
Floyd-Hoare Logic for Program Verification

Julio Mariño

Rigorous Software Development
EUROPEAN MASTER IN SOFTWARE ENGINEERING/ MASTER IN SOFTWARE AND SYSTEMS

Universidad Politécnica de Madrid/IMDEA Software

October 2015

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 1 / 17

motivation
why Floyd-Hoare is so important

• Classical program verification consists in, given a piece of software written in one
particular language and one property written in a certain kind of logic, proving that
the execution of the program satisfies the property.

• Compared to correctness by construction (as in Event-B), classical program
verification is the hard way to rigorous SW development because:

• we have no control on how the code has been written (style, complexity, coding
standards. . .), and

• formalizing the semantics of all the constructs in real programming languages can be
difficult.

• However, the basic techniques for program verification underlie many techniques
and tools for program analysis so it is essential to gain certain familiarity to them.

• Hoare logic is one of the (many) valuable contributions of C.A.R. Hoare to
computer science.

• The term “Floyd-Hoare” is due to the pioneering – but somehow informal – work
by Robert W. Floyd: “Assigning Meanings to Programs”, 1967.

• The practical work on this topic will be carried out using Dafny, a language and
semiautomatic program verifier which allows to develop certified
a.k.a. proof-carrying code making use of the programmer’s annotations and an
automated theorem prover.

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 2 / 17

motivation
some Java examples

1 public static final int square (int n) {
2 int r = 0;
3 int s = 1;
4 int t = n;
5 while (t > 0) {
6 r = r + s;
7 s = s + 2;
8 t = t - 1;
9 }

10 return r;
11 }

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 3 / 17

motivation
some Java examples (ii)

1 public static final int euclid (int a, int b) {
2 // a, b > 0
3 int x = a;
4 int y = b;
5 while (x != y) {
6 if (x > y) {
7 x = x - y;
8 } else {
9 y = y - x;

10 }
11 }
12 return x;
13 }

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 4 / 17

the need for a programming logic

• we have already proved that these Java programs have a “mathematical meaning”
by proving things about mathematical formulae with a similar structure.

• but this is not really what we want:
• data in a programming language – i.e. numbers, arrays, etc. – are not exactly the same

as their mathematical relatives – natural numbers, sets, etc.
• (imperative) programming languages have structures – assignment, sequential

composition, loops, etc. – which do not have a clear equivalence in mathematics.

• we need a tool that combines mathematics and code in a single formal system, so
that we can actually prove things about programs

• this is the purpose of Floyd-Hoare logic, and of every programming logic
• these ideas underlie other formal systems (e.g. Event-B)
• at the end of this unit we will be able to reason about, and prove properties of Java

programs as the previous ones and those making use of static arrays – e.g. sorting
routines.

• dealing with dynamic memory is harder and requires a more elaborate logic.

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 5 / 17

a simple programming language
while programs

E ::= x | n | E1 + E2 | E1 − E2 | . . . (ARITHMETIC EXPRESSIONS)
B ::= E1 = E2 | E1 ≥ E2 | . . . (BOOLEAN EXPRESSIONS)
P ::= skip | x := E | P1; P2 |

ifB then P1 else P2 | while (B) P (PROGRAMS)

• this is a simple “model language” but expressive enough to represent the two Java
programs shown before.

• skip represents the empty program that does nothing.
• we are not considering arrays yet.

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 6 / 17

Hoare triples
• A Hoare triple {s1} P {s2} says that if program P terminates when started in state s1,

then the resulting state will be s2.
• A program state is a partial mapping of (arithmetic) variables to their values:

State = Var 7→ Z

Example: {x 7→ 7, y 7→ 42} x := x + y {x 7→ 49, y 7→ 42}
• A generalized state is a logic formula whose free variables are program variables. As

program states can be trivially encoded as generalized ones, by using equality, we
will routinely use generalized states in Hoare triples, which will result in better
expressiveness and a simpler presentation of the deduction rules:

Example:
{x = 7 ∧ y = 42} x := x + y {x = 49 ∧ y = 42}
{x > 0 ∧ y > 0} x := x + y {x > 0}

A Hoare triple {ϕ1} P {ϕ2} says that if program P terminates when started in a state
satisfying ϕ1, then the resulting state will satisfy ϕ2.

