∧ J(s, t, c, d, v, w) ∧

(G1(s, c, v) ∨ · · · ∨ Gn(s, c, v) )

⇒ REF4

(H1(s, t, c, d, w) ∨ · · · ∨ Hm(s, t, c, d, w) )

5.4. More Refinements

The development process we have seen so far was limited to two levels: an abstraction and its refinement.
Of course, this process can be enlarged to more refinements as shown in Fig. 5. Note that, by the way
we prove refinement relationships, we accumulate invariants across multiple refinement steps rather than
establishing separate simulations in each step.

6. Decomposition

The process of developing an event machine by successive refinement steps usually starts with very few
events (sometimes even a single event) dealing with very few state variables. It usually ends with a
machine containing many events and many variables. This is because one of the most important mech-
anisms of this approach consists in introducingnewevents during refinement steps. Refinement also
significantly enlarges the number of state variables. The new events, let usrecall, are manifestations of
the refinement of thetime grainwithin which we may, more and more accurately, observe and analyze
the discrete system.
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Figure 6. Decomposition

At some point, we may have so many events and so many state variables that the refinement process
may become difficult to manage. And we may also figure out that the refinementsteps we are trying
to undertake do not involve the totality of our system anymore (as was the case at the beginning of the
development): only a few variables and events are concerned, the others only playing a passive,but
obfuscating, rôle.

The idea ofmachine decompositionis thus clearly very attractive: it consists of cutting a large event
system intosmaller pieceswhich can be handled more comfortably than the whole. More precisely, each
piece should be able to be refinedindependentlyof the others. This process is illustrated in Fig. 6. As can
be seen, the initial machineM1 and contextC1 are refined, resp. extended, until we reachMn andCn.
At this point, machineMn is decomposed into machinesN1 andP1 working respectively with contexts
D1 andE1. Note that this is a simplification: as a matter of fact,contexts can be shared. For example,
“sees” pointers to contextsD1 andE1 from machinesN1 andP1 could be both replaced by pointers
pointing toCn. MachinesN1 andP1 are then independently refined together with their contexts, and so
on.

The constraint that must be satisfied by this decomposition is that such independently refined pieces
could always (in principle) be easilyre-composed. This process should then result in a system that could
have been obtained directly without the decomposition, that thus appears to be just a kind of “divide-
and-conquer” artifact. This is illustrated in Fig. 7.

6.1. The Main Difficulty: Variable Splitting

Suppose that we have a certain machineM with four eventse1, e2, e3 and e4. We would like to
decomposeM into two separate machines: (1) machineN dealing with eventse1 ande2, and (2) machine
P dealing with eventse3 ande4. We are interested in doing this decomposition because we “know” that
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Figure 7. Decomposition and Recomposition

there are some nice refinements that can be performed one1 ande2 (possibly adding some new events)
and also one3 ande4 in the same way.

machine events

N e1, e2

P e3, e4

variables events

v1 e1, e2

v2 e2, e3

v3 e3, e4

But when doing thisevent splittingwe must also perform a certain correspondingvariable splitting.
Suppose that we have three variablesv1, v2 andv3 in M, and suppose that the events work with the
variables as indicated on the table above:v1 is used ine1 ande2, v2 in e2 ande3, andv3 in e2 and
e3. Now it is obvious that variablev1 goes in machineN and variablev3 goes in machineP. But clearly
variablev2 has to go in both machines. This seems unfortunate since it appears not to bepossible to
refine independently the two machinesP andN.

The problem seems unsolvable since apparently there will always be someshared variables. As a
matter of fact, we have the very strong impression that the splitting of the eventswill always conflict
with that of the variables. Suppose it is not the case. In other words, suppose that, in our example,e1
ande2 only work withv1 andv2, while e3 ande4 only works withv3. Clearly then,M is made of two
completely separated groups of events (e1 ande2 in one hand, ande3 ande4 in the other) which do not
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communicate in any way with each other. In this case,M is obviously made of two distinct machines,
which could have been handled separately to begin with.

So, in all interesting cases, the problem of shared variables,v2 in our example, is unavoidable. How
are we going to solve this difficulty?

