
Sequential Binary Search

Manuel Carro
manuel.carro@upm.es

IMDEA Software Institute &
Universidad Politécnica de Madrid

mailto:manuel.carro@upm.es

Search specification t. 18
Well-definedness and feasibility t. 22
Refinement . t. 24
Guard strengthening t. 28
Simulation . t. 34

Rodin and refinement t. 37

Rodin proof of INV t. 39

Reviewed hypotheses t. 54

Theorems . t. 55

Seen So Far

Sequential case:
Termination (VAR).
(Partial) correctness.
(Total) correctness.

Write code and verify
Code previously written
Check it works as intended

Many approaches and tools
Floyd-Hoare logic / Dafny / . . .

Pitfalls

Large programs
Large verification problem — may be intractable!
If issue discovered: hard to find problem source

Concurrency
E.g., several events may be true simultaneously
Non-determinism

Non-terminating programs
Need to model environment behavior
No notion of final state / correctness

All correctness in invariants
Need to ensure no deadlock

Pitfalls

Large programs
Large verification problem — may be intractable!
If issue discovered: hard to find problem source

Concurrency
E.g., several events may be true simultaneously
Non-determinism

Non-terminating programs
Need to model environment behavior
No notion of final state / correctness

All correctness in invariants
Need to ensure no deadlock

Pitfalls

Large programs
Large verification problem — may be intractable!
If issue discovered: hard to find problem source

Concurrency
E.g., several events may be true simultaneously
Non-determinism

Non-terminating programs
Need to model environment behavior
No notion of final state / correctness

All correctness in invariants
Need to ensure no deadlock

Some Answers

Large programs
Stepwise refinement
Model some requirements, prove relevant properties
Add requirements, ensure previous properties untouched
Additional properties need to be proved

Concurrent programs
Non-determinism

Nothing to do; event model already covers that
Non-terminating programs

Deadlock-freedom proofs
Correctness: completely invariant-based

We will see:
Refinement for a sequential case
Refinement + concurrency + reactiveness (rest of Event-B part)
Tools.

Some Answers

Large programs
Stepwise refinement
Model some requirements, prove relevant properties
Add requirements, ensure previous properties untouched
Additional properties need to be proved

Concurrent programs
Non-determinism

Nothing to do; event model already covers that

Non-terminating programs
Deadlock-freedom proofs
Correctness: completely invariant-based

We will see:
Refinement for a sequential case
Refinement + concurrency + reactiveness (rest of Event-B part)
Tools.

Some Answers

Large programs
Stepwise refinement
Model some requirements, prove relevant properties
Add requirements, ensure previous properties untouched
Additional properties need to be proved

Concurrent programs
Non-determinism

Nothing to do; event model already covers that
Non-terminating programs

Deadlock-freedom proofs
Correctness: completely invariant-based

We will see:
Refinement for a sequential case
Refinement + concurrency + reactiveness (rest of Event-B part)
Tools.

Some Answers

Large programs
Stepwise refinement
Model some requirements, prove relevant properties
Add requirements, ensure previous properties untouched
Additional properties need to be proved

Concurrent programs
Non-determinism

Nothing to do; event model already covers that
Non-terminating programs

Deadlock-freedom proofs
Correctness: completely invariant-based

We will see:
Refinement for a sequential case
Refinement + concurrency + reactiveness (rest of Event-B part)
Tools.

Rodin Info

Install Rodin

Rodin: tool to write Event B models and, using semi-automatic theorem provers,
discharge proof obligations.

Instructions at http://www.event-b.org/install.html
Read also http://babel.ls.fi.upm.es/teaching/rsd/#rodin-tool

Download latest version from
https://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_Platform/

Start it. Go to Help→ Install New Software→ choose Atelier B Provers from
the Work with drop-down menu→ select it→ click Next. Follow instructions.1

If it does not start: likely, issues with environment / java version.
For example, for Ubuntu Linux 18.10 (and perhaps later):

Add --add-modules=ALL-SYSTEM to the end of rodin.ini in the installation.
Install (Oracle) Java v. 1.8 (required by line -Dosgi.requiredJavaVersion=1.8 in
rodin.ini).

