Event-B: Introduction and First Steps’

Manuel Carro
manuel.carro@upm.es

IMDEA Software Institute &
Universidad Politécnica de Madrid

'Many slides borrowed from J. R. Abrial

[Jean-Raymond Abrial.
Faultless systems: Yes we can!
IEEE Computer, 42(9):30-36, 2009.

[Jean-Raymond Abrial.
Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

[Mordechai Ben-Ari.
Mathematical Logic for Computer Science, 3rd Edition.
Springer, 2012.

[Michael Huth and Mark Ryan.
Logic in Computer Science: Modelling and Reasoning About Systems.
Cambridge University Press, New York, NY, USA, 2004.

@ Lawrence C. Paulson.
Logic and Proof.
Lecture notes, U. of Cambridge.

o () J
=i dea

=i dea

=

@i dea
Mundane matterseeeeeeeeen... 3 Sequentsand proofs 24
LandSCape ...oovviiiieee e 6 Inferencerulesol. 37
Computation model 10 Invariantproofso 40
Integer division example 15 FormulastrengthL. 45
INVAMTANES « ettt 19 Termination and correctness 47
Take notes mi dea -

To Remember a Lecture
Better, Take Notes by Hand

Students do worse on quizzes when they use keyboards in class.

Picture & headline © The Atlantic
https://www.theatlantic.com/technology/archive/2014/05/to-remember-a-lecture-better-take-notes-by-hand/361478/
I will make notes / slides available after the lectures
I will ask you to work during the lectures

mailto:manuel.carro@upm.es
https://www.theatlantic.com/technology/archive/2014/05/to-remember-a-lecture-better-take-notes-by-hand/361478/

B =
2020-2021 specific information @i deam_;m mi dea_

Sep. 23 - Oct. 28 Event B.

Nov. 4 - Dec. 9 Floyd-Hoare logic and Dafny; executable
specifications (Maude, Prolog).
Dec. 16 Term project presentation.

Jan. 19 (2021) Final exam (if needed).
Note: in case of written exams, they must be f2f.

Event B

An industry-oriented method, language, and set
of supporting tools to describe systems of
Lecture plan interacting, reactive software, hardware

@ 2 x 50 min. sessions. components, and their environment, and to

reason about them.
Project plan

Project to be developed individually or in groups (depending on #
students) to be presented to everyone.

Industrial systems: usual characteristics @i dea The Event B approach @i dea

@ Functionality often not too complex.
e Algorithms / data structures relatively simple.

e Underlying maths of reasonable complexity. L Complexity: Model Refinement Details: Tool Support
@ Requirements document usually poor. - @ System built incrementally, @ Tool to edit Event B models (Rodin).
@ Reactive and concurrent by nature. monotonically. @ Generates proof obligations:
e But often coarse: protecting (large) critical o Take into account subset of theorems to be proved to ensure
regions often enough_ requirements at each step. correctness
o Build model of a partial system. ’
@ Prove its correctness. @ Interfaced with (interactive) theorem
@ Many special cases. provers.
@ Communication with hardware / environment involved. © Add requirements to the model, ensure o £ o cipal
@ Many details (=~ properties to ensure) to be taken into account. CUECITEDES
o Large (in terms of LOCs). @ The requirements correctly captured

by the new model.
o New model preserves properties of

Producing correct (software) systems hard — but not previous model.

necessarily from a theoretical point of view.

Basic ideas

g

L)

Model: formal description of a discrete system.
@ Formal: mechanism to decide whether some properties hold
@ Discrete: can be represented as a transition system

@ Formalization contains models of:
o The future software components

@ The future equipments surrounding these components
@ The overall model construction can be very complex.
@ Refinement and decomposition key to master this complexity:

@ Build model gradually

@ Ordered sequence of more precise models
@ Each model refines its predecessor.

States and transitions

@ Transitions between states are
triggered by events

@ An event is made of a guard and an
action

@ The guard G denotes the enabling
condition of the event

@ The action denotes the way the state
is modified by the event

@ Guards and actions are written using
set-theoretic expressions (e.g.,
first-order, classical logic).

=i dea h A
)

i dea =

b

Guard of transition

~
~
~

~

~
T -
1
|
1
1

States

Models and states

A discrete model is made of states

Go Gl

@ States are represented by constants
and variables

Si={Cly. s Cny Viyeeey Vm)

A simple example

‘wog

%

(i

mi dea _POU

@ Relationships among constants and
variables written using set-theoretic
expressions

T

‘_\J

| POLITECNICA]

[

=i dea

Search for element k in array £ of length n, assuming k is in £.