• With a small notational abuse, we will consider BOOLEAN EXPRESSIONS valid
generalized states.

• Observe that the concept of Hoare triple is generic, it can be easily adapted to
different logics and programming languages.

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 7 / 17

Hoare logic
the basics

• The purpose of the proof system is to prove valid Hoare triples.
• The proof system is natural and uniform: for each syntax rule to derive a program

there is a single deductive rule.
• The axioms are given by the following rule scheme:

AX
{ϕ} skip {ϕ}

that is, for every formula ϕ, executing skip in a state satisfying ϕ will lead to an
ending state satisfying ϕ.

• The simplest way of composing two proofs/programs is by sequential composition:

{ϕ1} P1 {ψ} {ψ} P2 {ϕ2}
SEQ

{ϕ1} P1; P2 {ϕ2}
That is, if P1 ends in a state satisfying ψ when started in (a state satisfying) ϕ1, and
P2 ends in ϕ2 when started in ψ, then P1; P2 is a program that ends in ϕ2 when
started in ϕ1.
Observe the similarities to the definition of the composition of two binary relations.

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 8 / 17

Hoare logic
carrying on

• Conditionals are also quite easily justified:

{ϕ1 ∧ B} P1 {ϕ2} {ϕ1 ∧ ¬B} P2 {ϕ2}
SEQ

{ϕ1} if (B) then P1 else P2 {ϕ2}
That is, if P1 ends in a state satisfying ϕ2 when started in ϕ1 and B holds, and P2

ends in ϕ2 when started in ϕ1 and B does not hold, then if (B) then P1 else P2 is a
program that ends in ϕ2 when started in ϕ1.

• Observe that the COND rule takes B both as a program expression and as a logical
formula. We allow this notational abuse by economy of language.

• Structural rules: Rules SEQ and COND require that some of the states in the subproofs
are exactly the same. As in sequent-based systems, some rules are provided that
help in adapting the states in subproofs to the shapes required by a larger proof:

{ϕ1} P {ψ} ψ ⇒ ϕ2
POST. WEAK.

{ϕ1} P {ϕ2}

{ψ} P {ϕ2} ϕ1 ⇒ ψ
PREC. STRENGTH.

{ϕ1} P {ϕ2}
The rule above is called POSTCONDITION WEAKENING and the one below
PRECONDITION STRENGTHENING. Both of them should be obvious.

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 9 / 17

Hoare logic
structural rules in use

• Exercise: Prove the following rules:

{ψ} P {φ} ϕ1 ⇒ ψ ∧ φ⇒ ϕ2
STRUCT

{ϕ1} P {ϕ2}

{ϕ1 ∧ B} P1 {ψ} {ϕ1 ∧ ¬B} P2 {φ}
COND’{ϕ1}if (B) then P1 else P2{ψ ∨ φ}

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 10 / 17

Hoare logic
the assignment rule

• What happens when we change the program state?

{x = 42} x := 7 {x = 7}
{x = 42 ∧ y = 7} x := y {x = 7 ∧ y = 7}
{x = 42 ∧ y = 7} x := x + y {x = 49 ∧ y = 7}

• Hoare found a common pattern (!):

{ϕ[e/x]}x := e{ϕ}

• The rule seems counterintuitive, but it works:

{x = 7[7/x]} = {true}(x = 42⇒ true)
{(x = 7 ∧ y = 7)[7/x]} = {true ∧ y = 7}

{(x = 49 ∧ y = 7)[x + y/x]} = {y = 7 ∧ x + y = 49}
(y = 7 ∧ x + y = 49)⇒ x = 42

• Note that the precondition can be obtained from the postcondition, but equation
solving may be necessary to take parctical advantage of it.

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 11 / 17

Hoare logic
loops

•
{ϕ ∧ B} P {ϕ}

WHILE
{ϕ} while (B) P {ϕ ∧ ¬B}

• ϕ is an invariant: if it is assumed to hold immediately before executing the loop, then
we know it holds right after.

• We also know that, if the loop terminates, the loop condition no longer holds.
• The problem is, we have no recipe for inferring the right invariant.
• This is because, in general, we cannot know how many times the loop is going to

execute – if we knew it, we could just unroll it and make it a big conditional of
conditionals, etc.

• However, it is possible to approximate invariants, and this is actually an active
research topic.