1Collection of automatic theorem provers needed to automate some proofs.

http://www.event-b.org/install.html
http://babel.ls.fi.upm.es/teaching/rsd/#rodin-tool
https://sourceforge.net/projects/rodin-b-sharp/files/Core_Rodin_Platform/

Use Rodin

Using the theorem prover will be your next task.

Exercise (do it before trying anything else)!
1. Write and prove the “integer division” example.
2. Redo the examples in this set of slides.

Again, go to
babel.ls.fi.upm.es/teaching/rsd/index.html#rodin-tool

for pointers and information on:
The RODIN Handbook.
How to set up a Rodin project (which we will see in short).
Using the theorem provers inside Rodin.

Please read the relevant sections of the reference manual.
They are linked from the web page.

babel.ls.fi.upm.es/teaching/rsd/index.html#rodin-tool

Practical Matters

Editing models: right-click on
keywords for drop-down menu with
elements to add.
Most useful keybindings:

Alt-G: add children element
e.g., if in THEN, add action.
Alt-T: add sibling element
e.g., if finished with one guard, add
another guard.
Ctrl-S: save model, run
auto-provers, update proof status.

Help→ Show Active Keybindings.

“Explorer window”: expand project,
machine / context, “Proof Obligations”
to check undischarged proofs:

Double click on undischarged proof:

Switch to “Prover view”
in icons under menu.
Switch back to “Event-B view” to
continue editing.

Proving Hints

www3.hhu.de/stups/handbook/rodin/current/html/proving_perspective.html

Goal to prove is in “Goal” tab.
Reasonable strategy:

“Lasso” operation: select
hypothesis.
“P0” : prove with selected
hypothesis.

Otherwise, maybe “PP” (use all
hypothesis) works. If not:

Hit “Search Hypothesis” in proof
control tab.

Select all hypothesis in “Search
hypothesis” tab, add to current set
(with the black ’+’ on green).
Remove those not related to goal.
Try with “P0”.

Quantifiers (∀,∃) may be difficult:
Instantiate variables to values useful
for proof.
Implications: if necessary, reverse
implication (right-click on ’⇒’ and
select) so hypothesis appear in
antecedent.

www3.hhu.de/stups/handbook/rodin/current/html/proving_perspective.html

Proving Hints (Cont.)

Innocent changes (e.g., renaming) may
make discharged proofs disappear:

Rodin can reuse previous proofs.
Right click on project, “Proof replay”.

Backtrack to previous state:
right-button select node in “Proof
Tree” tab, select “Prune”.
Right-click on any red symbol to
rewrite the expression.

Sometimes it is simplified and makes
proving easier. E.g., if r ∈ p..q and
r , p, q ∈ N, it simplifies to r ≤ q.

Click on ct to negate goal, move to
opposite side of sequent, use proof by
contradiction.

P,¬Q ` ⊥
P ` Q

Exporting and Importing Projects
(Needed to, for example, turn in the project)
Export (https://www3.hhu.de/stups/handbook/rodin/current/html/sect0032.html):

Select project, right-click and Export.
Select General 〉 Archive File, click Next.
Choose path and file name; Finish.

Import (https://www3.hhu.de/stups/handbook/rodin/current/html/sect0033.html):
File 〉 Import from menu.
Select General 〉 Existing Projects into Workspace, Next.
Choose Select archive file, then Browse.
Find zip file and Finish.
Note: importing will fail if project names clash. Either:

Right-click and Rename before exporting (to save under a different name), or
Before importing (to change name of target project).

https://www3.hhu.de/stups/handbook/rodin/current/html/sect0032.html
https://www3.hhu.de/stups/handbook/rodin/current/html/sect0033.html

Search in a Sorted Array

Search in array – problem specification

Preconditions
A natural number n ∈ N, strictly
positive: 0 < n.
A sorted array f of n elements built on
a set N : f ∈ 1..n→ N.
A value v in the array: ∃i · v = f (i).