6.2. The Solution: Variable Sharing

We have no choice: the shared variables must clearly bereplicatedin the various components of our
decomposition. Notice that the shared variables in question can be modified byany of the components:
we do not want to make any “specialization” of the components, some of them being only allowed to
“read”, and some other to “write” these variables. We know that this is not possible in general.

As said before, the difficulty that arises immediately at this point concerns theproblem of refinement.
In principle, each component can freely data-refine its state space. So that thesamereplicated variable
could, in principle, be refined in one way in one component and differentlyin another: this is obviously
not acceptable.

6.3. A Notion of External Variable

The price to pay in order to solve this difficulty is to give the replicated variables aspecial statusin
the components where they reside. Let us call this status:external. An external variable has a simple
limitation: it must always be present in the state space of any refinement of thecomponent. In other
words, an external variablecannot be data-refined.

6.4. A Notion of External Event

But this is not sufficient. Suppose that in a certain component an externalvariable is only read, not writ-
ten. The trouble with that external variable is that it has suddenly become a constant in that component,
which is certainly not what we want.

What we need thus in each component, is a number of extra eventssimulatingthe way our external
variables are handled in the machine we had before the decomposition. Suchevents are calledexternal
events. Each of them “mimics” the use of the external variables by a corresponding event of the ini-
tial machine (before decomposition), that was modifying the external variables in question. The reader
should understand that “mimic” simply means “is an abstraction of”. Of coursesuch external events can-
not be refined in their component. SupposeG2(v1, v2) is the guard of evente2 andE2(v1, v1′, v2, v2′)
is its before-after predicate. Then evente2a with guardG2a(v2) and before-after predicateE2a(v2, v2′)
is an external event (fore2 in sub-machineP), provided the following can be proved:

G2(v1, v2) ∧ E2(v1, v1′, v2, v2′)

⇒ DCMP

G2a(v2) ∧ E2a(v2, v2′)

In comparison, being an internal event of sub-machineN, evente2 of N is the same as evente2 of M.
This means no proof obligation is needed for internal events.
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Figure 8. External variables and events

Notice that there is a distinction to be made between an external variable and anexternal event.
An external variable is external in all sub-machines where it can be found, whereas an external event
always has a non-external counterpart somewhere else. An event can, however, be external in several
sub-machines.

All this is illustrated in Fig. 8, you can see that variablev2 is an external variable in both sub-
machinesN andP. Evente2 in internal in machineN whereas it has an external forme2a in machine
P. Symmetrically, evente3 is internal in machineP while it has an external forme3a in machineN.

6.5. Final Recomposition

The recomposition of the initial machine by means of refinements of the various components is now
extremely simple. We put together all the variables of the individual components (“de-replicating” the
various shared variables) and throw away all the external events of each component.

It remains for us to prove that the re-composed machine is indeed a refinement of the initial machine.
Notice again that this recomposition is usually not done explicitly. It is just something that could be done,
and which must then yield a refinement of the initial machine. The conditions fora correct recomposi-
tion are extremely simple although the proof (given in the Appendix) is more complicated: each of the
decomposed sub-machines must berefined by the original machine(which is achieved by the additional
proof obligationDCMP in Section 6.4). The proof also explains why the stated conditions are indispens-
able for establishing that the recomposed machine indeed refines the original machine. Recomposition
is illustrated in Fig. 9.

6.6. Refinement of External Variables

One problem of the decomposition method as presented above is that it enforces the use of implementation-
level data types too early in the development: we would like to decompose at an early development stage
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but without being forced to use concrete types. With the techniques already introduced we continue de-
composing in order to introduce new external variables (of more concretetype). These external variables
are part of the design and remain as interfaces between the components created by decomposition in the
implementation.

Another possibility to avoid the introduction of implementation-level external variables too early is
to refine external variables. We mention this here without giving details because the principle of decom-
position is untouched but the proofs are more intricate and longer. These can be found in [3] together
with a corresponding correctness proof for decomposition taking refinement of external variables into
account.
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7. Generic Instantiation

Generic instantiation is our third proposal for solving the difficulties raised by the construction of large
machines. Suppose we have done an abstract development with machinesM1 to Mn and corresponding
contextsC1 to Cn as shown in the left hand part of Fig. 10.

