Event-B: Introduction and First Steps ${ }^{1}$

Manuel Carro
manuel.carro@upm.es
IMDEA Software Institute \& Universidad Politécnica de Madrid

[^0]Mundane matters 3 Sequents and proofs 24
Landscape . 6 Inference rules 37
Computation model 10 Invariant proofs 40
Integer division example 15 Formula strength 45
Invariants 19
Termination and correctness 47

Sep. 23 - Oct. 28 Event B.
Nov. 4 - Dec. 9 Floyd-Hoare logic and Dafny; executable specifications (Maude, Prolog).
Dec. 16 Term project presentation.
Jan. 19 (2021) Final exam (if needed).
Note: in case of written exams, they must be f2f.

Lecture plan

- $2 \times 50 \mathrm{~min}$. sessions.

Project plan

Project to be developed individually or in groups (depending on \# students) to be presented to everyone.

Event B

An industry-oriented method, language, and set of supporting tools to describe systems of interacting, reactive software, hardware components, and their environment, and to reason about them.

Industrial systems: usual characteristics

- Functionality often not too complex.
- Algorithms / data structures relatively simple.
- Underlying maths of reasonable complexity.
- Requirements document usually poor.
- Reactive and concurrent by nature.
- But often coarse: protecting (large) critical regions often enough.
- Many special cases.
- Communication with hardware / environment involved.
- Many details (\approx properties to ensure) to be taken into account.
- Large (in terms of LOCs).

Producing correct (software) systems hard - but not necessarily from a theoretical point of view.

The Event B approach

Complexity: Model Refinement

- System built incrementally, monotonically.
- Take into account subset of
requirements at each step.
- Build model of a partial system.
- Prove its correctness.
- Add requirements to the model, ensure correctness:
- The requirements correctly captured by the new model.
- New model preserves properties of previous model.

Details: Tool Support

- Tool to edit Event B models (Rodin).
- Generates proof obligations: theorems to be proved to ensure correctness.
- Interfaced with (interactive) theorem provers.
- Extensible.

Model: formal description of a discrete system.

- Formal: mechanism to decide whether some properties hold
- Discrete: can be represented as a transition system
- Formalization contains models of:
- The future software components
- The future equipments surrounding these components
- The overall model construction can be very complex.
- Refinement and decomposition key to master this complexity:
- Build model gradually
- Ordered sequence of more precise models
- Each model refines its predecessor.

States and transitions

- Transitions between states are
triggered by events
- An event is made of a guard and an action
- The guard G denotes the enabling condition of the event
- The action denotes the way the state is modified by the event
- Guards and actions are written using set-theoretic expressions (e.g., first-order, classical logic).

A discrete model is made of states

- States are represented by constants and variables

$$
S_{i}=\left\langle c_{1}, \ldots, c_{n}, v_{1}, \ldots, v_{m}\right\rangle
$$

A simple example

Search for element k in array f of length n, assuming k is in f.

- Relationships among constants and variables written using set-theoretic expressions

$$
\begin{gathered}
\text { Variables / Invariants } \\
\qquad \mathrm{i} \in 1 . . \mathrm{n}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Event Search } \\
& \text { when } \\
& \quad \mathrm{i}<\mathrm{n} \wedge \mathrm{f}(\mathrm{i}) \neq \mathrm{k} \\
& \text { then } \\
& \text { i }:=\mathrm{i}+1 \\
& \text { end }
\end{aligned}
$$

Event Found
when

$$
f(i)=k
$$

then
skip
end

```
Event EventName
when
    guard: G(v, c)
then
    action: v := E(v, c)
end
```

$G(v, c)$: a predicate that must be true for EventName to be enabled

Running example (sequential code)

$$
a=\left\lfloor\frac{b}{c}\right\rfloor
$$

- We want to define division for natural numbers (without using division).

$$
\begin{aligned}
& \text { We assume: } \\
& \qquad b, c \in \mathbb{N} \wedge c>0 \\
& \text { We want: }
\end{aligned}
$$

$$
b=a \times c+k \wedge a \in \mathbb{N} \wedge k \in \mathbb{N} \wedge k<c
$$

```
Initialize;
while (some events have true guards) {
    Choose one such event;
    Modify the state accordingly;
}
```