Postconditions
An index r in the domain of the array:
r ∈ dom(f).
Such that f (r) = v .

Q: Axioms and invariants (1)

An Event-B Specification of BS C0

CONTEXT BS C0

CONSTANTS

n

f

v

AXIOMS

axm1: n ∈ N1

axm3: f ∈ 1 .. n→ N
axm4: ∀i·∀j ·(i ∈ 1 .. n ∧ j ∈ 1 .. n ∧ i ≤ j)⇒ f(i) ≤ f(j)

axm5: v ∈ ran(f)

END

09.11.2017 10:50 Page 1 of 1

First Machine An Event-B Specification of BS M0

MACHINE BS M0

SEES BS C0

VARIABLES

r

INVARIANTS

inv1: r ∈ dom(f)

EVENTS

Initialisation

begin
act1: r :∈ 1 .. n

Should be dom(f) but that will force us to use PP to prove FIS. For simplicity we leave it like

this.

end

Event final 〈ordinary〉 =̂

when
grd2: f(r) = v

then
skip

end

Event progress 〈anticipated〉 =̂

when
grd1: f(r) 6= v

then
act1: r :∈ dom(f)

end

END

10.11.2017 09:35 Page 1 of 1

An Event-B Specification of BS M0

MACHINE BS M0

SEES BS C0

VARIABLES

r

INVARIANTS

inv1: r ∈ dom(f)

EVENTS

Initialisation

begin
act1: r :∈ 1 .. n

Should be dom(f) but that will force us to use PP to prove FIS. For simplicity we leave it like

this.

end

Event final 〈ordinary〉 =̂

when
grd2: f(r) = v

then
skip

end

Event progress 〈anticipated〉 =̂

when
grd1: f(r) 6= v

then
act1: r :∈ dom(f)

end

END

10.11.2017 09:35 Page 1 of 1

Anticipated event: must not increase variant (there is no variant now, but this is
necessary to refine it later and add a variant).

(Automatically Proven) Proof Obligations

WD (Well-Definedness)

Ensuring that axioms, theorems, invariants, guards, actions, variants. . . are
well-defined.
I.e.: all of their arguments “exist”. For example:

f (E) f is a partial function and E ∈ dom(f)
E/F F 6= 0
E mod F F 6= 0
card(S) finite(S)
min(S) S ⊆ Z ∧ ∃x · x ∈ Z ∧ (∀n · n ∈ S ⇒ x ≤ n)

In our example: v 6= f (r) needs r ∈ dom(f), which is ensured by the invariant, which
is assumed true (and independently discharged).

FIS

Ensuring that each non-deterministic action is feasible.
For an event ”evt” and a non-deterministic action ”act” in it, the name of this PO is
evt/act/FIS

In our case:
In r :∈ dom(f), is dom(f) non-empty?
f ∈ 1..n −→ N; since n ∈ N1, dom(f) 6= ∅.

Refinement

Add requirements (to the problem
or how it is solved). The solution
space shrinks. New models (rather,
their states) must be contained in
previous models.

Task: make a round cake with a chocolate layer
and creme on top.

1. Make a cake (cylinder shape) with anything.
2. Make a cake like in (1) with a chocolate

layer.
3. Make a cake like in (2) with creme on top.

If we produce a square cake in (3), we will break
requirement (1) and we will produce a cake which
is not a refinement of (2).

