
A Checkout Counter Controller

Manuel Carro
IMDEA Software Institute &

Universidad Politécnica de Madrid



Landscape so far

Types of formulas
Easy (few or

no quantifiers)
More involved
(quantifiers)

Sequential Integer division,
n2 = 1 + 3 + . . .

Binary search

Concurrent,
environment

Coffee Club Checkout Counters



Environment

People follow the rules
(otherwise automating is pointless or very difficult)

Clients wait: entrance screen gives permission to go to counter.
Additionally: clients wait for space between screen and counter to be empty.
Clients do not leave counter before it has noticed client.



Environment

People follow the rules
(otherwise automating is pointless or very difficult)

Sensor after screen and in every counter: detect people.
“Busy” light in every counter.
People can go to any free counter.



Model: variables

“Signals” (screen, busy light, sensors, . . . ) modeled with variables.
Plus internal state.
Also system characteristic (e.g., # of counters).



Types of Events

Reactive system: neverending interaction loop (with humans).
Correctness: we need to simulate (acceptable) human behavior.
In general: model environment to ensure system works correctly.



Types of Events

Human Environment events
Environment events read from some system variables.
Give input to system by writing to variables modeling sensors.
Cannot write on system variables / read from internal system variables.



Types of Events

System events
Read and write system variables.
Read environment variables.
Cannot write onto environment variables.



Types of Events

Environment events reading from internal system variables.
Environment events writing to system variables.
System events writing to environment variables altering
environment behavior.

is cheating.



Events in the Model



Understanding Sensors

Hardware usually on / off when detecting / not detecting.
Transient behavior: real-time signals may be missed.
(Unlikely for our case)
We need to detect clients walking to counter (sensor line).

Sensor is on as long as clients walking to counter, or
Sensor off after clients pass, sensor line stays on until turned off.

The latter can be simulated with software.
Assume that behavior, do not show code.

Hw. sensor

sensor line
Explicit reset

cashier sensor(k) is on only when client at counter.



Making Sense of Sensor and Screen
line sensor

False True

can enter False No free desk
Corridor empty

No free desk
Corridor not empty

True Free desk
Corridor empty Just entered

All combinations possible.
They summarize the immediate previous situation.
Again, we assume clients wait for corridor to be empty.
We could force it with a barrier:

barrier = OPEN⇔ can enter = TRUE ∧ line sensor = FALSE



Busy Lights and Counter Sensors

Not in sync.
That is how it physically happens.
Every combination has a meaning: captures change over time.

busy(k)
False True

sensor(k) False Free Just left

True Just arrived Being served



Some Invariants

If we can enter, there is a free desk
can enter = TRUE⇒ ∃k · (k ∈ 1..N DESK ∧ cashier busy(k) = FALSE)

Note: implication is not causality.

If we are in the corridor and not yet served, there is a free desk
line sensor = TRUE⇒ ∃k · (k ∈ 1..N DESK ∧ cashier sensor(k) = FALSE)

Note: the two above need additional auxiliary invariants (see model).

What about “entering should be disallowed if there is someone in the corridor”?
¬(can enter = TRUE ∧ line sensor = TRUE)

Remember a previous slide: all combinations can enter and line sensor are legal and
have a different meaning.



Some Invariants

If we can enter, there is a free desk
can enter = TRUE⇒ ∃k · (k ∈ 1..N DESK ∧ cashier busy(k) = FALSE)

Note: implication is not causality.

If we are in the corridor and not yet served, there is a free desk
line sensor = TRUE⇒ ∃k · (k ∈ 1..N DESK ∧ cashier sensor(k) = FALSE)

Note: the two above need additional auxiliary invariants (see model).

What about “entering should be disallowed if there is someone in the corridor”?
¬(can enter = TRUE ∧ line sensor = TRUE)

Remember a previous slide: all combinations can enter and line sensor are legal and
have a different meaning.



Some Invariants

If we can enter, there is a free desk
can enter = TRUE⇒ ∃k · (k ∈ 1..N DESK ∧ cashier busy(k) = FALSE)

Note: implication is not causality.

If we are in the corridor and not yet served, there is a free desk
line sensor = TRUE⇒ ∃k · (k ∈ 1..N DESK ∧ cashier sensor(k) = FALSE)

Note: the two above need additional auxiliary invariants (see model).

What about “entering should be disallowed if there is someone in the corridor”?
¬(can enter = TRUE ∧ line sensor = TRUE)

Remember a previous slide: all combinations can enter and line sensor are legal and
have a different meaning.



Remarks

Absolute time meaningless: cannot rely on relative speed.
Safety, liveness.
Auxiliary invariants (remember n2 = 1 + 3 + · · ·+ (2n+ 1)).
Function initialization.
Deciding events: observables which change state. Be frugal!
Modeling physical environment: very often a safe overapproximation.
Add desk number in screen:

Type invariant: cashier number ∈ 0..N DESK.
Gluing invariant: cashier number = 0⇔ can enter = FALSE.
cashier number = 0 means “cannot enter”.
cashier number :∈ {k|k ∈ 1..N DESK ∧ cashier busy(k) = FALSE ∧ cashier sensor(k) =
FALSE}
Simple, straighforward refinement.