Constants / Axioms

CONSTn € N
CONSTk € N
CONSTf€l.n — N

Variables / Invariants

iel.n

Event Search

Event Found

when when
i<nAf@E) #k £(i) = k

then then
i=1+1 skip

end end

(initialization of i not shown for brevity)

=o¢ -

. (& ()]
Events @i dea Informal operational interpretation miodea
Event EventName ln't_'al'ze; @ An event execution takes no time.
while (some events have true guards) { e No two events occur simultaneousl|
when Choose one such event; y:
guard: G(v, c) Modify the state accordingly: @ When all events have false guards, the
} discrete system stops.
then
] @ When some events have true guards,
action: v := E(v, ¢) . Evontl one of them is non-deterministically
end vent Eventlame chosen and its action modifies the
when
state.
' guard: G(v, c)
G(v, c): a predicate that must be true for EventName to be enabled then © Previous phase is repeated if possible.
action: v := E(v, ¢) @ Halting not necessary: a discrete
end system may run forever.
Running example (sequential code) @i dea Programming integer division @i dea
@ We have addition and substraction
2= L bJ @ We have a simple procedural language: variables, assignment, while loops,
¢ if-then-else, + & -, arithmetical operators, arithmetical comparison
@ We want to define division for natural numbers (without using division). @ Think for a couple of minutes and let us write code

We assume: a :

k>c
=0
@ Input and output? k:=b
byceNAc>0 @ Variables and constants? CLELO) LS s (o T k< c
=k - ¢ -
We want: @ Types? a:i=a+1

b= axct+kna e NNk € NAk < ¢ Note

This step is not taken in Event B. We are writing this code only for illustration purposes.

b
=

Please copy the code and save it for later.

B 7
- A P o A8
Towards events @i dea ErErm Categorlzmg elements @i dea T

Event EventName @ Special initialization event (INIT). Constants Axioms
Whgl(l , @ Sequential program (special case):
b Vs @ Finish event, Progress events EN
then e Finish event guard negate Progress’ c ceN
v := E(v, ¢ e Some guard is always true c>0
end e Think for 5 min. Share the result.
Variables Invariants
Event INIT Event Progress Event Finish a
a, k=0, b when when k
end k >= c k<c Later!
then then
k, a:=k-c¢c, a+1 skip
end end
Invariants @i dea = Finding invariants @i dea =
[Frouecnical [rounecnical
. i ?
@ Invariant: formula true before and after event Constants and variables:
@ State safety conditions, prove correctness))) o o))
o What must always be true in a physical system Which assertions are invariant in our model? One formula which is an invariant for
e What must always be true in an algorithm any Event-B model / loop.
o Necessary to prove (sequential) correctness
o In non-terminating, reactive systems:
capture conditions which must always hold (safety) h:aeN // Type invariant T
h:keN // Type invariant

@ Finding invariants: mixes art and science
hib=axc+k

@ Hint: explore what happens with the variables as the code
proceeds

] b
. . o A8 . o . L
Invariant preservation @i dea Invariant preservation proofs @i dea
@ Invariant: mathematical assertion
@ Mathematically proven from code and math axioms

@ Three invariants & three events: nine proofs
A(c), Gi(v,), i n(v,c) F l;(Ei(v,c),c) Show that: @ Named as e.g. Ep ogress/Io/INV
with assumptions I', I can prove A o Other types of proofs will be necessary in due time

@ Proving invariant preservation: For all Sequent
event j, invariant j reA

o A(c) axioms
o Gj(v,c)guard of event i Invariant preservation Einr /1 /INV Enit /12 /INV
o li{v,c)invariantj If an invariant holds and the guards of
@ . s(v,c) all the invariants
o E(v,) result of action i an ev?nt are trure]z a‘nd we exec.Tltﬁ tlhde BPENFbLEN HYP
event's action, the invariant still holds. Fo0eN PO N bENcENC>0 FhEN MON
beN,ceNc>0F0eN
@ INIT case cheses ©
A(e) F i(Einit(v, c), €)
Invariant preservation proofs @i deam;;m Sequents @i deam_;%m
Einit / I3 / INV
m EQL @ Mechanize prOOfS
“Ebh=04b Arlth. @ Humans “understand”; proving is tiresome and error-prone
— Arith o Computers manipulate symbols
Fb=0xc+b MON
beNceNc>0Fb=0xc+b @ How can we mechanically construct correct proofs?

o Every step crystal clear
o For a computer to perform

@ Several approaches

@ For Event B: sequent calculus

o To read: [Pau] (available at course web page), at least Sect. 3.3 to
3.5, 6.4, and 6.5. Note: when we use ' + A, Paulson uses I = A

v“eg‘.
=

=L

Inf | mi dea
nference rule -2

%

(i

An example of inference rule @i dea

@ An inference rule is a tool to perform a formal proof.