This development is in fact parameterized by the carrier setss and the constantsc that have been
accumulated in contextsC1 to Cn. This development is said to begenericwith regard to these carrier
sets and constants. Remember that these sets are completely independent ofeach other and their only
property is that they are not empty. The constants are defined by means ofsome axiomsP (s, c), which
stands here for all axioms accumulated in contextsC1 to Cn. In fact, in all our proof obligations of this
development,s andc appearfree. Moreover, the constants axiomsP (s, c) appear as assumptions in all
statements to be proved, which are thus of the following form as can be seenin proof obligationsINV
(Section 4.5),REF1 (Section 5.2),REF2, REF3, andREF4 (Section 5.3):

P (s, c) ∧ A(s, c, . . .) ⇒ B(s, c, . . .)

Suppose now that in another development, we reach a situation with machineN seeing a certain
contextD (after some machine and context refinements), as shown on the right handpart of figure
10. The accumulated sets and constants in contextD are denoted byt andd respectively. And the
accumulated axioms in contextD are denoted byQ(t, d).

We might figure out at this point that a nice continuation of the second development would simply
consist inreusingthe first development with someslight changesconsisting of instantiating setss and
constantsc of the former with expressionsS(t, d) andC(t, d) depending on sets and constantst andd

of the latter.

LetM1(t, d), . . .Mn(t, d) be the machines of the first development after performing the instantiations
on the various invariants which can be found inM1 to Mn. The effective reuse is that shown in Figure 11.
As can be seen, instantiated machinesM1(t, d), . . .Mn(t, d) implicitly “see” contextD. It remains of
course to prove now that machineM1(t, d) refines machineN. Once this is successfully done, we would
like to resume the development afterMn(t, d). For doing so, is then necessary to prove that all refinement
proofs performed in the first development are still valid after the instantiation. In order to be able to
reuse the proofsof the first developmentwithout redoing them, it is just necessary to prove that the sets
and constants axiomsP (s, c) of the first development are mere theorems after the instantiation. This
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corresponds to the following statement to prove:

Q(t, d) ⇒ P (S(t, d), C(t, d)) INS

The explanation is very simple. Remember that all statements proved in the formerdevelopment where
of the following form:

P (s, c) ∧ A(s, c, . . .) ⇒ B(s, c, . . .)

As a consequence, the following holds sinces andc arefree variablesin this statement:

P (S(t, d), C(t, d)) ∧ A(S(t, d), C(t, d), . . .) ⇒ B(S(t, d), C(t, d), . . .)

We have now to prove that we can removeP (S(t, d), C(t, d)) (since contextsC1 to Cn have disap-
peared as shown on figure 11) and replace it by the new set and constant axiomsQ(t, d), namely:

Q(t, d) ∧ A(S(t, d), C(t, d), . . .) ⇒ B(S(t, d), C(t, d), . . .)

This is trivial according toINS.

8. Related Work

Except for the references given in the introduction from the programmingliterature the three concepts of
refinement, decomposition, and generic instantiation, or similar concepts are also treated in the formal
methods literature. We discuss each of the topics separately.
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Refinement. Refinement has been studied in many contexts, the most prominent being sequential pro-
gram development and reactive systems modelling. The formalism and method presented in this article,
called Event-B , is most strongly influenced by the action system formalism [6], which itself was inspired
by a refinement method for sequential programs [8, 18]. All of these arebased on predicate transformers.
By contrast, Event-B uses first-order predicate calculus and set theory. This difference is only superficial,
though, because Event-B refinement is isomorphic to predicate transformer refinement [22]. Insofar, the
approach presented here is faithful to its roots, the B-Method [1] and (more distantly) Z [26]. The VDM
method [16] is similar to the B-Method but uses three-valued logic. Abstract state machines (ASM) [11]
do not fix a priori the logic to be used in reasoning but state algebraic properties that it must satisfy.
The used notion of refinement is compared to that of action systems, i.e. data refinement, in [23]. ASM
refinement is slightly more general, e.g., by allowing removal of events (called“rules”) in a refinement
[10]. Theorems encountered in the predicative approach to programming[14] sometimes appear sim-
ilar to those encountered in Event-B; the underlying theory of the predicative approach is based on an
algebraic logic that has a set-theoretical interpretation. A fairly complete overview and comparison of
various refinement methods can be found in [22].