Refining Search

r “shoots” indiscriminately.
Additional requirement: the range of r must get narrower around the position of v .
Idea:

p and q (p ≤ q) range so that r ∈ p..q, always.
r is chosen between p and q: p ≤ r ≤ q.
Depending on the position of f (r) w.r.t. v , we update p or q.
Therefore we always keep f (p) ≤ f (r) ≤ f (q)
(remember ∀i , j · (i ∈ 1..n ∧ j ∈ 1..n ∧ i ≤ j)⇒ f (i) ≤ f (j))

First Refinement
An Event-B Specification of BS M1

MACHINE BS M1

REFINES BS M0

SEES BS C0

VARIABLES

r

p

q

INVARIANTS

inv1: p ∈ 1 .. n

inv2: q ∈ 1 .. n

inv3: r ∈ p .. q

inv4: v ∈ f [p .. q]

VARIANT

q − p

EVENTS

Initialisation

begin
act1: p := 1

act2: q := n

act3: r :∈ 1 .. n

end

Event final 〈ordinary〉 =̂

refines final

when
grd2: f(r) = v

then
skip

end

Event inc 〈convergent〉 =̂

refines progress

when
grd1: f(r) < v

then
act2: p := r + 1

act3: r :∈ r + 1 .. q

end

Event dec 〈convergent〉 =̂

refines progress

when
grd1: f(r) > v

then
act1: q := r − 1

act2: r :∈ p .. r − 1

end

END

26.11.2017 21:37 Page 1 of 1

An Event-B Specification of BS M1

MACHINE BS M1

REFINES BS M0

SEES BS C0

VARIABLES

r

p

q

INVARIANTS

inv1: p ∈ 1 .. n

inv2: q ∈ 1 .. n

inv3: r ∈ p .. q

inv4: v ∈ f [p .. q]

VARIANT

q − p

EVENTS

Initialisation

begin
act1: p := 1

act2: q := n

act3: r :∈ 1 .. n

end

Event final 〈ordinary〉 =̂

refines final

when
grd2: f(r) = v

then
skip

end

Event inc 〈convergent〉 =̂

refines progress

when
grd1: f(r) < v

then
act2: p := r + 1

act3: r :∈ r + 1 .. q

end

Event dec 〈convergent〉 =̂

refines progress

when
grd1: f(r) > v

then
act1: q := r − 1

act2: r :∈ p .. r − 1

end

END

26.11.2017 21:37 Page 1 of 1

convergent: variant must
decrease.

In RODIN: Do not mark
events as “extended”.

Q: Why does this model even-
tually find r?

(2)

If r not yet found, q − p is
decremented. Eventually,
q − p = 0 and then r = p = q. At
this moment, if the invariants
hold, f (r) = v .

Proof Obligations

Doing Refinement Right

The concrete model behaves as specified by the abstract model (i.e., concrete model
does not exhibit any new behaviors)
To show this we have to prove that:

1. Transitions in the concrete model do not lead to states2 that were not reachable in
the abstract model (GRD).

2. Every concrete event is simulated by an abstract event (SIM).
We will make these two conditions more precise and formalize them as proof
obligations.

2Being imprecise here: the relationship is between concrete states and their simulations.

The Essence of GRD
Abstract model to (more) concrete model: details introduced

Abstract model
Contains all correct states.
Guards avoid model from drifting into wrong states.

Concrete model: more details / more variables / richer state
Concrete and abstract states differ.
A correspondence (“simulation”) must exist.
Additional constraints may make some abstract states invalid in the concrete
model: they must not be reachable (they disappear).
Some abstract states split into several concrete states.

The Essence of GRD (Cont)

Abstract model

Si Si+1 Si+2

Z
Guard Gc false.
State Z should not be reached.

Ga

Gb

Gc

Concrete model
(primed elements are
concrete versions of
abstract counterparts)

S ′i S ′i+1

S ′i+2

S ′i+3

Z ′

G ′a

G ′b

G ′d

G ′c

Guards G ′c ,G ′a should be false.
States Z ′, S ′i+1 should not be reached.