@ Itis denoted by: . . U
Note: not exactly the inference rules we will use. Only an intuitive example.
A

R
c @ A(lice) and B(ob) are siblings:
@ Ais a (possibly empty) collection of sequents: the antecedents. Cismother of A__ Cis mother of B_ gjpjing_y
. A and B are siblings
@ Cis a sequent: the consequent.
@ Ris the name of the rule. Cis father of A Cis father of B Sibling-F

A and B are siblings

The proofs of each sequent of A
together give you
a proof of sequent C

@ Note: other possibilities may exist.

Proof of sequent S1 9 Proof of Sequent S1 10
S7 S2 S3 54 S5 S6 S7 S2 S3 54 S5 S6
o1 512 e C I o o3 19 ggl6 o717 o1 512 13 ot 53 19 ggl6 o717
S1 S1
? r3
TN
S2 S3 5S4

? ? ?

Proof of Sequent S1 11

S7 52 S3 S84 S5 S6
ofl g2 253372713 o1 53 19 ggl6 o717
S1
r3
TN
S§2 S3 5S4
1 ? ?

Proof of Sequent S1 13

S7 S2 S3 5S4 S5 S6
§r1 ng TB EM Tr5 ﬁrG Wﬂ

S1

SN
S2 S3 S4
r1 r5 ?
au
S5 S6
r4 ?

Proof of Sequent S1

12

S7 S2 S3 S4 S5 S6
ﬁr1 ng 22T r3 ﬁr4 53 5 %rs ﬁr7
S1
r3
VAR
S2 S3 sS4
r1 r5 ?
au
S5 S6
] 2
Proof of Sequent S1 14
S7 S2 S3 5S4 S5 S6
§r1 grz 22T r3 EM o 5 %rG Wﬂ
S1
r3
VAR

S2 S3 S4
r1 r5 ?

au
S5 S6
rd4 ré

Proof of Sequent S1 15
ST S2 S3 S4 S5 S6
§r1 ﬁr2 Tr3 ﬁr4 53 r5 %rs Wﬂ
S1
r3
N
S2 S3 sS4
r r5 r2
au T
S5 S6 S7
r4 ré ?
Recording the Proof of Sequent S1 17
S7 S2 S3 S4 S5 S6
§r1 ﬁr2 o7 r3 EM 53 r5 ﬁr6 Wﬂ
S1
r3
N
S2 S3 sS4
r1 r5 r2
au T

S5 S6 S7
r4 r6é r7

- The proof is a tree

Proof of Sequent S1

16

S7 S2 S3 S4 S5 S6
§r1 gr2 22T r3 EM 53 5

S1
r3
VAR
S2 S3 sS4
r1 r5 r2
S)
S5 S6 S7
r4 ré r7

Being more precise about sequents

@ We supposedly have a predicate language

o Not formally defined yet
o We will assume it is first-order, classical logic
@ Recommended references: [Pau, HR04, Ben12]

@ Asequent is denoted by the following construct: H + G

@ His a (possibly empty) collection of predicates: the hypotheses

@ G is a predicate: the goal

Objective

Show that, under the hypotheses of collection H, the goal G can be

proven.

=i dea

(Eg

L8

Basic inference rules

@ There are three basic inference rules
@ These rules are independent of the predicate Language

HYPothesis MONotony
HprEp TP HEQ \vioN
HPFQ

If the goal is among the

hypothesis, we are done. If goal proven without
hypothesis P, then can be

proven with P.

Previous (unexplained) rules

First Peano axiom

Foen M9

Second Peano axiom

neENFntieN T

Term substitution

Q(E),E=F + R(E)
Q(E),E=F F R(F)

EQ-LR
Equality

FE=E EQL

(1
@i dea_ =
[PoLTECNICA]

shortCUT

H-P HPFQ
HFQ

CuT

A goal can be proven with
an intermediate deduction
P. Nobody tells us what is P
or how to come up with it.
(Cut Elimination Theorem)

. L8]
=i dea_ =

h 1]
; v
More Rules @i deammam

@ There are many other rules for:
o Logic itself
@ Look at the slides / documents in the course web page

@ reasoning on arithmetic (Peano axioms),
@ reasoning on sets,

@ reasoning on functions,

o ...

