
Event-B: Introduction and First Steps1

Manuel Carromanuel.carro@upm.es
IMDEA Software Institute &Universidad Politécnica de Madrid

1Many slides borrowed from J. R. Abrial

Mundane matters . 3
Landscape . 6
Computation model . 10
Integer division example 15
Invariants . 19

Sequents and proofs 24
Inference rules . 37
Invariant proofs . 40
Formula strength . 45
Termination and correctness 47

Jean-Raymond Abrial.Faultless systems: Yes we can!
IEEE Computer, 42(9):30–36, 2009.
Jean-Raymond Abrial.
Modeling in Event-B - System and Software Engineering.Cambridge University Press, 2010.
Mordechai Ben-Ari.
Mathematical Logic for Computer Science, 3rd Edition.Springer, 2012.
Michael Huth and Mark Ryan.
Logic in Computer Science: Modelling and Reasoning About Systems.Cambridge University Press, New York, NY, USA, 2004.
Lawrence C. Paulson.Logic and Proof.Lecture notes, U. of Cambridge.

Take notes

Picture & headline ©The Atlantic
https://www.theatlantic.com/technology/archive/2014/05/to-remember-a-lecture-better-take-notes-by-hand/361478/

I will make notes / slides available after the lecturesI will ask you to work during the lectures

mailto:manuel.carro@upm.es
https://www.theatlantic.com/technology/archive/2014/05/to-remember-a-lecture-better-take-notes-by-hand/361478/

2020-2021 specific information

Sep. 23 – Oct. 28 Event B.
Nov. 4 – Dec. 9 Floyd-Hoare logic and Dafny; executablespecifications (Maude, Prolog).

Dec. 16 Term project presentation.
Jan. 19 (2021) Final exam (if needed).

Note: in case of written exams, they must be f2f.
Lecture plan

2 × 50 min. sessions.
Project plan
Project to be developed individually or in groups (depending on #students) to be presented to everyone.

Event B
An industry-oriented method, language, and set
of supporting tools to describe systems of
interacting, reactive software, hardware
components, and their environment, and to
reason about them.

Industrial systems: usual characteristics
Functionality often not too complex.

Algorithms / data structures relatively simple.Underlying maths of reasonable complexity.
Requirements document usually poor.
Reactive and concurrent by nature.

But often coarse: protecting (large) criticalregions often enough.

Many special cases.Communication with hardware / environment involved.Many details (≈ properties to ensure) to be taken into account.Large (in terms of LOCs).
Producing correct (software) systems hard — but notnecessarily from a theoretical point of view.

The Event B approach

Complexity: Model Refinement
System built incrementally,monotonically.

Take into account subset ofrequirements at each step.Build model of a partial system.Prove its correctness.
Add requirements to the model, ensurecorrectness:

The requirements correctly capturedby the new model.New model preserves properties ofprevious model.

Details: Tool Support
Tool to edit Event B models (Rodin).
Generates proof obligations:theorems to be proved to ensurecorrectness.
Interfaced with (interactive) theoremprovers.
Extensible.

Basic ideas

Model: formal description of a discrete system.
Formal: mechanism to decide whether some properties hold
Discrete: can be represented as a transition system
Formalization contains models of:

The future software componentsThe future equipments surrounding these components
The overall model construction can be very complex.
Refinement and decomposition key to master this complexity:

Build model graduallyOrdered sequence of more precise modelsEach model refines its predecessor.

Models and states

A discrete model is made of states

S0 S1 S2 Sn−1 Sn

G1

G0

G2

G1

States are represented by constantsand variables
Si = 〈c1, . . . , cn, v1, . . . , vm〉

Relationships among constants andvariables written using set-theoreticexpressions

States and transitions

Transitions between states aretriggered by events
An event is made of a guard and anaction

The guard G denotes the enablingcondition of the eventThe action denotes the way the stateis modified by the event
Guards and actions are written usingset-theoretic expressions (e.g.,first-order, classical logic).