• To summarize, the WHILE rule is the only one that requires some kind of creativity
to be applied. This is the crucial piece of information one has to provide to certain
automated program verification tools (e.g. Dafny).

• Also, remember that, for this to be practical, termination of the loop needs to be
established.

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 12 / 17

a practical case
squares as sums of odd numbers

1 public static final int square (int n) {
2 int r = 0;
3 int s = 1;
4 int t = n;
5 while (t > 0) {
6 r = r + s;
7 s = s + 2;
8 t = t - 1;
9 }

10 return r;
11 }

• Writing a whole proof in mathematical style for even a program this small can take
a lot of paper. . . .

• Fortunately, the uniformity of the proof system and the associativity of the SEQ rule
makes it possible a more compact representation: just annotate the program with
formulae inbetween the sentences and the proof can be automatically inferred
from the code structure. . .

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 13 / 17

a practical case (II)
squares as sums of odd numbers

1 public static final int square (int n) {
2 // n >= 0 (assumed)
3 int r = 0;
4 int s = 1;
5 int t = n;
6 while (t > 0) {
7 r = r + s;
8 s = s + 2;
9 t = t - 1;

10 }
11 // r = n * n (desired)
12 return r;
13 }

• We use comments as states: a (sub)program enclosed in comments can be seen as a
Hoare triple.

• We start by stating the program’s “contract”.

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 14 / 17

a practical case (III)
squares as sums of odd numbers

1 public static final int square (int n) {
2 // n >= 0 (assumed)
3 int r = 0;
4 int s = 1;
5 int t = n;
6 // r == 0 && s == 1 && t == n
7 // r == (n - t) * (n - t) (derived)
8 while (t > 0) {
9 r = r + s;

10 s = s + 2;
11 t = t - 1;
12 }
13 // r == (n - t) * (n - t)
14 // r == n * n (desired, derived from previous line)
15 return r;
16 }

• We need some property that holds before and after the loop, so it can be used as an
invariant for it.

• We can introduce more comments as far as we are consistent with the SEQ and
structural rules.

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 15 / 17

a practical case (IV)
squares as sums of odd numbers

1 public static final int square (int n) {
2 // n >= 0 (assumed)
3 [...]
4 // r == 0 && s == 1 && t == n
5 // r == (n - t) * (n - t) (derived)
6 // s == 2 * (n - t) + 1 (derived)
7 // t >= 0 (derived)
8 while (t > 0)
9 // t >= 0 (invariant)

10 // r == (n - t) * (n - t) (invariant)
11 // s == 2 * (n - t) + 1 (invariant)
12 {
13 [loop body]
14 }
15 // t == 0 (t >= 0 & !(t > 0))
16 // r == (n - t) * (n - t)
17 // r == n * n (desired, derived from previous lines)
18 return r;
19 }

• something must be said about s, as it is used to update the value for r. . .
• we need to note that t cannot become negative

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 16 / 17

a practical case (V)
squares as sums of odd numbers

• Finally, we prove that the loop body preserves the invariant:

1 // t > 0 (we are inside the loop!)
2 // r == (n - t) * (n - t) (invariant)
3 // s == 2 * (n - t) + 1 (invariant)
4 // r + s == (n - t) * (n - t) + 2 * (n - t) + 1 <=>
5 // r + 2 * (n - t) + 1 == (n - t) * (n - t) + 2 * (n - t) + 1 <=>
6 // r == (n - t) * (n - t) (as desired)
7 r = r + s;
8 // t > 0
9 // r == (n - t) * (n - t) + 2 * (n - t) + 1

10 // s + 2 == 2 * (n - t) + 3 <=> s == 2 * (n - t) + 1
11 s = s + 2;
12 // t - 1 >= 0 <=> t >= 1 <=> t > 0
13 // r == (n-t + 1) * (n-t + 1) == (n-t) * (n-t) + 2 * (n-t) + 1
14 // s == 2 * (n - t + 1) + 1 == 2 * (n - t) + 3
15 t = t - 1;
16 // t >= 0 (invariant)
17 // r == (n - t) * (n - t) (invariant)
18 // s == 2 * (n - t) + 1 (invariant)

Mariño (Rigorous Software Development) Floyd-Hoare Logic for Program Verification October 2015 17 / 17