Event EventName
when
guard: $G(v, c)$
then
action: v := E(v, c)
end

- An event execution takes no time.
- No two events occur simultaneously.
- When all events have false guards, the discrete system stops.
- When some events have true guards, one of them is non-deterministically chosen and its action modifies the state.
- Previous phase is repeated if possible.
- Halting not necessary: a discrete system may run forever

Programming integer division

- We have addition and substraction
- We have a simple procedural language: variables, assignment, while loops, if-then-else, $+\&-$, arithmetical operators, arithmetical comparison
- Think for a couple of minutes and let us write code

```
a :=0
k := b
while k >= c
        k := k - c
        a := a + 1
```


Note

This step is not taken in Event B. We are writing this code only for illustration purposes.
Please copy the code and save it for later.

Event EventName
when
G(v, c)
then
$\mathrm{v}:=\mathrm{E}(\mathrm{v}, \mathrm{c})$
end

- Special initialization event (INIT).
- Sequential program (special case):
- Finish event, Progress events
- Finish event guard negate Progress'
- Some guard is always true
- Think for 5 min . Share the result.
Event INIT
$a, k=0, b$
end

Event Progress
when

$$
\mathrm{k}>=\mathrm{c}
$$

then

$$
\mathrm{k}, \mathrm{a}:=\mathrm{k}-\mathrm{c}, \mathrm{a}+1
$$

end

Q: integer division events (3)
Event Finish
when
$\mathrm{k}<\mathrm{c}$
then
skip end

Invariants

- Invariant: formula true before and after event
- State safety conditions, prove correctness
- What must always be true in a physical system
- What must always be true in an algorithm
- Necessary to prove (sequential) correctness
- In non-terminating, reactive systems: capture conditions which must always hold (safety)
- Finding invariants: mixes art and science
- Hint: explore what happens with the variables as the code proceeds

Categorizing			midea \square
Constants		Axioms	
b	Q: constants (4)	$\begin{aligned} & b \in \mathbb{N} \\ & c \in \mathbb{N} \\ & c>0 \end{aligned}$	Q: axioms (5)
Variables		Invariants	
a	Q: variables (6)		

Finding invariants
 Constants and variables?

Which assertions are invariant in our model?
One formula which is an invariant for any Event-B model / loop.

$I_{1}: a \in \mathbb{N}$	// Type invariant
$I_{2}: k \in \mathbb{N}$	// Type invariant
$I_{3}: \mathrm{b}=\mathrm{a} \times \mathrm{c}+\mathrm{k}$	

$I_{2}: k \in \mathbb{N} \quad / /$ Type invariant
$l_{3}: b=a \times c+k$

- Proving invariant preservation: For all event i, invariant j

$$
A(c), G_{i}(v, c), I_{1 \ldots n}(v, c) \vdash I_{j}\left(E_{i}(v, c), c\right)
$$

- $A(c)$ axioms
- $G_{i}(v, c)$ guard of event
- $I_{j}(v, c)$ invariant j
- $I_{1 \ldots n}(v, c)$ all the invariants
- $E_{i}(v, c)$ result of action i (

Sequent

$\Gamma \vdash \Delta$

Show that:
with assumptions Γ, I can prove Δ

Invariant preservation

If an invariant holds and the guards of an event are true and we execute the event's action, the invariant still holds.

- INIT case

$$
A(c) \vdash I_{j}\left(E_{\text {init }}(v, c), c\right)
$$

$\mathrm{E}_{\text {INIT }} / \mathrm{I}_{3} / \mathrm{INV}$

$$
\begin{gathered}
\frac{\square \vdash b=b}{\vdash Q L} \\
\frac{\vdash b=0+b}{} \text { Arith } \\
b \in \mathbb{N}, c \in 0 \times c+b \\
\text { Arith } \\
\mathbb{N}, c>0 \vdash b=0 \times c+b \\
M O N
\end{gathered}
$$