All the approaches just mentioned are accompanied by refinement methods that are based on notions
of formal proof. This is where TLA+ [17] differs from them. TLA+ is based on temporal logic (although
one usually only uses a fragment of it in specifications) and set theory, and all properties including
refinement are verified by model checking: in fact, TLA+ comes with a tool called TLC [17]. It has been
designed with tool support in mind. This is where it is similar to Event-B. As a consequence of designing
a modelling formalism that allows for efficient tool-support, usually some expressiveness is lost.

Approaches like ASM and action systems are accompanied by more generalnotions of refinement.
But it is difficult (perhaps even impossible) to implement tools to support them inall generality that are
also efficient and easy to use. We believe that the tool developed for Event-B could be used with most of
them to verify refinements, at least those that can be expressed in Event-B. Often refinement is presented
in form of backward and forward refinement. At present Event-B uses only forward refinement, similarly
to the B-Method. There are also tools for the B-Method [4] and VDM [15].Both are most suitable for
sequential program development. Support of [4] for Event-B is incomplete. A new tool for Event-B is
under development [21]. Note, that VDM only supports functional refinement, a decision which is also
justified by the requirement for appropriate tool-support for the method.

Decomposition. Instead of decomposition, development methods usually employ composition [6,11,
17]. The difference in the terminology embodies a shift in how the problem is approached. When
composing subsystems we focus on the evolving behavior, whereas whendecomposing a system we
focus on how properties are distributed across the subsystems. In particular, on more abstract levels
of modelling the Event-B method advocates decomposition. Composition and decomposition do not
exclude each other but they are not the same thing. Similarly to refinement, decomposition in Event-B is
intended to be backed by a tool.

Generic Instantiation. Some form of generic instantiation is known in other formal methods as well,
e.g. [1]. These are closer to polymorphism [19] and less general than the approach presented in this
article, which is much closer to mathematical practice. A similar concept of instantiation is found in al-
gebraic specification, e.g. [20]. In fact, also Isabelle [19] contains theconcept of type classes resembling
generic instantiation in Event-B. In a more mathematical setting this technique is employed to reuse the-
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orems. In Event-B instantiation is mostly used to parameterize machines in order toreuse refinements,
the ultimate aim being efficient tool support for modeling by refinement.

9. Conclusion

Due to the lack of space, we regret that it was not be possible to give examples of these techniques at
work. These will appear in subsequent papers.

We have presented a framework for modeling complex systems in a mathematical rigorous way.
Refinement is already used today to solve complex modeling problems [9]. Theother two techniques
are commonplace in programming and other disciplines, in particular mathematics, tosolve difficulties
arising from the modeling of complex problems. We are confident that they extend the application of
formal modeling to ever larger systems. Decomposition and instantiation combined, present a great
opportunity for reuse of sub-models that have been developed before. It is only necessary to prove the
axioms that have been specified for contexts of the sub-model to reuse thedevelopment of the sub-model.
This is a well-established technique in mathematics for the same purpose. Refinement lies at the heart of
the development method, dealing with the complexity of single models and serving for the definition of
decomposition.

We want to emphasize that in the long term there is no alternative to model building. As computer
systems grow and get more and more complex, it seems futile to attempt to understand what these systems
actually do without having a model of them.
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APPENDIX: Proof of Correct Decomposition/Recomposition

We shall make the proof on our example. It can then be easily generalized.Suppose that the usage of the
variablesv1, v2 andv3 in machineM is as follows:

variable events

v1 e1, e2

v2 e2, e3

v3 e3, e4

events variables

e1 v1

e2 v1, v2

e3 v2, v3

e4 v3

MachineN uses variablev1 as a normal variable and variablev2 as anexternalvariable. It has events
e1 ande2 plus an extraexternal eventse3a (for e3 abstracted) dealing with variablev2 only. Evente3a
is supposed to be refined by evente3. In other words, evente3a simulates in machineN the behavior of
evente3 in machineP. Similarly, machineP uses variablev3 as a normal variable and variablev2 as an
externalvariable. It has eventse3 ande4 plus an extraexternal evente2a (for e2 abstracted) dealing
with variablev2 only. Evente2a is supposed to be refined by evente2. In other words, evente2a
simulates in machineP the behavior of evente2 in machineN. This can be summarized in the following
table:

machine variables events external variables external events

N v1 e1, e2 v2 e3a

P v3 e3, e4 v2 e2a

It can easily be seen that machinesN andP are both refined by machineM. This is so because events
e1 ande2 of N are clearly refined by eventse1 ande2 of M (they are the same); evente3a of N is
refinedby constructionby evente3 of M; finally evente4 of M clearly refinesskip in N since it deals
with variablesv3 which does not exist inN. And similarly forP.