Si Sj

G

States

Guard of transition

A simple exampleSearch for element k in array f of length n, assuming k is in f.
Constants / Axioms

CONST n ∈ N
CONST k ∈ N

CONST f ∈ 1..n −→ N

Variables / Invariants
i ∈ 1..n

Event Search

when

i < n ∧ f(i) 6= k

then

i := i + 1

end

Event Found

when

f(i) = k

then

skip

end

(initialization of i not shown for brevity)

Events

Event EventName

when

guard: G(v, c)

then

action: v := E(v, c)

end

G(v, c): a predicate that must be true for EventName to be enabled

Informal operational interpretation

Initialize;
while (some events have true guards) {

Choose one such event;
Modify the state accordingly;
}

Event EventName

when

guard: G(v, c)

then

action: v := E(v, c)

end

An event execution takes no time.
No two events occur simultaneously.

When all events have false guards, thediscrete system stops.
When some events have true guards,one of them is non-deterministicallychosen and its action modifies thestate.
Previous phase is repeated if possible.
Halting not necessary: a discretesystem may run forever.

Running example (sequential code)

a =

⌊
b

c

⌋
We want to define division for natural numbers (without using division).

Q: division specification (1)We assume:
b, c ∈ N ∧ c > 0

We want:
b = a×c+k∧a ∈ N∧k ∈ N∧k < c

Input and output?
Variables and constants?
Types?

Programming integer division

We have addition and substraction
We have a simple procedural language: variables, assignment, while loops,if-then-else, + & -, arithmetical operators, arithmetical comparison
Think for a couple of minutes and let us write code

Q: integer division code (2)
a := 0

k := b

while k >= c

k := k - c

a := a + 1
Init Loop Finish>

k ≥ c

k < c

Note
This step is not taken in Event B. We are writing this code only for illustration purposes.
Please copy the code and save it for later.

Towards events
Event EventName

when

G(v, c)

then

v := E(v, c)

end

Special initialization event (INIT).
Sequential program (special case):

Finish event, Progress events
Finish event guard negate Progress’Some guard is always trueThink for 5 min. Share the result.

Q: integer division events (3)
Event INIT

a, k = 0, b

end

Event Progress

when

k >= c

then

k, a := k - c, a + 1

end

Event Finish

when

k < c

then

skip

end

Categorizing elements
Constants Axioms

Q: constants (4)bc
Q: axioms (5)

b ∈ N
c ∈ N
c > 0

Variables Invariants
Q: variables (6)ak Later!

Invariants

Invariant: formula true before and after event
State safety conditions, prove correctness

What must always be true in a physical systemWhat must always be true in an algorithmNecessary to prove (sequential) correctnessIn non-terminating, reactive systems:capture conditions which must always hold (safety)
Finding invariants: mixes art and science
Hint: explore what happens with the variables as the codeproceeds

Finding invariants

Constants and variables?
Which assertions are invariant in our model?

Q: model invariants (7)
I1: a ∈ N // Type invariant
I2: k ∈ N // Type invariant
I3: b = a × c + k

One formula which is an invariant for
any Event-B model / loop.

Q: eternal invariant (8)
>

Invariant preservation

Proving invariant preservation: For allevent i , invariant j
A(c),Gi (v , c), I1...n(v , c) ` Ij(Ei (v , c), c)

A(c) axioms
Gi (v , c) guard of event i
Ij(v , c) invariant j
I1...n(v , c) all the invariants
Ei (v , c) result of action i

Sequent
Γ ` ∆

Show that:with assumptions Γ, I can prove ∆

Invariant preservation
If an invariant holds and the guards ofan event are true and we execute theevent’s action, the invariant still holds.

INIT case
invariant preservation for INIT (9)

A(c) ` Ij(Einit(v , c), c)

Invariant preservation proofs
Invariant: mathematical assertion
Mathematically proven from code and math axioms
Three invariants & three events: nine proofs
Named as e.g. EProgress/I2/INV

Other types of proofs will be necessary in due time
EINIT / I1 / INV

INIT I1 invariant proof (10)

P0` 0 ∈ N MON
b ∈ N, c ∈ N, c > 0 ` 0 ∈ N

EINIT / I2 / INV
INIT I2 invariant proof (11)

HYP
b ∈ N ` b ∈ N MON

b ∈ N, c ∈ N, c > 0 ` b ∈ N

Invariant preservation proofs

EINIT / I3 / INV
INIT I3 invariant proof (12)EQL` b = b Arith` b = 0+b Arith` b = 0× c + b MON

b ∈ N, c ∈ N, c > 0 ` b = 0× c + b

Sequents

Mechanize proofs
Humans “understand”; proving is tiresome and error-proneComputers manipulate symbols

