
The Coffee Club

Manuel Carro
IMDEA Software Institute &

Universidad Politécnica de Madrid



Requirements for The Coffee Club

1. The Coffee Club has members.
2. The Members of the Coffee Club contribute with money.
3. The Coffee Club buys coffee in bulk using the contributed funds.
4. The Coffee Club never incurs in debts.
5. Coffee is bought at the discretion of the President of the Club.
6. Members can order coffee cups in the Club according to the funds they contributed.



Approach

Simplifying Assumptions
I One cup of coffee costs one currency unit.
I Coffee is bought by cups.

Strategy: Three Models
1. Contribute to common funds, order from common funds.

I No concept of members.
I No separation cash / coffee.

2. Add the distinction cash / coffee.
3. Add the support for members and what every member contributed.



Initial Model

Contribute

DrinkCoffee

Value



An Event-B Specification of CC m0

MACHINE CC m0

VARIABLES

value

INVARIANTS

inv1: value ∈ N
EVENTS

Initialisation

begin
act1: value := 0

end

Event Contribute 〈ordinary〉 =̂

any
am

where
grd1: am > 0

then
act1: value := value+ am

end

Event DrinkCoffee 〈ordinary〉 =̂

when
grd1: value > 0

then
act1: value := value− 1

end

END

17.09.2018 12:43 Page 1 of 1

An Event-B Specification of CC m0

MACHINE CC m0

VARIABLES

value

INVARIANTS

inv1: value ∈ N
EVENTS

Initialisation

begin
act1: value := 0

end

Event Contribute 〈ordinary〉 =̂

any
am

where
grd1: am > 0

then
act1: value := value+ am

end

Event DrinkCoffee 〈ordinary〉 =̂

when
grd1: value > 0

then
act1: value := value− 1

end

END

17.09.2018 12:43 Page 1 of 1



Types
I N,N1,Z.
I Constants (arithmetic or not).
I Sets S (of perhaps unknown elements — example later).
I Relationships R× S

(and total, partial, injective, surjective, bijective functions as specific kinds of
relationships — example later).

Reminder: Invariant Proof Obligation
I Close to 40 types of proof obligations. For example, invariant preservation: for all

event i, invariant j

A,Gi, I1...n(v) ` Ij(Ei(v))
I A axioms
I Gi guard of event i
I I1...n(v) all the invariants
I Ij(v) invariant j
I Ei(v) result of action i



First Refinement
Separate coffee and cash

Contribute

BuyCoffee

DrinkCoffee

Value



An Event-B Specification of CC m1

MACHINE CC m1

REFINES CC m0

VARIABLES

cash

coffee

INVARIANTS

inv1: cash ∈ N
inv2: coffee ∈ N
inv3: cash + coffee = value

EVENTS

Initialisation

begin
act2: cash := 0

act3: coffee := 0

end

Event Contribute 〈ordinary〉 =̂

refines Contribute

any
am

where
grd1: am > 0

then
act2: cash := cash + am

end

Event DrinkCoffee 〈ordinary〉 =̂

refines DrinkCoffee

when
grd2: coffee > 0

then
act2: coffee := coffee− 1

end

Event BuyCofee 〈ordinary〉 =̂

any
am

where
grd1: am > 0

grd2: cash ≥ am

then
act1: cash := cash− am

act2: coffee := coffee + am

end

END

17.09.2018 12:54 Page 1 of 1

An Event-B Specification of CC m1

MACHINE CC m1

REFINES CC m0

VARIABLES

cash

coffee

INVARIANTS

inv1: cash ∈ N
inv2: coffee ∈ N
inv3: cash + coffee = value

EVENTS

Initialisation

begin
act2: cash := 0

act3: coffee := 0

end

Event Contribute 〈ordinary〉 =̂

refines Contribute

any
am

where
grd1: am > 0

then
act2: cash := cash + am

end

Event DrinkCoffee 〈ordinary〉 =̂

refines DrinkCoffee

when
grd2: coffee > 0

then
act2: coffee := coffee− 1

end

Event BuyCofee 〈ordinary〉 =̂

any
am

where
grd1: am > 0

grd2: cash ≥ am

then
act1: cash := cash− am

act2: coffee := coffee + am

end

END

17.09.2018 12:54 Page 1 of 1



Second Refinement
Every member as his/her own account

BuyCoffee



An Event-B Specification of CC c2

CONTEXT CC c2

SETS

MEMBER IDS

AXIOMS

axm1: finite(MEMBER IDS)