Invariant preservation proofs

- Invariant: mathematical assertion
- Mathematically proven from code and math axioms
- Three invariants \& three events: nine proofs
- Named as e.g. EProgress $/ \mathrm{I}_{2} / \mathrm{INV}$
- Other types of proofs will be necessary in due time

$$
\mathrm{E}_{\mathrm{INIT}} / \mathrm{I}_{1} / \mathrm{INV}
$$

$\mathrm{E}_{\text {INIT }} / \mathrm{I}_{2} /$ INV

$$
\frac{\frac{b \in \mathbb{N} \vdash b \in \mathbb{N}}{b \in \mathbb{N}, c \in \mathbb{N}, c>0 \vdash b \in \mathbb{N}} \mathrm{MON}}{b \in \mathbb{N}}
$$

- Mechanize proofs
- Humans "understand"; proving is tiresome and error-prone
- Computers manipulate symbols
- How can we mechanically construct correct proofs?
- Every step crystal clear
- For a computer to perform
- Several approaches
- For Event B: sequent calculus
- To read: [Pau] (available at course web page), at least Sect. 3.3 to
$3.5,6.4$, and 6.5. Note: when we use $\Gamma \vdash \Delta$, Paulson uses $\Gamma \Rightarrow \Delta$
- An inference rule is a tool to perform a formal proof.
- It is denoted by:

$$
\frac{A}{C} R
$$

- A is a (possibly empty) collection of sequents: the antecedents.
- C is a sequent: the consequent.
- R is the name of the rule.

The proofs of each sequent of A
—— together give you \qquad a proof of sequent C

Proof of sequent $S 1$

$$
\begin{array}{lllllll}
\overline{S 2} \mathrm{r} 1 & \frac{S 7}{S 4} \mathrm{r} 2 & \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 & \overline{S 5} & { }^{4} 4 & \frac{S 5 S 6}{S 3} \mathrm{r} 5 & \overline{S 6} \mathrm{r} 6
\end{array} \overline{S 7}{ }^{\mathrm{r}} 7
$$

Note: not exactly the inference rules we will use. Only an intuitive example.

- A (lice) and $B(o b)$ are siblings:

$$
\begin{aligned}
& \frac{C \text { is mother of } A}{A \text { and } B \text { are siblings }} \begin{array}{l}
C \text { is mother of } B \\
\frac{C \text { is father of } A}{A} \quad C \text { is father of } B \\
B \text { are siblings }
\end{array} \text { Sibling-F }
\end{aligned}
$$

- Note: other possibilities may exist.

Proof of Sequent $S 1$

$$
\overline{S 2}^{\mathrm{r} 1} \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7}^{\mathrm{r} 7}
$$

S1		
S2	¢	S4
?	?	?

$$
\begin{array}{lllllll}
\overline{S 2}^{\mathrm{r} 1} & \frac{S 7}{S 4} \mathrm{r} 2 & \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 & \overline{S 5}^{\mathrm{r} 4} & \frac{S 5 S 6}{S 3} \mathrm{r} 5 & \overline{S 6}^{\mathrm{r} 6} & \overline{S 7}^{\mathrm{r} 7}
\end{array}
$$

	r 3		
	$\nearrow \uparrow \nwarrow$		
$S 2$	$S 3$	$S 4$	
r 1	$?$	$?$	

Proof of Sequent $S 1$

$$
\overline{S 2}^{1} \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7} \mathrm{r}^{7} 7
$$

Proof of Sequent $S 1$

$$
\overline{S 2}^{\mathrm{r} 1} \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7}^{\mathrm{r} 7}
$$

	r 3	
	$\nearrow \uparrow \nwarrow$	
$S 2$	$S 3$	$S 4$
r 1	r 5	$?$
	$\nearrow \uparrow$	
$S 5$	$S 6$	
r 4	$?$	

$$
\overline{S 2} \mathrm{r} 1 \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5} \mathrm{r} 4 \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7} \mathrm{r} 7
$$

	r 3	
	$\nearrow \uparrow \nwarrow$	
$S 2$	$S 3$	$S 4$
r 1	r 5	r 2
	$\nearrow \uparrow$	\uparrow
$S 5$	$S 6$	$S 7$
r 4	r 6	$?$

Recording the Proof of Sequent $S 1$

$$
\left[\begin{array}{llllll}
S 2 \\
\mathrm{r} 1 & \frac{S 7}{S 4} \mathrm{r} 2 & \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 & \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 & \overline{S 6} \mathrm{r} 6 & \overline{S 7} \mathrm{r} 7
\end{array}\right.
$$