How can we mechanically construct correct proofs?
Every step crystal clearFor a computer to perform

Several approaches
For Event B: sequent calculus

To read: [Pau] (available at course web page), at least Sect. 3.3 to3.5 , 6.4, and 6.5. Note: when we use Γ ` ∆, Paulson uses Γ⇒ ∆

Inference rule

An inference rule is a tool to perform a formal proof.
It is denoted by:

A RC
A is a (possibly empty) collection of sequents: the antecedents.
C is a sequent: the consequent.
R is the name of the rule.

The proofs of each sequent of A
together give you

a proof of sequent C

An example of inference rule

Note: not exactly the inference rules we will use. Only an intuitive example.
A(lice) and B(ob) are siblings:

C is mother of A C is mother of B Sibling-MA and B are siblings
C is father of A C is father of B Sibling-FA and B are siblings

Note: other possibilities may exist.

Proof of sequent S1 9

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
?

9

Proof of Sequent S1 10

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
? ? ?

10

Proof of Sequent S1 11

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 ? ?

11

Proof of Sequent S1 12

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 ?
↗ ↑

S5 S6
? ?

12

Proof of Sequent S1 13

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 ?
↗ ↑

S5 S6
r4 ?

13

Proof of Sequent S1 14

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 ?
↗ ↑

S5 S6
r4 r6

14

Proof of Sequent S1 15

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 r2
↗ ↑ ↑

S5 S6 S7
r4 r6 ?

15

Proof of Sequent S1 16

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 r2
↗ ↑ ↑

S5 S6 S7
r4 r6 r7

16

Recording the Proof of Sequent S1 17

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 r2
↗ ↑ ↑

S5 S6 S7
r4 r6 r7

- The proof is a tree

17

Being more precise about sequents

We supposedly have a predicate language
Not formally defined yetWe will assume it is first-order, classical logicRecommended references: [Pau, HR04, Ben12]

A sequent is denoted by the following construct: H ` G

H is a (possibly empty) collection of predicates: the hypotheses
G is a predicate: the goal

Objective
Show that, under the hypotheses of collection H , the goal G can beproven.

Basic inference rules

There are three basic inference rules
These rules are independent of the predicate Language

HYPothesis
HYP

H,P ` P

If the goal is among thehypothesis, we are done.

MONotony

H ` Q MON
H,P ` Q

If goal proven withouthypothesis P , then can beproven with P .

shortCUT

H ` P H,P ` Q CUT
H ` Q

A goal can be proven withan intermediate deduction
P . Nobody tells us what is Por how to come up with it.(Cut Elimination Theorem)

More Rules

There are many other rules for:Logic itself
Look at the slides / documents in the course web page

reasoning on arithmetic (Peano axioms),reasoning on sets,reasoning on functions,. . .
We will not list all of them here (see online documentation)
We will explain them as they appear
But a mechanical prover has them as “inside knowledge” (plus tactics, strategies)

Previous (unexplained) rules

First Peano axiom
P0` 0 ∈ N

Second Peano axiom
P1

n ∈ N ` n + 1 ∈ N

Term substitution
Q(E),E = F ` R(E) EQ-LR
Q(E),E = F ` R(F)

Equality
EQL` E = E

Invariant preservation proofs

EProgress / I1 / INV
Progress I1 invariant proof (13)P1

a ∈ N ` a + 1 ∈ N MON
b ∈ N, c ∈ N, c > 0, k ≥ c , k ∈ N, b = a× c + k, a ∈ N ` a + 1 ∈ N

More rules

H,Q ` R H,P ` R OR-L
H,P ∨ Q ` R

A disjunction on the LHS needs both
branches of the disjunction
be discharged separately

H ` P OR-R1
H ` P ∨ Q

H ` Q OR-R2
H ` P ∨ Q

A disjunction on the RHS only needs one
of the branches to be proven.
That’s why there are two rules: one to
choose each of the branches.

H ` Q H ` P AND-L
H ` P ∧ Q

A conjunction on the RHS only nees both
branches of the conjunction be proven
independently of each other.