@ We will not list all of them here (see online documentation)
@ We will explain them as they appear
@ But a mechanical prover has them as “inside knowledge"” (plus tactics, strategies)

Invariant preservation proofs i deam
EProgress /1y 1INV

aeNFat+1leN P
beN,ceNc>0,k>c,keNb=axc+kaeNFa+1leN

MON

(] . ()]
More rules @i deamégm Invariant preservation proofs @i dea
- . E /I, 1INV
A disjunction on the LHS needs both Progress 1 °2
HQFR HPFER OR-L branches of the disjunction
HPVQFR ; e LU
; be discharged separately FOEN ith Arith*
Fc—ceN MON ceNk—c>0keNFk—-—ceN Simo-M-Minus
A disjunction on the RHS only needs one GENGEN FEG=GEN prgn GENMCEZE-GIEN (B GEN Aritﬁ_M_M_R
H P HFQ ofthebranchestobeproven. ceNk=ckeNFk—-—ceN ceNk>ckeNFk—-—ceN OR-L
Hr-pvqg ORRT e py, g ORR2 That's why there are two rules: one to EE Nvekl\?:ik ~ ZII;IGI—Nk = 15 ;;}E N rith
c sk > c, —c
choose each of the branches. beN,ceNc>0,k>c,aeNb=axc+k,keNFk—-—ceN Aok
A conjunction on the RHS only nees both
HFQ HFP AND-L branches of the conjunction be proven
HEPAQ independently of each other.
Invariant preservation proofs @i dea Invariant preservation proofs @i dea
Eprogress / I3 / INV Proofs for Finish
] EFinish/Il/INV
b=axcik Fb=axcik L0 ® Erinin/ LNV
b=axc+k Fb=axctc+k—c Arith-M-PI-Dist @ Efinish/I3/INV
b=axc+k kFb=(a+1)xc+k—c g~
rith-PI-
b=axct+kFb=(atl)xct(k—c) ON are trivial (Finish does not change anything)

beN,ceNc>0,k>c,aeNkeNb=axc+k Fb=(a+1)xc+(k—c) b

T

1)

(2

Inductive and non-inductive invariants @i deam

@ We want to prove

Ae) F i(Einit(v, €), c)
A(c), Gi(v,c), h..a(v,c) = li(Ei(v,c),c)

@ [;: inductive invariant (base case + inductive case)

@ True invariants can be non-inductive if they cannot be proved from program

Event INIT Event Loop @ x > 0is aninvariant.
a: x :=1 a: x 1= 2%xx - 1 @ Itis not inductive (Loop:
end end x>0 F2xx—-12>0?)

@ x > 0is inductive

@ Strengthening (if x > 0 needed, we can use x > 0)

€
. - A8
Sequentlal correctness =i dea_ =

@ Postcondition P must be true at the end of execution
@ End of execution associated to special event Finish:

A(¢), Grinish(v, ¢), h..n(v,c) F P(v,c)

Ax Guard Invariants

A
beN,ceNc>0k<c,aeNkeNb=axc+k Fb=axc+kANk<c

Postcond
@ Not applicable to non-terminating systems (other proofs required)
@ /1., and Gginish related to P; not necessarily identical
@ Nota that correct /1., may not be strong enough: the stronger, the better.

@
Formula strength and information @i dea
@ If A + Bor A= B, then Ais stronger than B.
@ Balance between extremes
@ Too weak: easy as invariant, maybe not enough information
e You want invariants strong enough to prove the property one wants.
@ What are the strongest and weakest possible formulae?
1L=QA-Q (because 1. + R)
T=QV-Q (because R +T)
@ The proof by contradiction rule:
L =P ECQ
Termination @i dea

@ "Postcondition P must be true at the end of execution”

@ General strategy: look for a ranking function / progress measure
@ In Event B lingo: a variant V(v, c)
@ An expression V (with V € Nor V C S) that is reduced by each non-terminating event

A(v), h. n, Gi(v,c) F V(v,c) > V(E(v,c),c)

variant: k

o We do not say how it is reduced: it has to be proven

c>0F k> k—c Aith
bENcENc>0acNkeNboaxcthkkocFk>k—c

Mon

	Mundane matters
	Landscape
	Computation model
	Integer division example
	Invariants
	Sequents and proofs
	Inference rules
	Invariant proofs
	Formula strength
	Termination and correctness