S1		
r3		
	$\nearrow \uparrow$	
S2	S3	S4
r1	r5	r2
	$\nearrow \uparrow$	\uparrow
$S 5$	S6	S7
r4	r6	r7

- The proof is a tree

$$
\overline{S 2} \mathrm{r} 1 \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5} \mathrm{r} 4 \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6} \mathrm{r} 6 \quad \overline{S 7} \mathrm{r} 7
$$

	S1	
	r3	
	$\nearrow \uparrow \nwarrow$	
S2	S3	S4
r1	r5	r2
	$\nearrow \uparrow$	\uparrow
S5	S6	S7
r4	r6	r7

Being more precise about sequents

- We supposedly have a predicate language
- Not formally defined yet
- We will assume it is first-order, classical logic
- Recommended references: [Pau, HR04, Ben12]
- A sequent is denoted by the following construct: $H \vdash G$
- H is a (possibly empty) collection of predicates: the hypotheses
- G is a predicate: the goal

Objective

Show that, under the hypotheses of collection H, the goal G can be proven.

Basic inference rules

- There are three basic inference rules
- These rules are independent of the predicate Language

HYPothesis

$H, P \vdash P$ HYP

If the goal is among the hypothesis, we are done.

MONotony

$$
\frac{H \vdash Q}{H, P \vdash Q} \text { MON }
$$

If goal proven without hypothesis P, then can be proven with P.

shortCUT

$\frac{H \vdash P \quad H, P \vdash Q}{H \vdash Q}$ CUT

A goal can be proven with an intermediate deduction P. Nobody tells us what is P or how to come up with it. (Cut Elimination Theorem)

- There are many other rules for:
- Logic itself
- Look at the slides / documents in the course web page
- reasoning on arithmetic (Peano axioms),
- reasoning on sets,
- reasoning on functions,
- ...
- We will not list all of them here (see online documentation)
- We will explain them as they appear
- But a mechanical prover has them as "inside knowledge" (plus tactics, strategies)

Previous (unexplained) rules

First Peano axiom

$$
\overline{\vdash 0 \in \mathbb{N}}^{P 0}
$$

Second Peano axiom

$$
\overline{n \in \mathbb{N} \vdash n+1 \in \mathbb{N}} \mathrm{P} 1
$$

Term substitution

$$
\frac{Q(E), E=F \vdash R(E)}{Q(E), E=F \vdash R(F)} \mathrm{EQ}-\mathrm{LR}
$$

Equality

$$
\overline{\vdash E=E}^{\mathrm{EQL}}
$$

(in)

$$
\frac{H, Q \vdash R \quad H, P \vdash R}{H, P \vee Q \vdash R} \text { OR-L }
$$

$$
\frac{H \vdash P}{H \vdash P \vee Q} \text { OR-R1 } \quad \frac{H \vdash Q}{H \vdash P \vee Q} \text { OR-R2 }
$$

$$
\frac{H \vdash Q \quad H \vdash P}{H \vdash P \wedge Q} \text { AND-L }
$$

A disjunction on the LHS needs both branches of the disjunction be discharged separately

A disjunction on the RHS only needs one of the branches to be proven.
That's why there are two rules: one to choose each of the branches.

A conjunction on the RHS only nees both branches of the conjunction be proven independently of each other.

Invariant preservation proofs
(a)