Invariant preservation proofs

EProgress / I2 / INV
Progress I2 invariant proof (14)P0` 0 ∈ N Arith` c − c ∈ N MON

c ∈ N, c ∈ N ` c − c ∈ N EQ-LR
c ∈ N, k = c, k ∈ N ` k − c ∈ N

Arith∗
c ∈ N, k − c > 0, k ∈ N ` k − c ∈ N Simp-M-Minus

c ∈ N, k − c > c − c, k ∈ N ` k − c ∈ N Arith-M-M-R
c ∈ N, k > c, k ∈ N ` k − c ∈ N OR-L

c ∈ N, k > c ∨ k = c, k ∈ N ` k − c ∈ N Arith
c ∈ N, k ≥ c, k ∈ N ` k − c ∈ N MON

b ∈ N, c ∈ N, c > 0, k ≥ c, a ∈ N, b = a× c + k, k ∈ N ` k − c ∈ N

Invariant preservation proofs

EProgress / I3 / INV
Progress I3 invariant proof (15)

HYP
b = a× c + k ` b = a× c + k Arith-M-Pl-Dist

b = a× c + k ` b = a× c+c + k−c Arith-M-Pl-Dist
b = a× c + k ` b = (a + 1)× c + k − c Arith-Pl-M
b = a× c + k ` b = (a + 1)× c+(k − c) MON

b ∈ N, c ∈ N, c > 0, k ≥ c , a ∈ N, k ∈ N, b = a× c + k ` b = (a + 1)× c + (k − c)

Invariant preservation proofs

Proofs for Finish
EFinish/I1/INV
EFinish/I2/INV
EFinish/I3/INV

are trivial (Finish does not change anything)

Inductive and non-inductive invariants

We want to prove
A(c) ` Ij(Einit(v , c), c)

A(c),Gi (v , c), I1...n(v , c) ` Ij(Ei (v , c), c)

Ii : inductive invariant (base case + inductive case)
True invariants can be non-inductive if they cannot be proved from program
Event INIT

a: x := 1

end

Event Loop

a: x := 2*x - 1

end

x ≥ 0 is an invariant.
It is not inductive (Loop:
x ≥ 0 ` 2 ∗ x − 1 ≥ 0?)
x > 0 is inductive

Strengthening (if x ≥ 0 needed, we can use x > 0)

Formula strength and information

If A ` B or A⇒ B , then A is stronger than B .
Balance between extremes

Too weak: easy as invariant, maybe not enough informationYou want invariants strong enough to prove the property one wants.
What are the strongest and weakest possible formulæ?

Q: strongest / weakest formulæ. (16)
⊥ ≡ Q ∧ ¬Q (because ⊥ ` R)
> ≡ Q ∨ ¬Q (because R ` >)

The proof by contradiction rule:
ECQ⊥ ` P

Sequential correctness

Postcondition P must be true at the end of execution
End of execution associated to special event Finish:

A(c),GFinish(v , c), I1..n(v , c) ` P(v , c)

Q: corr. cond. for example (17)
Ax︷ ︸︸ ︷

b ∈ N, c ∈ N, c > 0,

Guard︷ ︸︸ ︷
k < c,

Invariants︷ ︸︸ ︷
a ∈ N, k ∈ N, b = a× c + k ` b = a× c + k ∧ k < c︸ ︷︷ ︸

Postcond

Not applicable to non-terminating systems (other proofs required)
I1..n and GFinish related to P ; not necessarily identical
Nota that correct I1...n may not be strong enough: the stronger, the better.

Termination

“Postcondition P must be true at the end of execution”
General strategy: look for a ranking function / progress measure
In Event B lingo: a variant V (v , c)

An expression V (with V ∈ N or V ⊆ S) that is reduced by each non-terminating event
A(v), I1...n,Gi (v , c) ` V (v , c) > V (Ei (v , c), c)

Q: variant expression (18)
variant: k

We do not say how it is reduced: it has to be proven
Termination proof (19)Arith

c > 0 ` k > k − c Mon
b ∈ N, c ∈ N, c > 0, a ∈ N, k ∈ N, b = a× c + k, k ≥ c ` k > k − c

	Mundane matters
	Landscape
	Computation model
	Integer division example
	Invariants
	Sequents and proofs
	Inference rules
	Invariant proofs
	Formula strength
	Termination and correctness