S ′i+2, S ′i+3 richer
versions of Si+2

Key property: Whenever a con-
crete guard is enabled, the corre-
sponding abstract guard must be
enabled too, i.e., G ′ ⇒ G

The Essence of GRD (Cont)

G ′b ⇒ Gb (and G ′d ⇒ Gb) A concrete
transition was already valid in
the abstract model (and > ⇒
> is valid).

G ′c ⇒ Gc A non-enabled concrete tran-
sition was not enabled in the
abstract model (and ⊥ ⇒ ⊥ is
valid).

G ′a ⇒ Ga A transition which was en-
abled in the abstract model
cannot be taken any more
because the destination state
is not valid in the concrete
model (and ⊥ ⇒ > is valid).

However, if G ′c were true in the concrete
model, then G ′c ⇒ Gc would be false,
because > ⇒ ⊥ is not valid.
Non-reachable, incorrect states in abstract
model would be transformed into
reachable states in the concrete model,
which is wrong.

GRD
Concrete guards in refining event stronger than abstract ones.
Ensures that when concrete event enabled then so is the corresponding abstract
one.
For concrete “evt” and abstract guard “grd” in corresponding abstract event:
evt/grd/GRD

Guard Strengthening Example

An Event-B Specification of BS M0

MACHINE BS M0

SEES BS C0

VARIABLES

r

INVARIANTS

inv1: r ∈ dom(f)

EVENTS

Initialisation

begin
act1: r :∈ 1 .. n

Should be dom(f) but that will force us to use PP to prove FIS. For simplicity we leave it like

this.

end

Event final 〈ordinary〉 =̂

when
grd2: f(r) = v

then
skip

end

Event progress 〈anticipated〉 =̂

when
grd1: f(r) 6= v

then
act1: r :∈ dom(f)

end

END

10.11.2017 09:35 Page 1 of 1

An Event-B Specification of BS M1

MACHINE BS M1

REFINES BS M0

SEES BS C0

VARIABLES

r

p

q

INVARIANTS

inv1: p ∈ 1 .. n

inv2: q ∈ 1 .. n

inv3: r ∈ p .. q

inv4: v ∈ f [p .. q]

VARIANT

q − p

EVENTS

Initialisation

begin
act1: p := 1

act2: q := n

act3: r :∈ 1 .. n

end

Event final 〈ordinary〉 =̂

refines final

when
grd2: f(r) = v

then
skip

end

Event inc 〈convergent〉 =̂

refines progress

when
grd1: f(r) < v

then
act2: p := r + 1

act3: r :∈ r + 1 .. q

end

Event dec 〈convergent〉 =̂

refines progress

when
grd1: f(r) > v

then
act1: q := r − 1

act2: r :∈ p .. r − 1

end

END

26.11.2017 21:37 Page 1 of 1

Is f (r) < v more restrictive than f (r) 6= v?
Yes: there are cases where f (r) 6= v is true but f (r) < v is not,
and
Whenever f (r) < v is true, f (r) 6= v is true as well.
Therefore, f (r) < v ⇒ f (r) 6= v .

SIM

Ensure that actions in concrete event simulate corresponding abstract action
Ensures that when the concrete event fires, it does not contradict the action of the
corresponding abstract event.

(Ignore witness predicate, W1, W2)

SIM Example

An Event-B Specification of BS M0

MACHINE BS M0

SEES BS C0

VARIABLES

r

INVARIANTS

inv1: r ∈ dom(f)

EVENTS

Initialisation

begin
act1: r :∈ 1 .. n

Should be dom(f) but that will force us to use PP to prove FIS. For simplicity we leave it like

this.