More precisely, let the before-after predicates of the four events be the following in machineM:

events guards in M before-after predicates inM

e1 G1(v1) E1(v1, v1′)

e2 G2(v1, v2) E2(v1, v1′, v2, v2′)

e3 G3(v2, v3) E3(v2, v2′, v3, v3′)

e4 G4(v3) E4(v3, v3′)
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And they are the following inN andP

events guards in N BA predicates inN

e1 G1(v1) E1(v1, v1′)

e2 G2(v1, v2) E2(v1, v1′, v2, v2′)

e3a G3a(v2) E3a(v2, v2′)

events guards in P BA predicates inP

e2a G2a(v2) E2a(v2, v2′)

e3 G3(v2, v3) E3(v2, v2′, v3, v3′)

e4 G4(v3) E4(v3, v3′)

Suppose that we now refineN to NR. MachineNR has variablesw1 andv2 together with the gluing
invariantJ(v1, w1, v2). MachineNR has eventse1r ande2r which are supposed to be refinements of
e1 ande2 respectively, and also evente3a, which is not refined by convention. Similarly, we refineP

to PR. MachinePR has variablesw3 andv2 together with the gluing invariantK(v3, w3, v2). Machine
PR has eventse3r ande4r which are supposed to be refinements ofe3 ande4 respectively, and also
evente2a, which is not refined by convention. Notice that both gluing invariantsJ andK depend on the
“external” variablev2. All this can be summarized in the following table:

machine variables events external variables external events gluing invariant

NR w1 e1r, e2r v2 e3a J(v1, w1, v2)

PR w3 e3r, e4r v2 e2a K(v3, w3, v2)

The before-after predicates inNR andPR are as follows

events guards in NR BA pred. in NR

e1r G1r(w1) E1r(w1, w1′)

e2r G2r(w1, v2) E2r(w1, w1′, v2, v2′)

e3a G3a(v2) E3a(v2, v2′)

events guards in PR BA pred. in PR

e2a G2a(v2) E2a(v2, v2′)

e3r G3r(v2, w3) E3r(v2, v2′, w3, w3′)

e4r G4r(w3) E4r(w3, w3′)

The state ofMR is made up of the state ofNR and the state ofPR, where the external variables
form the “common” state. The state space is described by the conjunction of the invariants ofNR and
PR. Because we assume they hold in the respective sub-machines, we expect them to hold also in the
recomposed machineMR . The events ofMR aree1r, e2r, e3r ande4r. Notice thate2a ande3a have



26 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, and Instantiation of Discrete Models

been thrown away. This can be summarized in the following table:

machine variables events gluing invariant

MR w1, v2, w3 e1r, e2r, e3r, e4r J(v1, w1, v2) ∧ K(v3, w3, v2)

The before-after predicates inMR are as follows:

events guards in MR before-after predicates inMR

e1r G1r(w1) E1r(w1, w1′)

e2r G2r(w1, v2) E2r(w1, w1′, v2, v2′)

e3r G3r(v2, w3) E3r(v2, v2′, w3, w3′)

e4r G4r(w3) E4r(w3, w3′)

ClearlyNR andPR are refined byMR, but it is not obvious thatM is refined byMR, this is precisely
what we have to prove. The situation is illustrated in the following diagram, where the arrows indicates
a refinement relationship:

N P

↖ ↗

↑ M ↑

NR ↑ ? PR

↖ ↗

MR

In what follows we shall prove that, providede1r ande2r are refinements ofe1 ande2 respectively
in NR, then they also are correct refinements ofe1 ande2 in MR. Similar proofs can be conducted for
the other events ofMR. We first treat the casee1. We have to show thate1r is also a refinement ofe1 in
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MR. The correct refinement conditionREF1 (Section 5.2) ofe1 to e1r within NR is the following:

J(v1, w1, v2) ∧ G1r(w1) ∧ E1r(w1, w1′)

⇒

G1(v1) ∧ ∃ v1′ · (E1(v1, v1′) ∧ J(v1′, w1′, v2) )

Under this hypothesis, the following correct refinement condition ofe1 to e1r within MR clearly
holds:

J(v1, w1, v2) ∧ K(v3, w3, v2) ∧ G1r(w1) ∧ E1r(w1, w1′)

⇒

G1(v1) ∧ ∃ v1′ · (E1(v1, v1′) ∧ J(v1′, w1′, v2) ∧ K(v3, w3, v2) )

As can be seen, conditionK(v3, w3, v2) can be extracted from the existential quantification in the
consequent of this implication (this is so because variablev1′ does not occur free in it). It is then easily
discharged because it is already present in the antecedent of the implication.

The situation is a bit different in the case of the evente2: this is because this event modifies variable
v2. We have to prove thate2r is a refinement ofe2 in MR. Next is the correct refinement condition
REF1 (Section 5.2) ofe2 into e2r within NR:

J(v1, w1, v2) ∧ G2r(w1, v2) ∧ E2r(w1, w1′, v2, v2′)

⇒

G2(v1, v2) ∧ ∃ v1′ · (E2(v1, v1′, v2, v2′) ∧ J(v1′, w1′, v2′) )

The correct refinement condition ofe2 into e2r within MR is:

J(v1, w1, v2) ∧ K(v3, w3, v2) ∧ G2r(w1, v2) ∧ E2r(w1, w1′, v2, v2′)

⇒

G2(v1, v2) ∧ ∃ v1′ · (E2(v1, v1′, v2, v2′) ∧ J(v1′, w1′, v2′) ∧ K(v3, w3, v2′) )

As above withK(v3, w3, v2), the conditionK(v3, w3, v2′) can be extracted from the existential
quantification in the consequent of this implication. But this time the situation is different from the
previous one as we still have the conditionK(v3, w3, v2) in the antecedent, notK(v3, w3, v2′), so that
the proof is not trivial. Again, the presence ofv2′ in the consequent is due to the fact thatv2 is modified
by e2 ande2r. Fortunately, we have not yet exploited the fact that evente2 of machineM is abstracted
within machineP by evente2a. This is provided by proof obligationDCMP (Section 6.4), expressing
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that evente2a of machineP is refined toe2 of machineM:

∀ v1′ · (G2(v1, v2) ∧ E2(v1, v2, v1′, v2′) ⇒ G2a(v2) ∧ E2a(v2, v2′) )

By exploiting thatv1′ does not occur free inG2a(v2) ∧ E2a(v2, v2′), we can move the quantifier in the
antecedent. This yields:

G2(v1, v2) ∧ ∃ v1′ · E2(v1, v2, v1′, v2′) ⇒ G2a(v2) ∧ E2a(v2, v2′)

Finally, we also have not exploited the fact that evente2a of P isnot refinedin PR. As a consequence,
it is clearly part of the “normal” refinement conditions ofPR to prove that conditionK(v3, w3, v2) is
left invariant undere2a. This yields:

K(v3, w3, v2) ∧ G2a(v2) ∧ E2a(v2, v2′) ⇒ K(v3, w3, v2′)

Putting all these conditions together yields the following to prove, which now holds “trivially”:

K(v3, w3, v2) ∧ G2a(v2) ∧ E2a(v2, v2′) ⇒ K(v3, w3, v2′)

G2(v1, v2) ∧ ∃ v1′ · E2(v1, v2, v1′, v2′) ⇒ G2a(v2) ∧ E2a(v2, v2′)

J(v1, w1, v2) ∧ G2r(w1, v2) ∧ E2r(w1, w1′, v2, v2′) ⇒

G2(v1, v2) ∧ ∃ v1′ · (E2(v1, v2, v1′, v2′) ∧ J(v1′, w1′, v2′) )

J(v1, w1, v2) ∧ K(v3, w3, v2) ∧ G2r(w1, v2) ∧ E2r(w1, w1′, v2, v2′)

⇒

G2(v1, v2) ∧ ∃ v1′ · (E2(v1, v2, v1′, v2′) ∧ J(v1′, w1′, v2′) ∧ K(v3, w3, v2′) )