END

17.09.2018 22:19 Page 1 of 1

An Event-B Specification of CC m2

MACHINE CC m2

REFINES CC m1

SEES CC c2

VARIABLES

cash

coffee

account

INVARIANTS

inv1: account ∈MEMBER IDS 7→ N

EVENTS

Initialisation 〈extended〉
begin

act2: cash := 0

act3: coffee := 0

act4: account := ∅
end

Event NewMember 〈ordinary〉 =̂

any
m

where
grd1: m ∈MEMBER IDS \ dom(account)

then
act1: account(m) := 0

end

Event Contribute 〈ordinary〉 =̂

extends Contribute

any
am

m

where
grd1: am > 0

grd2: m ∈ dom(account)

then
act2: cash := cash + am

act3: account(m) := account(m) + am

end

Event DrinkCoffee 〈ordinary〉 =̂

extends DrinkCoffee

any
m

where
grd2: coffee > 0

grd3: m ∈ dom(account)

grd4: account(m) > 0

then
act2: coffee := coffee− 1

act3: account(m) := account(m)− 1

end

Event BuyCofee 〈ordinary〉 =̂

extends BuyCofee

any
am

where
grd1: am > 0

grd2: cash ≥ am

19.09.2018 10:22 Page 1 of 2

An Event-B Specification of CC m2

MACHINE CC m2

REFINES CC m1

SEES CC c2

VARIABLES

cash

coffee

account

INVARIANTS

inv1: account ∈MEMBER IDS 7→ N

EVENTS

Initialisation 〈extended〉
begin

act2: cash := 0

act3: coffee := 0

act4: account := ∅
end

Event NewMember 〈ordinary〉 =̂

any
m

where
grd1: m ∈MEMBER IDS \ dom(account)

then
act1: account(m) := 0

end

Event Contribute 〈ordinary〉 =̂

extends Contribute

any
am

m

where
grd1: am > 0

grd2: m ∈ dom(account)

then
act2: cash := cash + am

act3: account(m) := account(m) + am

end

Event DrinkCoffee 〈ordinary〉 =̂

extends DrinkCoffee

any
m

where
grd2: coffee > 0

grd3: m ∈ dom(account)

grd4: account(m) > 0

then
act2: coffee := coffee− 1

act3: account(m) := account(m)− 1

end

Event BuyCofee 〈ordinary〉 =̂

extends BuyCofee

any
am

where
grd1: am > 0

grd2: cash ≥ am

19.09.2018 10:22 Page 1 of 2



Can Every Member have its Cup of Coffee?

I What could happen if
m 6∈ dom(account) was not in the
guard of NewMember?

I Everyone who contributed should have
coffee (or cash) available at the club.

I Strongest invariant:

coffee+ cash =
∑

m∈dom(acc)
f(m)

I However,
∑

i f(i) not directly in Event B
toolkit.

I Workaround necessary (e.g., plugin
extended the basic Event B theory).
See bre.is/8YtsnRG5

I Possible alternative: “there is coffee /
cash for every single person”:
∀m·(m ∈ dom(acc)⇒ cash+coffee ≥ acc(m))

I However:
I Does it capture the requirement we

want?
I In any case, is it inductive?

bre.is/8YtsnRG5


Deadlock, Termination, Progress

Absence of Deadlocks
I Most of the time, we do

not want deadlocks.
I Prove that a transition

can always occur.
I Transitions enabled by

guards⇒ prove that
the disjunction of the
guards is always true.

I Specialized version for
absence of deadlock in
refinements:
“assuming that the
previous machine does
not deadlock...”.

Termination
I Not always necessary

(in a reactive system).
I VARIANT EXP: an

expression that
I Has a lower bound

(e.g., EXP ∈ N, or EXP
is a set).

I Is decreased by
every event.

Ensuring Progress
I Ensure that a set E of

events does not
dominate the
execution and prevent
others from firing.

I Use a VARIANT

expression involving
events in E.

I Does not imply
termination: when
events in E cannot
proceed, other events
not in E can fire and
move the model to a
state where events in E
are enabled.