end

Event final 〈ordinary〉 =̂

when
grd2: f(r) = v

then
skip

end

Event progress 〈anticipated〉 =̂

when
grd1: f(r) 6= v

then
act1: r :∈ dom(f)

end

END

10.11.2017 09:35 Page 1 of 1

An Event-B Specification of BS M1

MACHINE BS M1

REFINES BS M0

SEES BS C0

VARIABLES

r’

p

q

INVARIANTS

inv1: p ∈ 1 .. n

inv2: q ∈ 1 .. n

inv3: r′ ∈ p .. q

inv4: v ∈ f [p .. q]

VARIANT

q − p

EVENTS

Initialisation

begin
act1: p := 1

act2: q := n

act3: r′ :∈ 1 .. n

end

Event final 〈ordinary〉 =̂

refines final

when
grd1: r′ ∈ dom(f)

grd2: f(r′) = v

then
skip

end

Event inc 〈convergent〉 =̂

refines progress

when
grd1: f(r′) < v

then
act2: p := r′ + 1

act3: r′ :∈ r′ + 1 .. q

end

Event dec 〈convergent〉 =̂

refines progress

when
grd1: f(r′) > v

then
act1: q := r′ − 1

act2: r′ :∈ p .. r′ − 1

end

END

09.11.2017 02:13 Page 1 of 1

Are the states created by r ′ :∈ r ′ + 1..q inside the states created by r :∈ dom(f)?
Yes. Intuitively: p..q ⊆ dom(f) deduced from invariant. Any choice made by
r ′ :∈ p..q could also be done by r ∈ dom(f).

SIM, More Formally

n ∈ N1
f ∈ 1..n −→ N
r ∈ dom(f)
p ∈ 1..n
q ∈ 1..n
r ∈ p..q
v ∈ f [p..q]
f (r) < v
∀i , j · i ∈ 1..n ∧ j ∈ 1..n ∧ i ≤ j ⇒ f (i) ≤ f (j)
r ′ ∈ r + 1..q
`
r ′ ∈ dom(f)

Let’s find a proof (by contradiction): when could it be that r ′ 6∈ dom(f).

Rodin and the Second Refinement

Create new machine, input previous refinement, check what proofs are automatically
discharged

What theorem provers did (last time I tried :-):

inc/inv1/INV PP, ML timeout: needs interaction
inc/inv4/INV Automatically discharged by PP
inc/act3/FIS Needs interaction
dec/inv2/INV Needs interaction
dec/inv4/INV Needs interaction
dec/act2/FIS Needs interaction

inc/inv1/INV

• •

1 p xr q n

f (r) v = f (x)<

< ≤ ≤

inv1 p ∈ 1..n

Action p := r + 1, r :∈ r + 1..q

Goal (inv. after) r + 1 ∈ 1..n (with r the value before the action)
We had r ∈ 1..n before; just prove r < n.

Strategy v ∈ ran(f); say f (x) = v . As dom(f) = 1..n, 1 ≤ x ≤ n. Since f (r) < v = f (x),
r < x (monotonically sorted array). Therefore r < x ≤ n and r < n.

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f)

∀i , j · (i ∈ dom(f) ∧ j ∈
dom(f) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f)

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f) ∨ j 6∈ dom(f) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f) ∨ r 6∈ dom(f) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f) ∨
r 6∈ dom(f) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f) ∨ r 6∈
dom(f) ∨ x > r)

x 6∈ dom(f) ∨ r 6∈ dom(f) ∨ x > r

r 6∈ dom(f) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Proving inc/inv1/INV in Rodin

Double click on undischarged proof, switch to proving perspective.
Show all hypothesis (click on search button).
Select the hypothesis in the previous slide.
Click on the + button in the tab of the ’Search hypotheses’ window. They should now
appear under ’Selected hypotheses’.
Invert implication inside universal quantifier.
Instantiate j to be r .
Click on the P0 button (proof on selected hypothesis) in the ’Proof Control’ window.

This will try to prove the goal using only the selected hypotheses; it can then explore
much deeper, since we are using only a subset of the existing hypotheses and we have
fixed a value in the universal quantifier.