$$
E_{\text {Progress }} / I_{2} / \text { INV }
$$

$$
\begin{aligned}
& \frac{\frac{\vdash-0 \in \mathbb{N}}{\vdash(} \text { PO }}{\vdash c-c \in \mathbb{N}} \text { Arith } \\
& c \in \mathbb{N}, c \in \mathbb{N} \vdash c-c \in \mathbb{N} \text { MON } \\
& c \in \mathbb{N}, k-c>0, k \in \mathbb{N} \vdash k-c \in \mathbb{N} \text { Arith } \\
& \text { Simp-M-Minus } \\
& c \in \mathbb{N}, k=c, k \in \mathbb{N} \vdash k-c \in \mathbb{N} \text { EQ-LR } \quad \frac{c \in \mathbb{N}, k-c>c-c, k \in \mathbb{N} \vdash k-c \in \mathbb{N}}{c \in \mathbb{N}, k>c, k \in \mathbb{N} \vdash k-c \in \mathbb{N}} \text { Arith-M-M-R } \\
& \frac{c \in \mathbb{N}, k>c \vee k=c, k \in \mathbb{N} \vdash k-c \in \mathbb{N}}{c \in \mathbb{N}, k \geq c, k \in \mathbb{N} \vdash k-c \in \mathbb{N}} \text { Arith } \\
& b \in \mathbb{N}, c \in \mathbb{N}, c>0, k>c, a \in \mathbb{N}, b=a \times c+k, k \in \mathbb{N} \vdash k-c \in \mathbb{N} \text { MON }
\end{aligned}
$$

Invariant preservation proofs

- $\mathrm{E}_{\text {Finish }} / \mathrm{I}_{1} / \mathrm{INV}$
- $\mathrm{E}_{\text {Finish }} / \mathrm{I}_{2} / \mathrm{INV}$
- $\mathrm{E}_{\text {Finish }} / \mathrm{I}_{3} / \mathrm{INV}$
are trivial (Finish does not change anything)

Inductive and non-inductive invariants

- We want to prove

$$
\begin{gathered}
A(c) \vdash \iota_{j}\left(E_{\text {init }}(v, c), c\right) \\
A(c), G_{i}(v, c), \iota_{1 \ldots n}(v, c) \vdash I_{j}\left(E_{i}(v, c), c\right)
\end{gathered}
$$

- l_{i} : inductive invariant (base case + inductive case)
- True invariants can be non-inductive if they cannot be proved from program

```
Event INIT
    a: x := 1
```

end

- $x \geq 0$ is an invariant.
- It is not inductive (Loop:
$x \geq 0 \vdash 2 * x-1 \geq 0$?)
- $x>0$ is inductive
- Strengthening (if $x \geq 0$ needed, we can use $x>0$)

Sequential correctness

- Postcondition P must be true at the end of execution
- End of execution associated to special event Finish:

$$
A(c), G_{\text {Finish }}(v, c), I_{1 \ldots n}(v, c) \vdash P(v, c)
$$

$$
\overbrace{b \in \mathbb{N}, c \in \mathbb{N}, c>0}^{\text {Ax }}, \overbrace{k<c}^{\text {Guard }}, \overbrace{a \in \mathbb{N}, k \in \mathbb{N}, b=a \times c+k}^{\text {Invariants }} \vdash \underbrace{b=a \times c+k \wedge k<c}_{\text {Postcond }}
$$

- Not applicable to non-terminating systems (other proofs required)
- $I_{1 . . n}$ and $G_{\text {Finish }}$ related to P; not necessarily identical
- Nota that correct $I_{1 \ldots n}$ may not be strong enough: the stronger, the better.

Formula strength and information

- If $A \vdash B$ or $A \Rightarrow B$, then A is stronger than B.
- Balance between extremes
- Too weak: easy as invariant, maybe not enough information
- You want invariants strong enough to prove the property one wants.
- What are the strongest and weakest possible formulæ?

$$
\begin{array}{ll}
\perp \equiv Q \wedge \neg Q & \\
\text { (because } \perp \vdash R \text {) } \\
\top \equiv Q \vee \neg Q & \\
\text { (because } R \vdash \top \text {) }
\end{array}
$$

- The proof by contradiction rule:

$$
\underset{\perp \vdash P}{ } \mathrm{ECQ}
$$

Termination

- "Postcondition P must be true at the end of execution"
- General strategy: look for a ranking function / progress measure
- In Event B lingo: a variant $V(v, c)$
- An expression V (with $V \in \mathbb{N}$ or $V \subseteq S$) that is reduced by each non-terminating event

$$
A(v), I_{1 \ldots n}, G_{i}(v, c) \vdash V(v, c)>V\left(E_{i}(v, c), c\right)
$$

variant: k

- We do not say how it is reduced: it has to be proven
$\frac{c>0 \vdash k>k-c}{c}$ Arith \quad Termina

[^0]: ${ }^{1}$ Many slides borrowed from J. R. Abrial