Almost immediately, a green face should appear.
Save the proof status (Ctrl-s) to update the proof status.

Notes on Discharging Proofs with RODIN

Different versions may behave differently.
Search heuristics. Sensitive to details.
Proof parts saved and reused. Behavior may change depending on history.
Labels (act2, inv1, etc.) depend on how model is written.
Do not use the NewPP prover: it’s unsound.
PP weak with WD: ` b ∈ f −1[{f (b)}] not discharged.
It may not discharge easy proofs if unneeded hypothesis present.
ML useful for arithmetic-based reasoning, weaker with sets.
See https:

//www3.hhu.de/stups/handbook/rodin/current/html/atelier_b_provers.html

and https://www3.hhu.de/stups/handbook/rodin/current/html/proving_

perspective.html.
To test: copy project, work on copied project.
When removing, tick on Delete from hard disk.

https://www3.hhu.de/stups/handbook/rodin/current/html/atelier_b_provers.html
https://www3.hhu.de/stups/handbook/rodin/current/html/atelier_b_provers.html
https://www3.hhu.de/stups/handbook/rodin/current/html/proving_perspective.html
https://www3.hhu.de/stups/handbook/rodin/current/html/proving_perspective.html

dec/act2/FIS

FIS In act2 r :∈ p..r − 1; need to ensure that p ≤ r − 1.

• •

1 p rr − 1x q n

v f (r)f (x) = <

≤ ≤ <

v ∈ f [p..q] from which f (x) = v and x ∈ p..q, from which x ≥ p. Since v < f (r) and
f (x) = v , f (x) < f (r) and x < r ; therefore x ≤ r − 1. We have also r ∈ p..q, and then
r ≤ p. Then p ≤ x ≤ r − 1.

Reviewed Hypothesis

POs can be accepted with . Flagged reviewed to temporarily continue or because they
were manually proved.

Additional Info: THM

Sometimes reusing formulas deducible from axioms is handy.
E.g., in our examples we used

∀i , j · f (i) < f (j)⇒ (i 6∈ dom(f) ∨ j 6∈ dom(f) ∨ i < j)

derived from axm2. This is a theorem in Rodin / Event-B.
Theorems useful to simplify proofs.
For a theorem “thm”, the name of its PO is thm/THM.
Proved as usual.

Type Checking and Mathematical Proofs

Types

Determine types correct.
Based on function types + typing rules.

f (x : R) : R
return x ∗ 3.5

g(x : R) : N
return x ∗ 3.5

Theorems

Determine formula valid.
Hypotheses + deduction rules.

x ∈ R ` x ∗ 3.5 ∈ R

x ∈ R ` x ∗ 3.5 ∈ N

Usual type checking: weak theorem proving.
Type checking rules basically same as logic inference rules.
Most type systems decidable, efficient.

Type Checking and Mathematical Proofs

Types

Determine types correct.
Based on function types + typing rules.

f (x : R) : R
return x ∗ 3.5

g(x : R) : N
return x ∗ 3.5

Theorems

Determine formula valid.
Hypotheses + deduction rules.

x ∈ R ` x ∗ 3.5 ∈ R

x ∈ R ` x ∗ 3.5 ∈ N

Usual type checking: weak theorem proving.
Type checking rules basically same as logic inference rules.
Most type systems decidable, efficient.

Type Checking and Mathematical Proofs

More expressive type systems (Liquid Haskell, Agda, Idris):
More properties captured
length(a, b) = length(a) + length(b)
Decidability can be challenged.

E.g., ML type system.

Some frameworks give up.
Others allow user intervention

Dafny, Coq: help adding invariants, lemmas
If found, proof is black box.

Event B:
In addition, user intervention at the proof level.
Full expressiveness in properties.

	Search specification
	Well-definedness and feasibility
	Refinement
	Guard strengthening
	Simulation
	Rodin and refinement
	Rodin proof of INV
	Reviewed hypotheses
	Theorems

